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Abstract: In this paper, we present a numerical scheme for addressing the unsteady asymmetric flows
governed by the incompressible Navier–Stokes equations under a general boundary condition. We
utilized the Finite Element Method (FEM) for spatial discretization and the fully implicit Euler scheme
for time discretization. In addition to the theoretical analysis of the error in our numerical scheme,
we introduced two types of a posteriori error indicators: one for time discretization and another
for spatial discretization, aimed at effectively controlling the error. We established the equivalence
between these estimators and the actual error. Furthermore, we conducted numerical simulations in
two dimensions to assess the accuracy and effectiveness of our scheme.

Keywords: a posteriori error indicators; general boundary condition; finite element method (FEM);
unsteady incompressible Navier–Stokes equations; IFISS software; COMSOL multiphysics; ADINA
system
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1. Introduction

The objective of this study is to approach the solution and develop a posteriori error
estimations for finite element approximations of the Navier–Stokes equations with a general
boundary condition. The Navier–Stokes problem holds significant importance in compu-
tational mathematics, particularly for understanding fluid dynamics [1,2]. Specifically, it
plays a crucial role in comprehending the intricate behavior of incompressible fluids [3]
and finds applications in various domains, including engineering [4], aerodynamics, aeroa-
coustics [5], and related fields. We will establish the well-posedness of our problem under
certain assumptions and rigorously prove the existence and uniqueness of the solution.
The Finite Element Method (FEM), a fundamental and widely used numerical technique
in engineering and other sciences for modeling and simulating a wide range of problems,
served as our primary tool for spatial discretization. In [6], the authors approximated the
Navier–Stokes equations with Dirichlet and Neumann boundary conditions using FEM.

Moreover, the authors in this paper [7] employed a conforming FEM to handle time-
dependent Navier–Stokes equations, offering valuable insights into the numerical treatment
of these nonlinear equations. Several other papers, such as [8–10], explored the application
of FEM to address stochastic parabolic problems and the steady Navier–Stokes problem
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with stabilized techniques, enhancing stability and accuracy. The variational multiscale
method, as discussed in [11], was explored as an effective approach to tackle the com-
putational challenges posed by Navier–Stokes equations. Additionally, the mini-element
method, presented in [12], is crucial for solving the Navier–Lame equation with a new
boundary condition.

A posteriori error estimation is a valuable tool for identifying regions with high approx-
imation errors and guiding adaptive mesh refinement, as discussed in [13]. Quantifying the
accuracy of finite element solutions enables adaptive strategies to control errors, effectively
balancing computational cost and accuracy in numerical approximations. These strategies
optimize computational resources while maintaining accuracy. This technique has been
applied to fully discretized time-dependent Stokes equations, as demonstrated in [14].
Effective preconditioning strategies are crucial for achieving fast solutions in nonlinear
algebraic systems arising from the problem. This approach quantitatively assesses the
accuracy and reliability of numerical solutions. To solve the resulting asymmetry system,
we used the Generalized Minimum Residual method (GMRES). In [15], the authors investi-
gated the impact of the discretization order on the preconditioning and convergence of a
high-order unstructured Newton-GMRES solver for the Euler equations. Additionally, [16]
presented GMRES as a generalized minimal residual algorithm for solving nonsymmetric
systems. The literature explores various approaches for defining error estimators based on
the residual error estimator, as discussed in [17]. Moreover, in [13], the authors introduced
adaptive mesh refinement techniques and multiple error estimators proven equivalent to
the energy norm and error.

Our research is focused on developing an approach to solve and analyze the a poste-
riori error of Navier–Stokes equations with general boundary conditions. We employed
the Finite Element Method to approximate the solution and utilized a posteriori error
estimation. Specifically, we introduced two types of error indicators “time error indica-
tors”, and “space error indicators”, to assess the accuracy of our numerical solution. This
paper’s structure is as follows: In Section 2, we introduce the model problem that forms
the foundation of our investigation and define the assumptions necessary for the existence
and uniqueness of the solution. Section 3 outlines the discretization approach, utilizing
finite elements for approximations, and defines the assumptions to ensure the stability of
the scheme. Dedicated to presenting the a posteriori error bounds of the approximated
solution and proving the equivalence to the true error, Section 4 is focused on these aspects.
Subsequently, in Section 5, we delve into the numerical experiments conducted within the
scope of this publication. We provide detailed comparisons with other relevant results to
validate the effectiveness of our approach.

2. Time-Dependent Navier–Stokes Equations

This section presents a comprehensive overview of our mathematical model, which
revolves around the “time-dependent Navier–Stokes equations” with a general boundary
condition. It introduces the model equation and outlines essential assumptions to ensure
the problem’s well-posedness, establishing the existence and uniqueness of the solution.
Furthermore, it defines the weak formulation of the problem, a crucial step in its math-
ematical treatment, and sets the foundation for the subsequent analysis and numerical
investigations presented in this paper.

We consider a bounded, connected, open domain Ω in Rd (d = 2 or 3), characterized
by a Lipschitz continuous connected boundary Γ = ∂Ω. The unsteady Navier–Stokes
equations are defined by a system of nonlinear partial differential equations, given by

∂−→u
∂t − ν∇2−→u +−→u · ∇−→u +∇p =

−→
f in Q,

∇ · −→u = 0 in Q,
−→u (x, 0) = −→u 0(x) in Ω,

(1)
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where Q = Ω× [0, T] denotes the spatial-temporal domain and T > 0 is the final time.
The parameter ν > 0 represents the kinematic viscosity, which is a given constant. The
unknowns in system (1) are −→u , representing the fluid velocity field, and p, denoting
the pressure field, where the operator ∇ denotes the gradient and ∇· represents the
divergence operator.

The general boundary condition is given by

Cβ : −→u + β(x) (ν∇−→u − pI)−→n = −→g in Γ =: ∂Ω, (2)

where −→n denotes the outward unit normal vector, −→g belongs to the space H
1
2 (Γ), and β(x)

is a positive function defined on ∂Ω that satisfies the following condition: there exist two
strictly positive constants, a1 and b1, such that

a1 ≤
1

β(x)
≤ b1, ∀x ∈ Γ. (3)

Remark 1. According to the β values, we can consider:

• If β ≺≺ 1, then Cβ represents the Dirichlet boundary condition.
• If β �� 1, then Cβ represents the Neumann boundary condition.

Now, we define the function spaces used to represent mathematical solutions. The
function spaces used in this study are typically denoted as follows:
Space for velocity:

V =
(

H1
0(Ω)

)2, W =
(

L2(Ω)
)2,

X = {−→v ∈W : div−→v = 0, −→v · −→n |∂Ω = 0},
Y = {−→v ∈ V : div−→v = 0},
V =

(
H1

0(Ω)
)2, W =

(
L2(Ω)

)2.

Space for pressure:

Q = {q ∈ L2(Ω) :
∫

Ω q(x) dx = 0}.

