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Abstract: Recently, the uncertainty aspects of record values have been increasingly studied in the
literature. In this paper, we study the residual Tsallis entropy of upper record values coming from
random samples. In the continuous case, we define the Tsallis entropy quantity for the residual
lifetime of upper record values in general distributions as the residual Tsallis entropy of upper record
values coming from a uniform distribution. We also obtain a lower bound on the residual Tsallis
entropy of upper data set values originating from an arbitrary continuous probability distribution.
We also discuss the monotonic property of the residual Tsallis entropy of upper data sets.
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1. Introduction

The entropy measure proposed by Shannon [1] has many applications in various
fields such as information science, physics, probability, statistics, communication theory,
and economics. Let X represent the lifetime of a unit which has a cumulative distribution
function (CDF) K(x) and a probability density function (PDF) k(x). The Shannon differ-
ential entropy of X is defined by H(X) = −E[log k(X)] if the expected value exists. This
quantifies the uncertainty of a random phenomenon. The concept of the Tsallis entropy,
initiated by Tsallis [2], see also [3], is a generalization of the Boltzmann–Gibbs statistic. Very
recently, Tsallis and Borges [4] showed that, depending on the initial condition and the
size of the time series, time reversal can enable the recovery, within a small error bar, of
past information when the Lyapunov exponent is non-positive, notably at the Feigenbaum
point (edge of chaos), where weak chaos is known to exist. The practical usefulness of time
reversal has been very recently exhibited by decreasing error bars in the predictions of
strong earthquakes [5,6]. For a non-negative continuous random variable (RV) X with PDF
k(x), the Tsallis entropy of order α is given by

Hα(X) = ω(α)

[∫ ∞

0
kα(x)dx− 1

]
= ω(α)[E(kα−1(K−1(U)))− 1], (1)

where ω(α) = 1
1−α for all α > 0, α 6= 1, and where K−1(u) = inf{x; K(x) ≥ u}, for u ∈ [0, 1],

denotes the quantile function. The Tsallis entropy can be negative for some values of α,
but it can also be non-negative if one chooses appropriate values for α. The Tsallis entropy
converges to the Shannon entropy when α approaches 1, i.e., H(X) = limα→1 Hα(X). The
Shannon differential entropy has the property of additivity, i.e., for RVs X and Y, which
are independent and the entropy of their joint distribution is equal to the sum of their
entropies, i.e., H(X, Y) = H(X) + H(Y). However, the Tsallis entropy does not have this
property and instead follows a non-additive rule given by Hα(X, Y) = Hα(X) + Hα(Y) +
(1− α)Hα(X)Hα(Y).

The uncertainty in the lifetime of a new system can be measured by Hα(X), where X
is the RV representing the lifetime. However, in some situations, operators already have
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some information about the age of the system. For example, they may know that the
system is still functioning at time t and want to quantify the uncertainty in the remaining
lifetime, i.e., Xt = [X − t|X > t]. In such cases, Hα(X) is not appropriate. Consider the
PDF of Xt, represented as kt(x) = k(x + t)/K(t), where both x and t are positive. Here,
K(t) = P(X > t) represents the survival function of X. Thus, the residual Tsallis entropy
(RTE) is defined as

Hα(X; t) = ω(α)

[∫ ∞

0
kα

t (x)dx− 1
]
= ω(α)

[∫ ∞

t

(
k(x)
K(t)

)α

dx− 1
]

(2)

= ω(α)

[∫ 1

0
kα−1

t (K−1
t (u))du− 1

]
, α > 0, (3)

where K−1
t (u) = inf{x; Kt(x) ≥ u} is the quantile function of Kt(x) = K(x + t)/K(t),

x, t > 0. The characteristics, extensions, and uses of Hα(X; t) have been deeply researched
by a number of scholars, including Asadi et al. [7], Nanda and Paul [8], and Zhang [9],
along with further studies referenced in their work.

Records have applications in various fields, such as reliability engineering, insurance
science, and others. An illustrative example can be found in the field of reliability theory.
Consider a system involving k of n components to function successfully. Surprisingly, the
lifetime of this system corresponds to the (n− k + 1)-th order statistic from a sample of size
n. As a result, we can interpret the n-th upper record value as the lifetime of a system that
requires (n− k + 1) components to function properly. In other words, the nth upper record
value represents the operating lifetime of a system that requires (n− k + 1) components to
function successfully. In insurance science, the second or third highest values are relevant
for some types of non-life insurance claims; see, e.g., Kamps [10] for more details. The
information properties of record values have been studied by many researchers. The paper
by Baratpour et al. [11] explores the information properties of record values using the Shan-
non differential entropy. Kumar [12] investigates the Tsallis entropy of k-record statistics in
various continuous probability models and provides a characterization result for the Tsallis
entropy of k-record values. Additionally, the mentioned paper examines the residual Tsallis
entropy of k-record statistics in a summary context. Drawing on the information measures
of record data obtained from independent and identically distributed continuous RVs,
Ahmadi [13] offers new characterizations for continuous symmetric distributions based on
the cumulative residual (past) entropy, Shannon entropy, Renyi entropy, Tsallis entropy, and
common Kerridge inaccuracy measures. Xiong et al. [14] present the symmetric property
of the extropy of record values and provide characterizations of exponential distributions.
They also propose a new test for the symmetry of continuous distributions based on a
characterization result, and the Monte Carlo simulation results investigate a wide range of
alternative asymmetric distributions. In a recent study, Jose and Sathar [15] examine the
residual extropy of k-records derived from any continuous distribution, relating it to the
residual extropy of k-records derived from a uniform distribution. They establish lower
bounds for the residual extropy of upper and lower k-records arising from any continuous
probability distribution. Furthermore, they discuss the monotone property of the residual
extropy for both upper and lower k-records. Further contributions in this area can be found
in the following papers: Paul et al. [16], Cali et al. [17], Zamani et al. [18], Gupta et al. [19],
Paula et al. [20], Zarezadeh [21], Baratpour et al. [22], and Qiu [23]. These papers, along
with their references, provide additional insights and developments related to the topic.

