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Abstract: In this manuscript, we implement analytical multiple soliton wave and singular soliton
wave solutions for coupled mKdV with a time-dependent variable coefficient. Based on the similarity
transformation and Hirota bilinear technique, we construct both multiple wave kink and wave
singular kink solutions for coupled mKdV with a time-dependent variable coefficient. We implement
the Hirota bilinear technique to compute analytical solutions for the coupled mKdV system. Such
calculations are made by using a software with symbolic computation software, for instance, Maple.
Recently some researchers used Maple in order to show that the bilinear method of Hirota is a
straightforward technique which can be used in the approach of differential, nonlinear models. We
analyzed whether the experiments proved that the procedure is effective and can be successfully
used for many other mathematical models used in physics and engineering. The results of this study
display that the profiles of multiple-kink and singular-kink soliton types can be efficiently controlled
by selecting the particular form of a similar time variable. The changes in the solitons based on the
changes in the arbitrary function of time allows for more applications of them in applied sciences.

Keywords: nonlinear models; coupled mKdV; time-dependent variable coefficient; similarity
transformation; Hirota bilinear technique

1. Introduction

The most famous theoretical model of shallow water wave surfaces is the class of
KdV equations. It is notable that these are considered in particular to be examples of
solvable partial differential equations whose solutions can be precisely determined. These
are integrable models that are resolved using the scattering wave transform technique.
An impactful and active point of research is the mathematical theory based on the KdV
model which was first discussed by Boussinesq (1877) and rediscovered by Korteweg and
de Vries (1895). The first advertisement of solitary waves was made by Scott Russell, which
contributed to Korteweg and de Vries using them in their KdV equation. The KdV equation
contains many connections to a large number of natural phenomena examples, including
quantum mechanics, plasma, and soliton theory.

In the theory dedicated to solitons, it is considered that a soliton, in other words, a
solitary wave, is a certain classic nonlinear wave that is caused by the effects of dispersion
and nonlinearity. With other formulation, in physics and mathematics, a soliton is a
nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves
its shape while propagating freely, at constant velocity [1–4]. It keeps its amplitude, speed
and form, even when it comes into contact with different solitons.
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Zabusky and Kruskal [5] detected one of the strongest essential features of solitons,
namely the nonlinear interaction in collisionless plasma for a diverse series of KdV type
equations. Moreover, it was found that in the case of reciprocal collisions (except when the
phases are shifted) solitons, so solitary waves, do not change.

The class of KdV equations have found utility in many branches of engineering and
physics [6,7]. Among all their important characteristics, we should mention the particular
aspects of the bending solutions as well as their interactions [5–7]. A bend is that solution
for which the value at the limit at - infinity is 0, and the value at the limit at infinity is 2π.
Solitons in an integrable system, modeled with KdV equations, have constant shapes and
evolve with constant speed. However, due to some inhomogeneities, in concrete situations,
we can deal with solitons that have a more complex evolution, in which they can change
both form and velocity [6]. This can be useful when it is want a faster communication, or
even a faster transport [7].

The solitary waves which have an infinite support appear as connections of the balance
between the linear dispersion uxxx and nonlinear convection u ux in the equations of KdV
type ut + a u ux + uxxx = 0.

In the last three decades, many nonlinear coupled differential models and systems
have emerged; examples include mKdV, coupled KdV, and variant Boussinesq models,
which appear in many different scientific applications. Nowadays, coupled evolution
models are attracting significant research in the literature. The aims and objectives of
these studies are divided in two directions: the first one is to determine the soliton and
solitary wave solutions, and the other is to prove the integrability properties for these
systems [1,2]. Many different techniques have been investigated and studied the evolution
of nonlinear single and coupled models [8–10]. We will mention, for example, that some of
these techniques that were used are the Backlund transformation approach, Hirota bilin-
ear procuredre, Hietarinta method, Darboux transformation, symmetry method, Pfaffian
technique, Painlevé analysis, inverse scattering method, and so on [11–16]. The bilinear
Hirota procedure is significant and a rather heuristic technique [2–4,8,9]. This approach
possesses a lot of powerful and huge features which make it a good fit for constructing
multiple solitons and solitary waves for a large number of evolution nonlinear models.

The mKdV model represented the propagation of nonlinear waves in a polar symmetry
model. The mKdV model is also discussed in electrodynamics, elastic media, and the
propagation waves of quantized films. That is, it describes acoustic waves with non-
harmonic lattices and Alfven waves in the non-collision of plasma. Furthermore, the mKdV
model is different from the KdV model since it possesses cubic nonlinearity. The mKdV
model is an integrable model since it is solved using inverse scattering and discusses the
Painlevé property.

Interestingly, and also naturally, soliton waves have a permanent shape. Since a soliton
is defined from a localized wave, a soliton’s behavior either decomposes exponentially to
zero, like solitons in the KdV model, or it approaches a constant at infinity, like solitons in
the sine-Gordon model.

Optical soliton research is nicely flourishing since it can be applied to the new develop-
ments of optical communication models and data transmission [4,10,17–21], which include
the dynamics of electrons in semiconductors, metal phase changes induced by light, and
chemical reactions. An optical soliton is special form of ultrashort pulses, which enables us
to keep its shape and velocity unchanged in long-distance transmissions.

