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1. Introduction

Semi-symmetric spaces are a broad and exciting class of Riemannian manifolds, and
they have applications in various areas of mathematics, particularly in the study of ho-
mogeneous spaces and differential geometry. They serve as an essential class of examples
for understanding the interplay between curvature, symmetry, and geometry on mani-
folds. Researchers in Riemannian and differential geometry have studied these spaces to
understand better their geometric properties and applications in physics, such as in the
study of Einstein’s field equations in general relativity [1]. Nomizu introduced the notion
of semi-symmetric manifolds. A Riemannian manifold M is called semi-symmetric if

R(X, Y)× R = 0 (1)

for all vector fields X and Y on M, R(X, Y) acts as a derivation on R [2].
A Riemannian manifold M, which is not necessarily complete, is locally symmetric

if its curvature tensor is parallel, i.e., ∇R = 0. In other words, M is locally symmetric if
and only if there exists a symmetric space S such that M is locally isometric to S. Nomizu
proved that if Mn is a complete, connected semi-symmetric hypersurface of Euclidean space
Rn+1 (n > 3), then Mn is locally symmetric. Then, Sekigawa and Tanno showed that the
manifold is locally symmetric if the Riemannian curvature tensor provided some conditions
related to the covariant derivatives for dimM ≥ 3 [3]. For the case of a compact Kaehler
manifold, Ogawa proved that if it is semi-symmetric, it must be locally symmetric [4].
In the case of contact structures, Tanno showed no proper semi-symmetric or Ricci semi-
symmetric K-contact manifold [5]. Moreover, Szabó gave a complete intrinsic classification
of these spaces [6].

It is well known that semi-symmetric manifolds include the set of locally symmetric
manifolds as a proper subset. Semi-symmetric spaces are the natural generalization of
locally symmetric spaces. Such a space is called semi-symmetric since Rq is the same as
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the curvature tensor of a symmetric space at a point of q ∈ M. Namely, locally symmetric
spaces are semi-symmetric, but the converse is generally untrue.

Semi-symmetric contact metric manifolds have been studied by numerous authors [7–9].
In particular, Takahashi proved that the constant sectional curvature of a semi-symmetric
Sasakian manifold is 1. In addition, semi-symmetric contact manifolds satisfying (κ, µ)-
nullity condition for dimensions greater than 3 were investigated by Papantoniu. Moreover,
if M is semi-symmetric and the tensor field h is ξ-parallel, then M is either smooth or has a
constant curvature of 1. Then, Perrone proved that a semi-symmetric contact Riemannian
three-manifold is flat or has constant sectional curvature of 1. On the other hand, Blair
and Sharma proved that the constant curvature of a locally symmetric contact metric
three-manifold is 0 or 1 [10].

Later, Calvaruso and Perrone investigated semi-symmetric contact three-manifolds [11].
Under some additional conditions, they obtained several classification results. Then, confor-
mally flat semi-symmetric spaces were investigated by Calvaruso [12]. The author obtained
that a conformally flat semi-symmetric space M of dimension greater than 2 is either locally
symmetric or irreducible and isometric to a semi-symmetric real cone. In [13], if M is a
locally symmetric contact metric manifold with dimensions 3 and 5, it is either Sasakian
and has constant curvature of 1 or locally isometric to the unit tangent sphere bundle of
Euclidean space.

Almost contact metric structure has a special subclass called almost cosymplectic
manifold. It was first introduced to the literature by Goldberg and Yano [14]. An almost
contact metric manifold is said to be an almost cosymplectic manifold if dη = 0 and
dΦ = 0. Here, d is the exterior differential operator. An almost cosymplectic manifold
with constant curvature is cosymplectic if and only if it is locally flat. A comprehensive
study of almost cosymplectic manifolds has been undertaken by Olszak [15,16]. The author
obtained some sufficient conditions and proved that no almost cosymplectic manifolds of
non-vanishing constant curvature exist in dimensions greater than 5. In addition, Perrone
classified simply connected homogeneous almost cosymplectic three-manifolds [17]. The
author showed that if an almost cosymplectic three-manifold is locally symmetric, then its
structure is cosymplectic and it is locally a product of a one-dimensional manifold and a
Kaehler surface of constant curvature c. After this study, the author classified connected
homogeneous dimensional almost α-coKaehler structures [18].

Kenmotsu manifolds were first introduced by Kenmotsu [19]. A Kenmotsu manifold
can be defined as a normal almost contact metric manifold. Kenmotsu showed that a
locally symmetric Kenmotsu manifold has constant curvature of −1. Therefore, local
symmetry is an essential restriction for Kenmotsu manifolds. The author obtained that if
the Kenmotsu structure satisfies the semi-symmetric condition, it has constant negative
curvature. Furthermore, if the Kenmotsu manifold M is conformally flat, then M is a
space of constant negative curvature of −1 for dimM > 3. A (2n + 1)-dimensional almost
contact metric manifold is said to be an almost α-Kenmotsu manifold if dη = 0 and
dΦ = 2α(η ∧Φ), where α is a non-zero real constant [20]. The geometric properties and
examples of these manifolds were studied [16,19,20]. Remark that almost α-Kenmotsu
structures are related to certain local conformal deformations of almost cosymplectic
structures [16,21]. If we consider these two classes jointly, we introduce a new notion called
an almost α-cosymplectic manifold for any real constant α, which is given by dη = 0 and
dΦ = 2α(η ∧Φ) [22].

