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Abstract: Three-dimensional point cloud data generally contain complex scene information and
diversified category structures. Existing point cloud semantic segmentation networks tend to learn
feature information between sampled center points and their neighboring points, while ignoring
the scale and structural information of the spatial context of the sampled center points. To address
these issues, this paper introduces PointNAC (PointNet based on normal vector and attention copula
feature enhancement), a network designed for point cloud semantic segmentation in large-scale
complex scenes, which consists of the following two main modules: (1) The local stereoscopic
feature-encoding module: this feature-encoding process incorporates distance, normal vectors, and
angles calculated based on the cosine theorem, enabling the network to learn not only the spatial
positional information of the point cloud but also the spatial scale and geometric structure; and (2) the
copula-based similarity feature enhancement module. Based on the stereoscopic feature information,
this module analyzes the correlation among points in the local neighborhood. It enhances the
features of positively correlated points while leaving the features of negatively correlated points
unchanged. By combining these enhancements, it effectively enhances the feature saliency within
the same class and the feature distinctiveness between different classes. The experimental results
show that PointNAC achieved an overall accuracy (OA) of 90.9% and a mean intersection over union
(MIoU) of 67.4% on the S3DIS dataset. And on the Vaihingen dataset, PointNAC achieved an overall
accuracy (OA) of 85.9% and an average F1 score of 70.6%. Compared to the segmentation results
of other network models on public datasets, our algorithm demonstrates good generalization and
segmentation capabilities.

Keywords: S3DIS; copula model; self-attention model; local features

1. Introduction

With the development of depth sensors such as LiDAR and RGB-D cameras, as
well as 3D scanning technology, acquisition methods for point cloud data are becoming
increasingly abundant. Compared to 2D grid data, 3D point cloud data can express the
geometric information of objects and the original scene in three-dimensional space. In the
early stages, experts and scholars achieved point cloud segmentation using traditional
algorithms such as edge detection [1], region growing [2], feature clustering [3], and model
fitting [4]. These traditional segmentation methods showed certain effectiveness, but they
were mostly constrained by specific scenes, prior knowledge, and manual design. This
resulted in high costs, computational complexity, and difficulties in handling large-scale
point cloud data, making them challenging to generalize and apply widely. In recent years,
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convolutional neural networks [5,6] based on point cloud data preprocessing have been
proposed, and deep learning has been widely applied in point cloud semantic segmentation
with better results.

As part of convolutional neural networks, the graph convolution-based segmentation
method establishes relationships between points and transforms them into graph data. It
then utilizes graph convolutional neural networks for convolutional computations and
feature learning. The core idea is to consider each point in the point cloud as a node in
the graph, forming directed edges with its neighboring points, thus simulating the under-
lying shape and local geometric structures. The SPG network [7] constructs a superpoint
graph on pre-segmented point clouds and utilizes PointNet to extract superpoint features.
This method is capable of capturing relationships between neighboring objects, but the
pre-segmentation accuracy of the objects still faces challenges, and the computation cost
of the superpoint graph is high. To enhance the point-to-point relationships, DGCNN [8]
offers a point cloud segmentation method based on EdgeConv. This network is capable of
effectively aggregating local neighborhood information and learning global shape attributes
while capturing long-range semantic information in the feature space. However, EdgeConv
only focuses on the distance information between points, neglecting the directional infor-
mation between points, and it has limitations in extracting local structural information. In
order to further enhance the network’s ability to learn local geometric information, another
paper [9] proposed 3D-GCN. This network utilizes deformable 3D kernels to learn point
cloud features at different scales and then aggregates the features using a graph-based
max pooling method. This network is capable of extracting local features from point
clouds across scales, while possessing the properties of translation invariance and scale
invariance. In general, the advantage of graph convolution methods lies in their ability to
aggregate point set features of objects while preserving their translational invariance in
three-dimensional space. However, it is difficult to solve several important problems that
arise when using these methods, such as high computational costs and lower precision,
and graph convolutional methods cannot properly establish relationships between points.

Based on the foundational works of predecessors, some researches have recently
suggested that using direct point cloud processing methods based on point convolution
can also achieve excellent results. PointNet [10], as a pioneering deep learning framework
for direct point cloud semantic segmentation, has the ability to take 3D point clouds as
input and utilize multilayer perceptrons to extract features for each point. But PointNet
not only lacks the ability to learn point-to-point relationships, but it is also sensitive to
point cloud density, making it difficult to adapt to complex scenes. To address this issue,
Qi et al. developed PointNet++ [11], which is built upon the foundation of PointNet. This
network incorporates multi-scale feature extraction layers for down-sampling and multi-
resolution feature aggregation layers for up-sampling, aiming to overcome the problem of
information loss caused by variations in point cloud density. But the K-nearest neighbors
search method used by PointNet++ is prone to the problem of sampling points in the
same direction. To address this issue, PointSIFT [12] performs information stacking and
encoding from eight spatial directions and aggregates local features using PointNet++
up-sampling interpolation. Due to the increased spatial scale parameter in this network,
not only does the computational cost increase significantly, but it also becomes extremely
sensitive to the orientation information of objects. PointWeb [13] is proposed as an adaptive
feature aggregation module based on PointNet++. This module effectively aggregated
geometric information and spatial location relationships between sampled center points and
neighborhood points but ignored relationships between neighborhood points. RandLA-
Net [14] achieved enhanced learning of local structural information through the Local
Spatial Encoding module and Attention Pooling module, enabling the network to preserve
rich structural information but with a higher computational cost. To reduce the impact of
the number of sampled points on network accuracy, χ-Conv, designed by PointCNN [15],
can reduce the number of parameters and ensures that the segmentation accuracy is not
affected by the number of input points, but its precision is low. PAConv [16] constructed
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convolutional kernels by dynamically combining basic weight matrices stored in a weight
bank, thereby reducing the complexity of the model and enabling better processing of
irregular and unordered large-scale point cloud data but ignored relationships between
neighborhood points. Dance-Net [17] can learn global–local features of the target point
cloud through a density-aware convolutional module, but this approach often overlooks
the distribution of point positions, leading to a loss of local spatial structural information.
DenseKPNet [18] extracts salient local geometric features using a dense connection scheme
and a multi-scale learning framework and fully leverages the complementarity of local and
global information but with a higher cost of computational.

