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Abstract: The maximum clique problem is a problem that takes many forms in optimization and
related graph theory problems, and also has many applications. Because of its NP-completeness
(nondeterministic polynomial time), the question arises of its solvability for larger instances. Instead
of the traditional approaches based on the use of approximate or stochastic heuristic methods, we
focus here on the use of integer programming models in the GAMS (General Algebraic Modelling
System) environment, which is based on exact methods and sophisticated deterministic heuristics
incorporated in it. We propose modifications of integer models, derive their time complexities and
show their direct use in GAMS. GAMS makes it possible to find optimal solutions to the maximum
clique problem for instances with hundreds of vertices and thousands of edges within minutes at
most. For extremely large instances, good approximations of the optimum are given in a reasonable
amount of time. A great advantage of this approach over all the mentioned algorithms is that even if
GAMS does not find the best known solution within the chosen time limit, it displays its value at the
end of the calculation as a reachable bound.

Keywords: clique; independent set; GAMS; NP-complete problem; integer programming

1. Introduction

Assuming that a graph G is simple, i.e., it does not have self-loops and multi edges, the
Maximum Clique Problem (abbreviated to MCP) consists in finding the complete subgraph
of G with the largest number of vertices, called the maximum clique in the graph [1–5].

The problem has many applications, e.g., in electrical engineering, chemistry, biology,
medicine, image processing, and networks analysis. In [6], a bottom-up clustering algorithm
based on recursive collapsing of small cliques in a graph, applied to VLSI (Very-Large-
Scale Integration) design, is proposed. An application from the gas industry is described
in [7]. In [8], a graph-theoretic clique finding a method for comparative modelling of
protein structures is presented. Clusters of proteins using a clique-based approach are
also found in [9]. A clique-based method for multimodal brain tumor segmentation that
considers a brain tumor image as a graph segment was applied in [10]. In [11], synaptic
networks in the brain are studied and it was discovered that they contain an abundance
of cliques of neurons bound into cavities that guide the emergence of correlated activities.
In [12], for cliques in images, the clique potential is calculated to be used in the image
segmentation. Cliques as complete subgraphs are also identified in social networks [13–15]
to find out groups of people who all know each other. It is clear that the members inside the
group (i.e., inside the clique of the graph) have a symmetric relationship with each other and
a potentially asymmetric relationship with respect to objects outside the group (clique) since,
with some objects outside the group (clique), they may have a close relationship (connected
by an edge in the graph) while having no relationship with others (being not connected
by an edge in the graph). From another perspective, a weaker symmetry relationship is
contained in the representation of the graph by the adjacency matrix considered below
because, since the graph is undirected, the adjacency matrix is symmetric.
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In addition to practical applications of maximum clique in the graph, we can dis-
tinguish between papers that focus theoretically on the properties of cliques and specific
sub-problems and those that deal with the implementation of methods for solving the
underlying problem and testing them on representative sets of benchmarks.

Theoretically oriented articles can be divided into three groups:

(1) Literature concerning properties of cliques

In [16], the subgraph isomorphism is reduced to the clique problem. In [17], the clique
problem is reduced to related maximization problems by a procedure known from NP-
completeness proofs and the possibilities of expressing approximation ratios are explored.
In [18], the maximum edge clique partitioning problem and its complexity with respect
to the clique number is explored. In [19], the relationship between the independence
and clique numbers is investigated. Upper and lower bounds for the clique number are
derived in [20]. Further approximations are presented in [21,22]. Computing bounds on
the clique number of a graph is solved using a sequential elimination algorithm in [23].
An algorithm for clique covers is presented and the exact upper bound on the size of a
minimal clique cover is derived in [24]. Finding maximum hereditary structures in graphs
based on cliques is presented in [25]. In [26], the notion of distance between vertices,
where two vertices are adjacent if they have exactly a given distance, is generalized to
cliques in exact distance power graphs of a given maximum degree. In [27], the clique
recognition problem (i.e., whether a given graph is a clique graph) is applied to split clique
graphs with their complexity explored. The special quasi-clique problem is defined in [28],
mathematical programming formulations are proposed and results obtained by the Xpress-
IVE solver are presented. In [29], the relationship between the maximum number of edges
in hypergraphs with fixed matching and the clique number are investigated. In [30], a
clique graph merging strategy to reduce large structured positive semidefinite matrix
constraints in semidefinite programs is proposed. In [31] and [32], clique separators are
used in solving the Maximum Weight Stable Set Problem. In [33], clique constraints are
applied in solving the Fairness-Oriented Crew Rostering Problem. The connection between
polynomial optimization, maximum cliques and Turán densities is explored in [34].

(2) Maximum clique problems and their definition and solution in specific representations

In [35], the maximum weighted clique problem (see Section 2) is represented by
matroids and solved by a greedy algorithm. In [36], clique search problems are decomposed
into smaller instances based on vertex and edge colourings. Variations of clique transversal
and clique independent sets on graphs are studied in [37,38].