This article is concerned with the study of the residual Tsallis entropy of upper data
sets obtained from continuous distributions. The uniform distribution is chosen as a
benchmark because of its simplicity and convenience in terms of its density function. It
also serves as a versatile tool for modeling other distributions by applying appropriate
transformations. Thus, by examining the residual Tsallis entropy of the upper data sets
from the uniform distribution, we can gain insight into the entropy behavior of the upper
data sets from any continuous distribution. Our main insight is that the RTE of upper data
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sets from any continuous distribution can be represented by the RTE of upper data sets
from the uniform distribution over the interval (0, 1). To denote the uniform distribution
over this interval, we use the notation U(0, 1).

In the present study, we will comprehensively investigate the residual Tsallis entropy
of upper data sets obtained from continuous probability distributions. The following
sections provide an overview of the structure of the paper and its main contributions:
In Section 2, we first introduce the residual Tsallis entropy and application it provides
regarding upper data sets derived from continuous probability distributions. We present
a rigorous derivation of the expression for the RTE of upper data sets. Moreover, we
establish a lower bound for this entropy measure that provides valuable insight into the
minimum achievable entropy of upper data set values. Furthermore, we investigate how
the RTE of data set changes in view of the aging behaviors of their components. Finally,
we show the monotonic behavior of the residual Tsallis entropy of n-th upper record
values as a function of n. Section 3 provides an expression for the residual records based
on the knowledge that all units consist of stresses exceeding t > 0. Understanding the
monotonic property enhances our understanding of entropy dynamics and provides deeper
insights into the system reliability and performance characteristics. In Section 4, we present
a comprehensive summary of the overall results of our study. We highlight the main
contributions, implications, and applications of the derived expressions, the lower bound,
and the monotone property of residual Tsallis entropy.

“ We will use some notations throughout the paper. The order relations “≤st”, “≤hr”,
“≤lr”, and “≤d” represent, respectively, the usual stochastic order, hazard rate order, likeli-
hood ratio order, and dispersive order; for a detailed discussion of these stochastic orders,
the reader may be referred to Shaked and Shanthikumar [24]. ”

2. Residual Tsallis Entropy of Record Values

Let us consider a technical system that is subjected to shocks, such as voltage spikes.
Then, the shocks can be modeled as a sequence of independent and identically distributed
(i.i.d.) RVs {Xi, i ≥ 1}, with a common continuous CDF K, PDF k, and survival function
K(t) = 1− K(t). The shocks represent the stresses on the system at different times. We are
interested in the record statistics (the values of the highest stresses observed so far) of this
sequence. Let us denote by Xi:n the ith order statistics from the first n observations.

Then, we define the sequences of upper record times Tn, (n ≥ 1) and upper record
values Un, respectively, as follows:

Un = XTn :Tn , n = 0, 1, . . . ,

where
T0 = 1, Tn = min{j : j > Tn−1, Xj > Un}, n ≥ 1.

It is well known that the PDF and the survival function of Un, denoted by kn(x) and
Kn(x), respectively, are given by

kn(x) =
[− log K(x)]n−1

(n− 1)!
k(x), x ≥ 0, (4)

and

Kn(x) = K(x)
n−1

∑
k=0

[− log K(x)]k

k!
=

Γ(n,− log K(x))
(n− 1)!

, x ≥ 0, (5)

where
Γ(a, x) =

∫ ∞

x
ua−1e−udu, a, x > 0, (6)
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is known as the incomplete gamma function (see e.g., [25]). We use the notation V ∼ Γt(a, b)
to indicate that the RV V has a truncated Gamma distribution with the following PDF

fV(v) =
ba

Γ(a, t)
va−1e−bv, v > t > 0, (7)

where a > 0 and b > 0. In the residual part, we concentrate on examining the residual Tsallis
entropy of the RVXU(n)

, as it is considered a measure to quantify the uncertainty degree
induced by the density of [XU(n)

− t|XU(n)
> t] in terms of the system’s residual lifetime

and its predictability. To facilitate the computations, we introduce a lemma that approves
the RTE of order statistics from a uniform distribution that is linked to the incomplete beta
function. This relationship is crucial from a practical point of view and allows for a more
convenient computation of RTE. The proof of this lemma is omitted here since it involves
simple calculations.

Lemma 1. Let {Ui, i ≥ 1} be a sequence of i.i.d. RVs from the uniform distribution. Moreover, let
U?

n denote the n-th upper record values of the sequence {Ui}. Then

Hα(U?
n ; t) = ω(α)

[
Γ(α(n− 1) + 1,− log(1− t))

Γα(n,− log(1− t))
− 1
]

, 0 < t < 1,

for all α > 0, α 6= 1.

