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Abstract: Consider G to be a finite group and p to be a prime divisor of the order |G| in the group
G. The main aim of this paper is to prove that the outcome in a recent paper of A. Laradji is true in
the case of a p-constrained group. We observe that the generalization of the concept of Navarro’s
vertex for an irreducible character in a p-constrained group G is generally undefined. We illustrate
this with a suitable example. Let φ ∈ Irr(G) have a positive height, and let there be an anchor group
Aφ. We prove that if the normalizer NG(Aφ) is p-constrained, then Oṕ(NG(Aφ)) 6= {1G}, where
Oṕ(NG(Aφ)) is the maximal normal ṕ subgroup of NG(Aφ). We use character theoretic methods. In
particular, Clifford theory is the main tool used to accomplish the results.
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1. Introduction

Fix a prime number p, and consider G to be a finite group. Let Irr(G) be the set of all
ordinary irreducible characters of G. Let B be a p block of G with defect group D. We write
Irr0(B) to denote the set of all ordinary irreducible characters of G with a height of zero
which belong to the p block B. Let S be a normal subgroup of G and θ ∈ Irr(S). We write
Irr(G|θ) := {χ : χ ∈ Irr(G) and 〈ResG

S (χ), θ〉 6= 0} for the set of all ordinary irreducible
characters of G which lie over θ and Irr0(B|θ) := Irr(G|θ) ∩ Irr0(B). For any term which is
not defined here, the reader is referred to [1] and [2].

Throughout this paper, (k,R, F) is a p-modular system [3–5]. The system is composed
of a complete discrete valuation ringR with a field of fractions k of a characteristic of zero.
Let υp be a valuation of a field k such that υp(p) = 1. Then, we have F = R/J(R), which
is the residue field of the characteristic p, where J(R) refers to the Jacobson radical of the
local ringR.

In this introduction, we try to provide and give sufficient background for our subject.
Consider G to be a finite group of the order |G| = pαn such that gcd(p, n) = 1, α, n ∈ Z+.
Let φ ∈ Irr(G). If pm is the greatest power of p which divides the positive integer |G|

φ(1) ,

then pm =
|G|p

φ(1)p
, where rp refers to the p part of an integer r. The nonnegative integer

m is termed as the defect of the irreducible character φ, and we denote it by de f (φ). If
de f (φ) = α, then we say φ is of a full defect. The greatest defect of irreducible character
which belongs to the p block B is termed the defect number of B and is denoted by de f (B).
The process of subtracting the defect number of φ from the defect number of B produces a
height of φ. We write h(φ) = de f (B)− de f (φ) to indicate the height of φ. Let Cl(G) be the
set of all conjugacy classes of G. Consider the center Z(RG). This is a commutative group
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ring over R with the basis {Ĉ : C ∈ Cl(G)} such that Ĉ = ∑x∈C x is the class sum of the
conjugacy class C of G. For every φ ∈ Irr(G) and g ∈ Cg, we have

ωφ(Ĉg) =
|Cg|
φ(1)

φ(g),

as an algebra homomorphism ωφ : Z(kG)→ k, which is called a central character.
The most notable references that deal with block theory R are from Brauer [6,7], C. W.

Curtis and I. Reiner, [8] and W. Feit [9]. The first description of a p block’s defect group was
provided by R. Brauer [6] and J. A. Green [10].

Let φ ∈ Irr(G). Then, φ can be extended to an algebra map φ : kG → k in a unique
way by the rule φ(∑a∈G βaa) = ∑a∈G βaφ(a). We consider the group algebra element

eφ =
φ(1)
|G| ∑

a∈G
φ(a−1)a,

where the unique primitive central idempotent in kG satisfies φ(eφ) 6= 0. The algebraRGeφ

is a primitive G-interior R algebra [11] because the center Z(kGeφ) contains the center
Z(RGeφ) as a subring.

In 1970, D. Wales [12] proved that if the normalizer of the nontrivial defect group
D for a nonprincipal p block NG(D) is p-constrained, then Oṕ(NG(D)) 6= {1G}, where
Oṕ(NG(D)) is the largest normal ṕ subgroup of NG(D). This result is essentially a restate-
ment of [13] when the p-constrained is present.