The various segmentation networks described in the above-mentioned literature have
their own strengths and weaknesses, and they can exhibit good segmentation performance
in specific scenarios. However, the real world is highly diverse, and in complex indoor and
outdoor environments, existing methods may not always achieve satisfactory segmentation
results simultaneously. To address such challenges, researchers have proposed a series of
optimization methods. For instance, Lin et al. [19] addressed the issue of insufficient feature
learning in existing networks by introducing the “searched Feature Pyramid Network
(SFPN)”. This framework demonstrates strong portability and is applicable to a wide
range of derivative networks based on PointNet architectures. Yin et al. [20] observed
the limitations of networks that only learn from annotated data and, consequently, intro-
duced “weakly supervised semantic segmentation” to enhance network generalization.
Zhang et al. [21] introduced the “point interactions and dimensions (PIDS)” module, which
enables parallel exploration of inter-point relationships and dimensional features. On the
other hand, three-dimensional point cloud data possess irregularity, disorder, and unstruc-
tured characteristics [11], making it difficult for convolutional neural networks (CNNs),
based on deep learning algorithms [22], to directly extract features from them. However,
3D point clouds provide information about the shape and size of objects, but it is still a
challenge to properly establish relationships between points to improve accuracy.

In summary, in point convolutional segmentation networks, the definition of the
neighborhood determines the model’s performance and segmentation results. However,
point cloud data exhibit uneven density and a discrete distribution. To improve the net-
work’s performance, complex network structures are often required to learn neighborhood
relationships and feature information. Existing deep learning feature-encoding methods
mainly focus on learning the features of the sampling center point and its neighborhood,
often overlooking the spatial scale and structural information of the sampling center point’s
position. On the other hand, when processing large-scale point cloud datasets, point con-
volutional networks often require dividing the complete scene into several subregions
before extracting features from each subregion’s point cloud. However, this subdivision of
subregions can often disrupt the adjacency relationships of objects, making it difficult to
learn the complete structure of the targets. To address these issues, especially in order to
enhance the network’s ability to handle complex scene data, the PointNAC network model
in this study makes the following two contributions:

• We propose a local stereoscopic feature-encoding module, which learns the feature
of the sampling point and the spatial structure by encoding the point normal vectors
combined with inter-point distances. It mainly consists of two steps: (a) Learning the
two-dimensional linear features between the sampling center point and its neighboring
points. Since one-dimensional correlations such as Euclidean distance and direction
vectors are insufficient to represent complex data relationships within a neighborhood
system, the calculation of normal vectors passing through the sampling center point
and the neighborhood points is performed within the local neighborhood. This,
together with the distance between the two points, forms a two-dimensional linear
feature with stronger correlation. (b) Encoding using the cosine theorem. The module
calculates the angle between the inter-point distances and the point normal vectors
using the cosine theorem formula. By combining the angle information with the two-
dimensional linear features, local stereoscopic features can be constructed, enabling
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the learned features of the network to contain not only positional information but also
spatial scale and structural information;

• The copula-based similarity feature enhancement module is established. It uses the
copula distribution function to assess the similarity of features between the sampling
center point and the neighborhood points, enhancing the information for similar
features and achieving comprehensive feature representation for different classes.
Experimental results show that this network design improves the accuracy of semantic
segmentation and outperforms other direct point convolution semantic segmenta-
tion algorithms.

2. Our Method

In order to process large-scale and complex 3D point cloud data, point convolutional
neural networks (CNNs) first partition the original point cloud into subregions and perform
down-sampling within each region, allowing the network to learn features from partial
training data [10]. The network then encodes the training data based on different scales
from the down-sampling layers and feeds them into pooling layers to achieve feature
representation. However, the local feature-encoding methods of existing segmentation
networks mainly focus on learning the feature information of the sampling center point
and its neighboring points as well as the contextual information at different scales. They
have relatively weak learning capabilities regarding the scale and structural information
of the spatial context of the sampling center point, which affects their segmentation accu-
racy. To address this issue, Deng C. et al. [23] proposed a segmentation network called
BSH-Net with balanced sampling and hybrid pooling. This network initially assigns initial
weights to each class of points and adjusts the sampling strategy based on each iteration,
ensuring that the network can learn from all classes of samples. It then uses the Self-Conv
module to achieve local fine-grained feature learning and applies discriminative pooling
for feature aggregation, ultimately achieving good semantic segmentation performance.
Deng H et al. [24] proposed an encoding method for extracting normal vector information
between the sampling center and neighboring points, which gives the sampling center
point features rotational invariance and greatly enhances the network’s ability to learn
spatial structural information. On the other hand, the weight-based balanced sampling
module enables the network to fully learn from point clouds of different classes. However,
in complex scenes, different classes of point clouds are intermixed, making it challeng-
ing to define the boundary information in order to achieve fine-grained segmentation.
Chang et al. [25] proposes a correlation analysis model based on the copula distribution
function, which analyzes the intrinsic correlation of two unrelated events based on the
belief rule base and deduces the results, realizing the prediction of unknown events.