Let us define the Stokes operator as A = −P∆, where P represents the L2-orthogonal
projection of W onto X. The domain of A, denoted by D(A), is given by

D(A) =
(

H2(Ω)
)2
∩Y.

Let us consider these assumptions:

(A1)The domain Ω is a smooth domain.
(A2)There exists a unique solution (−→v , q) ∈ (V, Q) for the Stokes problem that satisfies the

inequality |−→v |2 + |q|1 ≤ C|−→g 1|0 for all −→g 1 ∈W. The Stokes problem is defined by
−ν∆−→v +∇q = −→g 1 in Ω,
div−→v = 0 in Ω,
−→v = 0 on Γ,

(4)

where C > 0 is a constant that depends on Ω and ν. For more details, we refer to [18].
(A3)

−→
f (x, t) ∈ C0(0, T, W) ∩ L2(0, T, H1(Ω)

)
.

(A4)
−→
f t(x, t) ∈ L2(0, T, L2(Ω)

)
.

(A5)
−→u 0(x) ∈ D(A).

Under these assumptions, problems (1) and (2) have a unique solution; see [18] for
more details.
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Let us define the bilinear forms a : V ×V → R, b : V ×Q → R and d1 : Q×Q → R
as follows:

a(−→u ,−→v ) = ν
∫

Ω
∇−→u : ∇−→v dx +

∫
Γ

1
β
−→u · −→v ds,

b(−→v , q) =
∫

Ω
(q, div,−→v ) dx,

d1(p, q) =
∫

Ω
pq dx,

for all −→u ,−→v ∈ V. We define the nonlinear form D : V → R as follows:

D(−→u ,−→v ) = (−→u · ∇)−→v +
1
2
(div −→u )−→v ,

and the trilinear form d : V ×V ×V → R by

d(−→u ,−→v ,−→w ) = 〈D(−→u ,−→v ),−→w 〉V′ ,V

= ((−→u · ∇)−→v ,−→w ) +
1
2
((∇ · −→u )−→v ,−→w )

=
1
2
((−→u · ∇)−→v ,−→w )− 1

2
((−→u · ∇)−→w −→v ),

for all −→u ,−→v ,−→w ∈ V. The continuous linear functional l : V → R is defined as follows:

l(−→v ) =
∫

Ω

−→
f · −→v dx +

∫
Γ

1
β
−→g · −→v dx. (5)

These inner products induce norms on V and Q, denoted by ‖ · ‖V and ‖ · ‖Q, which
are defined as follows:

‖−→v ‖V = a(−→v ,−→v )
1
2 , ‖q‖Q = d1(q, q)

1
2 , (6)

for all −→u ∈ V, q ∈ Q, and we define this norm as follows:

[−→v ](t) =
(
‖−→v (·, t)‖2

L2(Ω)2 + ν
∫ t

0
‖∇−→v (·, s)‖2

L2(Ω)ds
) 1

2
. (7)

For more detailed information and properties regarding this norm, see [14,19]. These
references offer further insights and analysis related to the norm [·](t) within the presented
framework. Now, let us state the weak formulation of the unsteady Navier–Stokes problems
(1) and (2) as follows. Find (−→u , p) ∈ V ×Q, such that

−→u (·, 0) = −→u 0 in Ω,
( ∂−→u

∂t ,−→v ) + a(−→u ,−→v )− b(−→v , p) + d(−→u ,−→u ,−→v ) = l(−→v ),
−b(−→u , q) = 0,

(8)

for all (−→v , q) ∈ V ×Q and t ∈ (0, T). We consider the functions β and −→g in (2) to be equal
to zero in a small part of the boundary. This condition is necessary to ensure the uniqueness
of the solution.

The existence and uniqueness of the solution of the weak formulation (8) under the
assumptions (A1)–(A5) have been proven in various papers; see, for example, Ref. [18].

3. Finite Element Approximation

The finite element approximation provides a powerful and flexible approach to ad-
dress the nonlinearities and complexities present in the governing equations, making it
well-suited for our purposes. Our focus is to approximate the solution of the governing
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Equations (1) and (2). To achieve this, we utilize the Finite Element Method (FEM) in the
spatial domain, benefiting from its versatility and robustness in handling complex geome-
tries and boundary conditions. Furthermore, we adopt the fully-implicit Euler method
in the time domain, as it efficiently and accurately captures the time-dependent behavior
of the fluid flow. By combining the spatial discretization through FEM and the time inte-
gration using the fully-implicit Euler method, we establish a comprehensive numerical
framework for approximating the solution.

Let τh with h > 0 be a family of triangulations of the domain Ω. In this context, we
define hK as the diameter of a simplex K and hE as the diameter of a face E. The parameter
h is then defined as the maximum of hK over all K ∈ τh (h = maxK∈τh{hK}). For each
K ∈ τh, we denote the set of edges (respectively, vertices) of K as ε(K) (respectively, N(K)).
Additionally, we introduce the set εh, which consists of all edges split into interior and
boundary edges. Specifically, we have εh = εh,Ω ∪ εh,Γ, where εh,Ω denotes the set of edges
in the interior of Ω, and εh,Γ denotes the set of edges on the boundary ∂Ω.

For the time discretization, we divide the interval [0, T] into subintervals [tn−1, tn],
with corresponding time steps ∆tn = tn − tn−1 for n = 1, 2, · · · , N. Here, 0 = t0 < t1 <
· · · < tN = T, and τ = (τ1, τ2, · · · , τN) denotes the N-tuple of time steps. The regularity
parameter δτ is defined as the maximum ratio of time steps between consecutive intervals,
given by δτ = max2≤n≤N

∆tn
∆tn−1

. This parameter provides a measure of the irregularity or
variation in the time step sizes throughout the discretization process.

We define the function −→v τ on the interval [0, T], which is affine on each subinterval
[tn−1, tn] for 1 ≤ n ≤ N as follows:

−→v τ =
t− tn−1

∆tn

−→v n +
tn − t
∆tn

−→v n−1. (9)

In (9), −→v n (respect −→v n−1) represents the values of the velocity field at time instances
tn (respect tn−1).

For any Banach space F, we define Wτ(F) as the space of functions −→v τ defined on the
interval [0, T] and obtained from the family (−→v n)0≤n≤N ∈ FN+1. The discrete norm on the
space Wτ

(
H1

0(Ω)
)

is defined by

[[−→v τ ]](tn) =

(
‖−→v n‖2

L2(Ω)2 + ν
n

∑
m=1

∆tm‖∇−→v m‖2
L2(Ω)

) 1
2

, (10)

for all n = 1, · · · , N.
The finite element approximation to (1) and (2) is as follows. Find the vector

(−→u n)0≤n≤N ∈W ×VN and (pn)1≤n≤N ∈ QN , such that
−→u 0 = −→u 0 in Ω,

1
∆tn

(−→u n −−→u n−1,−→v ) + a(−→u n,−→v )− b(−→v , pn) + d(−→u n,−→u n,−→v ) = (
−→
f n,−→v ) + 1

β (
−→g n · −→v )Γ,

−b(−→u n, q) = 0,
(11)

for all (−→v , q) ∈ V ×Q.