The anchor group of an irreducible character φ of G was defined as the defect group of
the primitive G-interiorR algebraRGeφ by R. Kessar, B. Külshammer, and M. Linckelmann
in [14]. In this paper, we prove the relative version of the result for D. Wales [12], which
states the following. Let φ ∈ Irr(G) with a positive height and an anchor group Aφ. If the
normalizer NG(Aφ) is p-constrained, then Oṕ(NG(Aφ)) 6= {1G}. A similar result holds for
the normalizer NG(H) for {1G} 6= H ≤ Aφ.

In 1987, G. Cliff, W. Plesken, and A. Weiss [15] proved that 2 ≤ |Irr0(B)| for any p
block of G with a positive defect. In 1990, G. O. Michler [16] introduced another proof
for this result using Brauer’s main result [7] which states that de f (B) = 2α− υp(dimF(B)),
where dimF(B) is the dimension of B as an F space.

Recall that the group G is said to be p-solvable if each of its composition factors is
either a p group or a ṕ group. We say φ ∈ Irr(G) is p-special if it satisfies the following:
the degree of φ is a p number (a multiple of the prime number p), and if Q is a subnormal
value of G and λ ∈ Irr(Q) such that 〈ResG

Q(φ), λ〉 > 0, then the determinant order of λ,
O(λ) = O(det(λ)) is a p number. (Since det(λ) is a linear character of G according to [17]
(Exercise 2.3), then it is an element of the group of linear characters of G.) If we can factorize
the irreducible character φ of G in a unique way such that φ = φpφṕ, where φp is p-special
and φṕ is ṕ-special, then φ is called p-factorable. For more information, see [18,19].

In 2002, G. Navarro [20] introduced the concept of a vertex for an ordinary irreducible
character of a p-solvable group. In 2005, C.W. Eaton [21] extended the concept of Navarro
vertices for ordinary irreducible characters of a p-solvable group to irreducible characters
of any finite group belonging to the p blocks, with defect groups which are contained in a
normal p-solvable subgroup.

In 2022, A. Laradji [22] proved that a relative version of the previous result for G.
H. Cliff, W. Plesken, and A. Weiss in the case where G is a p-solvable group. A. Laradji
in [22] proved the result in the case where G is a finite p-solvable group and S is a normal
subgroup of G. Let B be a p block of G with a defect group D such that |D ∩ S| < |D|. If
θ ∈ Irr(S) with a height of zero, then the number of irreducible characters of a height of
zero in Irr(B) which lie over θ is greater than or equal to two.

A p-solvable group is characterized by the existence of normal subgroups. Thus, it is
considered a suitable environment to use Clifford theory (see [23]). But we know that any
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p-solvable element is a p-constrained group [24] (VI, 6.5) which again has many normal
subgroups, and then we can use the tool of Clifford theory.

One of our main methods is character theory, which includes the restrictions, induc-
tion, orthogonality relations, and inner product of characters (see [1,17]). In addition, the
most important theorem for studying character theory and the p blocks of finite groups
is Clifford theory. Given a finite group G with its normal subgroup S and τ ∈ Irr(S),
assume that IG(τ) = {a ∈ G|τa = τ} < G is the inertia group of τ in G, Clifford theory
could be employed for creating a bijection between any φ ∈ Irr(G|τ) and η ∈ Irr(IG(τ)|τ)
such that φ = IndG

IG(τ)
(η) and ResG

IG(τ)
(η) = eτ, where e is a nonnegative integer. The

nonnegative integer e is said to be the ramification index of φ relative to S, which satisfies
ResG

S (φ) = e(∑a∈[G/IG(τ)]
τa). Here, τa is the conjugate character of τ such that

τa(x) = τ(axa−1) for all x ∈ S. (See [1,3,19] for more details about Clifford theory).
The motivation of this paper is to prove that A. Laradji’s result in [22] is true in the case of
a p-constrained group. Also, we illustrate with an example that the generalization of the
concept of Navarro’s vertices in a p-constrained group is generally undefined.

The concept of a p-constrained group appeared in [25] (Section 8.1) and in [26] (VII,
13.3). In Section 2, we present the basic facts of a p-constrained group and the essential
theories which were used in the proofs of the main results of this paper. In Section 3, we
present the main results. In Section 4, titled Future Work, we propose several problems
which extend many results from the class of p-solvable groups to the class of p-constrained
groups. We end this paper with two sections: Section 5 contains the discussion about this
topic, and Section 6 contains the conclusion that we came up with from our work.

2. Preliminaries

In this section, we provide some details about p-constrained groups. We offer the
essential theories that we rely on to prove our main results.

