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Abstract: In the present research, we establish an effective method for determining the time-fractional
coupled Korteweg–de Vries (KdV) equation’s approximate solution employing the fractional deriva-
tives of Caputo–Fabrizio and Atangana–Baleanu. KdV models are crucial because they can accurately
represent a variety of physical problems, including thin-film flows and waves on shallow water
surfaces. Some theoretical physical features of quantum mechanics are also explained by the KdV
model. Many investigations have been conducted on this precisely solvable model. Numerous
academics have proposed new applications for the generation of acoustic waves in plasma from
ions and crystal lattices. Adomian decomposition and natural transform decomposition techniques
are combined in the natural decomposition method (NDM). We first apply the natural transform
to examine the fractional order and obtain a recurrence relation. Second, we use the Adomian
decomposition approach to the recurrence relation, and then, using successive iterations and the
initial conditions, we can establish the series solution. We note that the proposed fractional model
is highly accurate and valid when using this technique. The numerical outcomes demonstrate that
only a small number of terms are required to arrive at an approximation that is exact, efficient, and
trustworthy. Two examples are given to illustrate how the technique performs. Tables and 3D graphs
display the best current numerical and analytical results. The suggested method provides a series
form solution, which makes it quite easy to understand the behavior of the fractional models.

Keywords: natural transform; time-fractional coupled KdV equation; Atangana–Baleanu operator;
Caputo–Fabrizio operator; Adomian decomposition method

1. Introduction

Fractional calculus (FC) is a 17th-century invention that generalizes integer-order
calculus to arbitrary-order calculus. The primary advantage of FC is that it describes a
beneficial technique for researching memory and genetic characteristics in a wide range of
phenomena. Furthermore, ordinary calculus is a subset of FC. The fundamental research
of fractional derivatives has advanced rapidly in recent decades. Fractional calculus has
received much attention in the last thirty years or more. Several academics have noticed
that developing unique fractional derivatives (FDs) with distinct singular or nonsingular
kernels is critical to address the demand for modeling real-world problems in various
areas. Because most FDs do not have perfect solutions, approximations and numerical
techniques must be used. More information on the definitions and properties of fractional
derivatives can be checked at [1]. Over the last five decades, research on the theory and
application of differential equations (DEs) in terms of Caputo FD has been achieved [2,3].
However, the Caputo FD has a unique kernel. Caputo and Fabrizio offered a solution to the
solitary kernel problem using an exponential function in the last decade [4]. Although this
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operator is local, it has several concerns. The corresponding integral is not fractional in the
fractional order derivative. Atangana and Baleanu work hard to overcome local issues [5].
They designed the Liouville–Caputo and Riemann–Liouville derivatives of the modified
Mittag–Leffler function. Actually, this derivative is not only a differential operator; it may
also be thought of as a filter regulator. This interesting derivative also has the benefit of
explaining some of the macroscopic behavior of certain materials. Numerous researchers
have been closely observing these derivatives’ stimulating behaviors in recent years [6–8].

Non-singular FDs have been employed in several models. Several models have
recently been studied for non-singular FDs [9,10]. The authors investigated the dynamics
of several physical issues using the Atangana–Baleanu (AB) and Caputo–Fabrizio (CF)
FDs. Wang et al. used non-singular FD to develop a model for bank data with real
field data from 2004 to 2014 [11]. They illustrate the fractional ABC operator’s better
accuracy and adaptability and how it may be used with comfort to simulate such real-world
events. Saifullah et al. used the non-singular FD in the CF sense to show the complicated
progression of HIV infection [12]. Khan et al. used non-singular FDs to investigate the
nonlinear Schrodinger equation’s wave propagation [13]. Rahman et al. examined the
Φ4−equation with nonsingular FDs [14]. Khan et al. examined the KdV–Burger equation’s
wave dynamics assuming non-singular FDs [15]. The works listed in the citations [16–18]
are all helpful. The fractional calculus has many uses; see [19–24] for a few examples.

FC has been used to model physical and engineering processes best represented by
differential fractional equations (FDEs). In recent decades, FDEs have been extensively
used in numerous engineering and applied science fields. Nonlinear differential equations
define most of the phenomena in nature. Thus, researchers pay more attention to the differ-
ent branches of science and engineering to try to solve them. However, finding an exact
solution is hard due to the involvement of nonlinear parts in these equations. The solutions
of nonlinear FPDEs are of great concern in mathematics and useful applications [25–27].
Consequently, knowing how to build a reliable technique to obtain the approximate or
the exact solution of FPDEs is of great interest in the field of research of fractional models.
Numerous analytical techniques have been used to find the solution of these problems.
Such as iterative Laplace transform method [28], Laplace variational iteration method [29],
approximate-analytical method [30], Laplace Adomian decomposition method [31], op-
timal homotopy asymptotic method [32], reduced differential transform method [33],
homotopy analysis method [34], Natural transform decomposition method [35], Adomian
decomposition method [36] and many more [37–41].