By leveraging this lemma, researchers and practitioners can readily compute the RTE
of record values from a uniform distribution using the well-known incomplete gamma
function. This computational simplification enhances the applicability and usability of the
RTE in various contexts. In Figure 1, we present the plot of Hα(U?

n ; t) for values of α = 0.2
and α = 2 and values of n = 2, . . . , 6.
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Figure 1. The exact values of Hα(U?
n ; t) for α = 0.2 (left panel) and α = 2 (right panel) with respect

to 0 < t < 1.

The upcoming theorem establishes a relationship between the RTE of record values
Un and the RTE of record values from a uniform distribution.

Theorem 1. Let {Xi, i ≥ 1} be a sequence of i.i.d. RVs with CDF F and PDF f . Let Un, denote
the n-th upper record value of the sequence {Xi}. Then, the residual Tsallis entropy of Un, for all
α > 0, α 6= 1, is formulated as below:

Hα(Un; t) = ω(α)
[
((1− α)Hα(U?

n ; K(t)) + 1)E[kα−1(K−1(1− e−Vn))]− 1
]
, t > 0, (8)

where Vn ∼ Γ− log K(t)(α(n− 1) + 1, 1).
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Proof. By employing the transformation u = F(x), we can utilize Equations (2), (4), and
(5) to derive the following expression

Hα(Un; t) = ω(α)

[∫ ∞

t

(
kUn(x)
KUn(t)

)α

dx− 1

]

= ω(α)

[∫ ∞

t

(
[− log K(x)]n−1k(x)

Γ(n,− log(1− K(t)))

)α

dx− 1

]

= ω(α)

[
1

Γα(n,− log(1− K(t)))

∫ ∞

t
[− log K(x)]α(n−1)kα(x)dx− 1

]
(9)

= ω(α)

[
Γ(α(n− 1) + 1,− log(1− K(t)))

Γα(n,− log(1− K(t)))

∫ 1

K(t)

(− log(1− u))α(n−1)kα−1(K−1(u))
Γ(α(n− 1) + 1,− log(1− K(t)))

du− 1

]

= ω(α)

[
Γ(α(n− 1) + 1,− log(1− K(t)))

Γα(n,− log(1− K(t)))

∫ ∞

− log(1−K(t))

zα(n−1)e−zkα−1(K−1(1− e−z))

Γ(α(n− 1) + 1,− log(1− K(t)))
dz− 1

]
= ω(α)

[
((1− α)Hα(U?

n ; K(t)) + 1)E[kα−1(K−1(1− e−Vn))]− 1
]
, t > 0.

where the last identity is acquired by applying Lemma 1. Hence, the proof is completed.

Our analysis shows a significant decomposition of the remaining Tsallis entropy of
the upper record values. In particular, we have shown that this entropy measure can be
expressed as the product of two key components: the residual Tsallis entropy of the upper
records from the uniform distribution and the expectation of a truncated gamma RV. From
Equation (8), we can also see that the residual Tsallis entropy of the n-th upper data set
value from an arbitrary continuous distribution F can be expressed by the residual Shannon
entropy of the n-th upper data set value from U(0, 1) as follows:

H(Un; t) = H(U?
n ; K(t))−E[k(K−1(1− eVn))],

where Vn ∼ Γ− log K(t)(n, 1). The specialized version of this result for t = 0, was already
obtained by Baratpour et al. [11].

Next, we examine how the residual Tsallis entropy of record values changes by refer-
ring to the aging aspects of the underlying distribution. The aging property of X affects
the behavior of its residual Tsallis entropy of order α > 0. The forthcoming theorem is
necessary to our aim. We recall that X has an increasing (decreasing) failure rate (IFR(DFR))
property if its hazard rate function λ(t) = k(t)/K(t) is an increasing (decreasing) function
of t > 0.

Theorem 2. If X is IFR(DFR), then Hα(X; t) decreases (increases) as t increases.

Proof. We focus on the case where X is IFR, but the case where X has DFR is similar. We
can observe that kt(K

−1
t (u)) = uλt(K

−1
t (u)), 0 < u < 1, where λt(·) denotes the hazard

rate of the residual lifetime Xt. This means that we can express Equation (3) as

(1− α)Hα(X; t) + 1 =
∫ 1

0
uα−1

(
λt(K

−1
t (u))

)α−1
du, t > 0, (10)

for all α > 0. We can easily verify that

λt(K
−1
t (u)) = λ(K−1

t (u) + t) = λ(K−1
(uK(t))), 0 < u < 1. (11)
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If t1 ≤ t2, then K−1
(uK(t1)) ≤ K−1

(uK(t2)). Therefore, when X is IFR, we obtain the
following inequality for all α > 1(0 < α ≤ 1):∫ 1

0
uα−1

(
λt1(K

−1
t1

(u))
)α−1

du =
∫ 1

0
uα−1

(
λ(K−1

(uK(t1)))
)α−1

du

≤ (≥)
∫ 1

0
uα−1

(
λ(K−1

(uK(t2)))
)α−1

du

=
∫ 1

0
uα−1

(
λt2(K

−1
t2

(u))
)α−1

du,

for all t1 ≤ t2. By utilizing the expression (10), we can derive the following inequality:

(1− α)Hα(X; t1) + 1 ≤ (≥)(1− α)Hα(X; t2) + 1.

This inequality holds true for all values of α satisfying α > 1 or 0 < α ≤ 1. Conse-
quently, we can conclude that Hα(X; t1) ≥ Hα(X; t2) for all α > 0.

Now, we prove that the IFR property of X affects the behavior of the residual Tsallis
entropy of record values.

Theorem 3. If X is IFR, then Hα(Un; t) is decreasing in t for all α > 0.