Let Vh and Qh be the approximation spaces for the Q1− P0 approximation. We employ
the stabilized Q1 − P0 method and a trapezoidal rule time stepping scheme; see [20] for
more details. The goal is to find the pair (

−→
d n+1

h , pn+1
h ) ∈ Vh ×Qh, such that

2(
−→
d n+1

h ,−→v h) + ν∆tn+1(∇
−→
d n+1

h ,∇−→v h) + ∆tn+1(
−→w n+1

h · ∇
−→
d n+1

h ,−→v h)− (pn+1
h ,∇ · −→v h)

= (
∂−→u n

h
∂t ,−→v h)− ν(∇−→u n

h ,∇−→v h)− (−→w n+1
h · ∇−→u n

h ,−→v h),
−(∇ ·

−→
d n+1

h , qh)− α γ(pn+1
h , qh) = 0,
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for all (−→v h, qh) ∈ Vh ×Qh, where

−→w n+1
h = (1 +

∆tn+1

∆tn
)−→u n

h −
∆tn+1

∆tn

−→u n−1
h .

The velocity vectors are approached by

−→u n+1
h = −→u n

h + ∆tn+1
−→
d n

h ,

and acceleration at tn+1 is defined by

∂−→u n+1
h

∂t
= 2
−→
d n

h −
∂−→u n

h
∂t

.

The stabilization parameter γK(ph, qh) is defined as follows:

γK(ph, qh) :=
|K|
4 ∑

E∈ΓK

1
hE

∫
E
[[ph]]E[[qh]]E,

and the stabilization term γ(ph, qh) is defined as follows:

γ(ph, qh) := ∑
K∈TK

γK(ph, qh),

where ΓK is the set consisting of the four interior element edges in the macroelement K, TK
is a macroelement partitioning of the domain Ω, |K| is the mean element area within the
macroelement, [[ · ]]E is the jump across edge E, and hE is the length of E.

Stabilized terms are introduced in the numerical scheme to ensure its stability and
demonstrate the existence of a solution. For more detailed information, refer to [21,22]. We
assume the necessary assumptions to ensure the stability of the scheme.

(A6)Let the space X1
n,h be defined by

X1
n,h = {−→v n ∈ V : ∀K ∈ τn,h,−→v h|K ∈ P2(K)}, (12)

such that
X1

n,h ⊂ Vn,h,

where P2(K) is the space of polynomials of degree ≤ 2, for all K ∈ τn,h.
(A7)For 1 ≤ n ≤ N, there exists a constant γn,h > 0, such that

sup
−→v h∈Vn,h

(∇ · −→v h, qh)

‖∇−→v h‖L2(Ω)

≥ γn,h‖qh‖L2(Ω), (13)

for all qh ∈ Qn,h.

Under these assumptions (A1)–(A7), there exists a solution for the approximated
problem. Please refer to [23,24] for more details. We define the following space:

Yn,h = {−→v n ∈ Vn,h; (∇ · −→v h, qh) = 0, ∀qh ∈ Qn,h}. (14)

Let πh be the projection operator from L2(Ω) onto V0,h. We initialize the approximate
velocity field −→u 0

h ∈ V0,h, as well as the pressure field p0
h = 0. We find (−→u n

h)0≤n≤N ∈
∏N

n=0 Vn,h and (pn
h)1≤n≤N ∈ ∏N

n=0 Qn,h, such that
−→u 0

h = πh
−→u 0 in Ω,

1
∆tn

(−→u n
h −
−→u n−1

h ,−→v h) + d(−→u n
h ,−→u n

h ,−→v h)− b(−→v h, pn
h) + a(−→u n

h ,−→v h) = (
−→
f n,−→v h) +

1
β (
−→g n · −→v h)Γ,

−b(−→u n
h , qh) = 0,

(15)
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for all (−→v h, qh) ∈ Vn,h ×Qn,h and 1 ≤ n ≤ N.
We use a set of vector-valued basis functions {−→ϕi }i=1,··· ,nu so that

−→u h =
nu

∑
i=1

ui
−→ϕi . (16)

We introduce a set of pressure basis functions {ψk}k=1,··· ,np so that

ph =
np

∑
k=1

pkψk, (17)

where, nu and np represent the numbers of velocity and pressure basis functions, respec-
tively. This leads to a nonlinear system of algebraic equations defined as follows:{

D dU
dt (t) + [N(U(t)) + M]U(t) + BP(t) = L(t),

BTU(t) = 0.
(18)

The vertices of the unknowns are defined by

U(t) = (u1(t), u2(t), · · · , unu(t))
T , (19)

P(t) = (p1(t), p2(t), · · · , pnp(t))
T . (20)

The matrix B is the divergence matrix defined by

B = [bk,j], where bk,j = −
∫

Ω ψk∇ · −→ϕ j,

and

D = [dij], where dij =
∫

Ω
−→ϕ i· −→ϕ j,

N = [nij], where nij = ∑nu
k=1 uk(t)

∫
Ω(−→ϕ j · ∇−→ϕ k)· −→ϕ i,

M = [mij], where mij = ν
∫

Ω∇
−→ϕ i : ∇−→ϕ j +

∫
∂Ω

1
β
−→ϕ i · −→ϕ j,

L = [li], where li =
∫

Ω
−→
f · −→ϕ i +

∫
∂Ω

1
β
−→g · −→ϕ i,

for i, j = 1, · · · , nu, k = 1, · · · , np.

The solution of the nonlinear system (1) and (2) can be efficiently carried out using
Picard’s method. Within each iteration of Picard’s method, we need to solve a linear system
with the following generic form:(

A0 + N BT
0

B0 0

)(
U
P

)
=

(
L
0

)
. (21)

To accelerate the solution of the nonsymmetric system (21) arising from the Picard
iterations, we employ the Generalized Minimum Residual method (GMRES), see [16],
(GMRES is an iterative method designed for solving general systems. It provides a flexible
and robust approach to handle nonsymmetric matrices). For more detailed information
about the GMRES method and the specific preconditioning techniques employed in this
context, you can refer to the cited references [16,24–26]. They provide further insights into
the theoretical background and practical implementation of these methods for solving non-
linear equations. This preconditioner is known to be effective in improving the convergence
of iterative methods for solving the Navier–Stokes equations.

4. Error Estimates

In the remaining part of this paper, we restrict our analysis to the case where the
spatial dimension is limited to two dimensions.



Symmetry 2023, 15, 2031 8 of 24

In this section, our attention is directed toward defining the a posteriori error estima-
tion for our problem. We introduce two types of error indicators to assess the accuracy of
our solution: time error indicators and space error indicators. These indicators enable us to
quantify the errors present in both the temporal and spatial domains, providing valuable
insights into the quality of our numerical approximation. We establish upper bounds for
the error estimators to further analyze and characterize the errors. These bounds give us
an estimate of the maximum potential error in our solution. Moreover, we establish the
equivalence between these error indicators and the error, affirming that our error estimators
offer reliable approximations of the overall error in the solution.