With the help of symbolic arithmetic packages, we can compute many direct and
indirect methods for establishing solutions to models of nonlinear integer and fractional
differential equations [22–32]. The methods created by Malfliet and Wazwaz have been
applied, developed, and extended to construct analytical solutions for a great number of
nonlinear differential models in terms of the tan, tanh, cot, coth, sine, and cosine functions.
Many other methods developed by mathematicians and physicists are used for analysis
and to find other solutions for nonlinear differential models: for example, the elliptic
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Jacobi procedure, the variation iteration technique, the spectral collocation method, the sub
equation procedure, and the F-expansion method.

It is worth noting that for nonlinear independent differential models that contain
constant coefficients, we obtain a classical soliton due to the resulting equilibrium between
the nonlinear effects and the dispersion. However, nonlinear differential models containing
time-dependent coefficients have attracted a lot of attention recently due to their very
interesting features for potential future scientific applications.

In this manuscript, a coupled mKdV system with a time-dependent variable coefficient
will be discussed for constructing multiple solitons and solitary waves.

This system appears in many concrete physical situations, such as the evolution of
waves encountered in nonlinear optics or in fluids, water waves, or plasma. Also, the
motion of acoustic ion waves, which occurs without collision, in the plasma: the reader is
referred to [33–35] and the references therein. KdV-type equations are found in DNA soliton
dynamics, in the dynamics of those fluxons in junctions with Josephson-type impurities.
Also, in the propagation of spin waves that have a variable strength of interaction [36–40].
In addition, it appears in the analysis done to the oceans regarding the coast waves, in
the analysis of bubbles and drops for different liquids, in atmospheric analyzes regarding
different blockages, for example blocking the dipoles [33–38].

These studies have increasingly covered the time-dependent equations, consider-
ing that this type of equations is best to highlight the real features of a great variety of
scientific approaches. For the coupled mKdV model with a time-dependent variable
coefficient [40–43], the chosen model is:

Uτ + 6ϕ(τ)UVUx + ψ(τ)Uxxx = 0,
Vτ + 6ϕ(τ)VUVx + ψ(τ)Vxxx = 0,

(1)

where the subscripts denote the partial differentiations with respect to the correspond-
ing variable, and ϕ(τ), ψ(τ) are the arbitrary smooth functions (R-analytical functions)
that symbolize the coefficients of the time variable τ, and are related by the condition
ϕ(τ) = aψ(τ), with an arbitrary constant a. When ψ(τ) = 1, system (1) can be simplified
as the coupled mKdV system with constant coefficients [40].

Suppose that:
U(τ, x) = u(t, x), V(τ, x) = v(t, x), (2)

where t = t(τ) is the real function of the one time variable τ if we choose ψ(τ) = ∂t
∂τ or

t =
t∫

0
ψ(τ)dτ where ψ(τ) is an arbitrary function of τ. Substituting Transformation (2) into

System (1), we find that System (1) becomes:

ut + 6auvux + uxxx = 0,
vt + 6avuvx + vxxx = 0.

(3)

The main motivation of this study is to investigate multiple soliton waves and singular
solutions for the desired coupled system in a simplified form (3).

Note that the similarity time variable has a general form t =
t∫

0
ψ(τ)dτ, which defines

an infinite number of substitutions since ψ(τ) is an arbitrary function. The only necessary
condition for the solitary wave to exist is that the time-dependent coefficient ψ(τ) must be
Riemenn-integrable.

Remark 1. The scaling of the time variable t = t(τ) has a general form but must be at least an
absolutely continuous function. We will assume also that the time-dependent coefficients are at least
Riemann-integrable functions, which is a necessary condition for the solitary wave to exist:
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This manuscript is arranged as follows: Section 2 explores multiple-soliton solutions
for the coupled mKdV model. We derive multiple singular solutions for the coupled mKdV
system in Section 3. In Section 4, we discuss the soliton interactions of the soliton solution.
Section 5 is a discussion and summary.

2. Soliton Solution

Let us discuss the multiple-soliton solutions. Based on the Hirota bilinear proce-
dure [1,2,8,9,40,42], we assume that:

U = eθi , V = Aeθi , θi = kix− cit, t =
t∫

0

ψ(τ)dτ, (4)

where A is an arbitrary constant. Substituting in the highest linear term of Equation (3), we
obtain the following dispersion relation:

ci = k3
i . (5)

As a result, we can write:
θi = kix− k3

i t. (6)

So, the multiple-soliton solution of system (3) is:

u = r
∂

∂x

[
tan−1

(
f g−1

)]
= r

fxg− gx f
g2 + f 2 , (7)

v = r1
∂

∂x

[
tan−1

(
f g−1

)]
= r1

fxg− gx f
g2 + f 2 , (8)

where r and r1 are constants can be computed, and the functions f and g for a single-soliton
wave are defined by:

f = eθ1 = ek1x−k3
1t, g = 1, (9)

Using the above result in (3) and solving for r and r1, we have r = c and r1 = 4
a c2 , where c

is an arbitrary constant. So, the single-soliton solution takes the form:

U =
c k1ek1x−k3

1t

1 + e2(k1x−k3
1t)

, V =
4 k1ek1x−k3

1t

ac (1 + e2(k1x−k3
1t))

, t =
t∫

0

ψ(τ)dτ. (10)

The evolutional behavior of a soliton wave represented by u and v is given by
Equation (10) with the selection a = 1, c = 5, k1 = 3, so U and V can be written as:

U =
15 e

3(x−9
t∫

0
ψ(τ)dτ)

1 + e
6(x−9

t∫
0

ψ(τ)dτ)

, V =
2.4 e

3(x−9
t∫

0
ψ(τ)dτ)

1 + e
6(x−9

t∫
0

ψ(τ)dτ)

. (11)

Figure 1a represents the one-soliton solution of the function U when ψ(t) = 1, Figure 1b
when ψ(t) = sin t, Figure 1c when ψ(t) = sec2 t, and Figure 1d when ψ(t) = tan t sec t, which
shows the diverse kinds of shapes of a one-soliton wave.
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Figure 1. Evolution behavior of one-soliton solution (11) with a = 1, c = 5, k1 = 3 (a) ψ(t) = 1
(b) ψ(t) = sin t (c) ψ(t) = sec2 t (d) ψ(t) = tan t sec t.