The Korteweg–de Vries (KdV) equation is a sort of partial differential equation that
has recently been employed in defining several physical occurrences as an example of the
formation and association of nonlinear waves. It was constructed as a modified equation
controlling the movement of one-dimensional, large, small-amplitude surface gravity waves
in a shallow water channel, as demonstrated in [42]. The KdV equation is currently being
investigated in various physical science fields, such as stratified internal waves, plasma
physics, ion-acoustic waves, lattice dynamics, and collision-free hydromagnetic waves [43].
A KdV model has been employed in quantum physics to explain several hypothetical
physical phenomena. It is applied in fluid dynamics, aerodynamics, and continuum
mechanics as a model for shock wave production, turbulence, solitons, mass transport,
and boundary layer behavior [44]. In this study, we derive an analytical solution to the
nonlinear coupled time-fractional KdV equations that are provided by:

Dβ
ζ F(ω, ζ) = aFωωω(ω, ζ) + bF(ω, ζ)Fω(ω, ζ) + cG(ω, ζ)Gω(ω, ζ),

Dβ
ζ G(ω, ζ) = dFωωω(ω, ζ)− eG(ω, ζ)Gω(ω, ζ), 0 < β ≤ 1,

(1)

subjected to initial sources

J(ω, 0) = h1(ω), K(ω, 0) = h2(ω). (2)
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where a, d < 0; b, c and e stand for constant parameters. Numerous academics have
explored the KdV equation, which has applications in analyzing shallow-water waves and
many other physical phenomena.

The Adomian decomposition method, which yields accurate solutions in the form
of a convergent series, is a well-known technique for solving homogeneous and nonho-
mogeneous, linear and nonlinear, homogeneous and nonlinear differential and partial
differential equations, as well as integro differential and fractional differential equations.
Without the need for linearization or disturbance, the Adomian decomposition method has
been successfully and efficaciously applied to examine issues that have arisen in science
and technology. On the other hand, the Adomian decomposition method requires a sig-
nificant quantity of computer memory and more time for computational work. Therefore,
it is inevitable that this method will be used with already-existing transform methods.
Differential equations were solved by combining a number of transforms with additional
methods. In [45,46], the natural decomposition method (NDM), a linked natural transform
and Adomian decomposition approach, was developed for solving differential equations.
It provides an approximation solution in series form. The central theme of this work is to
solve time-fractional coupled KdV equations NTDM. Numerous studies have employed
the NTDM to obtain approximate analytical solutions; it generated accurate and closely
convergent outcomes.

This work is structured as follows. Section 2 defines and describes the natural trans-
form’s properties. Section 3 describes the overall implementation of the proposed technique.
Section 4 covers the new technique and compares it to two different ways using two ex-
amples and presents tables and graphs to validate the NTDM. Section 5 contains the
manuscript’s conclusion.

2. Important Notations

Definition 1. The non-integer Riemann–Liouville (RL) integral operator is defined [47]

Iβ j(η) =
1

Γ(β)

∫ η

0
(η − ℘)β−1 j(℘)d℘, β > 0, η > 0,

and I0 j(η) =j(η).
(3)

Definition 2. The non-integer derivative in Caputo sense is defined as [47]

Dβ
η j(η) = Iγ−βDγ j(η) =

1
γ− β

∫ η

0
(η − ℘)γ−β−1 j(γ)(℘)d℘, (4)

for γ− 1 < β ≤ γ, γ ∈ N, η > 0, j ∈ Cγ
℘,℘ ≥ −1.

Definition 3. The non-integer derivative in CF sense is stated as [47]

Dβ
η j(η) =

Z(β)

1− β

∫ η

0
exp

(
−β(η − ℘)

1− β

)
D(j(℘))d℘, (5)

having 0 < β < 1 and Z(β) is a normalization function having Z(0) = Z(1) = 1.

Definition 4. The non-integer derivative in the ABC sense is stated as [47]

Dβ
η j(η) =

Z(β)

1− β

∫ η

0
Eβ

(
−β(η − ℘)

1− β

)
D(j(℘))d℘, (6)

here Eβ(z) = ∑∞
m=0

zm

Γ(mβ+1) .
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Definition 5. The natural transform (NT) of F(ζ) is as

N(F(ζ)) = U (ς, κ) =
∫ ∞

−∞
e−ςζF(κζ)dζ, ς, κ ∈ (−∞, ∞), (7)

and for ζ ∈ (0, ∞), the NT of F(ζ) is as

N(F(ζ)H(ζ)) = N+ = U+(ς, κ) =
∫ ∞

0
e−ςζ F(κζ)dζ, ς, κ ∈ (0, ∞). (8)

where H(ζ) is the Heaviside function.

Definition 6. The inverse NT of F(ς, κ) is as

N−1[U (ς, κ)] = F(ζ), ∀ζ ≥ 0. (9)

Lemma 1. Assume the NT of F1(ζ) and F2(ζ) are U1(ς, κ) and U2(ς, κ), so [48]

N[c1F1(ζ) + c2F2(ζ)] = c1N[F1(ζ)] + c2N[F2(ζ)] = c1U1(ς, κ) + c2U2(ς, κ), (10)

having c1 and c2 constants.