(3) Relationship of clique problems with other optimization problems

The maximum clique constrained to visibility graphs of a simple polygon, computed
using dynamic programming, is described in [39]. In [40], it is restricted to one-planar
graphs, in [41] to dense graphs and in [42] to graphs without long cycles. Papers [43,44]
deal with a dominating clique, i.e., a clique that is also a dominating set of a graph G = (V, E),
which is a subset V′ of V such that any vertex of G is either in V′ or has a neighbour in V′. An
algorithm for minimum covering by cliques in claw-free perfect graphs is introduced in [45].
The paper [46] deals with the clique-critical graphs, i.e., graphs whose clique graph changes
whenever a vertex is removed. The relationship to job shop scheduling is described in [47].

In [48], Karp proved that the decision version of the problem whether a complete
subgraph with k vertices exists in a graph G belongs to the class of NP-complete problems.
To solve large instances of NP-complete and NP-hard problems, stochastic heuristic meth-
ods are frequently used. They can be classified according to several aspects [49]: (i) single
solution-based algorithms (Local Search, Simulated Annealing, Hill Climbing, tabu search)
and population solution-based algorithms (e.g., Genetic Algorithm, bio-inspired algo-
rithms), or (ii) with another point of view applied to their behaviour: evolution-based
algorithms (Genetic Algorithm, Genetic Programming, Differential Evolution), swarm
intelligence-based algorithms (e.g., Ant Colony Optimisation, Particle Swarm Optimi-
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sation), physics-based algorithms (e.g., Simulated Annealing and Harmony Search) and
human behaviour-based algorithms (e.g., teaching–learning-based optimization algorithm).

Some of these methods have also been applied to solve the maximum clique problem.
Prohibition-based techniques for neighbours are also used in the Reactive Local Search,
proposed in [50]. The paper [51] proposes a hybrid algorithm created by combining an exact
algorithm with the tabu search. It also uses the relationship between the chromatic number
and the maximum clique in the graph. If a graph G contains a clique with n vertices, then
just to colour the clique itself it is necessary to use n colours. Thus, the chromatic number
χ(G) must be greater than or equal to clique number ω(G), i.e., χ(G) ≥ ω(G) [52]. These
two values are often identical. In [53], ten different neighbourhoods in the search were used.
An incremental DNA algorithm is implemented in [54], but it also gives incorrect solutions.
In [55], a heuristic approach for finding maximum clique using minimal independent set in
a graph is described. The heuristic, described in [56], is based on generating all subgraphs
and eliminating those that cannot be cliques. In [57], a heuristic decision-making method for
local density of the vertices in the undirected graph is proposed, a density index function is
constructed and a decision-making inference for finding maximum cliques is made. In [58],
a vertex trust indicator for vertices is calculated at each iteration and vertices with a lower
degree than the current clique number are eliminated. In the heuristic of [59], the maximum
clique problem is expressed as a linearly constrained quadratic maximization program
and a similar approach, implemented in MATLAB, is described in [60]. The optimization
behaviour of randomized search heuristics on sparse semi-random graphs is theoretically
investigated in [61]. The paper [62] is a summary of heuristics for maximal clique and
independent sets.

However, in solving the maximum clique problem the use of stochastic heuristic
methods has many disadvantages. The basic problem is that the operations of heuristic
methods, such as neighbourhood in simulated annealing and tabu search, and crossover
and mutation in the genetic algorithm, generate a large number of infeasible solutions
that must be penalized, thus increasing computational complexity, and the results are
not satisfactory [63].

For these reasons, solutions using mathematical models and exact methods are more
common for the problem under study. Linear programming and mixed integer program-
ming approaches are applicable and such models are presented in [3,64–66]. There are also
approaches based on deterministic methods such as branch and bound [67–70]. The exact
algorithms, expressed as codes in programming languages, are described in [44,71–73].
No mathematical models are given here and the proposed algorithms can be considered
deterministic heuristics.

In this paper, we will focus on the use of integer programming models and their
applicability in the GAMS (General Algebraic Modelling System) programming tool, which
has already been successfully used in previous papers to solve NP-complete set covering
problems [74], in finding the Steiner minimum tree in networks [75] and solving the Travel-
ling Salesman Problem for instances up to 100 cities [76]. But it is always necessary to have
a suitable mathematical model, which can be then implemented in the GAMS environment.
For these reasons, the models used had to be modified. This is described in detail, including
GAMS source codes, in Section 3, and computational results are summarised in Section 4.

Based on the literature reviewed, this paper’s contributions could be seen as follows:

1. Unconventional is the use of the professional software tool GAMS in solving the
studied maximum clique problem in the graph. Of the articles cited, only one men-
tions the use of sw Xpress-IVE [28], with nothing more detailed found here on the
implementation. Here, on the other hand, the implementation was the motivation for
modifying the previously known models for GAMS with all the necessary information
about the code presented in the text.

2. The modification of the models is not an end in itself as the original models work
with the complementary matrix. It is, however, no longer necessary in the modified
models because its values are determined by absolute-value equations. This reduces
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the space complexity of the algorithm. In this way, the modified models do not strictly
follow the scheme of linear or mixed integer programming problems. However, since
the absolute value function is among the built-in functions of GAMS, this does not
limit the use of the MIP solver.