By dividing U and V in Equation (11), we find the relationship between the two
functions U and V as:

U
V

=
ac2

4
. (12)

To construct the two-soliton wave, we assume that:

f = eθ1 + eθ2 , g = 1− a12eθ1+θ2 ,
θ1 = k1(x− k2

1t), θ2 = k2(x− k2
2t).

(13)

Substituting (13) in (7) and (8), using the result in the coupled system (3), we have the
phase shift:

a12 =
(k1 − k2)

2

(k1 + k2)
2 , (14)

Hence, we can generalize this relation as:

amn =
(km − kn)

2

(km + kn)
2 , 1 ≤ m < n ≤ 3. (15)
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The two-soliton wave is constructed by substituting (12) and (11) into (7) and (8). The
two functions U and V can take the forms:

U = R ∂
∂x

[
tan−1

(
f
g

)]
= c ∂

∂x

[
tan−1

(
eθ1+eθ2

1−a12eθ1+θ2

)]
,

V = R1
∂

∂x

[
tan−1

(
f
g

)]
= 4

ac2
∂

∂x

[
tan−1

(
eθ1+eθ2

1−a12eθ1+θ2

)]
,

a12 = (k1−k2)
2

(k1+k2)
2 , t =

t∫
0

ψ(τ)dτ, θi = ki(x− k2
i t), i = 1, 2.

(16)

It is desirable to point out that the coupled mKdV system (3) has not introduced any
resonant phenomena since the term of the phase shift a12 in (14) does not have 0 or ∞ for
|k1|6=|k2|. The evolutional behavior of the two-soliton wave represented by U and V is
given in Equation (16) with the selection a = 1, c = 5, k1 = 3, k2 = 2, so U and V take
the forms:

U = 5 ∂
∂x

tan−1

 e
3(x−9

t∫
0

ψ(τ)dτ)

+e
2(x−4

t∫
0

ψ(τ)dτ)

1− 1
25 e

3(x−9
t∫

0
ψ(τ)dτ)+2(x−4

t∫
0

ψ(τ)dτ)


,

V = 4
25

∂
∂x

tan−1

 e
3(x−9

t∫
0

ψ(τ)dτ)

+e
2(x−4

t∫
0

ψ(τ)dτ)

1− 1
25 e

3(x−9
t∫

0
ψ(τ)dτ)+2(x−4

t∫
0

ψ(τ)dτ)


.

(17)

Figure 2a represents the two-soliton solution of the function U when ψ(t) = 1, Figure 2b
when ψ(t) = sin t, Figure 2c when ψ(t) = sec2 t, and Figure 2d when ψ(t) = tan t sec t, which
shows different shapes of two-soliton solutions.

To construct a three-soliton wave, we suppose that:

f = eθ3 + eθ2 + eθ1 − a123eθ3+θ2+θ1 , g = 1− a12eθ2+θ1 − a13eθ3+θ1 − a23eθ3+θ2 ,
θi = ki(x− k2

i t), i = 1, 2, 3, a123 = a12a13a23,
(18)

with the phase shift terms aij, 1 ≤ i < j ≤ 3, obtained above in (15). A three-soliton wave
for the coupled mKdV model (3) is derived by substituting (18) into (7) and (8).

U = c ∂
∂x

[
tan−1

(
eθ3+eθ2+eθ1−a123eθ3+θ2+θ1

1−a12eθ2+θ1−a13eθ3+θ1−a23eθ3+θ2

)]
,

V = 4
ac2

∂
∂x

[
tan−1

(
eθ3+eθ2+eθ1−a123eθ3+θ2+θ1

1−a12eθ2+θ1−a13eθ3+θ1−a23eθ3+θ2

)]
,

aij =
(ki−kj)

2

(ki+kj)
2 , 1 ≤ i < j ≤ 3, θi = ki(x− k2

i t), i = 1, 2, 3, t =
t∫

0
ψ(τ)dτ.