Assume that G is a finite group and p is a prime divisor of |G|. Write Oṕ,p(G) to mean
the second term of the lower p series {1G} ≤ Oṕ(G) ≤ Oṕ,p(G) ≤ Oṕ,p,ṕ(G) ≤ ... which
are linked through the following relation:

Oṕ,p(G)/Oṕ(G) = Op(G/Oṕ(G)),

where Op(G) is the maximal normal p subgroup of G and Oṕ(G) is the maximal normal ṕ
subgroup of G. Write CG(Op(G)) to mean the centralizer of Op(G) in G. We say that G is
p-constrained if it satisfies CG(P

⋂
Oṕ,p(G)) ≤ Oṕ,p(G), where P is any Sylow p subgroup

of G. If Oṕ(G) = {1G}, then Oṕ,p(G) = Op(G). It follows that if Oṕ(G) = {1G}, then G is
said to be p-constrained if it satisfies CG(Op(G)) ≤ Op(G).

The following corollary is immediate from the definition of a p-constrained group:

Corollary 1. If G is a finite group which possesses a normal p subgroup that contains its centralizer,
then G is p-constrained and Oṕ(G) = {1G}.

Modulo the maximal normal ṕ subgroup of G, the quotient of a p-constrained group
is p-constrained. The proof can be seen in [25] (Theorem 1.1 (ii), p. 269).

Theorem 1. If G is a p-constrained group, then G/Oṕ(G) is p-constrained.

Let M be a normal subgroup of G and G = G/M. Assume that φ ∈ Irr(G). We call
the character φ the lift of φ to G if it satisfies φ(a) = φ(aM) for a ∈ G. From Lemma 2.22
in [17], if φ ∈ Irr(G), then φ ∈ Irr(G) if M ≤ kerφ. Consequently, we consider Irr(G) to be
a subset of Irr(G). From [2] (p. 137), there exists a unique p block B of G that contains the
p block of G/M, say B; that is, Irr(B) ⊆ Irr(B). The following theorems appeared in [2]
(Theorem 9.9 (C) and Theorem 9.1, respectively).
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Theorem 2. In accordance with the above notations, if M is a ṕ-normal subgroup of G and
Irr(B) ⊆ Irr(B), then Irr(B) = Irr(B), and the set of all defect groups of B is of the form

{DB M/M|DB is any de f ect group o f B}.

Theorem 3. Let S be a normal subgroup of G. Let ψ ∈ Irr(G) and θ ∈ Irr(S). Then, ψ lies over
θ if and only if ωψ(Ĉ) = ωθ(Ĉ) for all conjugacy classes C of G which are contained in S.

As is well known, a p block with a defect value of zero has only one irreducible
ordinary character as well having only an irreducible Brauer character (see [1] (Chapter 3,
Theorem 6.29) and [2] (Theorem 3.18)), while a p block with a positive defect appeared
in [15] (Proposition 3.3).

Proposition 1. Let B be a p block of G with a positive defect. Then, |Irr0(B)| ≥ 2.

3. Main Results

In this section, we extend the result from [22] (Theorem 2.1) in the case of a p-constrained
group. Then, we give some examples. Let φ ∈ Irr(G) with a positive height and an anchor
group Aφ. We prove that if the normalizer NG(Aφ) is p-constrained, then Oṕ(NG(Aφ)) 6= {1G}.
A similar result holds for the normalizer NG(H), for {1G} 6= H ≤ Aφ.

Theorem 4. Suppose that G is a p-constrained group and S is a normal subgroup of G. Let B be a
p block of G with a defect group D such that |D ∩ S| < |D|. Let θ ∈ Irr(S) with a height of zero.
Assume that Irr0(B|θ) 6= φ. Then, |Irr0(B|θ)| ≥ 2.

Proof. Suppose that G is a p-constrained group. We have two cases for this group:

• Case 1: G is p-solvable. According to [24] (VI, 6.5), any p-solvable group is a p-
constrained group. Then, the result from A. Laradji holds (Theorem 2.1 in [22]).