Proof. The IFR property of X implies that Un is also IFR, according to Corollary 1 of Gupta
and Kirmani [26]. Therefore, the proof follows from Theorem 2.

We demonstrate how to use Theorems 3 and 6 with an example.

Example 1. We consider a sequence of i.i.d. RVs {Xi, i ≥ 1} that follow a common Weibull
distribution. The CDF of this distribution is given by

K(x) = 1− e−x3
, x > 0. (12)

We can find the inverse CDF of X as K−1(u) = (− log(1− u))
1
3 , 0 < u < 1. Then, we

can calculate

E[kα−1(K−1(1− e−Vn))] =
3α−1

αα(n− 1
3 )+

1
3

Γ(α(n− 1
3 ) +

1
3 , αt3)

Γ(α(n− 1) + 1, t3)
. (13)

We can also obtain

Hα(U?
n ; K(t)) =

Γ(α(n− 1) + 1, t3)

Γα(n, t3)
.

Therefore, using (8), we obtain

Hα(Un; t) = ω(α)

[
3α−1Γ(α(n− 1

3 ) +
1
3 , αt3)

αα(n− 1
3 )+

1
3 Γα(n, t3)

− 1

]
, n ≥ 1. (14)

We show the plots of Hα(Un; t) for different values of α = 0.2, α = 2, and
n = 2, . . . , 6 in Figure 2. The plots confirm the result of Theorem 3, which states that
the residual Tsallis entropy decreases with t when X has IFR.
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Figure 2. The exact values of Hα(Un; t) for α = 0.2 (left panel) and α = 2 (right panel) with respect
to t.

Now, we present a theorem that establishes a lower bound for the residual Tsallis
entropy of upper records from any continuous distribution. The lower bound for the
residual Tsallis entropy of upper records is influenced by two key factors: the residual
Tsallis entropy of upper records from the uniform distribution on the interval [0, 1] and the
mode of the original distribution.

Theorem 4. Given the conditions outlined in Theorem 6, let us assume that M = k(m) < ∞,
where m represents the mode of the PDF k. Under this assumption, we can derive the following
result for any α > 0, α 6= 1

Hα(Un; t) > ω(α)
[
((1− α)Hα(U?

n ; K(t)) + 1)Mα−1 − 1
]
. (15)

Proof. Since for α > 1(0 < α < 1), it holds that

kα−1(K−1(1− e−v)) < (>)Mα−1, 0 < v < 1,

one can write
E[kα−1(K−1(1− e−Vn))] < (>)Mα−1.

The result now is easily obtained from relation (8) and this completes the proof.

Remark 1. It is essential to emphasize that the equality stated in Equation (15) may not
hold universally, as there is no distribution in which f (x) = M for all x within the support
of X. Nevertheless, the bound established in Theorem 4 proves to be immensely valuable,
as it offers significant utility in cases where the computation of the mode for various
distributions is relatively simple.

We have presented a theorem that establishes a lower bound on the RTE of Un, denoted
Hα(Un; t). This lower bound depends on the RTE of record values from a uniform distribu-
tion and the mode of PDF, denoted by M, of the original distribution. This result provides
interesting insights into the information properties of Un and provides a measurable lower
bound for the RTE with respect to the mode of the distribution. In Table 1, we show the
lower bounds on the RTE of the record values for some common distributions based on
Theorem 4.



Symmetry 2023, 15, 2040 8 of 14

Table 1. Bounds on Hα(Un; t) derived from Theorem 4 (Parts (i) and (ii)).

Probability Density Function Lower Bound

k(x) = 2
π(1+x2)

, x > 0, ω(α)
[
((1− α)Hα(U?

n ; K(t)) + 1)
( 2

π

)α−1 − 1
]

k(x) = 2
σ
√

2π
e−(x−µ)2/2σ2

, x > µ > 0, ω(α)

[
((1− α)Hα(U?

n ; K(t)) + 1)
(

2
σ
√

2π

)α−1
− 1
]

k(x) = λ
β e−

(x−µ)
β (1− e−

(x−µ)
β )λ−1, x > µ > 0, ω(α)

[
((1− α)Hα(U?

n ; K(t)) + 1)(β(1− 1
λ )

1−λ)1−α − 1
]

k(x) = bc

Γ(c) xc−1e−bx, x > 0, ω(α)
[
((1− α)Hα(U?

n ; K(t)) + 1)( b(c−1)c−1e1−c

Γ(c) )α−1 − 1
]

In the following theorem, we show the monotonic behavior of the residual Tsallis
entropy of n-th upper set values with respect to n. First, we need the following lemma.

Lemma 2. Let {Xi, i ≥ 1} be a sequence of i.i.d. RVs with CDF F and PDF f . Let U?
n denote the

n-th upper record values of the sequence U(0, 1). Then, Hα(U?
n ; K(t)) ≥ Hα(U?

n+1; K(t)) for all
α > 0.

Proof. We can introduce the RVs Z1 and Zα with PDFs f1(z) and fα(z) as follows:

f1(z) =
(− log(1− z))n−1∫ 1

K(t)(− log(1− u))n−1du
and fα(z) =

(− log(1− z))α(n−1)∫ 1
K(t)(− log(1− u))α(n−1)du

, z ∈ (K(t), 1).