(19)

The evolutional behavior of the three-soliton wave represented by U and V is given in
Equation (19) with the selection a = 1, c = 5, k1 = 3, k2 = 2, k3 = 1, so U and V can be
written as:

U = 5
∂

∂x

tan−1

 e
3x−27

t∫
0

ψ(τ)dτ

+ e
2x−8

t∫
0

ψ(τ)dτ

+ e
x−

t∫
0

ψ(τ)dτ

− 1
900 e

6x−36
t∫

0
ψ(τ)dτ

1− 1
25 e

5x−35
t∫

0
ψ(τ)dτ

− 1
4 e

4x−28
t∫

0
ψ(τ)dτ

− 1
9 e

3x−9
t∫

0
ψ(τ)dτ


, (20)

V =
4

25
∂

∂x

tan−1

 e
3x−27

t∫
0

ψ(τ)dτ

+ e
2x−8

t∫
0

ψ(τ)dτ

+ e
x−

t∫
0

ψ(τ)dτ

− 1
900 e

6x−36
t∫

0
ψ(τ)dτ

1− 1
25 e

5x−35
t∫

0
ψ(τ)dτ

− 1
4 e

4x−28
t∫

0
ψ(τ)dτ

− 1
9 e

3x−9
t∫

0
ψ(τ)dτ


. (21)
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Figure 2. Evolution behavior of two-soliton solution (17) with a = 1, c = 5, k1 = 3, k2 = 2.
(a) ψ(t) = 1 (b) ψ(t) = sin t (c) ψ(t) = sec2 t (d) ψ(t) = tan t sec t.

Figure 3a represents the three-soliton solution of the function U when ψ(t) = 1, Figure 3b
when ψ(t) = sin t, Figure 3c when ψ(t) = sec2 t, and Figure 3d when ψ(t) = tan t sec t, which
shows the different shapes of three-soliton solutions.
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1 1 1 2 2 2 3 3 3 4 4 4

1234 12 13 14 23 24 34
0

,

, , , ,

( ) , , , 1 4
t

ijk ij ik jk

k x k t k x k t k x k t k x k t

t d a a a a a a a a a a a i j k

θ θ θ θ

ψ τ τ


 
 

= − = − = − = −

= = = ≤ < < ≤

(23)

Doing the same thing, an N-soliton wave can be constructed for a finite number N, 
where 1N ≥ . 

  

Figure 3. Evolution behavior of a three-soliton solution (20) with a = 1, c = 5, k1 = 3, k2 = 2, k3 = 1.
(a) ψ(t) = 1 (b) ψ(t) = sin t (c) ψ(t) = sec2 t (d) ψ(t) = tan t sec t.

For constructing the four-soliton wave, we suppose that:

f = eθ4 + eθ3 + eθ2 + eθ1 − a1234eθ4+θ3+θ2+θ1 ,
g = 1− a123eθ1+θ2+θ3 − a134eθ1+θ3+θ4 − a234eθ2+θ3+θ4 ,

θ1 = k1x− k3
1t, θ2 = k2x− k3

2t, θ3 = k3x− k3
3t,

θ4 = k4x− k3
4t, a1234 = a12a13a14a23a24a34, a123 = a12a13a23,

a134 = a13a14a34, a234 = a23a24a34, aij =
( ki−kj

ki+kj

)2
,

(22)
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with the phase shift terms aij, 1 ≤ i < j ≤ 4, obtained above in (22). The four-soliton wave
for the coupled mKdV model (3) is derived by substituting (22) into (7) and (8).

U = c
∂

∂x

[
tan−1

(
eθ4 + eθ3 + eθ2 + eθ1 − a1234eθ4+θ3+θ2+θ1

1− a123eθ1+θ2+θ3 − a134eθ1+θ3+θ4 − a234eθ2+θ3+θ4

)]
,

V =
4

ac2
∂

∂x

[
tan−1

(
eθ4 + eθ3 + eθ2 + eθ1 − a1234eθ4+θ3+θ2+θ1

1− a123eθ1+θ2+θ3 − a134eθ1+θ3+θ4 − a234eθ2+θ3+θ4

)]
,

θ1 = k1x− k3
1t, θ2 = k2x− k3

2t, θ3 = k3x− k3
3t, θ4 = k4x− k3

4t,

t =
∫ t

0
ψ(τ)dτ, a1234 = a12a13a14a23a24a34, aijk = aijaikajk, 1 ≤ i < j < k ≤ 4.

(23)

Doing the same thing, an N-soliton wave can be constructed for a finite number N,
where N ≥ 1.

3. A Singular Soliton Wave

In this section, we will derive multiple singular solutions for a coupled mKdV system
(3) using the Hirota bilinear procedure [1,2,8,9,40,42]. A singular solution for a coupled
mKdV system (3) can be written with this formula:

u = R ∂
∂x

[
ln
(

f
g

)]
= R g fx− f gx

f g ,

v = R1
∂

∂x

[
ln
(

f
g

)]
= R1

g fx− f gx
f g ,

(24)

where the r and r1 constants can be calculated, and the functions f and g for a singular
soliton wave can be written as:

f = 1 +
N

∑
n=1

fn, g = 1−
N

∑
n=1

gn. (25)

As introduced in the above, the relative of dispersion is calculated using:

ci = k3
i , (26)

As a result, we get:
θi = kix− k3

i t. (27)

The results can have a new definition as follows:

f = 1 + eθ1 , g = 1− eθ1 . θ1 = k1x− k3
1t. (28)

Substituting (28) into (3) and resolving the results for R and R1, we have:

R = c, R1 = − 1
a c2 , (29)

with c being an arbitrary constant. So, the singular soliton solution is:

u =
2c k1ek1x−k3

1t

1− ek1x−k3
1t

, v = − 2 k1ek1x−k3
1t

a c (1− ek1x−k3
1t)

. (30)

From the last equation, we obtain:

u
v
= −a c2. (31)
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To constructing a singular two-soliton wave, we have:

f = 1 + eθ2 + eθ1 + a12eθ1+θ2 , g = 1− eθ2 − eθ1 + b12eθ1+θ2 ,
θn = knx− k3

nt, n = 1, 2.
(32)

Using (32) in (24) and resolving the outcome into (3), we have the phase shift:

a12 = b12 =
(k1 − k2)

2

(k1 + k2)
2 , (33)

and then we obtain:

amn = bmn =
(km − kn)

2

(km + kn)
2 , 1 ≤ m < n ≤ 2. (34)

On behalf of the singular two-soliton wave, the two functions f and g take the form:

f = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + (k1−k2)
2

(k1+k2)
2 e[(k1+k2)x−(k3

1+k3
2)t],

g = 1− ek1(x−k2
1t) − ek2(x−k2

2t) + (k1−k2)
2

(k1+k2)
2 e[(k1+k2)x−(k3

1+k3
2)t].