3. In the paper, we also deal with theoretical aspects—two mathematical theorems
concerning the time complexity of the proposed model modifications have been
formulated and proved. In the referenced papers presenting the calculations, on the
other hand, this aspect is not considered.

4. The computational power of GAMS has been steadily increasing thanks to the collab-
oration of development teams from prestigious institutions, and now it is possible
to obtain good-quality results (optimal or near-optimal) even for quite large prob-
lem instances within a reasonable time and on an simple laptop. This is because
deterministic heuristics have already been included in the computational kernel.

5. A great advantage of GAMS over all the mentioned algorithms is that even if it does
not find the best known solution within the chosen time limit, it displays its value at
the end of the calculation as a reachable bound. To achieve this, it is enough to increase
the computation time and/or use a more powerful computer. This is important for
instances where the optimal solution (or best known solution) is not archived, as
is the case with the well-known DIMACS benchmarks. For example, for a timeout
of 100 s, benchmark gen400_p0.9_55 and the first model GAMS finds the current
solution of a maximum clique with 49 vertices (5, 11, 14, 18, 20, 41, 43, 61, 65, 66, 69,
72, 87, 91, 93, 98, 131, 147, 157, 160, 167, 168, 177, 181, 188, 194, 199, 208, 210, 216, 235,
237, 240, 245, 253, 258, 260, 266, 269, 271, 284, 318, 323, 334, 339, 372, 381, 385, 386)
and, in addition, displays information, scanned from the GAMS environment on the
best solution having a value of 55. Therefore, the current solution differs from the
optimum by 6. See Figure 1.

Figure 1. Scanned result from GAMS.

The remaining part of the paper is organized as follows. Section 2 presents the basic
concepts and the first of the theoretical models, which we, however, do not use due to
the complex two-phase calculation. Instead, in Section 3 we focus on two single-phase
computation models, their modifications for direct use in GAMS and evaluations of their
theoretical time complexities, including implementation details along with code writing.
Section 4 presents computational results on a set of DIMACS benchmarks. Section 5 is a
final summary with an indication of the direction for further research.

2. Basic Notions

Since the basic algorithm for finding the maximum clique in a graph is related to the
notion of an independent set, we start with it.

A set of vertices in a graph G is independent if no two of its vertices are connected by
an edge. An independent set S of vertices in a graph G is called a maximal independent set if
S is not a proper subset of any other independent set of vertices of G. This means that no
vertex can be added to a maximal independent set without it ceasing to be independent.

The largest independent set is the maximal independent set that has the largest number
of vertices. The number of vertices in the largest independent set is called the independence
number of G and is denoted by α(G).

A clique in a graph G is a subgraph of G that is a complete graph. A maximal clique is a
clique that cannot be extended by including one more adjacent vertex. A maximum clique of
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a graph G is a clique, such that there is no clique with more vertices. The clique number of a
graph G, denoted by ω(G), is the number of vertices in a maximum clique of G.

If we construct a so-called complement graph G′ of G in which two vertices are connected
by an edge exactly when they are not connected in the original graph G, then it is clear that
the cliques in the graph G correspond to the maximal independent sets in the complement
graph G′.

Let G = (V, E) be a finite simple graph, where V = {v1, . . . , vn}, C be a set of vertices
in a clique, I∗s denote the set of all maximal independent sets in G, and x1, . . ., xn denote
decision variables, where xi = 1 if vi ∈ C and xi = 0 if vi 6∈C.

Then, the maximum clique problem can be formulated as the following integer
programme [65]:

z =
n

∑
i=1

xi → max (1)

subject to
∑
i∈Is

xi ≤ 1, ∀Is ∈ I∗s (2)

xi ∈ {0, 1}, i = 1, . . . , n (3)

Other algorithms using independent sets for specific constraints are described in [77,78].
A specific case of the Maximum Clique Problem is the Maximum Weight Clique

Problem [68,79,80], where vertices vi are assigned weights wi and the objective is to find the
clique that has the maximum sum of the weights. The objective function (1) changes to (4):

z =
n

∑
i=1

wixi → max (4)

The model determined by Equations (1)–(3) is simple, but its disadvantage is that the
set of maximal independent sets must be determined first, so the calculation has two phases
and is not suitable for direct calculation in GAMS.

3. Direct Models and Implementation Views in GAMS

In the sense of the last comment in the previous section, rather than the independent set
reformulation of the maximum clique problem, expressed by Equations (1)–(3), the so-called
edge reformulation is better for us.

3.1. The First Model

The first model is as follows [3,64]:

z =
n

∑
i=1

xi → max (5)

subject to
xi + xj ≤ 1, ∀{vi, vj} 6∈ E (6)

xi ∈ {0, 1}, i = 1, . . . , n (7)

We will adapt this model to be easily usable in the GAMS environment. We modify
Equation (6) by multiplying xi + xj by the complementary values of the matrix E where the
values 0 and 1 are interchanged and exclude the elements of the main diagonal, i.e., i 6= j.
This gives us the following form:

(xi + xj)Ecomp(i, j) ≤ 1, i 6= j, i = 1, . . . , n, j = 1, . . . , n (8)
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We can provide the same function even more simply without the complementary
values of the matrix E using |eij − 1| instead of Ecomp(i, j) because |eij − 1| = 0 for eij = 1,
and |eij − 1| = 1 for eij = 0.