• Case 2: G is not p-solvable, and Oṕ(G) 6= {1G}. We use induction on the order of
G. Since G is p-constrained, then under Theorem 1, G/Oṕ(G) is p-constrained. We
write M := Oṕ(G) as the maximal normal ṕ subgroup of G. Let B be a p block of
G/Oṕ(G) and B ⊆ B. According to Theorem 2, if D is a defect group of B, then
D ∈ {DB M/M|DB is any de f ect group o f B}, and Irr(B) = Irr(B). Without loss of
generality, we may assume that D = DM/M. We have |D ∩ S| < |D|, which implies
that |DM/M ∩ SM/M| < |DM/M|. Since D ∩ M = {1G}, then under the second
isomorphism theorem [27], |D| = |D/D ∩M| = |DM/M| and |DM/M ∩ SM/M| =
|(D ∩ S)M/M| = |D ∩ S||M|/|M| = |D ∩ S| as (D ∩ S) ∩ M = {1G}. Now, let
θ ∈ Irr(S), and assume that Irr0(B|θ) 6= φ. Since, under Theorem 2, Irr(B) = Irr(B),
then Irr0(B|θ) 6= φ. We have G/Oṕ(G) as a p-constrained group with an order less
than that of G and Irr0(B|θ) 6= φ. Therefore, by induction, |Irr0(B|θ)| ≥ 2. Now,
according to Theorem 2, |Irr0(B|θ)| ≥ 2.

• Case 3: G is not p-solvable, and Oṕ(G) = {1G}. Then, from the definition of a p-
constrained group, we have CG(Op(G)) ≤ Op(G). Hence, G has a unique p block,
namely the principal block B0 from [9] (Chapter V, Corollary 3.11). thus, from Proposi-
tion 1, there are at least two irreducible characters χ, ψ with a height of zero which
belong to B0. Since we have Irr0(B0|θ) 6= φ, assume that χ ∈ Irr0(B0|θ). It follows
that 〈ResG

S (χ), θ〉 6= 0.. Then, under Theorem 3, ωχ(Ĉ) = ωθ(Ĉ) for all conjugacy
classes C of G which are contained in S. We know from [1] (Chapter 3, Theorem
6.24) that two irreducible characters χ, ψ belong to the same p block if and only if
ωχ(Ĉ) ≡ ωψ(Ĉ) mod(p) for all conjugacy classes C of G. Thus, ωψ(Ĉ) = ωθ(Ĉ). Then,
from Theorem 3 again, 〈ResG

S (ψ), θ〉 6= 0. It follows that |Irr0(B0|θ)| ≥ 2.

In the following examples, we verify our theorem above in the case of p-constrained
groups. The wreath product (cyclic group (p), alternating group (5)) for p = 2, 3, 5 is a
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typical example of a p-constrained group which is not p-solvable. The wreath product
arises naturally from the symmetric group. We emphasize that there is a strong relationship
between our work and the concept of symmetry. The information for these examples about
the height of the irreducible character, the defect of the block, and the structure of the defect
group are from the GAP [28].

Example 1. Let G := wreath product (cyclic group (2), alternating group (5)) be a group of the
order 1920. We set p = 2. We have O2́(G) = {1G} and O2(G) = C2 × C2 × C2 × C2 × C2
such that CG(O2(G)) = O2(G). Therefore, the group G is 2-constrained by the definition above.
From [9] (Chapter V, Corollary 3.11.), there is only one 2-block B0 of G. It contains 24 irreducible
characters with de f (B0) = 7 and the defect group D = C2 × (((C2 × C2 × C2) : C4) : C2) of an
order of 128. We have S := (C2 × C2 × C2 × C2) : A5 as the normal subgroup of G such that
D ∩ S = ((C2 × C2 × C2 × C2) : C2) : C2 is a group of the order 64. Let θ ∈ Irr(S) have a height
of zero. Then, there are exactly two irreducible characters of G of a height of zero over θ. Note that
this group is 2-constrained, making it not a 2-solvable group because it has the alternating group
A5 as a non-Abelian composition factor of G for neither a 2-group nor a 2́-group.

Example 2. Let G := wreath product (cyclic group (3), alternating group (5)) be a group of the
order 14, 580. We set p = 3. The group G is 3-constrained. Because we see that O3́(G) = {1G},
then under the definition of a p-constrained group, the unique largest normal 3 subgroup of G,
O3(G) = C3 × C3 × C3 × C3 × C3, is self-centralizing; that is, CG(O3(G)) = O3(G). It follows
that there is only one 3-block B0 of G. It contains 72 irreducible characters with de f (B0) = 6,
and the defect group D = C3 × C3 × ((C3 × C3 × C3) : C3) is of the order 729. We have S :=
(C3×C3×C3×C3) : A5 as the normal subgroup of G and D∩ S = C3× ((C3×C3×C3) : C3)
as a group of the order 243. Let θ ∈ Irr(S) have a height of zero. Note that there are at least two
irreducible characters of G of a height of zero over θ. Note that this group is 3-constrained, meaning
it is not a 3-solvable group because it has the alternating group A5 as a non-Abelian composition
factor of G for neither a 3 group nor a 3́ group.