Then, we have

Θ(n) = Hα(U?
n+1; K(t)) = ω(α)


∫ 1

K(t)(− log(1− u))α(n−1)du(∫ 1
K(t)(− log(1− u))n−1du

)α − 1

, t > 0. (16)

Assuming that Θ(n) is differentiable in n, we obtain

∂Θ(n)
∂n

= ω(α)
∂g(n)

∂n
,

where

g(n) =

∫ 1
K(t)(− log(1− u))α(n−1)du(∫ 1
K(t)(− log(1− u))n−1du

)α .

We can easily see that for α > 1(0 < α < 1)

∂g(n)
∂n

=
αA(t)
Bα(t)

(
E[log(− log(1− Zα))]−E[log(− log(1− Z1))]

)
≥ (≤)0, (17)

where

A(t) =
∫ 1

K(t)
(− log(1− u))α(n−1)du, and B(t) =

∫ 1

K(t)
(− log(1− u))n−1du.

We can observe that for α > 1(0 < α < 1), we have Zα ≥st (≤st)Z1. Therefore,
since log(− log(1− z)) is an increasing function of z, we have E[log(− log(1− Zα))] ≥
(≤)E[log(− log(1− Z1))] by applying Theorem 1.A.3. of [24]. This implies that (17) is
positive (negative), and hence, Θ(n) is a decreasing function of n.
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Theorem 5. Let {Xi, i ≥ 1} be a sequence of i.i.d. RVs with CDF F and PDF f . Let Un, denote
the n-th upper record value of the sequence {Xi}. If k(K−1(x)) is decreasing in x, then Hα(Un; t)
is decreasing in n.

Proof. If we assume that Vn ∼ Γ− log K(t)(α(n− 1) + 1, 1), then we can prove that Vn ≤lr

Vn+1, and hence, Vn ≤st Vn+1. Also, for α > 1(0 < α < 1), then kα−1(K−1(x)) is an
increasing (decreasing) function of x; therefore, we have

E[kα−1(K−1(1− eVn))] ≤ (≥)E[kα−1(K−1(1− eVn+1)]. (18)

So, using relation (8), for α > 1(0 < α < 1), we obtain

(1− α)Hα(Un; t) + 1 = [(1− α)Hα(U?
n ; K(t)) + 1]E[kα−1(K−1(1− eVn))]

≤ (≥) [(1− α)Hα(U?
n ; K(t)) + 1]E[kα−1(K−1(1− eVn+1))]

≤ (≥) [(1− α)Hα(U?
n+1; K(t)) + 1]E[kα−1(K−1(1− eVn+1))]

= (1− α)Hα(Un+1; t) + 1.

The first inequality comes from the fact that (1− α)Hα(Un:n; K(t)) + 1 is non-negative.
The last inequality comes from Lemma 2. Therefore, we can conclude that Hα(Un; t) ≥
Hα(Un+1; t) for any t > 0.

3. Conditional Tsallis Entropy of Record Values

Hereafter, we are interested in evaluating the residual records XU(n) − t, t ≥ 0 based
on knowing the fact that all units are of voltages exceeding t > 0. It follows that the survival
function of the X0

Un ,t = [XU(n) − t|XU(0) > t] can be written as (see [27])

Kn,t(x) = P(XU(n) − t > x|XU(0) > t),

= Γ(n + 1,− log Kt(x)),
(19)

and hence, we have

kn,t(x) =
[− log Kt(x)]n−1

(n− 1)!
kt(x), x ≥ t ≥ 0. (20)

Hereafter, we will focus on studying the Tsallis entropy of the RV X0
Un ,t that measures

the amount of uncertainty contained in the density of [XU(n) − t|XU(0) > t], about the
predictability of the system’s residual lifetime in terms of the Tsallis entropy. The probability
integral transformation V = Kt(X0

Un ,t) plays a crucial role in our aim. It is clear that
U?

n = Kt(X0
Un ,t) had the pdf as

gn(u) =
(− log(1− u))n−1

(n− 1)!
, 0 < u < 1, n ≥ 1. (21)

In the forthcoming proposition, we provide an expression for the Tsallis entropy of
X0

Un ,t by using the earlier mentioned transforms.

Theorem 6. Let {Xi, i ≥ 1} be a sequence of i.i.d. RVs with CDF F and PDF f . The Tsallis
entropy of X0

Un ,t can be expressed as follows:

Hα(X0
Un ,t) = ω(α)

[∫ 1

0
gα

n(u)k
α−1
t (K−1

t (u))du− 1
]

, t > 0, (22)

for all α > 0.
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Proof. By using the change in u = Kt(x), from (2) and (20) we obtain

Hα(X0
Un ,t) = ω(α)

[∫ ∞

0

(
kX0

Un ,t
(x)
)α

dx− 1
]

= ω(α)

[∫ ∞

0

(
[− log Kt(x)]n−1

(n− 1)!
k(x|t)

)α

dx− 1

]

= ω(α)

[∫ 1

0

(
(− log(1− u))n−1

(n− 1)!

)α(
kt(K

−1
t (u))

)α−1
dx− 1

]

= ω(α)

[∫ 1

0
gα

n(u)
(

kt(K
−1
t (u))

)α−1
du− 1

]
.

In the last equality, gn(u) is the PDF of V given in (21) and this completes the proof.

In the next theorem, we investigate how the residual Tsallis entropy of record values
changes with respect to the aging properties of their components.

Theorem 7. If X is IFR (DFR), then Hα(X0
Un ,t) is decreasing (increasing) in t for all α > 0.