Inspired by the above literature, this study takes BSH-Net as the foundation for se-
mantic segmentation. It introduces a local stereoscopic feature-encoding module and a
copula-based similarity feature enhancement module while also focusing on two key fac-
tors. Firstly, the description of the original feature-encoding module, which represents
one-dimensional linear features, is insufficient in meeting the segmentation requirements of
complex scenes. The updated feature-encoding method learns the Euclidean distance, direc-
tion vectors, and normal vectors for the sampling center point and its neighborhood points
and vector angles based on the cosine theorem, which enables the network to capture spatial
structural information more effectively. Secondly, the local stereoscopic feature-encoding
module transforms the discrete point cloud into a continuous two-dimensional linear fea-
ture. The module calculates the correlation coefficients for this feature and evaluates the
positive and negative correlations using the copula distribution function. It then applies
weighted enhancement to the positively correlated features to achieve significant intra-class
feature representation and inter-class feature discrimination. The overall workflow and
network structure of PointNAC are shown in Figures 1 and 2, respectively.
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Overall, the method in this paper consists of four components: weighted balanced
sampling, down-sampling, up-sampling, and fully connected layers. (1) The weighted bal-
anced sampling layer serves as the data preprocessing stage, where the sampling weights
are adjusted based on the data’s label information and the network’s learning parameters
to address the long-tail distribution problem in the training data. The weighted balanced
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sampling module obtains a balanced training sample of N × 3 for each class, where 3 repre-
sents the spatial coordinates of the point cloud data. (2) Each down-sampling layer includes
four modules of FPS, KNN, local stereoscopic feature encoding, and pooling. First, we use
FPS and KNN to obtain the sampling center point ni × 3 and its K neighbor points from
N. Next, we send the above sampling points into the local stereoscopic feature-encoding
module to obtain the N × K × 21 feature Fi

k, as described in Section 2.1. Point coordinate
information, point distance information, and point normal vector information are extracted
from Fi

k and sent to the Gumbel copula model to judge the similarity between points.
The similarity enhancement feature Fi

k’ based on the copula model can be constructed by
enhancing the positively correlated point information through the attention mechanism
and retaining the original negatively correlated point information. The down-sampling
layer in this paper has 4 layers, and each layer outputs feature information of N/4 × 64,
N/16 × 128, N/64 × 256, and N/256 × 512 dimensions. (3) The up-sampling layer fuses
the features of each scale extracted by the down-sampling layer through skip connections,
so as to improve the model’s ability to learn detailed information. (4) The fully connected
layer is connected to each neuron in the up-sampling layer to realize the calculation of
the score of the category of each point cloud and finally obtain the category label of each
point according to the Softmax function. It is worth noting that Batchnorm and ReLU
functions are applied to each layer, and a dropout layer with a drop rate of 0.4 is added after
each fully connected layer to prevent overfitting. At this point, PointNAC is equivalent to
having completed the semantic segmentation task of the point cloud.

2.1. Local Stereoscopic Feature-Encoding Module

The weighted balanced sampling module and the diversity pooling module in Figure 2
are described in detail in the literature [23]. This section mainly introduces the local stereo-
scopic feature-encoding module. The network takes the training samples obtained from
weighted balanced sampling and feeds them into the local stereoscopic feature-encoding
module to learn features that include the sampling center point and its neighboring points,
including their positional information, Euclidean distances, directional vectors, point nor-
mal vectors, and vector angles calculated based on the cosine theorem, as shown in Figure 3.
In the local stereoscopic feature-encoding module, the training samples N are first sampled
using farthest point sampling (FPS) to obtain the center point Ni. Subsequently, K-nearest
neighbors (KNN) neighborhood point sampling is performed with Ni as the center to obtain
the neighborhood points Ni,k. Next, the sampled center point and its neighborhood points
are fed into the stereoscopic structure learning module to obtain 15-dimensional feature
information. Finally, the positional information of the center point, positional information
of the neighborhood points, and stereoscopic structure information are concatenated to
obtain the complete local stereoscopic feature with a feature dimension of 21.

In Figure 3, the points in Ni and Ni,k are represented as ni and ni,k, respectively. The
formula for the local stereoscopic feature encoding of the sampling center point Ni is as
shown in Equation (1):

Fi
k = f (ni⊕ni,k⊕

√
(ni − ni,k)2⊕(ni − ni,k)⊕vi⊕vi,k⊕m(vi, vi,k)) (1)

In Equation (1), f (·)represents the PointNet encoder, which encodes the spatial posi-
tions ni and ni,k of all points in the local neighborhood, the Euclidean distance between
points

√
(ni − ni,k)2, the directional vector (ni − ni,k), the normal vectors vi and vi,k of all

points in the local neighborhood [26], and the vector angle m(vi, vi,k) calculated based on
the cosine theorem. The angle m(vi, vi,k) is calculated using Equation (2):

m(vi, vi,k) = (∠(vi, s), ∠(vi,k, s), ∠(vi, vi,k)), ∠(a, b) = arccos(a·b/|a|·|b|) (2)