Thus, the modified model (5)–(7) will have the following form:

z =
n

∑
i=1

xi → max (9)

subject to
(xi + xj)|eij − 1| ≤ 1, i 6= j, i = 1, . . . , n, j = 1, . . . , n (10)

xi ∈ {0, 1}, i = 1, . . . , n (11)

The use of the absolute value function in Equation (10) is incorrect from the point of view
of linear and integer models because only addition and multiplication operations are allowed
in constraints, but the absolute value function is available in the GAMS environment.

Now, we present the complete code of the maximum clique calculation in GAMS for
the graph in Figure 2. The resulting solution is shown in Figure 3. The graph contains a
large number of cliques with three vertices, one clique with four vertices (2, 3, 5, 13) and
the maximum clique consists of vertices 5, 7, 8, 10 and 11.

$TITLE Maximum clique
$OFFSYMXREF
$OFFUELLIST
$OFFUELXREF

* section defining indexes
SETS

I vertices /1*21/;
ALIAS(J,I);

* input data section

TABLE E(I,J)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
4 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0
7 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0
11 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1
12 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0
13 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
14 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0
16 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
18 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
21 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0;
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* variables section (decision variables and objective function)
VARIABLES

X(I)
Cmax objective function (number of vertices in the maximum clique);
BINARY VARIABLE X;

*section describing the system of (in)equalities
EQUATIONS

EQ1(I,J)
OBJFCE number of vertices in the maximum clique;

EQ1(I,J)$(ORD(I) NE ORD(J)) .. (X(I)+X(J))*ABS(E(I,J)-1) =L= 1;
OBJFCE .. Cmax =E= SUM(I,X(I));

*description of the model, running the solver, and displaying the results
MODEL CLIQUE /ALL/;
SOLVE CLIQUE USING MIP MAXIMIZING Cmax;
* DISPLAY NN, X.L, Cmax.L;
DISPLAY X.L, Cmax.L;

Figure 2. Graph with 21 vertices.

Figure 3. Maximum clique for the graph from Figure 2.
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3.1.1. Time Complexity of the First Model

Theorem 1. The modified model (9)–(11) runs in O(4n) time.

Proof. The size of the search space is determined by the number of all assignments of
0 and 1 to xi and xj in Equation (10). Since the combination numbers (n

k), k = 0, 1, . . . , n
express how many ways k zeros can be placed in a vector of n elements, according to the
binomial theorem, the number of all assignments of zeros to xi is given by(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n

n− 1

)
+

(
n
n

)
= (1 + 1)n = 2n (12)

The same situation is for xj. However, we must exclude from these combinations the cases
where xi = xj, i.e., both variables are either 0 or 1.

Hence, we get the size of the search space:

2n2n − n− n = 22n − 2n = 4n − 2n = O(4n) (13)

3.2. The Second Model

For a vertex vj of G, we define the set NN(j) which contains all non-neighbours of
vj ∈ G. Although vertex vj is not adjacent to itself, vj is not considered to be an element of
NN(j). The cardinality of NN(j) is denoted by hj. More precisely, hj = |NN(j)| if NN(j) 6= ∅
and hj = 1 if NN(j) = ∅. That means hj = max{1, |NN(j)|}.

In [66], the following model was derived.

z =
n

∑
i=1

xi → max (14)

subject to
hjxj + ∑

i∈NN(j)
xi ≤ hj, j = 1, . . . , n (15)

xi ∈ {0, 1}, i = 1, . . . , n (16)

First, instead of sets NN(j) which contain all non-neighbours of vj ∈ G, we introduce
the set NN(i, j), where NN(i, j) = 1 if E(i, j) = 0 and NN(i, j) = 0 if E(i, j) = 1.

The elements NN(i, i), i = 1, . . . , n are assigned the values 0 and the values of hi must
be reduced by 1 because the values of NN(i, i), i = 1, . . . , n were set to 1 during the first
initialization.

The final determination of hi values by the equation hi = max{1, |NN(i, j)|} is similar
to the previous case.

In GAMS code, we express this with a program section as follows:

LOOP(I,
H(I)=0;
LOOP(J,

IF (E(I,J)=0,
NN(I,J)=1;
H(I)=H(I)+1;

ELSE
NN(I,J)=0;

);
);

);

LOOP(I,
NN(I,I)=0;
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H(I)=H(I)-1;
IF (H(I)=0,

H(I)=1;
);

);

In Equation (15), instead of traversing the original sets NN(j), we multiply xi by the
newly introduced elements of the set (NN(i, j) and get:

hjxj +
n

∑
i=1

(xi NN(i, j)) ≤ hj, j = 1, . . . , n (17)

It is clear that, after redefining NN(j) to NN(i, j), the matrix NN is complementary to
E, i.e., the values 1 and 0 are interchanged so there is no need to introduce the matrix NN
and we can directly overwrite the elements of the matrix E with complementary values.
However, the elements of the main diagonal remain zero. In the modified model (20)–(22),
NN(i, j) is replaced by Ecomp(i, j), where the matrix Ecomp represents the rewritten values of
the matrix E.