Proof. By using similar arguments of Theorem 2, when X is IFR, then for all α > 1
(0 < α ≤ 1), we have

∫ 1

0
gα

n(u)(u)u
α−1
(

λt1(K
−1
t1

(u))
)α−1

du =
∫ 1

0
gα

n(u)(u)u
α−1
(

λ(K−1
(uK(t1)))

)α−1
du

≤ (≥)
∫ 1

0
gα

n(u)(u)u
α−1
(

λ(K−1
(uK(t2)))

)α−1
du

=
∫ 1

0
gα

n(u)(u)u
α−1
(

λt2(K
−1
t2

(u))
)α−1

du,

for all t1 ≤ t2. By utilizing Equation (22), we can establish the following inequality:
(1− α)Hα(Xn,t1) + 1 ≤ (≥)(1− α)Hα(Xn,t2) + 1,

This inequality holds true for all values of α satisfying α > 1 or 0 < α ≤ 1. As a result,
we can conclude that Hα(Xn,t1) ≥ Hα(Xn,t2) for all α > 0.

In the following example, we provide an illustration of the results presented in
Theorems 6 and 7.

Example 2. Suppose we have a sequence of the set of RVs {Xi, i ≥ 1} that are independent
and identically distributed with a common Pareto type II distribution. The survival function
of this distribution is

K(t) = (1 + t)−k, k, t > 0. (23)

Using this, we can show that

Hα(X0
Un ,t) = ω(α)

[(
k

1 + t

)α−1 ∫ 1

0
u

(α−1)(k+1)
k gα

n(u)du− 1

]
, t > 0.

The implication of this result is that the Tsallis entropy of X0
Un ,t exhibits a positive cor-

relation with time t, indicating that it increases as t increases. Consequently, the uncertainty
associated with the conditional lifetime X0

Un ,t also increases with the passage of time. It is
important to highlight that the distribution under consideration in this context possesses
the property of DFR.

Theorem 8. If X is IFR (DFR), then Hα(X0
Un ,t) ≤ (≥)Hα(XUn) for all α > 0. The equality holds

when the component lifetimes are exponentially distributed.
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Proof. We can use Theorem 7 to show that if X has an IFR (DFR) property, then Hα(X0
Un ,t)

is a function that decrease (increases) with time t for any α > 0. This implies that Hα(X0
Un ,t)

is always smaller (larger) than or equal to Hα(X0
Un ,0) = Hα(XUn) for any t ≥ 0, and this

finishes the proof. It should be noted that the memoryless property of the exponential
distribution leads to the equality kt(K

−1
t (u)) = k(K−1

(u)). Consequently, Theorem 7
establishes that Hα(X0

Un ,t) = Hα(XUn) for all t ≥ 0.

Theorem 9. If X is DFR, then a lower bound for Hα(X0
Un ,t) is given as follows:

Hα(X0
Un ,t) ≥

Hα(XUn)

K(t)
+ ω(α)

(
1

K(t)
− 1
)

,

for all α > 0. The equality holds when the component lifetimes are exponentially distributed.

Proof. We know that X has DFR property, which means it is also NWU (that is,
Kt(x) ≥ K(x), x, t ≥ 0). This means that

K−1
t (u) + t ≥ K−1

(u), t ≥ 0,

for any 0 < u < 1. Moreover, it is a fact that when X has DFR property, the PDF f is a
function that goes down, which means that

kα−1(K−1
t (u) + t) ≤ (≥)kα−1(K−1

(u)), 0 < u < 1,

for any α > 1 (0 < α < 1). Using (22), we can infer that

Hα(X0
Un ,t) = ω(α)

[∫ 1

0
gα

n(u)
kα−1(K−1

t (u) + t)
K(t)

du− 1

]

≥ ω(α)

[∫ 1

0
gα

n(u)
kα−1(K−1

(u))
K(t)

du− 1

]

= ω(α)

[
(1− α)Hα(XUn) + 1

K(t)
− 1
]

,

for all α > 0, and this completes the proof. It is worth noting that the exponential distribu-
tion exhibits not only the memoryless property but also the desirable DFR characteristic,
thus qualifying as NWU. Furthermore, with the exponential distribution satisfying the
equality kt(K

−1
t (u)) = k(K−1

(u)), Theorem 7 establishes that Hα(X0
Un ,t) = Hα(XUn) for all

t ≥ 0.

In Theorems 8 and 9, we have demonstrated that the aforementioned equality holds
true in the case of exponentially distributed component lifetimes. This highlights the
significance of the exponential distribution in the context of record values, information
theory, and reliability.

Considering the uncertainties of two records, here we discuss the partial ordering of
residual records based on knowing the fact that all units are of voltages exceeding t > 0.
The next theorem compares the residual Tsallis entropies of two records.

Theorem 10. Let X0
Un ,t = [XUn − t|XU(0) > t] and Y0

Un ,t = [YUn − t|YU(0) > t] denote two
residual records having n i.i.d component lifetimes X1, . . . , Xn and Y1, . . . , Yn from CDFs F and G,
respectively. If X ≤d Y and X or Y is IFR, then Hα(X0

Un ,t) ≤ Hα(Y0
Un ,t) for all α > 0.
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Proof. Using the relation (22), we only need to show that Xt ≤d Yt. Since we assume that
X ≤d Y and either X or Y has IFR, we can apply the proof of Theorem 5 of [28] to prove
that Xt ≤d Yt. This completes the proof.