Example 3. Let G := wreath product (cyclic group (5), alternating group (5)) be a group of the
order 187, 500. We set p = 5. We see that the unique largest normal 5 subgroup of G is O5(G) =
C5 × C5 × C5 × C5 × C5. This is a group of the order 3125 such that CG(O5(G)) = O5(G).
Under Corollary 1, the group G is 5-constrained, and O5́(G) = {1G}. We have only one 5-block B0
of G which contains 337 irreducible characters with de f (B0) = 6, and the defect group D = (((C5 :
C5) : C5) : C5) : C5 is a group of the order 15, 625. We have S := (C5 × C5 × C5 × C5) : A5 as
the normal subgroup of G and D ∩ S = (C5 × C5 × C5 × C5) : C5 as a group of the order 3125.
Let θ ∈ Irr(S) have a height of zero. Note that there are exactly five irreducible characters of G with
a height of zero which lie over θ. Also, this group is 5-constrained, meaning it is not a 5-solvable
group because it has the alternating group A5, which is a non-Abelian composition factor of G for
neither a 5 group nor a 5́ group.

Consider the p-solvable group G and ψ ∈ Irr(G). A nucleus of ψ [23] is a unique (up
to G conjugacy) canonical pair (H, ζ) such that H ≤ G, ζ ∈ Irr(H) is p-factorable, and
IndG

H(ζ) = ψ. The nucleus is defined as a result of repeated construction standard inducing
pairs. If ψ is p-factorable, then (G, ψ) = (H, ζ) is a nucleus of ψ. If it is not p-factorable,
then let (S, η) be a pair under (G, ψ) such that S is a maximal normal subgroup of G
and η ∈ Irr(S) is p-factorable such that 〈ResG

S (ψ), η〉 6= 0. Assume that IG(η) = {a ∈
G|ηa = η} < G is the inertia group of η in G. If φ ∈ Irr(IG(η)|η), then under Clifford
theory, IndG

IG(η)
(φ) ∈ Irr(G|η). Assume that φ is the Clifford correspondent of ψ. Hence,

IndG
IG(η)

(φ) = ψ. Then, by induction, there is a nucleus (H, ζ) for (IG(η), φ). It follows that
(H, ζ) is a nucleus for (G, ψ) since

IndG
H(ζ) = IndG

IG(η)
(IndIG(η)

H (ζ)) = IndG
IG(η)

(φ) = ψ.
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We say that (V, α) is Navarro’s vertex of ψ if there exists a nucleus (H, ζ) for ψ such that V
is a Sylow p subgroup of H and α = ResH

V (ζp) (see [20]).
Note that in this case, G is a p-constrained finite group Navarro’s vertex is generally

undefined. In 2005, C. W. Eaton gave a generalization of the concept of Navarro’s vertices to
vertices of ordinary irreducible characters of any finite group, with the additional condition
that the irreducible character belongs to a p block with a defect group contained in a normal
p-solvable subgroup of G in [21] (Theorem 4.2).

Example 4. Consider G to be a 2-constrained group in a case where p = 2.

G := WreathProduct(CyclicGroup(2), AlternatingGroup(5)),

with an order of 1920. In Example 1, G has only one 2-block, namely the principal 2-block B0 with
a defect group D = C2 × (((C2 × C2 × C2) : C4) : C2), which is a Sylow 2 subgroup of G of the
order 128. Note that there is no a normal 2-solvable subgroup of G which contains a defect group of
the 2-block B0. Moreover, not all irreducible characters of G are 2-factorable. There are irreducible
characters of a degree of 10 which are not 2-factorable, and they cannot be associated with a nucleus.

Recall that the ordinary irreducible character χ with a height of zero, which belongs to
a p block B, has an anchor equal to a defect group of the p block B from [14] (Theorem 1.3
(d)). As is well known, the principal p block contains the principal irreducible character
(the trivial character), and it has a Sylow p subgroup of G as a defect group (see [1] p. 316).