In the GAMS code, we create new values of the matrix E in the upper triangular matrix
and then copy them to the lower triangular matrix since the matrix E is symmetric. Thus,
Equation (17) changes to (18).

hjxj +
n

∑
i=1

(xiEcomp(i, j)) ≤ hj, j = 1, . . . , n (18)

Since the initial part of the code in GAMS is identical to the above code, we only show
the part from the PARAMETERS section, where the matrix E is overwritten and the values
of hj are calculated, and then the EQUATIONS section is also modified.

PARAMETERS
H(J) cardinality of non-neighbours set of vertex j;

*inverse in upper triangular matrix and copy to lower triangular matrix
LOOP(I,

H(I)=0;
LOOP(J$(ORD(J)>ORD(I)),

IF (E(I,J)=0,
E(I,J)=1;
E(J,I)=1;
H(I)=H(I)+1;

ELSE
E(I,J)=0;
E(J,I)=0;

);
);

);

LOOP(I,
LOOP(J$(ORD(J)<ORD(I)),

IF (E(I,J)=1,
H(I)=H(I)+1;
);

);
);

LOOP(I,
E(I,I)=0;
IF (H(I)=0,
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H(I)=1;
);

);

* variables section (decision variables and objective function)
VARIABLES

X(I)
Cmax objective function (number of vertices in the maximum clique);
BINARY VARIABLE X;

*section describing the system of (in)equalities
EQUATIONS

EQ1(J)
OBJFCE number of vertices in the maximum clique;

EQ1(J) .. H(J)*X(J)+SUM(I,X(I)*E(I,J)) =L= H(J);
OBJFCE .. Cmax =E= SUM(I,X(I));

*description of the model, running the solver, and displaying the results
MODEL CLIQUE /ALL/;
SOLVE CLIQUE USING MIP MAXIMIZING Cmax;
DISPLAY X.L, Cmax.L;

Overwriting the matrix E in the programme, we still need the original values to draw
the result, but the original data for larger graphs are usually incorporated into the code
from external files (benchmarks) and are still available there. In addition, GAMS has no
graphical tools and the results of the calculations are only in the text form. This requires
exporting them to a suitable programme and postprocessing.

Using the absolute value function, Equation (18) can be modified without rewriting
the matrix E similarly to Equation (10) as follows:

hjxj +
n

∑
i=1,i 6=j

xi|eij − 1| ≤ hj, j = 1, . . . , n (19)

The complete model is then the following:

z =
n

∑
i=1

xi → max (20)

hjxj +
n

∑
i=1,i 6=j

xi|eij − 1| ≤ hj, j = 1, . . . , n (21)

xi ∈ {0, 1}, i = 1, . . . , n (22)

The corresponding code in GAMS from the PARAMETERS section will be as follows:

PARAMETERS
H(J) cardinality of non-neighbours set of vertex j;

LOOP(I,
H(I)=0;
LOOP(J$(ORD(I) NE ORD(J)),

H(I)=H(I)+1;
);

);

LOOP(I,
IF (H(I)=0,
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H(I)=1;
);

);

* variables section (decision variables and objective function)
VARIABLES

X(I)
Cmax objective function (number of vertices in the maximum clique);
BINARY VARIABLE X;

*section describing the system of (in)equalities
EQUATIONS

EQ1(J)
OBJFCE number of vertices in the maximum clique;
EQ1(J) .. H(J)*X(J)+SUM(I$(ORD(I) NE ORD(J)),X(I)*ABS(E(I,J)-1)) =L= H(J);
OBJFCE .. Cmax =E= SUM(I,X(I));

*description of the model, running the solver, and displaying the results
MODEL CLIQUE /ALL/;
SOLVE CLIQUE USING MIP MAXIMIZING Cmax;
* DISPLAY NN, X.L, Cmax.L;
DISPLAY X.L, Cmax.L;

Time Complexity of the Second Model

Theorem 2. The modified model (20)–(22) runs in O(n4n) time.

Proof. Assuming that we already know the values of hj, the time complexity of model (20)–(22)
follows from Equation (21) and reasoning in much the same way as in Section 3.1.1; it is
given by Equation (23):

2n((n− 1)2n) = (n− 1)4n = O(n4n), (23)

where n − 1 in 2n((n − 1)2n) expresses the summation operation for n − 1 elements in
Equation (23). Since the computation of hj with increasing n grows more slowly than
(n− 1)4n, the total time complexity of the second algorithm is given by O(n4n).

It is clear that the time complexity of the second model is greater than that of the
first one.

4. MCP Computational Results

Before we move on to the GAMS calculations for both models, we show the theoretical
time requirements of these models for a 2.1 GHz processor. For simplicity, we use approx-
imate complexities from the O notation. These times are only approximate because the
evaluation of Equations (10) and (21) is not performed during a single machine operation.
However, they give an idea of whether problems of a certain size can be solved in an
acceptable time.

In Table 1, for several values of n, the theoretical computation times are given.
From Table 1 it can be seen that, by brute force, the maximum clique of a graph can be

calculated in a reasonable amount of time for 20 vertices, but already for 30 vertices, the
computation time is extremely long.