On the other hand, a systematic study of semi-symmetric almost contact metric mani-
folds still needs to be undertaken. In [23], the authors studied certain classification results
related to the nullity condition for an almost Kenmotsu manifold M with the character-
istic vector field ξ belonging to the (k, µ)′-nullity distribution. They showed that if M
is ξ-Riemannian semi-symmetric, then M is locally isometric to the Riemannian prod-
uct of an (n + 1)-dimensional manifold of constant sectional curvature of −4 and a flat
n-dimensional manifold. Furthermore, if M is a ξ-Riemannian semi-symmetric almost
Kenmotsu manifold such that ξ belongs to the null distribution, then M has constant sec-
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tional curvature of −1. In [24], Öztürk studied semi-symmetric conditions for α-Kenmotsu
manifolds. In addition, many authors on these topics have studied almost Kenmotsu
manifolds [25–28].

The paper is organized in the following way: In Section 2, we recall the concept of
almost α-cosymplectic manifolds. In Section 3, we give some basic formulas on almost
α-cosymplectic manifolds. In Section 4, we obtain several results for three-dimensional
almost α-cosymplectic manifolds. Section 5 obtains the results of the semi-symmetric
almost α-cosymplectic three-manifolds. In Section 6, we give illustrative examples of
almost α-Kenmotsu manifolds. The last section of the paper is devoted to the discussion.

2. Preliminaries

Let M be a (2n + 1)-dimensional smooth manifold. Then, M is said to be an almost
contact manifold if its structure group is reducible to U(n)x1. This corresponds to an almost
contact structure defined by a triple (φ, ξ, η) satisfying the following conditions

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, (2)

which yield
ϕξ = 0, η ◦ ϕ = 0, rank(ϕ) = 2n (3)

Here, the ξ is called the Reeb vector field or characteristic vector field. Then, we have a
compatible Riemannian metric g on M defined by [29]

g(ϕX, Y) = −g(X, ϕY),η(X) = g(X, ξ) (4)

for arbitrary vector fields on M. Such (M, ϕ, ξ, η, g) is said to be an almost contact metric
manifold [30]. The fundamental two-form Φ of M is defined by Φ(X, Y) = g(X, ϕY).
Additionally, if M holds the condition dη = Φ, then M is said to be a contact metric man-
ifold. It is well known that Tanno classified the structures into three classes using their
automorphism groups [5]. Blair analyzed the contact metric structure, which also includes
the Sasakian structure for class (1). Cosymplectic structures characterize the geometrical
relations of class (2). The first simple example that comes to mind for class (2) is local
products of a real line or a circle and a Kaehler manifold. Class (3) was extended by Ken-
motsu, which is expressed locally by a warped product of an open interval and a Kaehler
manifold [31]. This type of manifold is called Kenmotsu and has normal structure. We have
noted that every orientable surface admits a Kaehler metric. If we take a warped product
metric on the product space IR× N, then we have a cosymplectic or a Kenmotsu three-
manifold, respectively. A cosymplectic or a Kenmotsu structure satisfies the normallity and
CR-integrability [32]. An almost complex structure J on M× IR is defined by [29].

J
(

Y, f
d
dt

)
= (ϕ− f ξ, η(Y)

d
dt
) (5)

Here, Y is a vector field tangent to M, t is the standart coordinate of IR, and f is a function
on M× IR. If (5) is integrable, then M is called normal. In addition, it is well known that
M is normal if and only if M satisfies

[ϕX, ϕY]− ϕ[ϕX, Y]− ϕ[X, ϕY] + ϕ2[X, Y] + 2dη(X, Y)ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion tensor field of ϕ. We recall that we have much broader
classes without normality. Note that a normal almost α-cosymplectic manifold is said to
be an α-cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic (when
α = 0) or α-Kenmotsu (when α 6= 0) [22].
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We denote by ∇ the Levi Civita connection of M, by R the corresponding Riemannian
curvature tensor for a Riemannian manifold M defined by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

by S the Ricci tensor, and by Q the Ricci operator given by S(X, Y) = g(QX, Y). For an
almost contact manifold, the (1,1)-tensor field h is defined by

h = (1/2)
(

Lξ ϕ
)
,

where LX denotes the Lie derivative in the direction of X [30].

Lemma 1. Ref. [33]. Let M be a (2n + 1)-dimensional almost contact metric manifold. Then, M is
normal if and only if the tensor field h identically vanishes.

Throughout the paper, we shall denote by Γ(TM) and ∇ the Lie algebra of all tangent
vector fields on M and the Levi Civita connection of Riemannian metric g, respectively.

3. Basic Properties

This section recalls the below basic formulas on almost α-cosymplectic manifolds.

Proposition 1. Let M be a (2n + 1)-dimensional almost contact metric manifold and ∇ be the
Riemannian connection. Then, we have:

(∇XΦ)(Y, Z) = g(Y, (∇X ϕ)Z), (6)

(∇XΦ)(Y, Z) + (∇XΦ)(ϕY, ϕZ) = η(Z)(∇Xη)ϕY− η(Y)(∇Xη)ϕZ, (7)

(∇Xη)Y = g(Y,∇Xξ) = (∇XΦ)(ξ, ϕY), (8)

2dη(X, Y) = (∇Xη)Y− (∇Yη)X, (9)

3dΦ(X, Y, Z) = ⊕X,Y,Z(∇XΦ)(Y, Z). (10)

Here, ⊕X,Y,Z denotes the cyclic sum over the vector fields X, Y, and Z [34].

Lemma 2. Let M be a (2n + 1)-dimensional almost contact metric manifold. Then, we have that:

2g((∇X ϕ)Y, Z) = 3dΦ(X, ϕY, ϕZ)− 3dΦ(X, Y, Z) + g(N(0)(Y, Z), ϕX)

+N(1)(Y, Z)η(X) + 2dη(ϕY, X)η(Z)− 2dη(ϕZ, X)η(Y),
(11)

for any X, Y, Z ∈ Γ(TM) where N(0), N(1) are defined by

N(0)(X, Y) = Nϕ(X, Y) + 2dη(X, Y)ξ (12)

and
N(1)(X, Y) =

(
LϕXη

)
Y−

(
LϕYη

)
X, (13)

respectively. Here, LX denotes the Lie derivative in the direction of X [30].