Lemma 2. Assume the inverse NT of F1(ζ) and F2(ζ) F1(ς, κ) and F2(ς, κ), so [48]

{N}−1[c1U1(ς, κ) + c2U2(ς, κ)] = c1N−1[U1(ς, κ)] + c2N−1[U2(ς, κ)] = c1F1(ζ) + c2F2(ζ), (11)

having c1 and c2 constants.

Definition 7. The NT of Dβ
ζ F(ζ) in a Caputo manner is given by [47]

N[Dβ
ζ F(ζ)] =

( ς

κ

)β
(
N[F(ζ)]−

(
1
ς

)
F(0)

)
. (12)

Definition 8. The NT of Dβ
ζ F(ζ) in a CF manner is given by [47]

N[Dβ
ζ F(ζ)] =

1
1− β + β( κ

ς )

(
N[F(ζ)]−

(
1
ς

)
F(0)

)
. (13)

Definition 9. The NT of Dβ
ζ F(ζ) in an ABC manner is given by [47]

N[Dβ
ζ F(ζ)] =

M[β]

1− β + β( κ
ς )

β

(
N[F(ζ)]−

(
1
ς

)
F(0)

)
. (14)

with M[β] denoting a normalization function.

3. The Proposed Scheme

This section focuses on an analytical approach for obtaining the solution of the differ-
ential equation having fractional-order as given below [49]:

Dβ
ζ F(ω, ζ) = L(F(ω, ζ)) + N(F(ω, ζ)) + h(ω, ζ) = M(ω, ζ), (15)

having the initial guess

F(ω, 0) = φ(ω), (16)
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where L, N demonstrates the linear, non-linear functions, respectively, and h(ω, ζ) is an
indicated source function.

3.1. Case I (NTDMCF)

In terms of NT and fractional CF derivative, Equation (1) transformed into

1
j(β, κ, ς)

(
N[F(ω, ζ)]− φ(ω)

ς

)
= N[M(ω, ζ)], (17)

N[F(ω, ζ)]− φ(ω)

ς
= j(β, κ, ς)N[M(ω, ζ)], (18)

N[F(ω, ζ)] =
φ(ω)

ς
+ j(β, κ, ς)N[M(ω, ζ)], (19)

with

j(β, κ, ς) = 1− β + β(
κ

ς
). (20)

and
M(ω, ζ) = L(F(ω, ζ)) + N(F(ω, ζ)) + h(ω, ζ). (21)

By operating the inverse NT, we have

F(ω, ζ) = N−1
(

φ(ω)

ς
+ j(β, κ, ς)N[M(ω, ζ)]

)
. (22)

The solution of F(ω, ζ) is expanded in series form as

F(ω, ζ) =
∞

∑
i=0

Fi(ω, ζ), (23)

and N(F(ω, ζ)) is illustrated as

N(F(ω, ζ)) =
∞

∑
i=0

Ai, (24)

with the Adomian polynomials Ai as

Ai =
1
n!

dn

dεn N(t, Σn
k=0εkFk)|ε=0.

By switching Equations (23)–(24) into (22), we have

∞

∑
i=0

Fi(ω, ζ) =N−1
(

φ(ω)

ς
+ j(β, κ, ς)N[h(ω, ζ)]

)

+N−1

(
j(β, κ, ς)N

[
∞

∑
i=0
L(Fi(ω, ζ)) + Ai

])
,

(25)
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From (25), we obtain,

FCF
0 (ω, ζ) =N−1

(
φ(ω)

ς
+ j(β, κ, ς)N[h(ω, ζ)]

)
,

FCF
1 (ω, ζ) =N−1(j(β, κ, ς)N[L(F0(ω, ζ)) + A0]),

...

FCF
l+1(ω, ζ) =N−1(j(β, κ, ς)N[L(Fl(ω, ζ)) + Al ]), l = 1, 2, 3, · · · .

(26)

By utilizing (26) into (23), we obtain the solution to Equation (1) in the NTDMCF
sense as

FCF(ω, ζ) = FCF
0 (ω, ζ) + FCF

1 (ω, ζ) + FCF
2 (ω, ζ) + · · · . (27)

3.2. Case II (NTDMABC)

In terms of NT and fractional ABC derivative, Equation (1) is transformed into

1
k(β, κ, ς)

(
N[F(ω, ζ)]− φ(ω)

ς

)
= N[M(ω, ζ)], (28)

with

k(β, κ, ς) =
1− β + β( κ

ς )
β

B(β)
. (29)

By operating the inverse NT, we have

F(ω, ζ) = N−1
(

φ(ω)

ς
+ k(β, κ, ς)N[M(ω, ζ)]

)
. (30)

After, we have

∞

∑
i=0

Fi(ω, ζ) =N−1
(

φ(ω)

ς
+ k(β, κ, ς)N[h(ω, ζ)]

)

+N−1

(
k(β, κ, ς)N

[
∞

∑
i=0
L(Fi(ω, ζ)) + Ai

])
.

(31)

From (25), we obtain

FABC
0 (ω, ζ) =N−1

(
φ(ω)

ς
+ k(β, κ, ς)N[h(ω, ζ)]

)
,

FABC
1 (ω, ζ) =N−1(k(β, κ, ς)N[L(F0(ω, ζ)) + A0]),

...