In Equation (2), s represents the Euclidean distance between the center point and the
neighborhood point and ∠(·) represents the angle between the normal vector vi passing
through the center point and the distance s, the angle between the normal vector vi,k passing
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through the neighborhood point and the distance s, and the angle between the two normal
vectors, calculated using the inverse cosine formula. All ∠(·) angles range from 0 to π. The
distance s between points and the normal vectors v are considered as the sides of a triangle,
and m(vi, vi,k) represents the angles of the triangle, with ni and ni,k being two of the triangle’s
vertices. This forms the local stereoscopic feature constructed in this paper. This feature
describes the sampling center point and each of its neighborhood points as a structurally
fixed two-dimensional linear feature. K planes together form a stereoscopic feature that is
invariant to Euclidean transformations and reflections. Each Fi

k corresponding to a center
point can vividly and comprehensively describe its own local structure and scale in space.
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2.2. Copula-Based Similarity Feature Enhancement Module

Although, in the previous section, we highlighted the spatial position, structure, and
scale information of the sampling center point using the local stereoscopic feature-encoding
module, in complex scenes, a batch of sampling points usually contains point clouds of
multiple different categories. The key focus of this section is how to enhance the features of
same-category point clouds to emphasize the differences between different-category point
cloud features and ultimately achieve better segmentation results.

From a mathematical perspective, we can use deterministic measures to quantify the
correlation between point clouds and transform them into parameters in mathematical
models. In this regard, the copula model is an effective tool that can quantitatively measure
the correlation between multiple variables [27]. Kendall’s tau coefficient can be used as
a parameter of the copula model to quantify the correlation between variables [28]. The
copula-based similarity feature module designed in this paper is shown in Figure 4. First,
the local stereoscopic features of each point are treated as variables for computing Kendall’s
tau coefficient (τ). Then, τ is used in the copula distribution function for correlation analysis.
The positively correlated stereoscopic features are enhanced, while the negatively correlated
stereoscopic features are not subjected to additional processing and are concatenated with
the enhanced stereoscopic features for output.
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Sklar [29] and others proposed the copula theorem, assuming the existence of a joint
distribution function for two variables, f 1 and f 2, with marginal distribution functions f 1(·)
and f 2(·), respectively. It can be found that there exists a copula model C such that (f 1(·),
f 2(·)) = C(f 1, f 2). Among them, the Gumbel copula model is widely used in many practical
cases, and its distribution function is shown as Equation (3):

C(x, y; θ) = exp{−[(−ln x)θ + (−ln y)θ]1/θ} (3)

where θ∈[1, +∞] represents the correlation coefficient. When θ = 1, the variables x and y
are mutually independent, and when θ→∞, they are correlated. In normal circumstances,
the processing of real-world problems involves multiple variables. In this paper, the
algorithm operates on 3D point cloud data, and K local point features are used as variables
to substitute into Equation (3) for multivariate distribution function expansion, as shown
in Equation (4):

C(Fi,1, Fi,2, . . ., Fi,k, θ) = exp{−[(−ln Fi,1)θ + (−ln Fi,1)θ + . . .+(−ln Fi,k)θ]1/θ} (4)

In the equation, θ represents the copula correlation coefficient, θ∈[1, ∞), calculated by
Equation (5):

θ = 1/1 − τ (5)

where τ is the Kendall coefficient, which quantifies the positive or negative correlation by
comparing the relationship between the feature information of each point in the neigh-
borhood. Therefore, the coordinate variables |n|, distance variables |d|, and normal
variables |v| are obtained by taking the inner product of the sampling center point-to-
neighborhood point coordinates, point-to-point distances, and normal vectors of the local
stereoscopic feature Fi

k. These variables are then used as inputs to the Kendall coefficient
calculation formula.

τ = P[(ni − nj)(di − dj)(vi − vj) > 0] − P[(ni − nj)(di − dj)(vi − vj) < 0] (6)

where i 6= j, i, j∈K, P{(ni − nj)(di − dj)(vi − vj) > 0} represents the probability of positive
correlation between two point features, and P{(ni − nj)(di − dj)(vi − vj) < 0} represents the
probability of negative correlation between two points. τ is used to measure the trend of
change between variables. When τ→1, it indicates that the variable relationship tends to
be completely consistent, and when τ = 0, the variable relationship is completely opposite.
By using Equations (4)–(6), the similarity of point features within the neighborhood can be
determined. For negatively correlated features, their original structure is maintained with-
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out any adjustments, while for positively correlated features, the self-attention mechanism
is utilized for updating. The feature update equation is shown in Equation (7):

Fi
k’ = c(Fi

k)T · c(Fi
k) × Fi

k + Fi
k (7)

In the equation, c(·) represents 1 × 1 convolution; multiplying Fi
k with its correspond-

ing attention score and then adding them together can realize intra-class point feature
enhancement. Fi

k’ is composed of the updated P(Fi
k)’ and the original N(Fi

k) without any
processing. Therefore, the network output model composed of Fi

k’ can effectively improve
the network’s ability to recognize intra-class point clouds and differentiate inter-class
point clouds.

3. Experiment and Analysis

This section comprises three parts: 1. Experimental Setup and Evaluation Metrics;
2. Semantic Segmentation Performance of PointNAC in Indoor Scenes; and 3. Semantic
Segmentation Capability of PointNAC in Outdoor Scenes.