Theorem 5. Consider G to be a finite group. Let φ ∈ Irr(G) with a positive height and a nontrivial
anchor group Aφ. Let Q be a subgroup of G which contains CG(Aφ), with Op(Q) 6= {1G}. If Q is
p-constrained, then Oṕ(Q) 6= {1G}.

Proof. We have φ with a positive height. Hence, φ cannot be the principal irreducible
character of G. Assume that φ ∈ Irr(G) belongs to a non-principal p block B of G. If Aφ

is the defect group of the p block B, then the result holds from [12] (Theorem 1). Now,
assume that the anchor of φ is a proper subgroup of the defect group D of the p block B.
We have CG(Aφ) ⊆ Q, where Op(Q) 6= {1G}. From [14] (Theorem 1.2 (a)), since Aφ ≤ D,
then CG(D) ⊆ CG(Aχ) ⊆ Q. Again, from [12] (Theorem 1), if Q is p-constrained, then
Oṕ(Q) 6= {1G}.

The following corollary is immediately from the above theorem:

Corollary 2. Consider G to be a finite group. Let φ ∈ Irr(G) with positive height and a nontrivial
anchor group Aφ. Suppose that {1G} 6= H ⊆ Aφ. Let Q be a subgroup of NG(H), contains
CG(Aφ), that is CG(Aφ) ⊆ Q ⊆ NG(H). If Q is a p-constrained, then Oṕ(Q) 6= {1G}.

4. Future Work

The class of p-constrained groups is very large. It includes the class of p-solvable
groups. So our project is to extend many and important results in the literature from the
class of p-solvable groups to the class of p-constrained groups. In particular, according to
recent work [29–31]. We raise the following questions:

Problem 1: Let G be p-constrained group and Q be a Sylow p-subgroup of G. Write Q́ to
denote the commutator subgroup of Q. Then

|Irr(NG(Q)/Oṕ(NG(Q))Q́)| = |Irr0(B0(NG(Q)))| = |Irr0(B0(G))|,

where |Irr0(B0(G))| denotes to the number of irreducible ordinary characters of height zero in
the principal p block of G, |Irr0(B0(NG(Q)))| denotes to the number of irreducible ordinary
characters of height zero in the principal p block of NG(Q) and |Irr(NG(Q)/Oṕ(NG(Q))Q́)|
refers to the number of irreducible ordinary characters in the group NG(Q)/Oṕ(NG(Q))Q́.
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For more details on the commutator subgroup see [27,32,33].

Problem 2: If G is p-constrained group and its principal p block satisfies the Alperin-Mckay
conjecture, then

2 ≤ |Irr0(B0(G))|.

Recall that Alperin-Mckay conjecture states: Let B be a p block of G, with defect group DB,
and let b be the Brauer correspondence of B in NG(DB). Then |Irr0(b)| = |Irr0(B)|. For
more details on Brauer correspondence of blocks, see [4], Section 12.6.

Problem 3: Let G be p-constrained group and Q be its Sylow p-subgroup. For each linear
character γ of Q, then

|Irr ṕ(G | γ)| = |Irr ṕ(NG(Q) | γ)|.

Here |Irr ṕ(G | γ)| := |{ψ ∈ Irr(G)|p does not divide ψ(1) and 〈ResG
Qψ, γ〉 6= 0}|.

Problem 4: Let G be p-constrained group and Q be its Sylow p-subgroup. If φ ∈ Irr(G),
then φp is a sum of characters induces from p-subgroup P of G which contained in Q such
that φ(1)p = |Q : P|.

Let IBr(G) be the set of all Brauer irreducible characters of G. We write ψ0 refers to the
restriction of ψ to the set of all p-regular elements of G, that is (p does not divide the order
of the elements). One of the most prominent theories that distinguish p-solvable group is
the Fong-Swan theorem in [1], Theorem 7.5 and Wolf theorem [2], Theorem 10.3. We raise
the following questions.

Problem 5: Consider G to be p-constrained group. If φ ∈ IBr(G), then there is ψ ∈ Irr(G)
that satisfies ψ0 = φ.

Problem 6: Let Q be normal subgroup of G. Assume that G/Q is p-constrained group
and φ ∈ Irr(Q) with φ0 ∈ IBr(Q) and IG(φ) = IG(φ

0). Suppose that O(φ)φ(1) does not
divisible by p. If γ ∈ IBr(G|φ0), then there is ψ ∈ Irr(G|φ) that satisfies ψ0 = γ.