(35)

A singular two-soliton wave is determined by substituting (35) into (24).

u = c ∂
∂x

[
ln
(

1+a12eθ1+θ2+eθ2+eθ1

1+b12eθ1+θ2−eθ2−eθ1

)]
,

v = − 1
a c2

∂
∂x

[
ln
(

1+a12eθ1+θ2+eθ1+eθ2

1+b12eθ1+θ2−eθ1−eθ2

)]
,

a12 = b12 = (k1−k2)
2

(k1+k2)
2 , θn = kn(x− k2

nt), n = 1, 2.

(36)

To obtain a singular three-soliton wave, we can proceed similarly and set:

f = 1 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 + eθ1 + eθ2 + eθ3 + f3,
g = 1 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 − eθ1 − eθ2 − eθ3 + g3,

(37)

Substituting (37) into (24) and using the result in (3), we obtain:

f3 = b123eθ1+θ2+θ3 , g3 = −b123eθ1+θ2+θ3 , b123 = a12a13a23. (38)

In the three-soliton singular solution, the functions f and g take the form:

f = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + ek6(x−k2
2t) +

(k1 − k2)
2

(k1 + k2)
2 e[(k1+k2)x−(k3

1+k3
2)t]

+
(k1 − k3)

2

(k1 + k3)
2 e[(k1+k3)x−(k3

1+k3
3)t] +

(k2 − k3)
2

(k2 + k3)
2 e[(k2+k3)x−(k3

2+k3
3)t]

+
(k1 − k2)

2

(k1 + k2)
2
(k1 − k3)

2

(k1 + k3)
2
(k2 − k3)

2

(k2 + k3)
2 e[(k1+k2+k3)x−(k3

1+k3
2+k3

3)t],

g = 1− ek1(x−k2
1t) − ek2(x−k2

2t) − ek3(x−k2
2t) +

(k1 − k2)
2

(k1 + k2)
2 e[(k1+k2)x−(k3

1+k3
2)t]

+
(k1 − k3)

2

(k1 + k3)
2 e[(k1+k3)x−(k3

1+k3
3)t] +

(k2 − k3)
2

(k2 + k3)
2 e[(k2+k3)x−(k3

2+k3
3)t]

− (k1 − k2)
2

(k1 + k2)
2
(k1 − k3)

2

(k1 + k3)
2
(k2 − k3)

2

(k2 + k3)
2 e[(k1+k2+k3)x−(k3

1+k3
2+k3

3)t].

(39)
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The three singular solution can be calculated by substituting the two functions f and g
into (24).

4. Soliton Interactions

Many applications of soliton interactions can be obtained from fiber optics. As we all
know, two solitons interacting is important. By studying the soliton interactions, we can
effectively enhance the communication capacity and improve the stability of a system [43].
It is therefore essential to distinguish how to prevent two nearby solitons from moving
each other. The nonlinear collaboration of two solitons has been deliberated widely in
recent years. We know that based on their physical states, two solitons move each other
individually when they are sufficiently close that their tails intersect. So, the two solitons
may attract (come close to) or repel (move away from) each other depending on the
parameters (wave numbers, phases, and velocity) or the initial conditions.

To discuss the interaction of two solitons, we consider the two solitons’ peaks to be
disconnected in time. Generally speaking, as much as possible, we assume that their wave
numbers, phases, and velocity change such that:

ui =
c k1iek1ix−k3

1it+ϕi

1 + e2(k1ix−k3
1it)+ϕi

, vi =
4 k1iek1ix−k3

1it+ϕi

a c (1 + e2(k1ix−k3
1it)+ϕi )

, t =
t∫

0

ψ(τ)dτ, (40)

where ϕi represents the phase difference with i = 1 or 2. We will study the interaction
between two solitons by using the simple linear sum of two wave solitons u1, u2 and v1, v2
that satisfy the coupled mKdV system individually. It is clear that the total field u = u1 + u2
and v = v1 + v2 satisfies the perturbed coupled mKdV system, which is satisfied by each
soliton. When i = 1, we have:

u1t + 6au1v1u1x + u1xxx = −6a(u1 + u2)(v1 + v2)(u1x + u2x) + 6a(u1v1u1x + u2v2u2x),
v1t + 6av1u1v1x + v1xxx = −6a(v1 + v2)(u1 + u2)(v1x + v2x) + 6a(u1v1u1x + u2v2u2x),

(41)

when i = 2, we have:

u2t + 6au2v2u2x + u2xxx = −6a(u1 + u2)(v1 + v2)(u1x + u2x) + 6a(u1v1u1x + u2v2u2x),
v2t + 6av2u2v2x + v2xxx = −6a(v1 + v2)(u1 + u2)(v1x + v2x) + 6a(u1v1u1x + u2v2u2x).