3.1. Experimental Environment and Evaluation Index

In order to maintain consistency with the BSH-Net method, this study validates
the algorithm using two large-scale 3D point cloud segmentation datasets: the Stanford
Large-Scale 3D Indoor Spaces (S3DIS) dataset [30] and the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) Vahingen 3D Semantic Segmentation Challenge
dataset [31]. The S3DIS dataset consists of 271 independent room scenes with a total of 13
class labels. The dataset is divided into six regions for training and testing. In contrast, the
Vaihingen 3D dataset has only nine classes. The training data is created by concatenating
five partitions, while the test set consists of urban block and villa areas. At the same time,
we also use the mean of class-wise intersection over union (MIoU), overall point-wise
accuracy (OA), and balanced F score (F1 score) used by BSH-Net [23] for performance
analysis and comparison. The calculation formulas as shown in Equation (8):

IoU = qii/(∑k
j=0 qij + ∑k

j=0 qji − qii),
MIoU = (1/k)·∑k

i=0 IoU,
F1 = 2qii/(∑k

j=0 qij + qji),
OA = qii/Q,

(8)

Among them, k represents the number of various samples of the point cloud in the
dataset, qii represents the number of correctly predicted points in the point cloud data, qij
and qji are both cases of prediction errors, and Q is the total number of point clouds. The
range of values for MIoU, F1 score, and OA is between 0 and 1, and the closer they are to 1,
the better the segmentation effect of the network.

3.2. S3DIS Dataset Experiment

In this section, we aim to verify the segmentation effect of PointNAC in indoor scenes
as well as the effectiveness of various modules of PointNAC.

3.2.1. Cross-Over Trial

The purpose of this section’s experiments is to validate the effectiveness of the local
stereoscopic feature-encoding (LSE) module and the copula-based similarity feature en-
hancement (CFE) module on the S3DIS dataset. The training samples are selected from
regions 1–4 and 6 of the dataset. The rooms are divided into 1 × 1 m sub-blocks, and
4096 points are chosen using the farthest point sampling (FPS) method to generate the
training data. In comparison to the baseline BSH-Net, we conducted ablation experiments
(Table 1) by designing the LSE module, CFE module, and the combination of all modules
(ALL) to analyze the impact of each module on the segmentation accuracy of region 5. The
segmentation results for the respective module combinations are presented in Table 2.
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Table 1. Each module introduction.

Name Module

BSH-Net Baseline
+LSE Local stereoscopic feature encoding
+CFE Copula-based similarity feature enhancement
ALL Our method

Table 2. Statistical results of evaluation indicators of each module (%).

Module SD MIoU OA Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Baseline 33.4 54.7 89.2 95.4 97.7 79.2 0.0 1.2 61.9 54.2 72.6 83.9 12.9 63.9 35.8 53.0
LSE 30.0 59.0 89.4 95.5 97.3 79.8 0.0 6.4 70.2 62.5 74.3 79.3 40.1 59.4 45.1 56.1
CFE 30.8 56.1 89.6 96.0 97.3 80.9 0.0 1.7 64.5 55.9 70.3 63.2 28.4 69.4 46.7 54.9
ALL 30.0 60.4 90.0 95.5 98.1 80.6 0.2 26.3 57.5 58.8 78.9 84.0 18.9 75.3 49.5 61.5

In Table 2, the accuracy for each class is calculated using the intersection over union
(IoU) formula from Equation (8). SD represents the standard deviation of the accuracy
across all classes. From Table 2, it can be observed that compared to the baseline network’s
MIoU (approximately 53.0%), when only the LSE module is added to the model, the
best segmentation performance is achieved for the “door” and “sofa” categories, with
an MIoU of 59.0%. This indicates that the stereoscopic local features extracted by the
LSE module, enhanced by the attention mechanism of the baseline network, can achieve
stronger segmentation capability compared to the original network. It is important to note
that the overall accuracy of point cloud semantic segmentation is influenced by the accuracy
of segmenting the majority-class targets, while MIoU (mean intersection over union) is
influenced by the accuracy of segmenting the minority-class targets. When the network
focuses on learning the features of minority-class targets, MIoU significantly improves.
However, this can simultaneously suppress the segmentation accuracy of majority-class
targets, leading to network overfitting and a decrease in overall segmentation accuracy.
In this paper, we have effectively improved the segmentation accuracy of minority-class
targets while ensuring a slight overall segmentation accuracy increase. As a result, MIoU is
improved by 5.7% compared to the baseline.

On the other hand, when the CFE module is combined with the baseline network, the
MIoU is 56.1%. At this point, the CFE module can only utilize the coordinate information
and point distances provided by the baseline network to analyze the correlation and
enhance the features within the local neighborhood. Comparing the data of the CFE module
and the baseline network in Table 2, the “ceiling” and “wall” categories achieve the best
performance with IoU values of 96% and 80.9%, respectively. Additionally, there is a slight
improvement in the segmentation accuracy of other minority classes. This demonstrates
the effectiveness of the CFE module in searching and enhancing the neighboring points
related to the central point.