Remark 1. We can think of the above problems in different ways. The first one is to get a theorem
that extends the result from p-solvable groups to p-constrained groups. The second one is to look at
an example that distinguishes between two classes of groups.

5. Discussion

In this work, let φ ∈ Irr(G) with positive height and an anchor group Aφ. We
prove that if the normalizer NG(Aφ) is p-constrained, then Oṕ(NG(Aφ)) 6= {1G}. The
same discussion holds for the normalizer NG(H), for {1G} 6= H ≤ Aφ. This result is
the relative version of the result for D. Wales in [12] which states: if the normalizer of
the nontrivial defect group D for a nonprincipal p block, NG(D) is a p-constrained then
Oṕ(NG(D)) 6= {1G}. Since the anchor of irreducible character is the defect group of the
primitive G-interiorR-algebraRGeφ, the previous conclusion is logical. The main result
of this paper is the generalization of A. Laradji’s result in [22] to the case that G is a finite
p-constrained group and S is a normal subgroup of G: let B be a p block of G with defect
group D such that |D ∩ S| < |D|. If θ ∈ Irr(S) with height zero then the number of
irreducible characters of height zero in Irr(B) which lie over θ is greater than or equal to
2. We have applied this result on some examples for p-constrained group which is not
p-solvable group. A p-solvable group is characterized by the existence of normal subgroups.
Thus, it is considered a suitable environment to use Clifford theory. But we know that any
p-solvable is p-constrained group which again has many normal subgroups and then we
can use the tool of Clifford theory. If G is a finite p-constrained which is not p-solvable
group, then we have either Oṕ(G) 6= {1G} or Oṕ(G) = {1G}. In the first case to prove this
result we used the method “induction on the order of G”. In the second case we used the
group properties also the block theory. While the generalization the concept of Navarro’s
vertex for an irreducible character of a p-solvable group to a p-constrained group is fails in
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general. The outcomes of work are important because contains generalize the related theory
of p-solvable group to a p-constrained group. We plan to study the necessary conditions to
generalize the concept of Navarro’s vertex in a p-constrained group. We plan to generalize
properties of an irreducible character of a p-solvable group to a p-constrained group.

6. Conclusions

Consider G to be a p-constrained group and S to be a normal subgroup of G and
θ ∈ Irr(S) with height zero. Let B be a p block of G with defect group D such that
|D ∩ S| < |D|. Our research shows that the number of Irr0(B|θ) is greater than or equal
to 2. We have applied this result on some examples for p-constrained group. We have
introduced the example to show that Navarro’s vertex for an irreducible character in a
p-constrained group G is generally undefined. For φ is an irreducible character of a finite
group G with positive height and a nontrivial anchor group Aφ. We have proved that if
Aφ has a p-constrained normalizer group then Oṕ(NG(Aφ)) is nontrivial. A similar result
holds for the normalizer NG(H), for {1G} 6= H ≤ Aφ. The theories that we extended
above which have been developed before by other influential scientists, see [12,22]. In
the future we will try to establish the necessary conditions for the generalization of the
concept of Navarro’s vertex for an irreducible character of a p-solvable group and some of
its characteristics to a p-constrained group.
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30. Isaacs, I.M.; Navarro, G. Characters of ṕ-degree of p-solvable groups. J. Algebra 2001, 246, 394–413. [CrossRef]
31. Rossi, D.; Sambale, B. Restrictions of characters in p-solvable groups. J. Algebra 2021, 587, 130–141. [CrossRef]
32. Hungerford, T.W. Abstract Algebra: An Introduction, 3rd ed.; Cengage Learning: Boston, MA, USA, 2012; p. 286.
33. Rose, J.S. A Course in Group Theory; Cambridge University Press: Cambridge, UK, 1978; pp. 58–60.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0021-8693(84)90058-9
http://dx.doi.org/10.1090/S0002-9947-02-02974-4
http://dx.doi.org/10.1016/j.jalgebra.2005.01.007
Http://www.gap-system.org
Http://www.gap-system.org
http://dx.doi.org/10.1016/j.jalgebra.2023.01.021
http://dx.doi.org/10.1006/jabr.2001.8985
http://dx.doi.org/10.1016/j.jalgebra.2021.07.034

	Introduction
	Preliminaries
	Main Results
	Future Work
	Discussion
	Conclusions
	References