Proposition 2. Let M be a (2n + 1)-dimensional almost α-cosymplectic manifold. Then, we have:

trh = 0, h(ξ) = 0, (14)
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∇Xξ = −αϕ2X− ϕhX, (15)

∇ξξ = 0, ∇ξ ϕ = 0, (16)

(ϕ ◦ h)X + (h ◦ ϕ)X = 0, (17)

(∇Xη)Y = α[εg(X, Y)− η(X)η(Y)] + εg(ϕY, hX), (18)

for any X, Y, Z ∈ Γ(TM) [35].

Proposition 3. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional almost α-cosymplectic manifold.
Then, we have:

R(X, Y)ξ = α2[η(X)Y− η(Y)X]− α[η(X)ϕhY− η(Y)ϕhX] + (∇Y ϕh)X− (∇X ϕh)Y,
(19)

for any X, Y ∈ Γ(TM) [36].

Proposition 4. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional almost α-cosymplectic manifold.
Then, the following relations are satisfied:

R(X, ξ)ξ = α2 ϕ2X + 2αϕhX− h2X + ϕ
(
∇ξ h

)
X, (20)(

∇ξ h
)
X = −ϕR(X, ξ)ξ − α2 ϕX− 2αhX− ϕh2X, (21)

R(X, ξ)ξ − ϕR(ϕX, ξ)ξ = 2[α2 ϕ2X− h2X], (22)

S(X, ξ) = −2nα2η(X)− (div(ϕh))X (23)

S(ξ, ξ) = −[2nα2 + tr(h2)] (24)

for any X, Y ∈ Γ(TM) [37].

4. Almost α-Cosymplectic Three-Manifolds

Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Let us consider the the
open subsets

V = {q ∈ M : h 6= 0 in a neighborhood of q}

W = {q ∈ M : h = 0 in a neighborhood of q}.

Then, the union set V ∪W is an open dense subset of M. There exists a local orthonor-
mal basis {E, ϕE, ξ} of smooth eigenvectors of h in a neighborhood of q for any point
q ∈ V ∪W. This basis is called the ϕ-basis of M. Let hE = µE on V, where µ is a positive
non-vanishing smooth function. Next, using (14) and (15), we have hϕE = −µϕE. Thus,
we can state the following lemma:

Lemma 3. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, we have on V:

∇ξ E = −aϕE, ∇EE = bϕE− αξ, ∇ϕE ϕE = cE− αξ,

∇ξ ϕE = aE, ∇E ϕE = −bE + µξ, ∇ϕEE = −cϕE + µξ.

∇Eξ = αE− µϕE, ∇ϕEξ = −µE + αϕE,

(25)



Symmetry 2023, 15, 2022 6 of 17

Here, a is a smooth function and b, c are defined by

b = (1/2µ)[(ϕE)(µ) + A], A = σ(E) = S(ξ, E) = g(Qξ, E),

and
c = (1/2µ)[E(µ) + B], B = σ(ϕE) = S(ξ, ϕE) = g(Qξ, ϕE),

respectively.

Proof. For any X ∈ Γ(TM), using the definition of covariant derivation, it follows that

∇Eξ = −αϕ2E− ϕhE, ∇ϕEξ = −αϕ3E− ϕhϕE,

= αE− αη(E)ξ + hϕE, = αϕE− hE,

= αE− µϕE, = αϕE− µE.

Moreover, we have

∇ξ E = g
(
∇ξ E, E

)
E + g

(
∇ξ E, ϕE

)
ϕE + g

(
∇ξ E, ξ

)
ξ

= 0 + g
(
∇ξ E, ϕE

)
ϕE− g

(
E,∇ξ ξ

)
ξ = g

(
∇ξ E, ϕE

)
ϕE.

Here, if we set a = g
(
E,∇ξ ϕE

)
, we obtain∇ξ E = −aϕE. In a similar way, we assume

that b = g
(
∇ξ E, ϕE

)
and c = g

(
∇ϕE ϕE, E

)
, then the other covariant derivatives can be

obtained.
It is well known that Weyl conformal curvature tensor vanishes in dimension 3. That

is to say, we have:

R(X, Y)Z = S(X, Z)Y− S(Y, Z)X + g(X, Z)QY

−g(Y, Z)QX−
( r

2
)
[g(X, Z)Y− g(Y, Z)X].

(26)

Replacing X = E, Y = ϕE, and Z = ξ in (26), we find

R(E, ϕE)ξ = −g(QE, ξ)ϕE + g(QϕE, ξ)E. (27)

Since σ(X) = g(Qξ, X), we obtain

R(E, ϕE)ξ = −σ(E)ϕE + σ(ϕE)E. (28)

Then, using (28), it follows that

R(E, ϕE)ξ =
(
∇ϕE ϕh

)
E− ( ∇E ϕh)ϕE

= (ϕE)(µ)ϕE + µ(cE− µξ) + cµE− E(µ)E− µ(bϕE− αξ)− µbϕE

= (2µc− E(µ))E + (−2µb + (ϕE)(µ))ϕE.

(29)

From (28) and (29), we have

σ(E) = 2µb− (ϕE)(µ), σ(ϕE) = 2µc− E(µ). (30)

Hence, the smooth functions b and c take the form

b = (1/2µ)[(ϕE)(µ) + σ(E)], c = (1/2µ)[E(µ) + σ(ϕE)].