When both modules are loaded onto the baseline network, except for “wall”, “win-
dow”, and “door” categories not achieving the best performance, the segmentation accuracy
for all remaining categories is optimal, and the overall segmentation accuracy and MIoU
reach the best scores of 90% and 60.4%, respectively. This fully illustrates that the LSE
module has better capabilities than the baseline network in describing the spatial position,
geometric structure, and spatial scale of each point. Simultaneously, the abundance of
two-dimensional linear features can facilitate the CFE module in assessing the correlations
among points, enabling accurate enhancement of salient features within intra-class point
clouds. This significantly enhances the discriminative power of inter-class point cloud
features. To visually demonstrate the effects of the ablation experiments conducted in
this paper, the segmentation results for three different scenes in region 5 are presented in
Figure 5.
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The left column of Figure 5 shows a meeting room scene in the fifth area of the S3DIS
dataset. The middle column depicts a corridor scene from the same area, while the right
column represents an office scene. The black circles in each image indicate areas where
segmentation errors occur. In the rows of Figure 5, from top to bottom, we have the
segmentation results of the baseline network (BSH-Net), the baseline network with the
LSE module loaded, the baseline network with the CFE module loaded, the PointNAC
segmentation results, and the ground truth. Observing the images in the left column of
Figure 5, the clutter, board, and wall categories share significant similarities in terms of
spatial position information, geometric structures, and spectral information. As a result,
the baseline model exhibits numerous mis-segmentations in the localized regions where
these three categories are combined. The LSE module achieves better discrimination among
them through the utilization of two-dimensional linear correlation feature descriptors.
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However, it still assigns the labels of chairs and doors to this localized region. This is
because, although the LSE module enriches and represents various features effectively,
the differences between different feature categories are not effectively highlighted. The
correlation between points calculated by the CFE module with one-dimensional linear
features (point coordinate information, distance between points) is weak, which results in
a failure to effectively enhance the distinctiveness of different feature categories. When
all modules are fused and used together, all categories can be well identified, apart from
mis-segmentation between column–wall and beam–wall.

Upon observing the middle column of Figure 5, the baseline model erroneously
classifies most of the clutter as chairs and confuses structurally similar columns with doors.
The LSE module successfully segments clutter correctly by leveraging rich volumetric
feature information, but it mis-segments columns as windows and doors. The CFE module
exhibits an improvement over the baseline model in terms of mis-segmentation in the
clutter category, but it also mis-segments columns as windows and walls. PointNAC, on
the other hand, achieves slightly finer segmentation compared to the individual modules.
However, it still exhibits mis-segmentation in the same regions, with only a small area of
columns being segmented correctly. This further validates the effectiveness of the proposed
approach in identifying highly similar geometric structures in the region.

Comparing the segmentation effect in the right column of Figure 5, the baseline model
mis-segments bookcase and wall, while also completely misclassifying sofa as clutter.
Similarly, the CFE module, limited by only two reference variables, faces the same issue.
On the other hand, the LSE module distinguishes bookcase and wall more effectively and
partially correctly segments the sofa. However, its mis-segments clutter on the right side
of the room as a chair. Based on the segmentation results of the entire model, it is evident
that the best segmentation performance is achieved between clutter and chair, as well
as between bookcase and wall. Based on the segmentation results of the entire model,
it is evident that both clutter and chair, as well as bookcase and wall, exhibit the best
segmentation performance. On the other hand, both the baseline and CFE modules tend to
misclassify wall regions as doors. However, the LSE and PointNAC modules are capable
of distinguishing between these two categories more effectively. Consequently, as the
scene complexity increases, the segmentation performance decreases when the CFE module
receives single-variable input. The LSE module can achieve good scene segmentation
independently, but its segmentation performance suffers when dealing with different
categories of point clouds that are densely distributed in small local spaces. By combining
both CFE and LSE modules, the network model’s feature representation capability is
effectively enhanced, resulting in improved segmentation results.

To further validate the effectiveness of the CFE module, we initially employed the
feature-encoding modules of PointNet, PointNet++, BSH-Net, and PointESA to extract fea-
tures from regions 1–4 and 6 of the S3DIS dataset. Subsequently, the extracted features from
each network were subjected to similarity enhancement. Finally, the enhanced networks
were utilized to train models for point-wise semantic prediction on the point cloud data of
region 5. Figure 6 presents the segmentation accuracy statistics of each network before and
after integrating the CFE module.

Observing the segmentation accuracy of various networks before and after incorpo-
rating the copula-based similarity feature enhancement (CFE) module in Figure 6, it can
be inferred that PointNet and PointNet++ show a slight improvement in segmentation
accuracy, but they fall significantly short compared to BSH-Net and PointNAC. This dis-
crepancy can be attributed to the fact that the feature-encoding modules of PointNet and
PointNet++ consider only the spatial coordinates of the sampled points and their neighbor-
ing points. The CFE module’s reliance solely on spatial coordinates renders it less effective
in identifying points with similar features. BSH-Net, building upon this foundation, in-
corporates a one-dimensional linear feature descriptor (inter-point distance information).
PointNAC, in turn, extends BSH-Net by introducing a two-dimensional linear feature
descriptor (formed by normals and inter-point distances), further enriching the feature
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representation. Consequently, the CFE module performs more effectively within BSH-Net
and PointNAC, facilitating better aggregation and enhancement of feature information
within the same class of point clouds. This enhancement effectively highlights inter-class
feature disparities.
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Figure 6. The MIoU of four types of networks before and after adding the CFE module.

3.2.2. Sixfold Cross-Over Experiment

The purpose of this section is to demonstrate the learning capability and generalization
of the proposed method on the entire dataset. The spatial coordinates of scene points and
their RGB information are used as input features to the network. During training, the rooms
are segmented into 1 m × 1 m subregions without considering the elevation distribution.
For each subregion, 2048 points are randomly sampled to generate training data. Eleven
popular and classic deep learning methods for point cloud semantic segmentation are
selected, and a standard sixfold cross-over experiment is conducted on the S3DIS dataset.
The overall accuracy (OA) and mean intersection over union (MIoU) evaluation metrics for
each method are shown in Table 3.

Table 3. Semantic segmentation accuracy on S3DIS dataset.