Example 3. Consider two residual records, denoted as X0
Un ,t and Y0

Un ,t, which consist of n
i.i.d. component lifetimes, namely X1, . . . , Xn and Y1, . . . , Yn, respectively. The component
lifetimes are drawn from CDFs F and G, respectively. Let us assume that X follows a
Weibull distribution with parameters k = 3 and scale parameter 1, denoted as X ∼W(3, 1).
Similarly, we assume that Y follows a Weibull distribution with parameters k = 2 and
scale parameter 1, denoted as Y ∼ W(2, 1). It can be observed that X is stochastically
dominated by Y (X ≤d Y), indicating that Y has larger values than X in terms of the
dispersion order. Furthermore, both X and Y exhibit the property of IFR. So, Theorem 10
yields that Hα(X0

Un ,t) ≤ Hα(Y0
Un ,t) for all α > 0.

4. Conclusions

In this paper, we explored the concept of RTE for datasets. We presented a new
approach to express RTE of dataset values from a continuous distribution in terms of RTE
of dataset values from a uniform distribution. This connection provides valuable insight
into the properties and behavior of RTE for different distributions. Since it is difficult to
obtain closed-form expressions for the RTE of dataset values, we have derived bounds that
provide practical approximations and allow for a better understanding of their properties.
These bounds serve as useful tools for analyzing and comparing RTE values in different
scenarios. To validate our results and demonstrate the applicability of our approach, we
have provided illustrative examples. These examples show the practical implications of RTE
for record values and illustrate the versatility of our methodology for different distributions.
In summary, this study contributes to the understanding of RTE for record values by
establishing relationships, deriving bounds, and demonstrating stochastic orderings. The
results of this work provide valuable insights for researchers and practitioners working in
the field of statistical inference and entropy-based analysis. For example, the results of this
paper may be have practical implications in the field of goodness-of-fit tests. In particular,
it can be applied to test the null hypothesis H0 : F(x) = F0(x) for all x ≥ 0, against the
alternative hypothesis H1 : F(x) 6= F0(x) for some x ≥ 0. Here, F0(x) = 1− e−λx represents
an exponential distribution with λ > 0 and x ≥ 0. According to (8), the above-mentioned
goodness-of-fit problem is equivalent to testing the null hypothesis

H0 : Hα(Un; t) = ω(α)

[
λα−1

αα(n−1)+1
Γ(α(n− 1) + 1, αλt)

Γα(n, λt)
− 1
]

,

for all t ≥ 0, against the alternative hypothesis

H0 : Hα(Un; t) 6= ω(α)

[
λα−1

αα(n−1)+1
Γ(α(n− 1) + 1, αλt)

Γα(n, λt)
− 1
]

,

for some t ≥ 0. Here, Hα(Un; t) represents a specific statistical measure. To perform this
test, the maximum likelihood estimate of the parameter λ is 1/x = k/ ∑n

i=1 xi. If a reliable
estimate for Hα(Un; t), denoted as Ĥα(Un; t), is available, significant deviations of

Ĥα(Un; t)−ω(α)

[
Γ(α(n− 1) + 1, αt

x )

(x)α−1αα(n−1)+1Γα(n, t
x )
− 1

]
,

from zero indicate non-exponential behavior. Consequently, the null hypothesis can be
rejected. We note that Equation (8) can be rewritten as follows:

Hα(Un; t) = ω(α)

[∫ 1

0

(− log(1− u))α(n−1)

Γα(n,− log(1− K(t)))

[
dK−1(u)

du

]1−α

I(u ≥ K(t))du− 1

]
. (24)
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where I(u ≥ F(t)) denotes the indicator function for (u ≥ F(t)). Following Park [29], a
sample estimate of Hα(Un; t) can be constructed based on a sample of size k as

Ĥα(Un; t) = ω(α)

[
1

Γα(n,− log(1− K̂(t)))

k

∑
i=1

(
2m(− log(1− i

k+1 ))
α(n−1)

k(Xi+m:k − Xi−m:k)
I
(

i
k + 1

≥ K̂(t)
))
− 1

]
,

where m ≤ k/2 is a positive integer known as the window size, K̂ represents the empirical
distribution function of X, and Xi:k = X1:k if i < 1, and Xi:k = Xk:k if i > k.

Author Contributions: Methodology, M.S.; Software, M.S.; Validation, M.S.; Formal analysis, M.S.;
Investigation, M.K.; Resources, M.S.; Writing—original draft, M.K.; Writing—review and editing,
M.K. and M.S.; Visualization, M.K.; Supervision, M.K.; Project administration, M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Researchers Supporting Project (number: RSP2023R464),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank three anonymous reviewers for their constructive comments
and suggestions. The authors acknowledge financial support from the Researchers Supporting Project
number (RSP2023R464), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
3. Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: Berlin/Heidelberg, Germany,

2009; Volume 1.
4. Tsallis, C.; Borges, E.P. Nonlinear dynamical systems: Time reversibility {\it versus} sensitivity to the initial conditions. arXiv

2023, arXiv:2306.13608.
5. Varotsos, P.; Sarlis, N.; Skordas, E.; Nagao, T.; Kamogawa, M. Natural time analysis together with non-extensive statistical

mechanics shorten the time window of the impending 2011 Tohoku M9 earthquake in Japan. Commun. Nonlinear Sci. Numer.
Simul. 2023, 125, 107370. [CrossRef]

6. Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Nagao, T.; Kamogawa, M.; Flores-Márquez, E.L.; Ramírez-Rojas, A.; Perez-Oregon, J.
Improving the Estimation of the Occurrence Time of an Impending Major Earthquake Using the Entropy Change of Seismicity in
Natural Time Analysis. Geosciences 2023, 13, 222. [CrossRef]