Thus, it completes the proof. �

Proposition 5. Let (M, ϕ, ξ, η, g) be a (2n + 1)-dimensional locally symmetric almost α-cosymplectic
manifold. Then, we have ∇ξ h = 0 [37].
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Proposition 6. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. On V, we have:

∇ξ h = 2ahϕ + ξ(µ)p, (31)

where p is a (1,1)-tensor field such that pξ = 0, pE = E, and pϕE = −ϕE.

Proof. Taking the covariant derivative of h with respect to ξ, we have(
∇ξ h

)
E = ∇ξ hE− h

(
∇ξ E

)
,
(
∇ξ h

)
ϕE = ∇ξ hϕE− h

(
∇ξ ϕE

)
,

= ∇ξµE + µ∇ξ E + ahϕE, = −∇ξ µϕE− haE,

= ξ(µ)E− 2aµϕE, = −ξ(µ)ϕE− 2aµE,

(32)

Here, we remark that
(
∇ξ h

)
ξ = 0. In view of (31) and (32), we deduce

ξ(µ)p = ∇ξ h− 2aϕh,

where tr(p) = 0. In addition, since h = 0, we obtain

ξ(µ)p = ∇ξ h = 0

on W. �

Proposition 7. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, we have:

h2 − α2 ϕ2 =

[
tr(l)

2

]
ϕ2, (33)

where l = R(., ξ)ξ is the Jacobi operator.

Proof. Following from (24), we have

tr(l) = −[2α2 + tr(h2)] = −2[α2 + µ2].

To complete the proof, let us calculate their values according to the components of the
basis. In fact, we have:

h2E− α2 ϕ2E = µ2E + α2E, h2 ϕE− α2 ϕ3E = (α2 + µ2)ϕE, h2ξ − α2 ϕ2ξ = 0. (34)

From (34), the proof is clear.
Since dimM = 3, (26) turns out to be

lX = tr(l)X− S(X, ξ)ξ + QX− η(X)Qξ − (r/2)(X− η(X)ξ). (35)

Therefore, the last formula gives

QX = α2 ϕ2X + 2αϕhX− h2X + ϕ
(
∇ξ h

)
X− tr(l)X

−S(X, ξ)ξ + η(X)Qξ + (r/2)(X− η(X)ξ).
(36)

On the other hand, we have

S(X, ξ) = −S(ϕ2X, ξ) + η(X)tr(l).

Then, (36) yields

QX = −((tr(l))/2)ϕ2X + 2αϕhX + ϕ
(
∇ξ h

)
X− tr(l)X

−S
(

ϕ2X, ξ
)
ξ + η(X)tr(l)ξ + η(X)Qξ − (r/2)ϕ2X.

(37)
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Moreover, we obtain

Qξ = g(Qξ, E)E + g(Qξ, ϕE)ϕE + g(Qξ, ξ)ξ = σ(E)E + σ(ϕE)ϕE + tr(l)ξ, (38)

with respect to the ϕ-basis. Taking into account (37) and (38), we obtain

QX = −(1/2)(r + tr(l))ϕ2X + 2αϕhX + ϕ
(
∇ξ h

)
X + 2

(
α2 + µ2)X− S

(
ϕ2X, ξ

)
ξ

−2
(
α2 + µ2)η(X)ξ + η(X)[σ(E)E + σ(ϕE)ϕE] + η(X)tr(l)ξ.

(39)

Next, arranging the above equation, we have

QX =
[
(1/2)r + α2 + µ2]X +

[
−(1/2)r− 3α2 − 3µ2]η(X)ξ

+2αϕhX + ϕ
(
∇ξ h

)
X− S

(
ϕ2X, ξ

)
ξ + η(X)σ(E)E + η(X)σ(ϕE)ϕE.

(40)

Hence, if we set

a = (1/2)r + α2 + µ2 and b = −(1/2)r− 3α2 − 3µ2,

then (40) turns into

QX = aX + bη(X)ξ + 2αϕhX + ϕ
(
∇ξ h

)
X− σ(ϕ2X)ξ

+η(X)σ(E)E + η(X)σ(ϕE)ϕE.
(41)

Thus, we state the following result: �

Lemma 4. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, the Ricci operator
satisfies the following:

Q = a + bη ⊗ ξ + 2αϕh + ϕ
(
∇ξ h

)
− σ(ϕ2)⊗ ξ

+σ(E)η ⊗ E + σ(ϕE)η ⊗ ϕE.
(42)

Here, the functions a and b are defined by

a = (1/2)r + α2 + µ2 and b = −(1/2)r− 3α2 − 3µ2,

respectively [37].

Proposition 8. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, the compo-
nents of the Ricci operator Q with respect to the ϕ-basis {E, ϕE, ξ} are given as follows:

Qξ = −2
(
α2 + µ2)ξ + AE + BϕE,

QE = Aξ +
(
r/2 + α2 + µ2 + 2aµ

)
E + (ξ(µ) + 2αµ)ϕE,

QϕE = Bξ + (ξ(µ) + 2αµ)E +
(
r/2 + α2 + µ2 − 2aµ

)
ϕE,

(43)

where A = σ(E) = S(ξ, E) and B = σ(ϕE) = S(ξ, ϕE).

Proof. Taking X = ξ in (41), it yields that

Qξ = (a + b)ξ + σ(E)E + σ(ϕE)ϕE.