Let
−→
f n

h be the approximation of
−→
f n, which is a polynomial of degree ≤ l on all

elements of τn,h. Here, [·]E represents the jump across the edge E in the direction of the
outward unit normal vector −→n E for each E ∈ ε(K).

We define the time error indicator as follows:

ηn =

√
∆tn

3
ν‖∇(−→u n

h −
−→u n−1

h )‖L2(Ω), 1 ≤ n ≤ N, (22)

and the space error indicator by

ηn
K = hK‖

−→
f n

h −
−→u n

h −
−→u n−1

h
∆tn

+ ν∆−→u n
h −∇pn

h − (−→u n
h · ∇)

−→u n
h‖L2(K)

+ ∑
E∈ε(K)

h
1
2
E‖[ν∂nE

−→u n
h − pn

h
−→n E]E‖L2(E) + ν‖div−→u n

h‖L2(K). (23)

The time error indicators ηn are local in time and global in space, while the space error
indicators ηn

K are local in both time and space.

Theorem 1. Under the assumptions (A1)–(A7), problem (8) has a unique solution denoted by
−→u ∈ Lp(0, t; X) ∩ L2(0, t; Y). This solution satisfies

‖−→u (t)‖2
0 + ‖∇

−→u (t)‖2
0 + ‖A−→u (t)‖2

0 + ‖∇p(t)‖2
0 + ‖

−→u t(t)‖2
0 ≤ K1, (24)∫ t

0
{‖∇−→u ‖2

0 + ‖
−→u t‖2

0 + ‖A−→u ‖2
0 + ‖∇p‖2

0 + ‖∇
−→u t‖2

0}ds ≤ K1, (25)

where K1 is a positive constant, and we have

[−→u ](t) ≤
(

1
ν‖
−→
f ‖2

L2(0,t;H−1(Ω)2)
+ ‖−→u 0‖2

L2(Ω)

) 1
2 ,

‖ ∂−→u
∂t + (−→u · ∇)−→u +∇p‖L2(0,t;H−1(Ω)2) ≤ 2

(
‖
−→
f ‖2

L2(0,t;H−1(Ω)2)
+ ν

2‖
−→u 0‖2

L2(Ω)

) 1
2 .

(26)

Proof. Readers can refer to the paper in [9] for these results.

For all t ∈ [tn−1, tn], where n = 1, · · · , N, we define the following equation:

−→v hτ =
t− tn−1

∆tn

−→v n
h +

tn − t
∆tn

−→v n−1
h . (27)

We will use these notations throughout the rest of the document: −→u is a solution to
the problem (8), −→u τ is the solution of (11), and Πτ

−→
f is the step function, which is constant

and equal to
−→
f (tn) on each interval [tn−1; tn] for all n = 1, · · · , N.

Theorem 2. Under the assumptions (A1)–(A7), the following estimates are valid:

[−→u −−→u τ ](tn) ≤ β1

(
n

∑
m=1

1
ν
(ηm)2 + ‖−→u τ −−→u hτ‖2

L2(0,tn ;H1(Ω)) +
1
ν
‖
−→
f −Πτ

−→
f ‖2

L2(0,tn ;H−1(Ω))

) 1
2

, (28)
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for all n = 1, · · · , N, where β1 is a positive constant that depends on ν and
−→
f .

Proof. By using the solutions of systems (8) and (11), we have

(−→u −−→u τ)(·, 0) = 0 in Ω, (29)

and we have

(
∂

∂t
(−→u −−→u τ),

−→v ) + a(−→u −−→u τ ,−→v )− b(−→v , p−Πτ pτ) + d(−→u ,−→u ,−→v )− d(−→u τ ,−→u τ ,−→v )

= (
−→
f −Πτ

−→
f ,−→v ) + a(−→u n −−→u τ ,−→v ) + d(−→u n,−→u n,−→v )− d(−→u τ ,−→u τ ,−→v ), (30)

−b(−→u −−→u τ , q) = 0, (31)

for all (−→v , q) ∈ V ×Q.
Therefore, employing (−→v , q) = (−→u −−→u τ , p−Πτ pτ) in (30), we infer

1
2

d
dt
‖−→u −−→u τ‖2

L2(Ω) + ν‖∇(−→u −−→u τ)‖2
L2(Ω) + d(−→u ,−→u ,−→u −−→u τ)− d(−→u τ ,−→u τ ,−→u −−→u τ) =

(
−→
f −Πτ

−→
f ,−→u −−→u τ) + a(−→u n −−→u τ ,−→u −−→u τ) + d(−→u n,−→u n,−→u −−→u τ)− d(−→u τ ,−→u τ ,−→u −−→u τ).

By employing the bound of d(−→u ,−→v ,−→w ) and utilizing function space (14), along with
the first equation of problem (15), and inequalities (24)–(26), we can deduce the following
inequalities:

d(−→u n,−→u n,−→u −−→u τ)− d(−→u τ ,−→u τ ,−→u −−→u τ) ≤ β2|−→u n −−→u τ |1|−→u −−→u τ |1, (32)

d(−→u ,−→u ,−→u −−→u τ)− d(−→u τ ,−→u τ ,−→u −−→u τ) ≤ β3|−→u −−→u τ |1‖−→u −−→u τ‖0,Ω, (33)

where β2, β3 are positive constants and, by considering the constant β4 = max{β2, β3},
we have

1
2

d
dt‖
−→u −−→u τ‖2

L2(Ω)
+ ν‖∇(−→u −−→u τ)‖2

L2(Ω)
≤ 1

ν
‖
−→
f −Πτ

−→
f ‖2

H−1 +
ν

4
|−→u −−→u τ |21 +

3ν

16
|−→u −−→u τ |21,Ω

+4ν|−→u n −−→u τ |21,Ω +
4β4

ν
|−→u n −−→u τ |21,Ω (34)

+
4β4

ν
‖−→u −−→u τ‖2

0,Ω + β4|−→u n −−→u τ |21,Ω + β4‖−→u −−→u τ‖2
0,Ω.

We have the following inequality (for more details about this passage, we can see this
paper [14]):∫ tm

tm−1

‖∇(−→u m −−→u τ)(·, x)‖2
0,Ωdx ≤ 3

ν
(ηm)2 + 6

∫ tm

tm−1

‖∇(−→u τ −−→u hτ)(·, x)‖2
0,Ωdx. (35)

Then,

‖(−→u −−→u τ)(tm)‖2
L2(Ω) + ν

∫ tm

tm−1

‖∇(−→u −−→u τ)‖2
L2(Ω)dt ≤ β5(η

m)2 + ‖(−→u −−→u τ)(tm−1)‖2
0,Ω

+β6

∫ tm

tm−1

‖−→u −−→u τ‖2
0,Ωdt

+6β5ν
∫ tm

tm−1

‖∇(−→u τ −−→u hτ)(·, x)‖2
L2(Ω)dx (36)

+
2
ν
‖
−→
f −Πτ

−→
f ‖2

L2(tm−1,tm ;H−1(Ω)),
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where β5 and β6 are two positive constants.