Method OA MIoU

3DRCNN 85.7 53.4
DGCNN 84.1 56.1
NormNet 84.5 57.1
SPGrap 85.5 62.1
LSANet 86.8 62.2
PointCNN 88.1 65.4
PointWeb 87.3 66.7
Randla-Net 88.0 70.0
FPConv 89.9 66.7
DMSF 87.9 67.2
BSH-Net 90.5 66.1
PointNAC 90.9 67.4

Table 3 reveals that, compared to the baseline network BSH-Net, PointNAC achieves
an accuracy improvement of 0.4% and 1.3% in terms of OA and MIoU, respectively. Com-
pared to other networks such as PointWeb, FPConv, DMSF, and Randla-Net, the proposed
method maintains the highest OA, and although its MIoU ranks second, it is only 2.6% lower
than the best-performing method, Randla-Net. Among them, 3DRCNN [32] combines the
pyramid pooling module with RNN, but due to its focus on local spatial dependencies, it
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exhibits lower MIoU performance. DGCNN introduces dynamic graph convolution mod-
ules, emphasizing local features, but fails to accurately capture global contours, resulting
in inferior overall performance. NormNet [33] utilizes PointNet-based multi-scale neigh-
borhood feature learning but lacks effective means for extracting and aggregating salient
features, resulting in suboptimal segmentation accuracy. SPGraph [7] uses superpoints
for initial structural feature extraction and edge feature extraction but lacks an efficient
pooling module, leading to performance ranking in the middle-to-lower range among the
12 methods. LSANet [34] captures local features through local spatial perception layers,
but its ability to learn neighborhood point relationships is limited, resulting in only slightly
better segmentation performance than SPGraph. PointCNN, based on CNN, considers
both spatial coordinate information and local structural information learning but cannot
address the long-tailed distribution issue caused by imbalanced data. PointWeb proposes
an adaptive feature enhancement module, focusing on learning the relationship between
sample features and features, but it sacrifices some OA performance. FPConv [35] maps 3D
point clouds to 2D grids, resulting in the loss of crucial spatial information and impacting
segmentation accuracy. DMSF [36] enhances the receptive field through an expanded
multi-scale fusion network, improving MIoU performance, but compromises in terms of
OA. Randla-Net adopts a random sampling algorithm and attention mechanism, achieving
good results in MIoU, but it overlooks the learning of structural relationships between
neighboring points and does not fully consider the role of self-attention mechanisms in
feature propagation, resulting in a fourth-place ranking in terms of OA.

Overall, S3DIS, as a large-scale and complex indoor scene dataset, exhibits intertwined
and overlapping point clouds of different categories in space. The network needs to
learn and extract representative features for each class to achieve optimal performance
in terms of OA and MIoU simultaneously. However, the network may improve OA
values by sacrificing the learning of features from minority-class samples, but this can
lead to a decrease in MIoU. Conversely, enhancing MIoU requires a focused learning of
feature information for each class sample, which may result in overfitting and limit overall
segmentation accuracy. To address this issue, this paper proposes a local stereoscopic
feature-encoding module to meet the network’s learning requirements for salient features
of each class sample. Additionally, the copula-based similarity feature enhancement module
enhances intra-class features while achieving inter-class feature discrimination starting
from each sampling center point. In conclusion, the proposed algorithm network achieves
a satisfactory balance between OA and MIoU.

3.2.3. Performance Comparison of Network under Different Sampling Parameters

In order to further validate the feature learning capability of the proposed network un-
der different sampling densities, this section conducts experiments with different numbers
of sampled points: 2048, 4096, 8192, 16,384, and 32,768. The MIoU of each model is shown
in Figure 7. From Figure 7, it can be observed that RandLA-Net exhibits lower MIoU values
under sparse sampling. However, comparing BSH-Net with the proposed network, it is
evident that within the range of sampling parameters, BSH-Net shows a fluctuation of 1.2%
in MIoU, whereas the proposed network has a significantly lower fluctuation of only 0.7%.
This indicates that the proposed network possesses stronger feature learning capabilities
than BSH-Net when dealing with sparse point cloud data.

RandLA-Net is a lightweight point cloud semantic segmentation network that com-
bines random sampling algorithms and attention mechanisms, making it highly regarded
in recent years. However, the performance of RandLA-Net is largely limited by the density
of the sampled points. When the sampling point density is consistent with the network
model proposed in this paper, RandLA-Net exhibits lower segmentation accuracy. Based
on these results, it can be concluded that the network model proposed in this paper has an
advantage over BSH-Net and RandLA-Net in segmenting density-variant datasets.
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3.3. Vaihingen Dataset Experiment

In order to further validate the segmentation performance of our method on outdoor
point cloud data, this section compares our method with nine recently published state-of-
the-art segmentation methods that have shown the best segmentation results. Additionally,
we calculate the F1 scores and overall accuracy (OA) for each method, as presented in
Table 4. On the other hand, we show the visualization effects of GACNN, the basic
framework of this paper (BSH-Net), NANJ2, and our method in Figure 8.

Table 4 demonstrates that, compared to BSH-Net, our proposed method achieves
increases of 0.5% in overall accuracy (OA) and 1.1% in average F1 score. In comparison
with other methods, PointNAC obtains the highest OA score and ranks sixth in terms of
average F1 score. Moreover, our proposed method also achieves the best performance in
roof semantic segmentation. Among the compared methods, DPE [37], WhuY4 [38], and
NANJ2 [39] focus on feature extraction for a specific class target by combining machine
learning methods with a multi-scale framework. They achieve the best segmentation
results for individual classes (e.g., DPE achieves 99.3% F1 for impervious surface, WhuY4
achieves 53.7% F1 for hedge, and NANJ2 achieves 88.8% F1 for low vegetation). However,
their networks sacrifice the representational information of other classes while achieving
high-precision segmentation for a single class, resulting in less competitive overall accuracy
(OA) and average F1 score. D-FCN [40], DANCE-Net [17], and GACNN [41] focus on
learning minority-class target samples, thereby achieving notable results for objects such as
power lines, cars, and building facades. However, this specialization comes at the cost of
sacrificing OA accuracy. In the realm of graph convolutional neural networks, GraNet [42]
and GANet [43] are two remarkable networks that incorporate attention mechanisms
within the graph convolution framework to score representative features for different
classes and enhance salient features. This facilitates the networks in achieving higher
overall segmentation accuracy and average F1 scores.