Using a and b, the above equation becomes

Qξ = (−2α2 − 2µ2)ξ + AE + BϕE. (44)
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Now, putting X = E in (41), it follows that

QE = aE + 2αϕhE + ϕ(2ahϕE + ξ(µ)pE)− σ(−E + η(E)ξ)ξ. (45)

Then, the last equation reduces to

QE = aE + 2αϕhE + 2ahE + ξ(µ)ϕE + σ(E)ξ,

where pE = E ve A = σ(E). Analogously, putting X = ϕE in (41), then we obtain

QϕE = aϕE + 2αhE + ϕ(2aϕ2E + ξ(µ)pϕE) + σ(ϕE)ξ.

This completes the proof. Note that pϕE = −ϕE and B = σ(ϕE). �

Proposition 9. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, considering
(43), we have:(
∇ξ Q

)
ξ = −4µξ(µ)ξ + {ξ(A) + aB}E + {ξ(B)− aA}ϕE,

(∇EQ)E =
{
−3α3 − αµ2 − (αr/2)− 2aαµ + µξ(µ) + E(A)− (B/2µ)((ϕE)(µ) + A)

}
ξ

+{2αA + 1/2E(r) + 2µE(µ) + 2aE(µ) + 2µE(a)− (1/µ)((ϕE)(µ) + A)(ξ(µ) + 2αµ)}E

+{−µA + αB + 2a((ϕe)(µ) + A + 2αe(µ) + E(ξ(µ))}ϕE,(
∇ϕEQ

)
ϕE =

{
(ϕE)(B)− 3α3 − αr/2

)
− αµ2 + 2αaµ + ξ(µ)µ− A/2λ(E(µ) + B)}ξ

+{2α(ϕE)(µ) + (ϕE)(ξ(µ))− µB + αA− 2a(E(µ) + B)}E + {1/2(ϕE)(r)

+2µ(ϕE)(µ)− 2a(ϕE)(µ)− 2µ(ϕE)(a) + 2αB− 1/µ(E(µ) + B)(ξ(µ) + 2αµ)}ϕE.

(46)

Proof. From the first equation of (43), we have(
∇ξ Q

)
ξ = −2∇ξ(α

2 + µ2)ξ +∇ξ AE +∇ξ BϕE, (47)

where ∇ξ ξ = 0 and Q(0) = 0. Then, the first equation clears from (47).
Similarly, from (25) and (43), we obtain

(∇EQ)E = ∇E
(

Aξ +
(
r/2 + α2 + µ2 + 2aµ

)
E

+(ξ(µ) + 2αµ) ϕE)− bQϕE + αQξ.
(48)

Taking into account (43) and (48), we compute

(∇EQ)E =
{
−3α3 − αµ2 − αr/2− 2aαµ + µξ(µ) + E(A)− bB

}
ξ

+{2αA + 1/2E(r) + 2µe(µ) + 2aE(µ) + 2µE(a)− 2bξ(µ)− 4αµb}E

+{−µA + αB + 4abµ + 2αE(µ) + E(ξ(µ))}ϕE,

(49)

which gives the second equation of (46).
Finally, considering (43) with respect to ϕE, we obtain(

∇ϕEQ
)

ϕE = ∇ϕE(Bξ + (ξ(µ) + 2αµ)E

+
(
r/2 + α2 + µ2 − 2aµ

)
ϕE)− cQE + αQξ.

(50)

Therefore, if we proceed similarly, we complete the last part of the proof. �
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Proposition 10. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, the compo-
nents of R with respect to the ϕ-basis are as follows:

R(ξ, E)ξ = −
(
α2 + µ2 − 2aµ

)
E + (ξ(µ) + 2αµ)ϕE,

R(ξ, ϕE)ξ = (ξ(µ) + 2αµ)E−
(
α2 + µ2 + 2aµ

)
ϕE,

R(E, ϕE)ξ = −BE + AϕE,

R(ξ, E)E =
(
α2 + µ2 − 2aµ

)
ξ − BϕE,

R(ξ, ϕE)E = −(ξ(µ) + 2αµ)ξ + AϕE,

R(E, ϕE)E = Bξ + 2
(
α2 + µ2 + r/4

)
ϕE,

R(ξ, E)ϕE = −(ξ(µ) + 2αµ)ξ + BE,

R(ξ, ϕE)ϕE =
(
α2 + µ2 + 2aµ

)
ξ − AE,

R(E, ϕE)ϕE = −Aξ − 2
(
α2 + µ2 + r/4

)
E.

(51)

Proof. Let us consider (26) and (43). Putting X = Z = ξ and Y = E in (26), we have

R(ξ, E)ξ = S(ξ, ξ)E− S(E, ξ)ξ + QE− (r/2)E. (52)

Putting again X = Z = ξ and Y = ϕE in (26), we obtain

R(ξ, ϕE)ξ = S(ξ, ξ)ϕE− S(ϕE, ξ)ξ + QϕE− (r/2)ϕE. (53)

Using (52) and (53), the first two equations can be seen. Usage of the same methodology
(51) is clear. Here, we recall that

S(ξ, E) = A, S(ξ, ϕE) = B, S(E, E) = a + 2aµ,

S(ϕE, E) = ξ(µ) + 2αµ, S(ϕE, ϕE) = a− 2aµ, tr(h2) = 2µ2.