FABC
l+1 (ω, ζ) =N−1(k(β, κ, ς)N[L(Fl(ω, ζ)) + Al ]), l = 1, 2, 3, · · · .

(32)

Thus, we acquire the outcomes of (1) in terms of NTDMABC as

FABC(ω, ζ) = FABC
0 (ω, ζ) + FABC

1 (ω, ζ) + FABC
2 (ω, ζ) + · · · . (33)
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4. Numerical Results

Example 1. Let us assume the fractional coupled KdV Equation (1) with a = −ς, b = −6ς, c =
2ν, d = −ψ, and e = 3ψ, having the initial guess

F(ω, 0) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

, G(ω, 0) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

.

In terms of NT, we obtain

N[Dβ
ζ F(ω, ζ)] = N

[
− λFωωω(ω, ζ)− 6λF(ω, ζ)Fω(ω, ζ) + 2νG(ω, ζ)Gω(ω, ζ)

]
,

N[Dβ
ζ G(ω, ζ)] = N

[
− ψFωωω(ω, ζ)− 3ψF(ω, ζ)Gω(ω, ζ)

]
.

(34)

After, we obtain

1
ςβ

N[F(ω, ζ)]− ς2−βF(ω, 0) = N
[
− λFωωω(ω, ζ)− 6λF(ω, ζ)Fω(ω, ζ) + 2νG(ω, ζ)Gω(ω, ζ)

]
,

1
ςβ

N[G(ω, ζ)]− ς2−βF(ω, 0) = N
[
− ψFωωω(ω, ζ)− 3ψF(ω, ζ)Gω(ω, ζ)

]
,

(35)

which simplifies to

N[F(ω, ζ)] = ς2

[
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2]
+

β(ς− β(ς− β))

ς2 N
[
− λFωωω(ω, ζ)− 6λF(ω, ζ)Fω(ω, ζ)

+ 2νG(ω, ζ)Gω(ω, ζ)

]
,

N[G(ω, ζ)] = ς2

[
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2]
+

β(ς− β(ς− β))

ς2 N
[
− ψFωωω(ω, ζ)− 3ψF(ω, ζ)Gω(ω, ζ)

]
,

(36)

By operating the inverse NT, we have

F(ω, ζ) =

[
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2]

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− λFωωω(ω, ζ)− 6λF(ω, ζ)Fω(ω, ζ) + 2νG(ω, ζ)Gω(ω, ζ)

}]
,

G(ω, ζ) =

[
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2]

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− ψFωωω(ω, ζ)− 3ψF(ω, ζ)Gω(ω, ζ)

}]
.

(37)



Symmetry 2023, 15, 2010 8 of 18

NDMCF solution

The solution of F(ω, ζ) and G(ω, ζ) are expanded in series form as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) and G(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ). (38)

The nonlinear terms according to Adomian polynomials are as follows F(ω, ζ)Fω(ω, ζ) =

∑∞
m=0Am, G(ω, ζ)Gω(ω, ζ) = ∑∞

m=0 Bm and F(ω, ζ)Gω(ω, ζ) = ∑∞
m=0 Cm; now by putting

these terms in Equation (37), we obtain

∞

∑
l=0

Fl+1(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− λFωωω(ω, ζ)− 6λ

∞

∑
l=0
Al + 2ν

∞

∑
l=0
Bl

}]
,

∞

∑
l=0

Gl+1(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− ψFωωω(ω, ζ)− 3ψ

∞

∑
l=0
Cl

}]
.

(39)

By equating both sides of Equation (39), we acquire

F0(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

,

G0(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

,

F1(ω, ζ) =

(
1
2

ξ

(
ξ

λ

) 3
2
(

7− 2ν + cosh

(√
ξ

λ
ω

))
sech4

(
1
2

√
ξ

λ
ω

)
tanh

(
1
2

√
ξ

λ
ω

))(
β(ζ − 1) + 1

)
,

G1(ω, ζ) =

(
4
√

2
√

λψ

(
ξ

λ

) 5
2

csch3

(√
ξ

λ
ω

)
sinh4

(
1
2

√
ξ

λ
ω

))(
β(ζ − 1) + 1

)
,

(40)

Finally, we obtain the analytical solution of F(ω, ζ) and G(ω, ζ) as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) = F0(ω, ζ) + F1(ω, ζ) + · · · ,

F(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+

(
1
2

ξ

(
ξ

λ

) 3
2
(

7− 2ν + cosh

(√
ξ

λ
ω

))
sech4

(
1
2

√
ξ

λ
ω

)
tanh

(
1
2

√
ξ

λ
ω

))
(

β(ζ − 1) + 1

)
+ · · · .

G(ω, ζ) =
∞

∑
l=0

Gl(ω, ζ) = G0(ω, ζ) + G1(ω, ζ) + · · · ,

G(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+

(
4
√

2
√

λψ

(
ξ

λ

) 5
2

csch3

(√
ξ

λ
ω

)
sinh4

(
1
2

√
ξ

λ
ω

))(
β(ζ − 1) + 1

)
+ · · · .