7. Asadi, M.; Ebrahimi, N.; Soofi, E.S. Dynamic generalized information measures. Stat. Probab. Lett. 2005, 71, 85–98. [CrossRef]
8. Nanda, A.K.; Paul, P. Some results on generalized residual entropy. Inf. Sci. 2006, 176, 27–47. [CrossRef]
9. Zhang, Z. Uniform estimates on the Tsallis entropies. Lett. Math. Phys. 2007, 80, 171–181. [CrossRef]
10. Kamps, U. A concept of generalized order statistics. J. Stat. Plan. Inference 1995, 48, 1–23. [CrossRef]
11. Baratpour, S.; Ahmadi, J.; Arghami, N.R. Entropy properties of record statistics. Stat. Pap. 2007, 48, 197–213. [CrossRef]
12. Kumar, V. Some results on Tsallis entropy measure and k-record values. Phys. Stat. Mech. Its Appl. 2016, 462, 667–673. [CrossRef]
13. Ahmadi, J. Characterization of continuous symmetric distributions using information measures of records. Stat. Pap. 2021,

62, 2603–2626. [CrossRef]
14. Xiong, P.; Zhuang, W.; Qiu, G. Testing symmetry based on the extropy of record values. J. Nonparametric Stat. 2021, 33, 134–155.

[CrossRef]
15. Jose, J.; Sathar, E.A. Residual extropy of k-record values. Stat. Probab. Lett. 2019, 146, 1–6. [CrossRef]
16. Paul, J.; Thomas, P.Y. On Tsallis entropy of generalized (k) record values. In Proceedings of the Seminar on Process Capability

Studies with Special Emphasis on Com-Putational Techniques & Recent Trends in Statistics, Muvattupuzha, India, 1 March 2014;
pp. 1–14.

17. Calì, C.; Longobardi, M.; Ahmadi, J. Some properties of cumulative Tsallis entropy. Phys. Stat. Mech. Its Appl. 2017, 486, 1012–1021.
[CrossRef]

18. Zamani, Z.; Kharazmi, O.; Balakrishnan, N. Information Generating Function of Record Values. Math. Methods Stat. 2022,
31, 120–133. [CrossRef]

19. Gupta, N.; Chaudhary, S.K. Some characterizations of continuous symmetric distributions based on extropy of record values.
Stat. Pap. 2023, 1–18. [CrossRef]

20. Paula, J.; Thomasb, P.Y. Sharma-Mittal Entropy Properties on Generalized (k) Record Values. Reliab. Theory Appl. 2022,
17, 398–410.

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/j.cnsns.2023.107370
http://dx.doi.org/10.3390/geosciences13080222
http://dx.doi.org/10.1016/j.spl.2004.10.033
http://dx.doi.org/10.1016/j.ins.2004.10.008
http://dx.doi.org/10.1007/s11005-007-0155-1
http://dx.doi.org/10.1016/0378-3758(94)00147-N
http://dx.doi.org/10.1007/s00362-006-0326-7
http://dx.doi.org/10.1016/j.physa.2016.05.064
http://dx.doi.org/10.1007/s00362-020-01206-z
http://dx.doi.org/10.1080/10485252.2021.1914338
http://dx.doi.org/10.1016/j.spl.2018.10.019
http://dx.doi.org/10.1016/j.physa.2017.05.063
http://dx.doi.org/10.3103/S1066530722030036
http://dx.doi.org/10.1007/s00362-022-01392-y


Symmetry 2023, 15, 2040 14 of 14

21. Zarezadeh, S.; Asadi, M. Results on residual Rényi entropy of order statistics and record values. Inf. Sci. 2010, 180, 4195–4206.
[CrossRef]

22. Baratpour, S.; Ahmadi, J.; Arghami, N.R. Characterizations based on Rényi entropy of order statistics and record values. J. Stat.
Plan. Inference 2008, 138, 2544–2551. [CrossRef]

23. Qiu, G. The extropy of order statistics and record values. Stat. Probab. Lett. 2017, 120, 52–60. [CrossRef]
24. Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007.
25. Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; SIAM: Bangkok, Thailand, 2008.
26. Gupta, R.C.; Kirmani, S. Closure and monotonicity properties of nonhomogeneous Poisson processes and record values. Probab.

Eng. Informational Sci. 1988, 2, 475–484. [CrossRef]
27. Raqab, M.Z.; Asadi, M. On the mean residual life of records. J. Stat. Plan. Inference 2008, 138, 3660–3666. [CrossRef]
28. Ebrahimi, N.; Kirmani, S. Some results on ordering of survival functions through uncertainty. Stat. Probab. Lett. 1996, 29, 167–176.

[CrossRef]
29. Park, S. A goodness-of-fit test for normality based on the sample entropy of order statistics. Stat. Probab. Lett. 1999, 44, 359–363.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2010.06.019
http://dx.doi.org/10.1016/j.jspi.2007.10.024
http://dx.doi.org/10.1016/j.spl.2016.09.016
http://dx.doi.org/10.1017/S0269964800000188
http://dx.doi.org/10.1016/j.jspi.2007.11.014
http://dx.doi.org/10.1016/0167-7152(95)00170-0
http://dx.doi.org/10.1016/S0167-7152(99)00027-9

	Introduction
	Residual Tsallis Entropy of Record Values
	Conditional Tsallis Entropy of Record Values
	Conclusions
	References