By utilizing inequalities (12) and (36), we can derive the desired result (28).

Theorem 3. Under the assumptions (A1)–(A7), we have this estimation:

n

∑
m=1

∫ tm

tm−1

‖ ∂

∂t
(−→u −−→u τ) + (−→u · ∇)−→u − (−→u m · ∇)−→u m +∇(p−Πτ pτ)‖2

H−1(Ω)dt ≤

C1

(
n

∑
m=1

ν(ηm)2 +
n

∑
m=1

∫ tm

tm−1

ν2‖−→u τ −−→u hτ‖2
1 + ‖

−→
f −Πτ

−→
f ‖2

H−1(Ω)dt

)
, (37)

for all n = 1, · · · , N, where the positive constant C1 depends on ν,
−→
f , and Ω.

Proof. By employing the results of (29) and (30), we infer

‖ ∂

∂t
(−→u −−→u τ) + (−→u · ∇)−→u − (−→u m · ∇)−→u m +∇(p−Πτ pτ)‖−1

= sup
−→v ∈H1

0 (Ω)

(
−→
f −Πτ

−→
f ,−→v )− a(−→u −−→u m,−→v )

‖∇−→v ‖L2(Ω)

(38)

≤ ‖
−→
f −Πτ

−→
f ‖H−1(Ω) + ν|−→u −−→u τ |1 + ν|−→u τ −−→u m|1.

The result now follows by collecting estimates (28) and (35).

We consider these assumptions:

(A8)We consider Q0
n,h ⊂ Qn,h and Q1

n,h ⊂ Qn,h, where the spaces Q0
n,h, Q1

n,h are defined by

Q0
n,h = {qh ∈ L2

0(Ω); qh|K ∈ P0(K), f or all K ∈ τn,h}, (39)

Q1
n,h = {qh ∈ H1(Ω) ∩ L2

0(Ω); qh|K ∈ P1(K), f or all K ∈ τn,h}. (40)

(A9)For all 1 ≤ p ≤ N, there exists a conforming triangulation τ̃p;h, such that each element
K of τp−1;h or of τp;h is the union of elements K̃ of τ̃p;h, such that hK ∼ hK̃.

Lemma 1. Let π: V 7→ V and the operator π−→v = −→w , ∀−→v ∈ V, where (−→w , r) ∈ V ×Q is the
unique solution of the Stokes problem:

−4−→w +5r = 0 in Ω,
∇ · −→w = ∇ · −→v in Ω,
−→w =

−→
0 in ∂Ω.

(41)

Then, we have

(i) π−→v =
−→
0 ∀−→v ∈ Y.

(ii) |−→v − π−→v |1 ≤ |−→v |1, |π−→v |1 ≤ 1
λ |div−→v |L2(Ω), ∀

−→v ∈ V, where

λ = inf
q∈Q

sup
−→v ∈V

b(−→v , q)
|−→v |1|q|0

.

(iii) We suppose that assumption (A4) holds, then

‖π−→v h‖L2(Ω) ≤ Chθ
n‖div−→v h‖L2(Ω), (42)

for all −→v h ∈ Yn,h, 1 ≤ n ≤ N, where
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{
θ = 1 i f Ω is convex,
θ = 1

2 otherwise.
(43)

Proof. See [14].

Let us consider −→u hτ associated with the solution (−→u n
h)0≤n≤N of system (11).

Theorem 4. Under the assumptions (A1)–(A9), we have the following estimates:

[[−→u τ −−→u hτ ]](tn) ≤ C2

(
n

∑
m=1

∆tm ∑
K∈τmh

(
(1 + ξhτ)(η

m
K )2 +

h2
K
ν
‖
−→
f m −

−→
f m

h ‖
2
0,K

)) 1
2

+ C3‖−→u 0 − πh
−→u 0‖0,Ω, (44)

for all n = 1, · · · , N, where the constants C2 and C3 are positive constants depending on ν and
−→
f .

The term ξhτ is defined by

ξhτ = sup
1≤n≤N

supK∈τn,h
h2θK

K

ν∆tn
,

where {
θK = 1 i f K ∩ ∂Ω 6= ∅,
θK = 1

2 otherwise.
(45)

Proof. Combining system (8) with system (15), we obtain(
(−→u n−−→u n

h )−(
−→u n−1−−→u n−1

h )
∆tn

,−→v
)

+a(−→u n −−→u n
h ,−→v )− b(−→v , pn − pn

h) + d(−→u n −−→u n
h ,−→u n −−→u n

h ,−→v )

= [(
−→
f n

h −
−→u n

h −
−→u n−1

h
∆tn

− (−→u n
h · ∇)

−→u n
h ,−→v −−→v h)− a(−→u n

h ,−→v −−→v h)

+b(−→v −−→v h, pn
h)] + [(

−→
f n −

−→
f n

h ,−→v −−→v h)]

+[−d(−→u n −−→u n
h ,−→u n

h ,−→v ) + d(−→u n
h ,−→u n −−→u n

h ,−→v )]

= F1 + F2 + F3.

Let −→e n = −→u n − −→u n
h , −→v = −→e n − π−→e n, and −→v n = Rnh(

−→e n − π−→e n). We have
div(−→e n − π−→e n) = 0, where Rnh is a Clement regularization operator [27]. We obtain

(−→e n −−→e n−1,−→e n) + ∆tnν(∇−→e n,∇−→e n) + ∆tnd(−→e n,−→e n,−→e n) = (−→e n −−→e n−1, π−→e n) (46)

+ ∆tn

(
ν(∇−→e n,∇π−→e n) + d(−→e n,−→e n, π−→e n) +

3

∑
i=1

Fi

)
.

From equality (46), Lemma 1, and by using π−→e n = −π−→u n
h , we obtain these inequalities:

(−→e n −−→e n−1, π−→e n) ≤ 1
2
‖−→e n −−→e n−1‖2

L2(Ω) + Cξhτ ν∆th‖div−→u n
h‖

2
L2(Ω),

ν∆tn(∇−→e n,∇π−→e n) ≤ ν∆tn

4
‖∇−→e n‖2

L2(Ω) +
ν∆tn

λ2 ‖div−→u n
h‖

2
L2(Ω),

d(−→e n,−→e n, π−→e n) + F3 ≤ ν

8
|−→e n|21 + C4‖div−→u n

h‖
2
0,Ω + C5|−→e n|20,Ω.