(41)
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NDMABC solution

The solutions of F(ω, ζ) and G(ω, ζ) are expanded in series form as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ),

G(ω, ζ) =
∞

∑
l=0

Gl(ω, ζ),
(42)

The nonlinear terms according to Adomian polynomials are F(ω, ζ)Fω(ω, ζ) = ∑∞
m=0Am,

G(ω, ζ)Gω(ω, ζ) = ∑∞
m=0 Bm and F(ω, ζ)Gω(ω, ζ) = ∑∞

m=0 Cm; now by putting these terms
in Equation (37), we obtain

∞

∑
l=0

Fl+1(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+N−1

[
κβ(ςβ + β(κβ − ςβ))

ς2β
N
{
− λFωωω(ω, ζ)− 6λ

∞

∑
l=0
Al + 2ν

∞

∑
l=0
Bl

}]
,

∞

∑
l=0

Gl+1(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+N−1

[
κβ(ςβ + β(κβ − ςβ))

ς2β
N
{
− ψFωωω(ω, ζ)− 3ψ

∞

∑
l=0
Cl

}]
.

(43)

By equating both sides of Equation (43), we acquire

F0(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

,

G0(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

,

F1(ω, ζ) =

(
1
2

ξ

(
ξ

λ

) 3
2
(

7− 2ν + cosh

(√
ξ

λ
ω

))
sech4

(
1
2

√
ξ

λ
ω

)
tanh

(
1
2

√
ξ

λ
ω

))(
1− β +

βζβ

Γ(β + 1)

)
,

G1(ω, ζ) =

(
4
√

2
√

λψ

(
ξ

λ

) 5
2

csch3

(√
ξ

λ
ω

)
sinh4

(
1
2

√
ξ

λ
ω

))(
1− β +

βζβ

Γ(β + 1)

)
,

(44)

Finally, we obtain the analytical solution of F(ω, ζ) and G(ω, ζ) as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) = F0(ω, ζ) + F1(ω, ζ) + · · · ,

F(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+

(
1
2

ξ

(
ξ

λ

) 3
2
(

7− 2ν + cosh

(√
ξ

λ
ω

))
sech4

(
1
2

√
ξ

λ
ω

)
tanh

(
1
2

√
ξ

λ
ω

))
(

1− β +
βζβ

Γ(β + 1)

)
+ · · ·

G(ω, ζ) =
∞

∑
l=0

Gl(ω, ζ) = G0(ω, ζ) + G1(ω, ζ) + · · · ,

G(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
ω

))2

+

(
4
√

2
√

λψ

(
ξ

λ

) 5
2

csch3

(√
ξ

λ
ω

)
sinh4

(
1
2

√
ξ

λ
ω

))(
1− β +

βζβ

Γ(β + 1)

)
+ · · ·

(45)
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At β = 1, we obtain the exact solution as

F(ω, ζ) =
ξ

λ

(
sech

(
1
2

√
ξ

λ
(ω− ξζ)

))2

,

G(ω, ζ) =
ξ√
2λ

(
sech

(
1
2

√
ξ

λ
(ω− ξζ)

))2

,

(46)

Example 2. Let us assume fractional coupled KdV Equation (1) with a = −1, b = −6, c = 3,
d = −1, and e = 3, having initial guess

F(ω, 0) =
4σ2eσω

(1 + eσω)2 , G(ω, 0) =
4σ2eσω

(1 + eσω)2 .

In terms of NT, we obtain

N[Dβ
ζ F(ω, ζ)] = N[−Fωωω(ω, ζ)− 6F(ω, ζ)Fω(ω, ζ) + 3G(ω, ζ)Gω(ω, ζ)],

N[Dβ
ζ G(ω, ζ)] = N[−Fωωω(ω, ζ)− 3F(ω, ζ)Gω(ω, ζ)].

(47)

After, we obtain

1
ςβ

N[F(ω, ζ)]− ς2−βF(ω, 0) = N
[
− Fωωω(ω, ζ)− 6F(ω, ζ)Fω(ω, ζ) + 3G(ω, ζ)Gω(ω, ζ)

]
,

1
ςβ

N[G(ω, ζ)]− ς2−βF(ω, 0) = N
[
− Fωωω(ω, ζ)− 3F(ω, ζ)Gω(ω, ζ)

]
,

(48)

which simplifies to

N[F(ω, ζ)] = ς2

[
4β2eβω

(1 + eβω)2

]
+

β(ς− β(ς− β))

ς2 N
[
− Fωωω(ω, ζ)− 6F(ω, ζ)Fω(ω, ζ) + 3G(ω, ζ)Gω(ω, ζ)

]
,

N[G(ω, ζ)] = ς2

[
4β2eβω

(1 + eβω)2

]
+

β(ς− β(ς− β))

ς2 N
[
− Fωωω(ω, ζ)− 3F(ω, ζ)Gω(ω, ζ)

]
.