(42)

So, the nonlinear interaction between two neighboring solitons occurs based on the two
terms on the right side, which act as perturbation terms.

In the same manner, in discussing the interaction between three solitons, we assume
that their wave numbers, phases, and velocity differ such that:

ui =
c k1iek1ix−k3

1it+ϕi

1 + e2(k1ix−k3
1it)+ϕi

, vi =
4 k1iek1ix−k3

1it+ϕi

a c (1 + e2(k1ix−k3
1it)+ϕi )

, t =
t∫

0

ψ(τ)dτ, (43)

where ϕi represents the phase difference with i = 1, 2, or 3. Since u1, u2, u3 and v1, v2, v3
satisfy the coupled mKdV system individually, it is clear that the total field u = u1 + u2 + u3
and v = v1 + v2 + v3 satisfies the perturbed coupled mKdV system. When i = 1, we have:

u1t + 6au1v1u1x + u1xxx = −6a(u1 + u2 + u3)(v1 + v2 + v3)(u1x + u2x + u3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x),

v1t + 6av1u1v1x + v1xxx = −6a(v1 + v2 + v3)(u1 + u2 + u3)(v1x + v2x + v3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x),

(44)
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when i = 2, we have:

u2t + 6au2v2u2x + u2xxx = −6a(u1 + u2 + u3)(v1 + v2 + v3)(u1x + u2x + u3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x),

v2t + 6av2u2v2x + v2xxx = −6a(v1 + v2 + v3)(u1 + u2 + u3)(v1x + v2x + v3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x).

(45)

Also, when i = 3, we have:

u3t + 6au3v3u3x + u3xxx = −6a(u1 + u2 + u3)(v1 + v2 + v3)(u1x + u2x + u3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x),

v3t + 6av3u3v3x + v3xxx = −6a(v1 + v2 + v3)(u1 + u2 + u3)(v1x + v2x + v3x)
+6a(u1v1u1x + u2v2u2x + u3v3u3x).

(46)

The evolutional behavior of the soliton interaction wave is represented by u = u1 + u2
given above with the selection c = 2, a = 1, k11 = 4, k12 = 3, ϕ1 = −100, and ϕ2 = 100,
so u takes the form:

u =
8e

4x−64
t∫

0
ψ(τ)dτ−100

1 + e
4x−64

t∫
0

ψ(τ)dτ−100
+

6e
3x−27

t∫
0

ψ(τ)dτ+100

1 + e
3x−27

t∫
0

ψ(τ)dτ+100
, (47)

Figure 4a represents when ψ(t) = 1, Figure 4b represents when ψ(t) = t, Figure 4c
represents when ψ(t) = et, Figure 4d represents when ψ(t) = sin t, Figure 4e represents
when ψ(t) = tan t, Figure 4f represents when ψ(t) = tanht, and Figure 1 shows the different
types of interactions between two solitons.
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(f) ψ(t) = tanht.

5. Discussion and Summery

In this paper, we study a coupled mKdV equation with a time-dependent coeffi-
cient which passes multiple soliton waves. We implement the bilinear Hirota technique
to compute analytical solutions to the desired coupled mKdV system. We construct
multiple kink soliton and singular kink soliton waves for the system under study.
Such calculations are made by using a software with symbolic computation software,
for instance, Maple. Recently some researchers used Maple in order to show that
the bilinear method of Hirota is a straightforward technique which can be used in
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the approach of differential, nonlinear models. All our results have fruitful features
because they can be extended to different physical structures, given that different
functions have been chosen arbitrarily. The proper choice of constants and functions
allows us to draw significant physical profiles. The respective solutions refer to profiles
in a vast area, considering them as singular-sink solutions or sink soliton solutions.
N-soliton solutions are obtained and the interactions between solitons are analyzed
mathematically and graphically. It was observed that solitary waves existed as long
as the time-dependent coefficient was Riemann-integrable. We analyzed whether the
experiments proved that the procedure is effective and can be successfully used for
many other mathematical models used in physics and engineering. The determined so-
lutions can be of powerful significance for the clarification of certain practical physical
problems. These results in the present study could be used to understand related phys-
ical phenomena in nonlinear optics and relevant fields. At any rate, we are encouraged
by the results of this paper to further study the problem of solitons for models that
depend on time, such as (1).

Author Contributions: Conceptualization, H.D.S.A. and K.I.A.A.; methodology, M.M.; software,
M.Y.Y.; validation, H.D.S.A., K.I.A.A., M.Y.Y. and M.M.; formal analysis, M.M.; investigation,
H.D.S.A.; resources, K.I.A.A.; data curation, M.Y.Y.; writing—original draft preparation, H.D.S.A.;
writing—review and editing, H.D.S.A., K.I.A.A., M.Y.Y. and M.M.; visualization, K.I.A.A.; supervi-
sion, H.D.S.A.; project administration, H.D.S.A., K.I.A.A.; funding acquisition, K.I.A.A.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deanship of Scientific Research at Najran University, grant
number NU/DRP/SERC/12/24.

Data Availability Statement: Not available.

Acknowledgments: The authors are thankful to the Deanship of Scientific Research at Najran Uni-
versity for funding this work under the General Research Funding Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaur, L.; Wazwaz, A.M. Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation.