Now, we can raise the different terms Fi, i = 1, 2, 3. For the first term, we have
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F1 ≤ C∆tn

 ∑
K∈τn,h

(hK‖
−→
f n

h −
−→u n

h −
−→u n−1

h
∆tn

− (−→u n
h · ∇)

−→u n
h + ν∆−→u n

h −∇pn
h‖L2(K))


+ ∑

E∈ε(K)
h

1
2
E‖[[ν∂nE

−→u n
h − pn

h
−→n E]]E‖L2(E)|

−→v |1. (47)

For the second, we have

F2 = (
−→
f n −

−→
f n

h ,−→v −−→v h) ≤ C ∑
K∈τn,h

hK‖
−→
f n −

−→
f n

h‖L2(K)|
−→v |1. (48)

Using (46), we obtain

1
2
‖−→e n‖2

0 −
1
2
‖−→e n−1‖2

0 +
1
2

ν∆tn|−→e n|21 ≤ C4{ ∑
K∈τn,h

(
(ηn

K)
2 +

h2
K
ν
‖
−→
f n −

−→
f n

h‖
2
0,K

)
(49)

+ ∑
K∈τn,h

(
ξhτν∆tn +

ν∆tn

λ2 + (∆tn)
2ξhτ

)
‖div−→u n

h‖
2
0,K + ∆tn‖−→e n‖2

0}.

Using (49) and the discrete Gronwall lemma in [28], we obtain the result.

Proposition 1. According to the conditions used in Theorem 4, we have the following estimation:

(
n

∑
m=1

∫ tm

tm−1

‖ ∂

∂t
(−→u τ −−→u hτ) + (−→u m · ∇)−→u m − (−→u m

h · ∇)
−→u m

h +∇ Πτ(pτ − phτ)‖2
H−1(Ω)dx

) 1
2

≤

C5

 n

∑
m=1

∆tm ∑
K∈τm,h

(ν(1 + ξhτ)(η
m
K )2 + h2

K‖
−→
f m −

−→
f m

h ‖
2
0,K)

 1
2

+ C6ν
1
2 ‖−→u 0 − πh

−→u 0‖2
L2(Ω),

for all n = 1, · · · , N.

Proof. We can see this paper for more details [28].

The next step is to bound the lower bound. To achieve this, we use the results
obtained previously and the standard results from [13]. As a result, we can establish the
following estimation.

Theorem 5. Under assumption (A9) and this condition, ∃k, ∀n ∈ [1, N], ∀K ∈ τn;h, ∀H ∈
Vn,h ∪Qn;h, H|K ∈ Pk, we have this estimation:

ηn
K ≤ C7

(
√

ν ‖∇(−→u n −−→u n
h)‖0,ωK + ν−

1
2 ‖

(−→u n −−→u n
h)− (−→u n−1 −−→u n−1

h )

∆tn
+∇(pn − pn

h) (50)

+(−→u n · ∇)−→u n − (−→u n
h · ∇)

−→u n
h‖H−1(ωK)

+
√

ν hK‖
−→
f n −

−→
f n

h‖0,ωK

)
,

for all n = 1, · · · , N, where ωK denotes the union of elements of τn;h that share at least a vertex
with K. Moreover, we have

ηn ≤
√

ν‖∇(−→u −−→u τ)‖L2(tn−1,tn ;L2(Ω)) + ν−
1
2 ‖ ∂

∂t
(−→u −−→u τ) + (−→u · ∇)−→u − (−→u n · ∇)−→u n +∇(p−Πτ pτ)‖L2(tn−1,tn ;H−1(Ω))

+ν−
1
2 ‖
−→
f −Πτ

−→
f ‖L2(tn−1,tn ,H−1(Ω)) +

√
∆tn

3
ν
(
‖∇(−→u n −−→u n

h)‖L2(Ω) + ‖∇(
−→u n−1 −−→u n−1

h )‖L2(Ω)

)
. (51)
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Proof. This result is a direct consequence of all the previous results presented in the
previous theorem by summarizing all the estimations proved earlier.

Now, we establish the equivalence between the full error ε(tn) defined by

ε2(tn) = [−→u −−→u τ ]
2(tn) + [−→u τ −−→u hτ ]

2(tn) +
1
ν

n

∑
m=1

∫ tm

tm−1

‖ ∂

∂t
(−→u −−→u τ) +∇(p−Πτ pτ)

+(−→u · ∇)−→u − (−→u m · ∇)−→u m‖2
H−1(Ω)dx +

1
ν

n

∑
m=1

∫ tm

tm−1

‖
(−→u m −−→u m

h )− (−→u m−1 −−→u m−1
h )

4tm
(52)

+∇ Πτ(pτ − phτ) + (−→u m · ∇)−→u m − (−→u m
h · ∇)

−→u m
h ‖

2
H−1(Ω)dx,

for all n = 1, · · · , N and the a posteriori error ηS defined by

ηS =

 n

∑
m=1

(ηm)2 +4tm ∑
K∈τm,h

(ηm
K )2

 1
2

. (53)

By summarizing and incorporating the previous results, we can conclude this theorem.

Theorem 6. Under the assumptions (A1)–(A9), we have

m1 ηS ≤ ε(tn) ≤ M2 ηS, (54)

where m1 and M2 are positive constants.

Proof. This result directly follows from all the previous results presented in the previous
theorem. It is a summary of all the estimations that have been proven earlier, leading to
this particular estimation.

5. Numerical Simulation

In this section, we will present the results of two numerical simulations using the
Finite Element Method. The main objective is to assess the performance of our method and
analyze the obtained results in two dimensions:

− In the first test, we compared the numerical results obtained using Matlab code with
those obtained from the commercial software ADINA system. The simulations are
conducted in a rectangular L-shaped domain, and we will evaluate the accuracy
and reliability of our method by comparing the results with ADINA. ADINA, short
for “Automatic Dynamic Incremental Nonlinear Analysis,” is a comprehensive finite
element analysis software package widely acclaimed for its versatility in tackling
complex problems across various domains, including engineering and computational
mechanics. This powerful tool has gained recognition for its proficiency, particularly in
scenarios involving heat and fluid flow analysis, such as in the case of the “Cooling of
an Electronic Component.” ADINA excels in simulating and predicting the behavior of
thermal and fluid systems under diverse conditions. It leverages advanced numerical
methods to precisely model heat transfer phenomena, encompassing conduction,
convection, and radiation, as well as fluid flow dynamics, spanning from laminar to
turbulent flows.

− In the second test, we focused on simulating the time-dependent flow past a cylinder
using COMSOL Multiphysics. We varied the values of the parameter β in the boundary
condition to investigate its effects on the flow behavior.