In Figure 8, the first row of images displays the ground truth and the segmentation
results of four methods. The second to sixth rows show visualizations of local regions,
with segmentation errors highlighted in red circles. Observing the images in the left
column of Figure 8, PointNAC performs better than the other three methods at the junction
between roof and facade. Specifically, BSH-Net mis-segments parts of the roof as facade,
GACNN mis-segments parts of the roof as trees, and NANJ2 mis-segments facade as roof.
Furthermore, due to the similarity of target structures and spatial proximity, all methods
except PointNAC exhibit varying degrees of mis-segmentation at the junction between
facade and impervious surfaces. This demonstrates the superior spatial structure learning
capability of the LSE module compared to the other three methods.
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Table 4. Comparison of F1 score and OA of different methods (%).

Model Power-
Line Car Facade Hedge Impervious

Surface
Low

Vegetation Roof Shrub Tree OA Average
F1

DPE 68.1 75.2 44.2 19.5 99.3 86.5 91.1 39.4 72.6 83.2 66.2
WhuY4 42.5 74.7 53.1 53.7 91.4 82.7 94.3 47.9 82.8 84.9 69.2
NANJ2 62.0 66.7 42.6 40.7 91.2 88.8 93.6 55.9 82.6 85.2 69.3
D-FCN 70.4 78.1 60.5 37.0 91.4 80.2 93.0 46.0 79.4 82.2 70.7

Dance-Net 68.4 77.2 60.2 38.6 92.8 81.6 93.9 47.2 81.4 83.9 71.2
GACNN 76.0 77.7 58.9 37.8 93.0 81.8 93.1 46.7 78.9 83.2 71.5
GANet 75.4 77.8 61.5 44.2 91.6 82.0 94.4 49.6 82.6 84.5 73.2
GraNet 67.7 80.9 62.0 51.1 91.7 82.7 94.5 49.9 82.0 84.5 73.6

BSH-NET 46.5 77.8 57.9 37.9 92.9 82.3 94.8 48.6 86.3 85.4 69.5
PointNAC 52.9 76.7 57.5 41.1 93.6 83.2 94.9 50.5 85.2 85.9 70.6

Focusing on the images in the middle column of Figure 8, it is observed that this scene
is more complex than the left column and contains multiple objects of different categories.
In the red boxes on the left, it is observed that PointNAC mis-segments a small segment of
hedge as shrub in the hedge segmentation task, while the other three methods mis-segment
the entire hedge as other objects and partly mis-segment impervious surfaces as low-veg.
Notably, in the red boxes on the right, PointNAC achieves better semantic segmentation of
low-veg, roof, and facade, while the other three methods mis-segment roof as tree. This
confirms that the proposed method, through the CFE module, effectively distinguishes
between point clouds of different categories.

Furthermore, examining the images in the right column of Figure 8, it represents a
complex scene composed of low-veg, roof, tree, shrub, facade, and impervious surfaces.
In the ground-truth image, the red-boxed region in the bottom left corner consists of trees.
Only PointNAC and BSH-Net achieve correct segmentation for this area, while GACNN
mis-segments a small part of trees as shrubs, and NANJ2 completely mis-segments trees as
shrubs. Despite the complexity of the area marked by the other red box, PointNAC still
performs well in completing the segmentation task.

Overall, the proposed method demonstrates good segmentation performance on the
Vahingen 3D semantic segmentation dataset, and it maintains consistency with the ground
truth even in areas with unclear inter-class feature distinctions.

4. Conclusions

Within the domain of deep learning semantic segmentation, mainstream methods
typically involve designing complex network architectures and incorporating redundant
parameters to facilitate underlying deep feature learning of point clouds. This enables
the network models to generate feature descriptors that accurately classify and segment
all test points. However, the weights returned by the loss module tend to prioritize
learning sample feature information that significantly improves overall segmentation
accuracy, which leads to the network overlooking representative features of each class
target. Therefore, introducing a local stereoscopic feature-encoding module on top of
existing networks can effectively enhance the network’s ability to describe target structures
and spatial scales. It is worth noting that the PointNAC model designed in this study
successfully enhances the capability of inter-class point discrimination and intra-class
point determination, resulting in increases of 5.7% and 0.8%, respectively, compared to the
baseline MIoU and OA on the S3DIS indoor dataset(as show in Table 2). However, this
article only discusses the copula-based similarity of one-dimensional and two-dimensional
linear features, and the impact of higher-dimensional linear feature extraction and its
similarity on segmentation performance is not discussed. Meanwhile, the effectiveness
of the algorithm has only been validated on the S3DIS indoor dataset and the Vahingen
3D outdoor dataset. The algorithm’s effectiveness and analysis have not been explored on
other indoor and outdoor datasets collected by different sensors. Optimizing and updating
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the algorithm to achieve good generalization and segmentation performance on other
datasets is a direction for future research.
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