(49)

By operating the inverse NT, we have

F(ω, ζ) =

[
4σ2eσω

(1 + eσω)2

]

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− Fωωω(ω, ζ)− 6F(ω, ζ)Fω(ω, ζ) + 3G(ω, ζ)Gω(ω, ζ)

}]
,

G(ω, ζ) =

[
4σ2eσω

(1 + eσω)2

]

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− Fωωω(ω, ζ)− 3F(ω, ζ)Gω(ω, ζ)

}]
,

(50)

NDMCF solution

The solution of F(ω, ζ) and G(ω, ζ) are expanded in series form as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) and G(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ). (51)
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The nonlinear terms according to Adomian polynomials are F(ω, ζ)Fω(ω, ζ) = ∑∞
m=0Am,

G(ω, ζ)Gω(ω, ζ) = ∑∞
m=0 Bm and F(ω, ζ)Gω(ω, ζ) = ∑∞

m=0 Cm; now by putting these terms
in Equation (50), we obtain

∞

∑
l=0

Fl+1(ω, ζ) =
4σ2eσω

(1 + eσω)2

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− Fωωω(ω, ζ)− 6λ

∞

∑
l=0
Al + 3ν

∞

∑
l=0
Bl

}]
,

∞

∑
l=0

Gl+1(ω, ζ) =
4σ2eσω

(1 + eσω)2

+N−1

[
β(ς− β(ς− β))

ς2 N
{
− Fωωω(ω, ζ)− 3

∞

∑
l=0
Cl

}]
.

(52)

By equating both sides of Equation (52), we acquire

F0(ω, ζ) =
4σ2eσω

(1 + eσω)2 ,

G0(ω, ζ) =
4σ2eσω

(1 + eσω)2 ,

F1(ω, ζ) =

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
β(ζ − 1) + 1

)
,

G1(ω, ζ) =

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
β(ζ − 1) + 1

)
.

(53)

Finally, we obtain the analytical solution of F(ω, ζ) and G(ω, ζ) as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) = F0(ω, ζ) + F1(ω, ζ) + · · · ,

F(ω, ζ) =
4σ2eσω

(1 + eσω)2 +

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
β(ζ − 1) + 1

)
+ · · · .

G(ω, ζ) =
∞

∑
l=0

Gl(ω, ζ) = G0(ω, ζ) + G1(ω, ζ) + · · · ,

G(ω, ζ) =
4σ2eσω

(1 + eσω)2 +

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
β(ζ − 1) + 1

)
+ · · · .

(54)

NDMABC solution

The solutions of F(ω, ζ) and G(ω, ζ) are expanded in series form as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ),

G(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ),
(55)

The nonlinear terms according to Adomian polynomials are F(ω, ζ)Fω(ω, ζ) = ∑∞
m=0Am,

G(ω, ζ)Gω(ω, ζ) = ∑∞
m=0 Bm and F(ω, ζ)Gω(ω, ζ) = ∑∞

m=0 Cm; now by putting these terms
in Equation (50), we obtain
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∞

∑
l=0

Fl+1(ω, ζ) =
4σ2eσω

(1 + eσω)2

+N−1

[
κβ(ςβ + β(κβ − ςβ))

ς2β
N
{
− Fωωω(ω, ζ)− 6λ

∞

∑
l=0
Al + 3ν

∞

∑
l=0
Bl

}]
,

∞

∑
l=0

Gl+1(ω, ζ) =
4σ2eσω

(1 + eσω)2

+N−1

[
κβ(ςβ + β(κβ − ςβ))

ς2β
N
{
− Fωωω(ω, ζ)− 3

∞

∑
l=0
Cl

}]
.

(56)

By equating both sides of Equation (56), we acquire

F0(ω, ζ) =
4σ2eσω

(1 + eσω)2 ,

G0(ω, ζ) =
4σ2eσω

(1 + eσω)2 ,

F1(ω, ζ) =

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
1− β +

βζβ

Γ(β + 1)

)
,

G1(ω, ζ) =

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
1− β +

βζβ

Γ(β + 1)

)
,

(57)

Finally, we obtain the analytical solution of F(ω, ζ) and G(ω, ζ) as

F(ω, ζ) =
∞

∑
l=0

Fl(ω, ζ) = F0(ω, ζ) + F1(ω, ζ) + · · · ,

F(ω, ζ) =
4σ2eσω

(1 + eσω)2 +

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
1− β +

βζβ

Γ(β + 1)

)
+ · · ·

G(ω, ζ) =
∞

∑
l=0

Gl(ω, ζ) = G0(ω, ζ) + G1(ω, ζ) + · · · ,

G(ω, ζ) =
4σ2eσω

(1 + eσω)2 +

(
4β5eβω(−1 + eβω)

(1 + eβω)3

)(
1− β +

βζβ

Γ(β + 1)

)
+ · · ·

(58)

At β = 1, we obtain the exact solution as

F(ω, ζ) = G(ω, ζ) =
4σ2eσ(ω−σ2ζ)

(1 + eσ(ω−σ2ζ))2
. (59)

5. Results Discussion

The graphical and numerical analysis presented in this section offers valuable insights
into the behavior and accuracy of our proposed solution method for the coupled Korteweg–
de Vries (KdV) equations using non-singular kernel operators in conjunction with the
natural transform across varying values of the fractional parameter β.