In addition, the equations given in (51) are all the possible non-zero components of the
Riemannian curvature R. They depend on the changes in the order of the vector fields. �

5. Semi-Symmetric Almost α-Cosymplectic Three-Manifolds

In this section, we study semi-symmetric almost α-cosymplectic three-manifolds. Then,
we prove the following:

Theorem 1. Let (M, ϕ, ξ, η, g) be an almost α-cosymplectic three-manifold. Then, M is semi-
symmetric if and only if

Aξ(µ) = −2αAµ + (α2 + µ2 + 2aµ)B, (54)

Bξ(µ) = −2αBµ + (α2 + µ2 − 2aµ)A, (55)

AB = −2(ξ(µ) + 2αµ)(α2 + µ2 + r/4), (56)

B2 = −(α2 + µ2 − 2aµ)(3(α2 + µ2) + 2aµ + r/2) + (ξ(µ) + 2αµ) (57)

A2 = −(α2 + µ2 + 2aµ)(3(α2 + µ2)− 2aµ + r/2) + (ξ(µ) + 2αµ)2. (58)
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Proof. According to the hypothesis, M is an almost α-cosymplectic three-manifold. We note
that (1) is equivalent to R(X, ξ).R = 0, for all X ∈ Γ(TM) on M. In other words, we have

0 = R(X, ξ)R(Y, Z)W − R(R(X, ξ)Y, Z)W

−R(Y, R(X, ξ)Z)W − R(Y, Z)R(X, ξ)W,
(59)

for all X, Y, Z, W ∈ Γ(TM) on M.
Putting X = E, Y = ξ, Z = ϕE, and W = ξ in (59), then we have

0 = R(E, ξ)R(ξ, ϕE)ξ − R(R(E, ξ)ξ, ϕE)ξ

−R(ξ, R(E, ξ)ϕE)ξ − R(ξ, ϕE)R(E, ξ)ξ.
(60)

From (51) and (60), we obtain

0 = 2B(ξ(µ) + 2αµ)ϕE + B
(
α2 + µ2 + 2aµ

)
E

−2A
(
α2 + µ2 − 2aµ

)
ϕE− A(ξ(µ) + 2αµ)E,

(61)

where R(ϕE, ϕE)ξ = 0 and R(ξ, ξ)ξ = 0. Therefore, (61) turns into

0 =
(
−2αµA + 2Baµ− ξ(µ)A + α2B + λ2B

)
E

+
(
4αµB + 4aAµ− 2α2 A− 2Aµ2 + 2Bξ(µ)

)
ϕE.

(62)

Hence, this ends the proof of (54) and (55).
Using a similar methodology, putting X = E, Y = E, Z = ϕE ve W = ξ in (59) and

(51), then we obtain

0 =
(
−AB− 2(ξ(µ) + 2αµ)

(
α2 + µ2 + r/4

))
E

+
(
−B2 −

(
α2 + µ2 − 2aµ

)(
α2 + µ2 + 2aµ

))
ϕE

+
(
(ξ(µ) + 2αµ)2 − 2

(
α2 + µ2 − 2aµ

)(
α2 + µ2 + r/4

))
ϕE,

(63)

where R(E, E)ξ = 0 and so (56) and (57) satisfy (63). Finally, we take X = ϕE, Y = ϕE,
Z = E, and W = ξ in (59) and, taking account of (51), we deduce

0 =
(
−AB− 2(ξ(µ) + 2αµ)

(
α2 + µ2 + r/4

))
ϕE

+
(
−A2 −

(
α2 + µ2 + 2aµ

)(
α2 + µ2 − 2aµ

))
E

+
(
(ξ(µ) + 2αµ)2 − 2

(
α2 + µ2 + 2aµ

)(
α2 + µ2 + r/4

))
E.

(64)

Thus, the proof of (58) is clear. We also note that all the other possible choices of the
vector fields in the ϕ-basis are given again (54)–(58). Therefore, if (54)–(58) is satisfied, then
(59) is also satisfied, which means M is semi-symmetric. �

Theorem 2. Let (M, ϕ, ξ, η, g) be a semi-symmetric almost cosymplectic three-manifold. If the
structure (ϕ, ξ, η, g) is cosymplectic and the Ricci curvature S(ξ, ξ) is constant along the charac-
teristic vector field ξ, then M is locally symmetric. Otherwise, M is not locally symmetric if the
structure (ϕ, ξ, η, g) is almost cosymplectic under the same condition.

Proof. Suppose that M is a semi-symmetric almost cosymplectic three-manifold. There-
fore, (54)–(58) satisfy α = 0. Now, we shall classify our arguments under the following
two conditions:

Case 1. If h = 0, then the structure is cosymplectic [38,39]. According to the hypothesis,
because of (43), the Ricci curvature S(ξ, ξ) constant along the characteristic vector field ξ
means exactly ξ(µ) = 0. Hence, from (31), we have ∇ξ h = 0. In this case, whether the
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smooth function a is different from zero will be independent. Thus, the conclusion follows
from Proposition 5.
Case 2. In this case, let us consider h 6= 0 and ξ(µ) = 0. Note that (54)–(58) satisfy on
M. Then, as it follows from (31), if a = 0, we obtain ∇ξ h = 0. The result can be seen in
Proposition 5. To end the proof, we shall obtain that the case of a 6= 0 cannot take place. If
so, we suppose that a 6= 0 and consider a point q at M, where a(q) 6= 0. Thus, there exists a
neighbourhood V of a point q such that a 6= 0 on V. First, we multiply (54) by B and (55)
by A. Then, we have:

ABξ(µ) = −2αABµ + (α2 + µ2 + 2aµ)B2 (65)

and
ABξ(µ) = −2αABµ + (α2 + µ2 − 2aµ)A2. (66)

Then, we subtract (65) from (66) and take into account (57) and (58) for expressing B2

and A2, respectively. It follows that

(α2 + µ2 + 2aµ)B2 − (α2 + µ2 − 2aµ)A2 = 0, (67)

where ξ(µ) = 0. Since aµ 6= 0, (67) can be written as

µ2 ± 2aµ = 0. (68)

Now, we assume that
µ2 + 2aµ = 0. (69)

It is noted that if the other equation µ2 − 2aµ = 0 holds, we proceed in the same
manner, and since a 6= 0, the two equations cannot satisfy simultaneously. However, (69)
shows that the function a cannot vanish. In this case, we are unlikely to find a contradiction
in our assumption.