As for the time complexity of the computation in GAMS, it cannot be formally ex-
pressed exactly in O notation because the implementation of the GAMS computational
kernel is not freely available.

The ability of computing optimal solutions in GAMS was checked using standard
benchmarks [81].
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In the GAMS programme, unlike the sample code in Section 3, the benchmark data are
not loaded directly into the TABLE E(I,J) structure, but, due to the size, they are included
from an external file by the $INCLUDE externalfilename statement.

Table 1. Theoretical O time complexities for a 2.1 GHz processor.

n 4n Time n4n Time

10 1,048,576 0.00049 s 10,485,760 0.0049 s
20 1.09951 × 1012 8 min 43.5 s 2.19902× 1013 2 h 54 min 31 s
30 1.15292× 1018 174 years 32 days 20 h 3.45876× 1019 5224 years 255 days 1 h
40 1.20893× 1024 1.825466013× 108 years 4.83570× 1025 7.301864050× 109 years
50 1.26765× 1030 1.91414× 1014 years 6.33825× 1031 9.5707× 1015 years
60 1.32923× 1036 2.00712× 1020 years 7.97537× 1037 1.204727× 1022 years
70 1.39380× 1042 2.10462× 1026 years 9.75658× 1043 1.47323× 1028 years

First, the matrix E needs to be reset in a double loop, because only those vertex pairs
that are connected by an edge are listed in the benchmarks.

However, the benchmark data must be converted to GAMS syntax. For exam-
ple, the data row e 1 36, since the matrix E is symmetric, needs to be converted to
two assignment statements:

E("1","36")=1;
E("36","1")=1;

The comment lines in the benchmarks that do not correspond to the expression of
vertex pairs connected by an edge are converted into the modified file as comments, i.e., the
* symbol is inserted at the beginning of the corresponding lines and then they are ignored
by GAMS during compilation.

The corresponding part of the code starting with the declaration TABLE E(I,J) and
the specific location and name of the converted benchmark will be as follows:

TABLE E(I,J);
LOOP(I,

LOOP(J,
E(I,J)=0;

);
);

$INCLUDE C:\Txt\ARTICLES\2023_Symmetry_(MDPI)\benchmarks_clique_for_GAMS\anna.txt

The computational results for both models are summarised in Table 2. It can be seen
that GAMS can get the best known solution for graphs up to 300 vertices and tens of
thousands of edges in short times on a laptop with the parameters mentioned above.

Acceptable results were also obtained for much larger instances and for some of them
even the best known values, e.g., for p_hat700-1, p_hat700-2 and p_hat700-3 instances
with 700 vertices, for keller5 instance with 776 vertices and for hamming10-4 instance with
1024 vertices, almost all of them with hundreds of thousands of edges.

Where the best known solution has not been achieved, according to the theoretical
assumptions, it is confirmed that the first model is more efficient and mostly finds a better
solution in less time. However, this is not always satisfied; sometimes, the second model
gives better results within the same calculation time limit when the final solution has not
been reached. The intermediate results obtained depend on the way the GAMS program
traverses the search space, the models used and the input data. Therefore, the relationship
between the computation times of the two models may be different from the theoretical
upper bounds on the time complexity of O. It makes sense to use both models. This is a
similar situation to the No Free Lunch Theorem [82,83] for heuristics, saying that any of the
heuristics gives better results than other ones for all problems and all instances.

In addition, some instances may have multiple solutions with the same maximum
clique number and therefore it is suitable to use more than one model.
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Non-optimal results can be improved by extending the computation time limit, e.g., to
3000 s by the statement OPTION ResLim = 3000, as can also be seen in Table 2.

Table 2. Computational results for time limit 1000 s, * = time limit 3000 s, ** = time limit 5000 s,
A1 = model (9)–(11), A2 = model (20)–(22).