By conducting these numerical simulations and analyzing the obtained results, we
aim to validate the accuracy and effectiveness of our Finite Element Method for a nonlinear
differential equation with a general boundary condition.
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5.1. Test 1 (L-Shaped Domain)

In the first test, we conducted a numerical simulation of the NS problem (1) with a
focus on comparing the results obtained using the Finite Element Method. The comparison
involved assessing the performance of the Matlab code against the results obtained from
the ADINA system. The simulation revolved around studying the flow within a rectangular
L-shaped duct with a sudden expansion. The inflow boundary, located at x = −1, extended
along the y-direction within the range 0 ≤ y ≤ 1 and was subjected to a Poiseuille flow
profile. The duct walls were characterized by a no-flow condition, resulting in zero velocity
along the walls. At the outflow boundary, positioned at x = 5 with −1 < y < 1, we applied
the Neumann condition (55) to simplify the comparison:{

ν ∂ux
∂x − p = 0,

∂uy
∂x = 0,

(55)

ensuring the mean outflow pressure was automatically set to zero.
The figures in this section offer visual representations of the computed results for

the flow in our domain. Streamlined plots illustrate the flow lines within the domain,
providing a visual depiction of the fluid’s path and direction. Additionally, velocity
vector plots showcase the magnitude and direction of the velocity field through vectors,
enabling comprehensive visualization of the flow characteristics, including areas of high
and low velocity. These visual representations serve as valuable tools for understanding and
interpreting the computed results of the flow in the domain. They provide insights into the
overall flow behavior, patterns, and variations, facilitating the analysis and interpretation
of the numerical simulation.

We set the final time for this test as T = 100, employing a 32× 96 square grid with a
Q1−Q0 approximation to discretize the problem. The numerical simulation took into account
a viscosity value of ν = 1/600 to analyze the fluid flow behavior. The computed streamlines
for the Matlab Code and ADINA system are presented in Figures 1 and 2, respectively.

Figure 1 presents the streamlines obtained using the Matlab code.

Figure 1. Streamlined with Matlab code.

Figure 2 presents the streamlines obtained using the ADINA system.
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Figure 2. Streamlined with ADINA system.

The flow development revealed the formation of a single recirculation zone down-
stream of the step. Notably, a close examination of the results depicted in Figures 1 and 2
demonstrated a high degree of similarity or strong correlation between them.

In Figures 1 and 2, we present the vorticity contours for the flow analysis using the
Matlab Code and ADINA system, respectively. In Figure 3, we showcase the vorticity
contours obtained from the Matlab code.

Figure 3. Vorticity contours with Matlab code.

In Figure 4, we present the solution obtained using the ADINA system.

Figure 4. Vorticity contours with the ADINA system.
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This visual comparison suggests that both the Matlab Code and the ADINA system
yield consistent and comparable results for the fluid flow analysis within the rectangular
L-shaped duct with a sudden expansion.

Figure 5 depicts the pressure solutions at T = 120 for different viscosity values: ν = 1,
ν = 1/40, ν = 1/100, and ν = 1/500. The numerical simulations were conducted using a
32× 96 square grid and the Q1 − P0 approximation scheme.

Figure 5. Pressure for the viscosity value ν = 1 (left at the top), ν = 1/40 (right at the top), ν = 1/100
(left at the down), and ν = 1/500 (right at the down).

We can observe the evolution of the pressure by changing the value of µ specified in
the boundary condition. Now, with ν = 1/600 fixed, we consistently used the stabilized
Q1 − P0 method and, in Figure 6, we observed the pressure distributions at specific time
steps: t = 10.25, t = 50.15, t = 100.33, and t = 450.02.

Figure 6. Pressure at t = 10.25 (left at the top), t = 50.15 (right at the top), t = 100.33 (left at the
down), and t = 450.02 (right at the down).

At early times, the pressure distribution illustrated in Figure 6, shows the development
of potential flow “sheets” along the rigid walls. This phenomenon is a significant and
challenging aspect of impulsively-started viscous flow. The formation of these potential
flow sheets is particularly relevant for understanding and modeling the dynamics of the
fluid flow in this scenario. A more comprehensive and detailed discussion of this feature
can be found in Section 3.19 in this paper [29].

Table 1 provides the number of preconditioned GMRES iterations at time T = 190
for different values of β in the Q1 − P0 element. We compared these results with those
obtained using the Q2 − P1 element.
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Table 1. Number of preconditioned GMRES iterations at T = 190.

FEM Method
Coarse Mesh Fine Mesh

Standard Rescaled Standard Rescaled

Q2 − P1 14 12 10 9
Q1 − P0 with α = 0 7 7 7 7

Q1 − P0 with α = 1/4ν 7 10 8 9
Q1 − P0 with α = 1/4 34 82 32 68

The comparison presented in Table 1 underscores the advantages of using the optimally
stabilized system with α = 1/4ν. This approach demonstrates superior conditioning,
leading to a reduced number of GMRES iterations for convergence. The reduced number of
iterations signifies more efficient and faster solution convergence, which is highly beneficial
for computational efficiency and reduced computational time. Indeed, the results presented
in this simulation demonstrate the performance and effectiveness of the proposed numerical
approach for studying the time-dependent Navier–Stokes equations.

To estimate the error and provide information about the accuracy and quality of the
numerical solution, we present a comparison between the uniform and adaptive methods in
Figure 7. The figure visually illustrates and compares the performance or results obtained
by each method, offering a graphical representation of their respective outcomes.

Figure 7. Comparison of the errors obtained with the uniform and adaptive methods.

By observing the results, it becomes apparent that both the error and the estimated
error tend to converge to zero as the time steps become increasingly smaller. This ob-
servation suggests that taking smaller time steps can effectively reduce both the error
and the estimated error in the numerical solution. Decreasing the time step size high-
lights the significance of selecting appropriate time steps to ensure accurate and reliable
numerical solutions.

5.2. Test 2 (Flow Past a Cylinder)

The model presented in this simulation investigates the unsteady incompressible flow
around a long cylinder positioned in a channel at a right angle to the incoming fluid. The
asymmetrical placement of the cylinder in the flow creates an unstable flow pattern, and
the simulation aims to study the development of periodic flow behavior. The appearance
of this periodic flow pattern is challenging to predict and is influenced by various factors,
with the Reynolds number being a key predictor. In this simulation, the Reynolds number
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is set to 100, leading to the formation of a developed Karman vortex street, providing
valuable insights into the transition process in unsteady flows. The investigation of such
flows is essential in various engineering and fluid mechanics applications, offering a deeper
understanding of flow phenomena and their influence on the behavior of bodies immersed
in fluids.

This model is carried out using the Navier–Stokes Equation (1). Specifically, we are
interested in comparing the results obtained by varying the values of the parameter β (β:
β = 104, β = 1, β = 10−2, and β = 0) in the boundary condition (2), and we conducted
numerical tests with and without a posterior error estimation by using an a posteriori
estimator. These values of β represent different scenarios of boundary conditions, allowing
us to explore the impact of this parameter on the flow characteristics around the cylinder.
To assess the performance of this study, we compared the results with those obtained using
fine meshes.

To carry out the simulation, we chose a final time of T = 7 s and divided the time
steps into two intervals: ∆t = 0.2 s for the time interval [0, 3.4] and ∆t = 0.02 s for the
time interval [3.5, 7]. This time discretization allowed us to capture the time-dependent
behavior of the flow accurately; we chose three instances of t = 2 s, t = 4 s, and t = 7 s.
Figure 8 illustrates the domain and boundary of the problem under consideration.

Figure 8. Domain and boundary condition for our problem “Flow Past a Cylinder”.