Let us continue the calculation with the thought that our assumption is true. (56) holds
AB = 0 since ξ(µ) = 0 and α = 0. Namely, we have locally either A = 0 or B = 0. Let us
suppose A = 0 and we shall prove that µ is constant and B = 0. If we suppose the other
case (B = 0), we proceed in the same way.

Differentiating (69) with respect to ξ, we have ξ(a) = 0, where ξ(µ) = 0. Then, again
differentiating with respect to E, we obtain

0 = [µE(µ) + aE(µ) + µE(a)]. (70)

To obtain whether µ is constant or not, let us remember the well-known formula

W(r) = 2∑n
j=1 g((∇Ej Q)Ej, W), (71)

for any W ∈ Γ(TM), where
{

Ej
}

is an arbitrary orthonormal basis. Applying (46) and (71)
to calculate E(r)/2 and (ϕE)(r)/2, then making use of (25), (46), (69), and (71), we observe
that µ is not necessarily constant and B does not have to vanish. In fact, using (25), we
calculate R(E, ϕE)E as follows:

R(E, ϕE)E = [−2cµ]ξ + [−E(c)− µ2 − (ϕE)(b) + b2 + c2]φE. (72)

Then, comparing with (51), we obtain

B = −2cµ,−3µ2 + r/4 = 0. (73)

From (69), by a direct calculation, we deduce

r = 12aµ. (74)
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Then, taking account of (57), (69), and (74), we obtain B2 = 32a4, and so we have a 6= 0.
Moreover, a result of Olszak verifies our proof by (74) [38]. �

Theorem 3. Let (M, ϕ, ξ, η, g) be a semi-symmetric almost α-Kenmotsu three-manifold with the
Ricci curvature S(ξ, ξ) constant along the characteristic vector field ξ. If the structure (ϕ, ξ, η, g)
is normal, then M is locally symmetric only when α = 1. Moreover, M is locally symmetric if M is
given by a constant scalar curvature r = −4

(
α2 + µ2).

Proof. The geometry of almost α-Kenmotsu manifolds differs in two cases, with the tensor
field h being zero or non-zero.

Case 1. Assume that h = 0. Then, an almost α-Kenmotsu three-manifold is an α-Kenmotsu
manifold. A result of Dileo is that if an almost α-Kenmotsu three-manifold has a constant
curvature, then the structure is normal, and the constant curvature is −α2 when it is locally
symmetric [25]. Furthermore, Öztürk showed that a semi-symmetric α-Kenmotsu manifold
is not of constant curvature. From Corollary 4.3 in [24], semi-symmetry implies local
symmetry for α = 1. In fact, using the hypothesis and (54)–(58), Theorem 1 is not verified
except in the case α = 1. This completes the proof.
Case 2. Suppose that h 6= 0. Then, applying the same technique as in Theorem 2 for α 6= 0,
aµ 6= 0, and ξ(µ) = 0, it follows that

µ2 ∓ 2µ
√

a2 + α2 + α2 = 0,

and we take
µ2 + 2µ

√
a2 + α2 + α2 = 0. (75)

In addition, by virtue of (56), we have

AB = −4αµ(α2 + µ2 + r/4),

where ξ(µ) = 0. For the last equation vanishes, that is, locally A = 0 or B = 0 if and only if
r = −4

(
α2 + µ2).

Next, we assume A = 0 and we prove that µ is constant and B = 0 (the other case pro-
ceeds in the same way). Differentiating (75) with respect to ξ, we obtain ξ

(√
a2 + α2

)
= 0,

and then again differentiating with respect to E, we obtain

0 = µ
[

E(µ) + E
(√

a2 + α2
)]

+
√

a2 + α2E(µ). (76)

Making use of (46) and (76), we have

0 = −aB− µB + 2µ[E(µ) + E(a)]. (77)

Using (76), (77) gives

µE
(√

a2 + α2
)
+ E(µ)

[√
a2 + α2 − µ

]
= 2µE(a)− B[a + µ] (78)

Then, differentiating (78) by ξ, since ξ
(√

a2 + α2
)
= ξ(µ) = 0, we obtain[√

a2 + α2 − µ
]
ξ(E(µ)) + µξ

(
E
(√

a2 + α2
))

= 2[µξ(E(a))]− ξ(B)[a + µ]− Bξ(a). (79)

Now, taking account of (46) and (71) to calculate (ϕE)(r)/2, we obtain

ξ(B) = µa− B + 2µ[(ϕE)(a)− (ϕE)(µ)]. (80)
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On the other hand, using (25) and ξ(µ) = 0, we also have

0 = [α + ξ]E(µ) + [a− µ](ϕE)(µ). (81)

Differentiating (75) by ϕE, we find

0 = µ(ϕE)(µ) + µ(ϕE)
(√

a2 + α2
)
+
√

a2 + α2(ϕE)(µ). (82)

Moreover, from (75), we obtain

a =

√(
µ2 + α2

2µ
− α

)(
µ2 + α2

2µ
+ α

)
(83)

Then, using (78)–(83), (ϕE)(µ) and E(µ) have to vanish. Thus, µ is constant. In
addition, B is identically zero. Hence, we find a contradiction in our assumption. We
conclude that a = 0. This ends the proof. �

Corollary 1. Let (M, ϕ, ξ, η, g) be a semi-symmetric α-cosymplectic manifold with the Ricci
curvature S(ξ, ξ) constant along the characteristic vector field ξ. It is locally symmetric if it is
cosymplectic when α = 0 or Kenmotsu when α = 1.