In Figure 1, we depict the behavior of the exact solution of F(ω, ζ) alongside our
approach’s solutions at different values of β, including β = 1, β = 0.80, and β = 0.60 of
F(ω, ζ) for Example 1. These graphs allow us to visually compare how well our method
approximates the exact solution as β varies. Our approach evidently provides a reasonably
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accurate representation of the exact solution, with deviations becoming more noticeable as
β decreases.

Figure 2 follows a similar pattern as Figure 1 but for G(ω, ζ). We observe the behavior
of the exact solution and our approach’s solutions at β = 1, β = 0.80, and β = 0.60 of
G(ω, ζ). Again, these visualizations enable us to assess the performance of our method in
approximating the exact solution. As β decreases, some deviation from the exact solution
is observed, but our approach remains a promising approximation method.

We continue our analysis in Figure 3, but now for Example 2. We explore the behavior
of the exact solution and our approach’s solutions at different β values, including β = 1,
β = 0.80, and β = 0.60 of F(ω, ζ) and G(ω, ζ). These graphs highlight the ability of our
method to adapt to varying fractional parameters and provide reasonable approximations
of the exact solution.

Figure 1. (a ) The exact solution; (b) our approach solution at β = 1; (c) our approach result at
β = 0.80; (d) our approach result at β = 0.60, of F(ω, ζ) for Example 1.

Tables 1 and 2 present a quantitative analysis of the accuracy of our method by compar-
ing the results of our approach with the exact solutions for F(ω, ζ) and G(ω, ζ) at various
orders of β. The comparison between Tables 3 and 4 shows that the solutions obtained in
this paper are more accurate than those obtained in [50]. Table 5 presents a quantitative
analysis of the accuracy of our method by comparing the results of our approach with the
exact solutions for F(ω, ζ) and G(ω, ζ) at various orders of β. These tables offer numerical
evidence of our method’s performance and consistency across different orders of β.
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Figure 2. (a ) The exact solution; (b) our approach solution at β = 1; (c) our approach solution at
β = 0.80; (d) our approach solution at β = 0.60, of G(ω, ζ) for Example 1.

Figure 3. (a ) The exact solution; (b) our approach solution at β = 1; (c) our approach solution at
β = 0.80; (d) our approach solution at β = 0.60, of F(ω, ζ) and G(ω, ζ) for Example 2.
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Table 1. Comparison between the proposed method and exact solutions for F(ω, ζ) at numerous
orders of β of Example 1.

(ω, ζ) Solution at β = 0.6 Solution at β = 0.8 (NTDMABC) at β = 1 (NTDMCF) at β = 1 Exact Solution

(0.2, 0. 001) 0.99027100 0.99020853 0.99016496 0.99016496 0.99016472

(0.4, 0.001) 0.96143650 0.96131642 0.96123266 0.96123266 0.96123245

(0.6, 0.001) 0.91569002 0.91552126 0.91540355 0.91540355 0.91540338

(0.8, 0.001) 0.85631323 0.85610742 0.85596388 0.85596388 0.85596376

(0.2, 0.003) 0.99061654 0.99047022 0.99036232 0.99036232 0.99036016

(0.4, 0.003) 0.96210071 0.96181945 0.96161204 0.96161204 0.96161013

(0.6, 0.003) 0.91662353 0.91622824 0.91593673 0.91593673 0.91593519

(0.8, 0.003) 0.85745160 0.85696957 0.85661408 0.85661408 0.85661298

(0.2, 0.005) 0.99093770 0.99072253 0.99055968 0.99055968 0.99055367

(0.4, 0.005) 0.96271807 0.96230447 0.96199141 0.96199141 0.96198610

(0.6, 0.005) 0.91749119 0.91690990 0.91646991 0.91646991 0.91646564

(0.8, 0.005) 0.85850969 0.85780082 0.85726428 0.85726428 0.85726123

Table 2. Comparison between the exact solution and our solution for G(ω, ζ) at numerous orders of
β of Example 1.

(ω, ζ) Solution at β = 0.6 Solution at β = 0.8 (NTDMABC) at β = 1 (NTDMCF) at β = 1 Exact Solution

(0.2, 0.001) 0.70051685 0.70038434 0.70029191 0.70029191 0.70015219

(0.4, 0.001) 0.68039479 0.68014006 0.67996239 0.67996239 0.67969398

(0.6, 0.001) 0.64827277 0.64791477 0.64766507 0.64766507 0.64728793

(0.8, 0.001) 0.60645870 0.60602213 0.60571762 0.60571762 0.60525778

(0.2, 0.003) 0.70124984 0.70093946 0.70071057 0.70071057 0.70029038

(0.4, 0.003) 0.68180379 0.68120716 0.68076716 0.68076716 0.67996104

(0.6, 0.003) 0.65025304 0.64941451 0.64879612 0.64879612 0.64766398

(0.8, 0.003) 0.60887356 0.60785100 0.60709690 0.60709690 0.60571685

(0.2, 0.005) 0.70193113 0.70147470 0.70112922 0.70112922 0.70042721

(0.4, 0.005) 0.68311342 0.68223603 0.68157193 0.68157193 0.68022689

(0.6, 0.005) 0.65209362 0.65086052 0.64992717 0.64992717 0.64803907

(0.8, 0.005) 0.61111810 0.60961437 0.60847618 0.60847618 0.60617523

Table 3. Error comparison between our solution for F(ω, ζ) and the results obtained in [50] of
Example 1.