Nonlinear Dyn. 2018, 94, 2469. [CrossRef]
2. Wazwaz, A.M.; Kaur, L. Complex simplified Hirota’s forms and lie symmetry analysis for multiple real and complex soliton

solutions. Nonlinear Dyn. 2019, 95, 2209–2215. [CrossRef]
3. He, L.; Zhao, Z. Multiple lump solutions and dynamics of the generalized (3+1)-dimensional KP equation. Mod. Phys. Lett. B

2020, 34, 2050167. [CrossRef]
4. Kaur, L.; Wazwaz, A.M. Bright-dark lump wave solutions for a new form of the (3+1)-dimensional BKP-Boussinesq equation.

Rom. Rep. Phys. 2019, 71, 102.
5. Zabusky, N.J.; Kruskal, M.D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.

1965, 15, 240–243. [CrossRef]
6. Jose, J.V.; Saletan, E.J. Classical Dynamics: A Contemporary Approach; Academic Press: Cambridge, MA, USA, 1998.
7. Dauxois, T.; Peyrard, M. Physics of Solitons; Cambridge University Press: Cambridge, MA, USA, 2006.
8. Behzad, G. Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid

mechanics. Results Phys. 2021, 29, 104689.
9. Akinyemi, L.; Morazara, E. Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended

Kadomtsev–Petviashvili equation. Nonlinear Dyn. 2023, 111, 4683–4707. [CrossRef]
10. Mathanaranjan, T. New Optical Solitons and Modulation Instability Analysis of Generalized Coupled Nonlinear Schrodinger-KdV

System. Opt. Quantum Electron. 2022, 54, 336. [CrossRef]
11. Arnous, A.H.; Mirzazadeh, M. Application of the generalized Kudryashov method to the Eckhaus equation. Nonlinear Anal.

Model. Control 2016, 21, 577–586. [CrossRef]
12. Yusuf, A.; Sulaiman, T.A.; Inc, M.; Bayram, M. Breather wave, lump-periodic solutions and some other interaction phenomena to

the Caudrey–Dodd–Gibbon equation. Eur. Phys. J. Plus 2020, 135, 563. [CrossRef]

https://doi.org/10.1007/s11071-018-4503-8
https://doi.org/10.1007/s11071-018-4686-z
https://doi.org/10.1142/S0217984920501675
https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1007/s11071-022-08087-x
https://doi.org/10.1007/s11082-022-03723-7
https://doi.org/10.15388/NA.2016.5.1
https://doi.org/10.1140/epjp/s13360-020-00566-7


Symmetry 2023, 15, 1972 15 of 16

13. Lei, Z.-Q.; Liu, J.-G.; Rezazadeh, H.; Khater, M.M.A.; Inc, M. Research of lump dynamics on the (3+1)-dimensional B-type
Kadomtsev–Petviashvili–Boussinesq equation. Mod. Phys. Lett. B 2021, 35, 2150474. [CrossRef]

14. Zhou, Q.; Ekici, M.; Sonmezoglu, A.; Mirzazadeh, M.; Eslami, M. Optical solitons with Biswas–Milovic equation by extended trial
equation method. Nonlinear Dyn. 2016, 84, 1883–1900. [CrossRef]

15. Hosseini, K.; ABaleanu, D.; Salahshour, S. The Sharma–Tasso–Olver–Burgers equation: Its conservation laws and kink solitons.
Commun. Theor. Phys. 2022, 74, 02500. [CrossRef]

16. Mia, R.; Miah, M.M.; Osman, M.S. A new implementation of a novel analytical method for finding the analytical solutions of the
(2+ 1)-dimensional KP-BBM equation. Heliyon 2023, 9, e15690. [CrossRef] [PubMed]

17. Mathanaranjan, T. Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schr¨odinger equation.
J. Nonlinear Opt. Phys. Mater. 2023, 32, 2350016. [CrossRef]

18. Mathanaranjan, T. An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation
with different laws of nonlinearity. Comput. Methods Differ. Equ. 2022, 10, 701–715.

19. Az-Zobi, E.; Al-Maaitah, A.F.; Tashtoush, M.A.; Osman, M.S. New generalised cubic–quintic–septic NLSE and its optical solitons.
Pramana 2022, 96, 184. [CrossRef]

20. Abdel-Salam, E.A.-B.; Yousif, E.A.; El-Aasser, M.A. Analytical solution of the space-time fractional nonlinear Schrödinger
equation. Rep. Math. Phys. 2016, 77, 19–34. [CrossRef]

21. Yousif, E.A.; Abdel-Salam, E.A.-B.; El-Aasser, M.A. On the solution of the space-time fractional cubic nonlinear Schrödinger
equation. Results Phys. 2018, 8, 702–708. [CrossRef]

22. Abdel-Salam, E.A.-B.; Yousif, E.A. Solution of nonlinear space-time fractional differential equations using the fractional Riccati
expansion method. Math. Probl. Eng. 2013, 2013, 846283. [CrossRef]

23. Abdel-Salam, E.A.-B.; Hassan, G.F. Solutions to class of linear and nonlinear fractional differential equations. Commun. Theor.
Phys. 2006, 65, 127.