Benchmark |V | |E| A1 ω(G) A1 Time [s] A2 ω(G) A2 Time [s] Best Known

C125.9 125 6963 34 1.19 34 2.72 34
keller4 171 9435 11 12.33 11 6.64 11
brock200_2 200 9876 12 37.69 12 53.58 12
brock200_4 200 13,089 17 243.13 17 76.95 17
gen200_p0.9_44 200 17,910 44 0.28 44 0.92 44
gen200_p0.9_55 200 17,910 55 0.31 55 0.42 55
C250.9 250 27,984 44 906.55 44 26.33 44
hamming8-4 256 20,864 16 0.75 16 3.44 16
p_hat300-1 300 10,933 8 233.16 8 79.92 8
p_hat300-2 300 21,928 25 8.69 25 905.09 25
p_hat300-3 300 33,390 36 30.05 34 1.33 36
MANN_a27 378 70,551 123 0.20 124 0.55 126
brock400_2 400 59,786 23 24.98 23 926.86 29
brock400_4 400 59,786 22/23 ** 54.94/5894.25 23 108.06 33
gen400_p0.9_55 400 71,820 49/50 * 55.06/2727.02 50 310.03 55
gen400_p0.9_65 400 71,820 49 132.30 64 380.30 65
gen400_p0.9_75 400 71,820 75 5.05 73 43.75 75
DSJC500_5 500 125,248 12 13.19 12 283.13 13
p_hat700-1 700 60,999 9 43.56 9 303.47 11
p_hat700-2 700 121,728 44 751.73 44 597.69 44
p_hat700-3 700 183,010 62 72.08 62 977.22 62
keller5.clq 776 225,990 27 83.83 27 996.11 27
brock800_2 800 208,166 19 87.22 18 217.27 24
brock800_4 800 208,166 18 583.94 17 62.88 26
C1000.9 1000 450,079 57 96.09 59 199.25 68
DSJC1000_5 1000 499,652 12/13 * 158.06/1332.08 12 130.56 15
hamming10-4 1024 434,176 40 499.59 40 934.28 40
MANN_a45 1035 533,115 327 0.41 330 0.34 345
p_hat1500-1 1500 284,923 11 436.95 10 520.81 12
p_hat1500-2 1500 568,960 64 204.11 56/64 ** 336.88/4779.20 65
p_hat1500-3 1500 847,244 91 924.05 87 446.03 94
C2000.5 2000 999,836 0/13 * 0.00/2607.22 11/14 * 470.36/1434.59 16
C2000.9 2000 1,799,532 53/63 * 610.42/1028.58 63 538.25 80

5. Conclusions

This paper explores the maximum clique problem. The introductory section pro-
vides a detailed review of literature sources relevant to the problem. Among the possible
computational approaches using approximate methods, stochastic heuristics, exact meth-
ods, and solutions based on mathematical models and their implementation in a suitable
programming environment, it focuses on the last one.

The selected models were modified to be directly usable in GAMS; time complexities
were derived. Their implementation also took into account the aspect of minimizing data
structures, i.e., minimising the spatial complexity. The use of absolute values in the input
matrix rewrite eliminated the need to compute a complementary adjacency matrix. The
source codes presented may be an aid because this tool is not yet as well known as the
MATLAB Optimisation Toolbox. The results obtained on a representative set of benchmarks
document the applicability to instances with hundreds of vertices and tens of thousands
of edges, where optimal solutions are obtained within a reasonable amount of time. The
applicability range of GAMS for the maximum clique problem is much larger than that of
the related graph colouring problem described in [84].
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Even for extremely large instances with a thousand vertices and hundreds of thousands
of edges, GAMS can be used. After exceeding a chosen time limit, the current solution can
be used as an approximation of the optimum, similar to stochastic heuristics with a fixed
number of iterations.

In future research, we expect to focus on the Maximum Weight Clique Problem.
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53. Hansen, P.; Mladenović, N.; Urošević, D. Variable Neighborhood Search for the Maximum Clique. Discret. Appl. Math. 2004,

145, 117–125. [CrossRef]

http://dx.doi.org/10.1016/j.disopt.2012.05.002
http://dx.doi.org/10.1016/j.disopt.2008.01.001
http://dx.doi.org/10.1016/j.jda.2018.03.002
http://dx.doi.org/10.1016/j.procs.2023.01.196
http://dx.doi.org/10.1016/j.procs.2021.11.052
http://dx.doi.org/10.1016/j.tcs.2013.07.020
http://dx.doi.org/10.1016/j.dam.2012.07.019
http://dx.doi.org/10.1016/j.ejc.2022.103589
http://dx.doi.org/10.1016/j.ifacol.2020.12.1255
http://dx.doi.org/10.1016/j.tcs.2007.09.031
http://dx.doi.org/10.1016/j.tcs.2006.10.035
http://dx.doi.org/10.1016/j.cor.2023.106186
http://dx.doi.org/10.1016/j.dam.2017.03.014
http://dx.doi.org/10.1016/j.dam.2007.05.004
http://dx.doi.org/10.1016/j.dam.2018.01.006
http://dx.doi.org/10.3390/a14010022
http://dx.doi.org/10.3390/sym14040676
http://dx.doi.org/10.1016/j.jda.2006.09.004
http://dx.doi.org/10.1016/j.ejc.2022.103654
http://dx.doi.org/10.1016/0012-365X(85)90077-9
http://dx.doi.org/10.1016/j.jctb.2017.08.005
http://dx.doi.org/10.1016/j.tcs.2012.07.016
http://dx.doi.org/10.1016/j.tcs.2007.06.014
http://dx.doi.org/10.1016/0012-365X(81)90218-1
http://dx.doi.org/10.1016/j.dam.2006.03.024
http://dx.doi.org/10.3390/math10050697
http://dx.doi.org/10.1109/ACCESS.2021.3056407
http://dx.doi.org/10.1007/s004530010074
http://dx.doi.org/10.3390/a13100253
http://dx.doi.org/10.1016/j.dam.2003.09.012


Symmetry 2023, 15, 1979 16 of 16

54. Manrique, D.; Rodríguez-Patón, A.; Sosík, P. On the Scalability of Biocomputing Algorithms: The Case of the Maximum Clique
Problem. Theor. Comput. Sci. 2011, 412, 7075–7086. [CrossRef]

55. Singh, K.K.; Govinda, L. A Parallel Bottom-up Clustering Algorithm with Applications to Circuit Partitioning in VSLI Design.
In Proceedings of the 8th International Conference on Intelligent Systems and Control, Coimbatore, India, 10–11 January 2014;
pp. 269–273.