ω ζ Error of [50] (NTDMABC) Error (NTDMCF) Error

−10 0.1 2.99039 × 10−8 1.6125789000 × 10−8 1.6125789000 × 10−8

−10 0.2 2.33335 × 10−7 6.1317061000 × 10−8 6.1317061000 × 10−8

−5 0.1 3.96592 × 10−6 4.3621745000 × 10−7 4.3621745000 × 10−7

−5 0.2 0.0000338049 1.6588950200 × 10−7 1.6588950200 × 10−7

5 0.1 3.97592 × 10−6 4.8456311000 × 10−7 4.8456311000 × 10−7

5 0.2 0.0000378049 2.0470878500 × 10−7 2.0470878500 × 10−7

10 0.1 2.96039 × 10−8 1.7918592000 × 10−8 1.7918592000 × 10−8

10 0.2 2.37335 × 10−7 7.5713342000 × 10−8 7.5713342000×10−08



Symmetry 2023, 15, 2010 16 of 18

Table 4. Error comparison between our solution for G(ω, ζ) and the results obtained in [50] of
Example 1.

ω ζ Error of [50] NTDMABC Error NTDMCF Error

−10 0.1 2.18624 × 10−8 3.8791346860 × 10−9 3.8791346860 × 10−9

−10 0.2 1.64872 × 10−7 7.8076524100 × 10−9 7.8076524100 × 10−9

−5 0.1 2.88312 × 10−6 2.7814445650 × 10−7 2.7814445650 × 10−7

−5 0.2 0.0000287824 5.5982968930 × 10−7 5.5982968930 × 10−7

5 0.1 2.98312 × 10−6 2.7371653580 × 10−7 2.7371653580 × 10−7

5 0.2 0.0000247824 5.4189576320 × 10−7 5.4189576320 × 10−7

10 0.1 2.09624 × 10−8 3.8173772900 × 10−9 3.8173772900 × 10−9

10 0.2 1.72872 × 10−7 7.5575220640 × 10−9 7.5575220640 × 10−9

In summary, our graphical and numerical analysis demonstrates the effectiveness
of our proposed method in approximating the solutions of coupled KdV equations via
non-singular kernel operators within the framework of the natural transform. While some
deviation from the exact solution is observed as β decreases, our method consistently
provides reasonably accurate results, making it a valuable tool for solving these equations
across various fractional parameter values.

Table 5. Comparison between the exact solution and our solution for F(ω, ζ) and G(ω, ζ) at numerous
orders of β of Example 2.

(ω, ζ) Solution at β = 0.6 Solution at β = 0.8 (NTDMABC) at β = 1 (NTDMCF) at β = 1 Exact Solution

(0.2, 0.001) 0.99027100 0.99020853 0.99016496 0.99016496 0.99016472

(0.4, 0.001) 0.96143650 0.96131642 0.96123266 0.96123266 0.96123245

(0.6, 0.001) 0.91569002 0.91552126 0.91540355 0.91540355 0.91540338

(0.8, 0.001) 0.85631323 0.85610742 0.85596388 0.85596388 0.85596376

(0.2, 0.003) 0.99061654 0.99047022 0.99036232 0.99036232 0.99036016

(0.4, 0.003) 0.96210071 0.96181945 0.96161204 0.96161204 0.96161013

(0.6, 0.003) 0.91662353 0.91622824 0.91593673 0.91593673 0.91593519

(0.8, 0.003) 0.85745160 0.85696957 0.85661408 0.85661408 0.85661298

(0.2, 0.005) 0.99093770 0.99072253 0.99055968 0.99055968 0.99055367

(0.4, 0.005) 0.96271807 0.96230447 0.96199141 0.96199141 0.96198610

(0.6, 0.005) 0.91749119 0.91690990 0.91646991 0.91646991 0.91646564

(0.8, 0.005) 0.85850969 0.85780082 0.85726428 0.85726428 0.85726123

6. Conclusions

Our study presents a practical methodology for approximating solutions to the time-
fractional coupled Korteweg–de Vries (KdV) equation, leveraging the power of fractional
derivatives through Caputo–Fabrizio and Atangana–Baleanu formulations. We employed
a natural decomposition method (NDM), which amalgamates the natural transform and
Adomian decomposition methods. Initially, we utilized the natural transform to scrutinize
the fractional order and derive a recurrence relation. Subsequently, the Adomian decom-
position method was employed to process this recurrence relation. We derived a series
solution by iteratively applying this approach and incorporating initial conditions. Our
findings demonstrate that the proposed fractional model is highly accurate and robust
when utilizing this method, and it remains valid even under extensive computational loads
or limitations. To exemplify the technique’s performance, we provided two illustrative
examples, complemented by tables and 3D graphs, showcasing the excellence of our numer-
ical and analytical results. This method furnishes a series-based solution that significantly
enhances our comprehension of the behavior of fractional models, making it a valuable
tool for analyzing and interpreting their dynamics.
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