In the blue regions, we applied the general boundary condition while, in the remaining
parts, we imposed the Dirichlet boundary condition u = f . We took f = 0 on the contour of
the circle and f = Umean × 6y(H−y)

H2 × step1(t[s]), where Umean = 1 m/s and H = 0.41 m.
The adaptive mesh refinement (AMR) technique allowed us to dynamically adjust the

mesh resolution based on the solution’s accuracy, focusing computational resources where
they were most needed and reducing the mesh density in less critical regions.

Figure 9 illustrates the comparison of the mesh used in the simulation with and
without adaptive mesh refinement, respectively.

Figure 9. Comparison of the mesh used in the simulation with (left) and without (right) adaptive
mesh refinement.

Table 2 provides the number of elements used in different discretizations. The table
reveals that the number of elements in the very small mesh is significantly larger than in
the other meshes to provide a high-resolution representation of the flow domain, resulting
in a finer grid and a larger number of elements. On the other hand, the number of elements
in the normal mesh and the adaptive mesh refinement are less and very close to each other.
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Table 2. The number of elements for different discretizations applied in this simulation.

Types of Mesh Number of Border Elements Number of
Exterior Elements

Fine mesh (FM) 2014 300,982
Normal mesh (NM) 116 900

Adaptive mesh refinement
(AMR) 106 840

We will now proceed to approximate the velocity and pressure profiles for different
cases of β (β = 10−4, β = 102, β = 1, and β = 0) at three different instances: t = 2 s, t = 4 s,
and t = 7 s. The Finite Element Method (FEM) will be used to approximate this model in
three types of meshes (FM, NM, and AMR) for comparing the results obtained.

Now, we present the figures that illustrate the results obtained for our study and allow
us to compare the results. Figures 10–12 display the velocity for β = 10−4 in different
meshes (FM, NM, and AMR).

Figure 10. Velocity at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 11. Velocity at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 12. Velocity at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 13–15 display the pressure profiles for β = 10−4 in different meshes at different
times: t = 2 s, t = 4 s, and t = 7 s.

Figure 13. Pressure profiles at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 14. Pressure profiles at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 15. Pressure profiles at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 16–18 present the velocity for β = 102 at different times.
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Figure 16. Velocity at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 17. Velocity at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 18. Velocity at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 19–21 display the pressure profiles for β = 102 at different times.

Figure 19. Pressure profiles at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 20. Pressure profiles at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 21. Pressure profiles at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 22–24 present the velocity for β = 1 at different times.

Figure 22. Velocity at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 23. Velocity at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 24. Velocity at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 25–27 display the pressure profiles for β = 1 at different times.
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Figure 25. Pressure profiles at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 26. Pressure profiles at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 27. Pressure profiles at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 28–30 present the velocity for β = 0 at different times.

Figure 28. Velocity at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 29. Velocity at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 30. Velocity at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

Figures 31–33 display the pressure profiles for β = 0 at different times.

Figure 31. Pressure profiles at t = 2 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 32. Pressure profiles at t = 4 s in different meshes: FM (left), NM (middle), and AMR (right).

Figure 33. Pressure profiles at t = 7 s in different meshes: FM (left), NM (middle), and AMR (right).

By comparing the results of the velocity and pressure profiles presented in Figures 10–33
for different values of β in three different meshes (FM, NM, and AMR), we observed
noticeable differences, especially in the regions where the general boundary condition was
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applied. The parameter β plays a crucial role in determining the flow behavior near the
boundary and significantly influences the velocity and pressure distributions within the
domain. For very small values of β, the results tend to closely resemble or approach the
Dirichlet condition, indicating that the new boundary condition becomes less influential,
and the flow behavior near the boundary is dominated more by the Dirichlet condition.
Conversely, for larger values of β, the new boundary condition becomes more prominent,
exerting a stronger influence on the flow behavior near the boundary. This is evident in
the velocity and pressure profiles, which deviate more significantly from the Dirichlet
condition with increasing values of β. The choice of β has a direct impact on the accuracy
and reliability of the numerical solution, making it an essential parameter to consider
in modeling and simulations. By comparing the results with the referential test, we can
observe the results obtained by adaptive mesh refinement are more important.

In conclusion, the comparison of the results obtained using adaptive mesh refine-
ment (AMR) and normal mesh (NM) with the fine mesh (FM) reveals that AMR yields
more significant and influential results compared to NM. The adaptive mesh refinement
technique provides improved accuracy and reliability, making a significant contribution
to the overall outcomes compared to the nested mesh approach. One key advantage of
using a posteriori error estimation for the Navier–Stokes problem is the ability to obtain
accurate numerical solutions with a reduced number of elements compared to uniform
meshes or traditional refinement strategies. This not only reduces computational expenses
but also accelerates the simulation process, making it more efficient. By employing AMR,
researchers can achieve higher-resolution solutions in regions of interest while maintaining
a coarser mesh in other areas. This adaptive approach optimizes computational resources
and enhances the precision of the simulation results, particularly in cases where the flow
behavior exhibits varying complexities across the domain.

In the next step, we propose coupling the Navier–Stokes equation with the Darcy
equation instead of the Stokes equation. By coupling the Navier–Stokes equation with
the Darcy equation, we can capture the fluid flow in porous media more accurately and
effectively. This coupled model is particularly relevant when studying flow phenomena
that involve interactions between the fluid flow in the free domain and the flow within the
porous medium. Another application of this model is for the problem of the mass-based
hybridity model for thermomicropolar binary nanofluid flow defined in this paper [30].

6. Concluding Remarks

In this paper, our primary focus was on numerically solving a nonlinear partial
differential equation governing the flow of incompressible fluids. Specifically, we employed
the Finite Element Method (FEM) to solve the unsteady Navier–Stokes equations with a
general boundary condition. We investigated a posteriori error estimates to control the error
of our numerical solution. To this end, we introduced two types of error indicators: one
for time discretization and another for space discretization. These error indicators allowed
us to estimate the error in our numerical solution, enabling us to identify regions where
the approximation might be less accurate. Furthermore, we established the equivalence
between the sum of the two types of error indicators and the total error. This equivalence
provided a comprehensive understanding of the overall error in our numerical solution
and validated the accuracy and reliability of our approach.

To validate the proposed numerical methods, we conducted extensive numerical
experiments and compared the results with findings reported in the literature, as well
as results obtained from the commercial software ADINA system. These comparisons
aimed to assess the accuracy and reliability of our numerical techniques. Encouragingly,
we observed good agreement between our numerical results and those from the literature
and ADINA, confirming that our methods were implemented correctly and produced
accurate solutions. Additionally, we performed comparisons both with and without using
the a posteriori error estimator, as well as with a very small mesh. These comparisons
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emphasized the significance of the estimator, as the results obtained with the estimator
were more realistic and reliable than the other methods.

Overall, the consistent and satisfactory comparisons support the credibility of our
numerical approach and demonstrate its capability to simulate fluid flow and effectively
solve the unsteady Navier–Stokes equations. The use of a posteriori error estimates further
enhances the accuracy and trustworthiness of our numerical solutions.
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