6. Examples

Example 1. Let us consider the M ⊂ IR3 manifold such that M = {(x, y, z) ∈ IR3}. Here,
(x, y, z) are the standart coordinates in IR3. The vector fields are as follows:

e1 = ρ2e−αz
(

∂

∂x

)
+ ρ1e−αz

(
∂

∂y

)
, e2 = −ρ1e−αz

(
∂

∂x

)
+ ρ2e−αz

(
∂

∂y

)
, e3 =

(
∂

∂z

)
.

Let g be the metric tensor product given by

g = (t1
2 + t2

2)−1(dx2 + dy2) + dz2

where t1, t2 are defined by t1(z) = ρ2e−αz, t2(z) = ρ1e−αz with ρ1
2 + ρ2

2 6= 0, α 6= 0 for
constants ρ1, ρ2, and α. It is obvious that {e1, e2, e3} are linearly independent at each point
of M. Therefore, we have

φ(e3) = 0, φ(e1) = e2, φ(e2) = −e1

φ2X = −X + η(X)e3, η(X) = g(e3, X), η(e3) = g(e3, e3) = 1,

g(φX, φY) = g(X, Y)− η(X)η(Y)

for any X, Y ∈ Γ(TM).
From the above relations, there exists an almost contact metric structure (φ, ξ, η, g) on M.

Now, we check if the structure is almost α-Kenmotsu metric or not. Hence, we obtain

Φ
((

∂

∂x

)
,
(

∂

∂y

))
= −(t1

2 + t2
2)−1 = −(ρ1

2 + ρ2
2)−1e2αz.

Since η = dz, we deduce dΦ = 2α(η ∧Φ) on M. Moreover, we notice that Nφ = 0.
Thus, M is an α-Kenmotsu manifold, and h = 0 with constant curvature−α2. Consequently,
Theorem 1 and Theorem 3 are verified.
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Example 2. Consider the three-dimensional manifold M =
{
(u, v, w) ∈ R3, w 6= 0

}
, where

(u, v, w) are the standart coordinates in R3. The vector fields are

e1 = g1(w)

(
∂

∂u

)
+ g2(w)

(
∂

∂v

)

e2 = −g2(w)

(
∂

∂u

)
+ g1(w)

(
∂

∂v

)

e3 =

(
∂

∂w

)
.

Here, g1 and g2 are given by

g1(w) = c2e−αzcosµw− c1e−αzsinµw,

g2(w) = c1e−αzcosµw + c2e−αzsinµw,

with c1
2 + c2

2 6= 0 for constants c1, c2, µ, and α. It is sufficient to check that the only non-zero
components of the second fundamental form Φ are

Φ
((

∂

∂u

)
,
(

∂

∂v

))
= −1/(g1

2 + g2
2)) = −(e−αz/c1

2 + c2
2)

The above equation gives that

Φ = −2e−αz/(c1
2 + c2

2)(du ∧ dv).

We notice that the structure is not normal; the given structure is almost α-cosymplectic.
In addition, by simple calculation, the Riemannian curvature tensor components are
as follows:

R(e1, e2)e1 = (α2 − µ2)e2, R(e1, e2)e2 = (µ2 − α2)e1,

R(e1, e2)e3 = 0, R(e1, e3)e1 = (µ2 + α2)e3,

R(e1, e3)e2 = 0, R(e1, e3)e3 = −(µ2 + α2)e1 − 2µαe2,

R(e2, e3)e1 = 2µαe3, R(e2, e3)e2 = −(µ2 + α2)e3,

R(e2, e3)e3 = −2µαe1 − (µ2 + α2)e2.

Thus, Theorem 2 and Theorem 3 hold.

7. Discussion

Riemannian symmetric spaces are one of the essential Riemannian manifolds. These
spaces contain many important examples for various branches of mathematics, such as
compact Lie groups and bounded symmetric domains. Any symmetrical space has its
unique geometry. For instance, Euclidean, elliptic, and hyperbolic geometries are the
first to come to mind. On the other hand, these spaces have many common points and a
wealthy theory. Symmetric spaces can be considered from many different perspectives.
These spaces can be regarded as Riemannian manifolds with point reflections or parallel
curvature tensors, special holonomy as a homogeneous space with special isotropy or
particular Killing vector fields, or Lie triple systems [1,29,30].

Local symmetry refers to a property of a mathematical object, such as a manifold or a
space, where symmetry exists at each point locally. Namely, a transformation or symmetry
operation presents for every point in the object that leaves the object invariant and acts
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transitively on a small neighborhood around that point. Local symmetry can be declared
in different ways depending on the type of object under consideration. For instance, in a
locally symmetric space, such as a locally symmetric Riemannian or a pseudo-Riemannian
manifold, the isometries move transitively on the entire space, not just locally around
each point. Local symmetry has essential applications in various fields of mathematics
and physics. It provides insights into the geometric properties of manifolds, helps classify
and understand different types of spaces, and plays a crucial role in formulating physical
theories [29,30].

Almost Kenmotsu manifolds have been studied extensively in Riemannian geometry
and have applications in various fields, including theoretical physics and mathematical
biology, which provide a geometric framework for exploring the interplay between contact
geometry, Riemannian geometry, and symmetries on manifolds. While almost Kenmotsu
manifolds and local symmetry are essential in the theory of manifolds, there is no inherent
connection between almost Kenmotsu manifolds and local symmetry. An almost Kenmotsu
manifold may or may not possess local symmetry, depending on its specific geometric
properties. Moreover, it is well known that the existence of the characteristic vector field in
a Kenmotsu manifold establishes the connection between Kenmotsu manifolds and local
symmetry [19,22,35–37].

This study investigates the relations between semi-symmetry and local symmetry
conditions on almost α-cosymplectic three-manifolds. Our future studies on this topic will
be on soliton theory.
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