24. Abdel-Salam, E.A.-B.; Mourad, M.F. Fractional quasi AKNS-technique for nonlinear space–time fractional evolution equations.
Math. Methods Appl Sci. 2018, 42, 5953–5968. [CrossRef]

25. Abdel-Salam, E.A.-B.; Jazmati, M.S.; Ahmad, H. Geometrical study and solutions for family of burgers-like equation with
fractional order space time. Alex. Eng. J. 2022, 61, 511–521. [CrossRef]

26. Abdel-Salam, E.A.-B.; Kaya, D. Application of new triangular functions to nonlinear partial differential equations. Z. Für
Naturforschung A 2009, 64, 1–7. [CrossRef]

27. Othman, M.I.A.; Fekry, M.; Marin, M. Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the
effect of initial stress and laser pulse heating, Structural Engineering and Mechanics. Struct. Eng. Mech. 2020, 73, 621–629.

28. Abdel-Salam, E.A.-B.; Al-Muhameed ZI, A. Exotic localized structures based on the symmetrical lucas function of the (2+1)-
dimensional generalized Nizhnik-Novikov-Veselov system. Turk. J. Phys. 2011, 35, 241–256. [CrossRef]

29. Abdel-Salam, E.A.-B. Periodic structures based on the symmetrical lucas function of the (2+1)-dimensional dispersive long-wave
system. Z. Für Naturforschung A 2008, 63, 671–678. [CrossRef]

30. Boukarou, A.; Guerbati, K.; Zennir, K.; Alodhaibi, S.; Alkhalaf, S. Well-Posedness and Time Regularity for a System of Modified
Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces. Mathematics 2020, 8, 809. [CrossRef]

31. Georgiev, S.G.; Boukarou, A.; Zennir, K. Classical Solutions for the Coupled System gKdV Equations. Russ Math. 2022, 66, 1–15.
[CrossRef]

32. Georgiev, S.G.; Boukarou, A.; Bouhali, K.; Zennir, K.; Elkhair, H.M.; Hassan, E.I.; Alfedeel, A.H.A.; Alarfaj, A. Classical Solutions
for the Generalized Kawahara–KdV System. Symmetry 2023, 15, 1159. [CrossRef]

33. Biswas, A. Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities. Optik 2019, 176,
198–201. [CrossRef]

34. Abo-Dahab, S.M.; Abouelregal, A.E.; Marin, M. Generalized Thermoelastic Functionally Graded on a Thin Slim Strip Non-
Gaussian Laser Beam. Symmetry 2020, 12, 1094. [CrossRef]

35. Leblond, H.; Mihalache, D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep.
2013, 523, 61–126. [CrossRef]

36. Mihalache, D. Localized structures in nonlinear optical media: A selection of recent studies. Rom. Rep. Phys. 2013, 67, 1383–1400.
37. Marin, M.; Seadawy, A.; Vlase, S.; Chirila, A. On mixed problem in thermos-elasticity of type III for Cosserat media. J. Taibah Univ.

Sci. 2022, 16, 1264–1274. [CrossRef]
38. Vaganan, B.M.; Kumaran, M.S. Exact linearization and invariant solutions of the generalized Burger’s equation with linear

damping and variable viscosity. Stud. Appl. Math. 2006, 117, 95–108.
39. Yan, T.X.; Fei, H.; Len-Yue, S.L. Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle. Chin.

Phys. Lett. 2006, 23, 887–890.
40. Wazwaz, A.M. Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg–de Vries Equations. Z. Für Naturforschung

A 2011, 66, 625–631. [CrossRef]

https://doi.org/10.1142/S0217984921504741
https://doi.org/10.1007/s11071-016-2613-8
https://doi.org/10.1088/1572-9494/ac4411
https://doi.org/10.1016/j.heliyon.2023.e15690
https://www.ncbi.nlm.nih.gov/pubmed/37144200
https://doi.org/10.1142/S0218863523500169
https://doi.org/10.1007/s12043-022-02427-7
https://doi.org/10.1016/S0034-4877(16)30002-7
https://doi.org/10.1016/j.rinp.2017.12.065
https://doi.org/10.1155/2013/846283
https://doi.org/10.1002/mma.5633
https://doi.org/10.1016/j.aej.2021.06.032
https://doi.org/10.1515/zna-2009-1-201
https://doi.org/10.3906/fiz-1009-10
https://doi.org/10.1515/zna-2008-10-1110
https://doi.org/10.3390/math8050809
https://doi.org/10.3103/S1066369X22120052
https://doi.org/10.3390/sym15061159
https://doi.org/10.1016/j.ijleo.2018.09.074
https://doi.org/10.3390/sym12071094
https://doi.org/10.1016/j.physrep.2012.10.006
https://doi.org/10.1080/16583655.2022.2160290
https://doi.org/10.5560/zna.2011-0034


Symmetry 2023, 15, 1972 16 of 16

41. Zhou, Y.; Wang, M.; Wang, Y. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 2003,
308, 3136. [CrossRef]

42. Triki, H.; Thiab, T.R.; Wazwaz, A.M. Solitary wave solutions for a generalized KdV-mKdV equation with variable coefficients.
Math. Comput. Simul. 2010, 80, 1867–1873. [CrossRef]

43. Biswas, A. Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion. Commun.
Nonlinear Sci. Numer. Simul. 2009, 14, 3503–3506. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0375-9601(02)01775-9
https://doi.org/10.1016/j.matcom.2010.02.001
https://doi.org/10.1016/j.cnsns.2008.09.026

	Introduction 
	Soliton Solution 
	A Singular Soliton Wave 
	Soliton Interactions 
	Discussion and Summery 
	References