56. Thampi, S.M.; Krishna, M.P. A Fast Heuristic Algorithm Based on Verification and Elimination Methods for Maximum Clique Problem;
Report; College of Engineering: Kasaragod, India, 2007; 5p. Available online: https://arxiv.org/ftp/arxiv/papers/0710/0710.07
48.pdf (accessed on 1 September 2023).

57. Yu, Z.; Wang, X.; Zhao, J. Local Dense Decision-Making Method for Solving the Maximum Clique Problem in Large-Scale
Undirected Graphs. Comput. Electr. Eng. 2022, 102. 108220. [CrossRef]

58. Balash, V.; Stepanova, A.; Volkov, D.; Mironov, S.; Faizliev, A.; Sidorov, S. Testing a Heuristic Algorithm for Finding a Maximum
Clique on DIMACS and Facebook Graphs. WSEAS Trans. Syst. Control 2010, 15, 93–101. [CrossRef]

59. Bomze, I.M.; Budinich, M.; Pardalos, P.M.; Pelillo, M. The Maximum Clique Problem. In Handbook of Combinatorial Optimization;
Du, D.-Z., Pardalos, P.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume A, pp. 1–74.

60. Scozzari, A.; Tardella, F. A Clique Algorithm for Standard Quadratic Programming. Discret. Appl. Math. 2008, 156, 2439–2448.
[CrossRef]

61. Storch, T. Finding Large Cliques in Sparse Semi-Random Graphs by Simple Randomized Search Heuristics. Theor. Comput. Sci.
2007, 386, 114–131. [CrossRef]

62. Pelillo, M. Heuristics for Maximum Clique and Independent Set. In Encyclopedia of Optimization; Floudas, C., Pardalos, P.M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 1508–1520.

63. Bomze, I.M.; Budinich, M.; Pelillo, M.; Rossi, C. Annealed Replication: A New Heuristic for the Maximum Clique Problem.
Discret. Appl. Math. 2002, 121, 27–49. [CrossRef]

64. Pardalos, P.M.; Xue, J. The Maximum Clique Problem. J. Glob. Optim. 1994, 4, 301–328. [CrossRef]
65. Kardos, D.; Patassy, P.; Szabó, S.; Zaválnij, B. Numerical Experiments with LP formulations of the Maximum Clique Problem.

Cent. Eur. J. Oper. Res. 2022, 30, 1353–1367. [CrossRef]
66. Croce, F.D.; Tadei, R. A Multi-KP Modeling for the Maximum-Clique Problem. Eur. J. Oper. Res. 1994, 73, 555–561. [CrossRef]
67. Züge, A.P.; Carmo, R. On Comparing Algorithms for the Maximum Clique Problem. Discret. Appl. Math. 2018, 247, 1–13. [CrossRef]
68. Shimizu, S.; Yamaguchi, K.; Saitoh, T.; Masud, S. Fast Maximum Weight Clique Extraction Algorithm: Optimal Tables for

Branch-and-Bound. Discret. Appl. Math. 2017, 223, 120–134. [CrossRef]
69. Li, C.M.; Jiang, H.; Manyà, F. On Minimization of the Number of Branches in Branch-and-Bound Algorithms for the Maximum

Clique Problem. Comput. Oper. Res. 2017, 84, 1–15. [CrossRef]
70. Tomita, E.; Sutani, Y.; Higashi, T.; Takahashi, S.; Wakatsuki, M. A Simple and Faster Branch-and-Bound Algorithm for Finding a a

Maximum Clique. Lect. Notes Comput. Sci. 2010, 5942, 191–203.
71. Östergard, P.R. A Fast Algorithm for the Maximum Clique Problem. Discret. Appl. Math. 2002, 120, 197–207. [CrossRef]
72. Segundo, P.S.; Furin, F.; Álvarez, D.; Pardalos, P.M. CliSAT: A New Exact Algorithm for Hard Maximum Clique Problems. Eur. J.

Oper. Res. 2022, 307, 1008–1025. [CrossRef]
73. Prosser, P. Exact Algorithms for Maximum Clique: A Computational Study. Discret. Optim. 2012, 5, 545–587. [CrossRef]
74. Seda, P.; Seda, M.; Hosek, J. OnMathematical Modelling of Automated Coverage Optimization in Wireless 5G and beyond

Deployments. Appl. Sci. 2020, 10, 8853. [CrossRef]
75. Seda, M. Steiner Tree Problem in Graphs and Mixed Integer Linear Programming-Based Approach in GAMS. WSEAS Trans.

Comput. 2022, 21, 257–262. [CrossRef]
76. Seda, M. The Assignment Problem and Its Relation to Logistics Problems. Algorithms 2022, 15, 377. [CrossRef]
77. Durán, G.; Lin, M.C.; Mera, S.; Szwarcfiter, J.L. Algorithms for Clique-Independent Sets on Subclasses of Circular-Arc Graphs.

Discret. Appl. Math. 2006, 154, 1783–1790. [CrossRef]
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