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Abstract: We demonstrate that the Finite-Time-Path Field Theory is an adequate tool for calculating
neutrino oscillations. We apply this theory using a mass-mixing Lagrangian which involves the correct
Dirac spin and chirality structure and a Pontecorvo–Maki–Nakagawa–Sakata (PMNS)-like mixing
matrix. The model is exactly solvable. The Dyson–Schwinger equations transform propagators of the
input free (massless) flavor neutrinos into a linear combination of oscillating (massive) neutrinos.
The results are consistent with the predictions of the PMNS matrix while allowing for extrapolation
to early times.
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1. Introduction

The evidence for neutrino oscillations, which solve the solar neutrino problem [1],
started with the study of atmospheric oscillations [2]. Evidence has been collected from
various sources and for various distances from the sources over a wide range of neutrino
energies and detectors [3–43].

Neutrino oscillations, as well as similar problems such as kaon oscillations and decays,
suffer from the absence of a proper formalism for the features in which a finite-time
description is essential.

The most important aspect of this paper is to demonstrate that the Finite Time Path
Field Theory (FTPFT) is an adequate tool [44,45] to treat such problems. In particular,
we start with the free Lagrangian L0 of massless neutrinos with three flavors; however,
we mix them dynamically through an interaction Lagrangian LI , as in addition to the
standard weak interaction term LW it has the term LMix, which contains a Pontecorvo–
Maki–Nakagawa–Sakata (PMNS)-like matrix involving neutrino masses. The term LW is of
course crucial for the processes of creation and detection of flavor neutrinos. Nevertheless,
we adopt the approximation where the neutrino mixing is fully due to the term LMix,
that is, we neglect the residual influence of LW on the neutrino masses and mixing. Of
course, we must keep in mind the caveat that not calculating these corrections misses
the contributions from the vacuum condensate, which Blasone et al. [46–48] found to be
important corrections to the PMNS result. Nevertheless, they vanish in the relativistic limit,
while the PMNS result is recovered [46–48]. Because the case of nonrelativistic neutrino
kinematics seems to be far from present experimental capabilities, we proceed to study
neutrino propagators in our aforedescribed framework, which provides us with an exactly
solvable model suitable for studying how FTPFT can be applied to neutrino oscillations.

Through the exact solution of the Dyson–Schwinger equations (DSE), we then obtain
propagators (with the retarded SR and advanced SA components) of oscillating (massive)
neutrinos which couple to the weak interactions. The DSE equation for the Keldysh
component (SK) of neutrino propagators leads to two possible histories distinguished by
two of three masses (say, mi and mj) for which the interference leads to oscillations. An
equal time limit of SK provides the number of neutrinos at time t.
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The origin of neutrino masses has not yet been answered conclusively. The variety of
extant approaches includes the Majorana mass term, right-handed neutrinos with a see-saw
mechanism, supersymmetric extensions of Standard model, and more. One intriguing
possibility is the generation of neutrino masses and mixing via the aforementioned flavor
vacuum condensate [46–48]. However, in the present paper we do not address the issue
of the origin of neutrino masses, and focus on demonstrating the calculation of neutrino
oscillations in the FTPFT framework.

Whatever the mechanism of neutrino mass generation, in this paper we assume that it
manifests itself through an additional term in the Lagrangian: the mass mixing term LMix.
Here, the interaction Lagrangian contains the mass mixing matrix in a close analogy to
the PMNS matrix except with an explicit Dirac spin and chirality structure. The model is
exactly solvable.

To calculate neutrino oscillations, we use FTPFT; [49,50] in addition, see [51–68],
often called the closed time path (CTP) thermal field theory (TFT). We find this to be an
appropriate tool for calculating a wide variety of problems, including equilibrium and
nonequilibrium TFT problems, for which it was originally constructed [49,50], as well as
scattering processes, decays, and oscillations.

How can field theory describe oscillations? It depends on which version of field theory
is employed (for example, see [69,70] and references therein). If we look at the predominant
field theory approach, namely, the S-matrix approach, it exhibits excellent properties:
adiabatic switching of interaction, Gell-Mann–Low (G-L) theorem, Fermi’s golden rule,
reduction technique, renormalization, etc. However, for time-dependent processes, notably
oscillations, it has nothing to say, in the sense that it includes adiabatic switching (on and
off) of the interaction and acts between the infinite initial time ti = −∞ and final time
t f = ∞.

FTPFT, on the other hand, uses a finite time path, no adiabatic switching, and no
G-L theorem. The particle states are not exactly the eigenstates of the full Hamiltonian.
Renormalization, as we have indicated in [67,68], is somewhat more involved; nevertheless,
it can be performed in finite time with essentially the same technique of dimensional regu-
larization.

The drawback of this theory is the lack of a Gell-Mann–Low-type theorem. Never-
theless, FTPFT does not contain disconnected subdiagrams owing to the absence of the
maximal-time vertices [61,62,64]. Thus, this drawback may be cured after carrying out all of
the calculations in a proper way by considering the large time behavior of the contributions.
Then, in this limit one can expect the G-L theorem to again be valid.

The particle number is obtained as the equal time limit (ETL) of the re-summed SK
propagator (or better) as the average of ETL (AETL) for the contributions distinguished by
t1 f − t2 f (see Appendix A, especially Appendix A.7). These processes contribute inclusively
to the particle number. Fermi’s golden rule need not be put in by hand, as it emerges
naturally during calculation of the convolution products (∗-products).

In certain applications, the solution of DSE can be written in a closed form. The
solution of DSE is illustrative: conserving energy and momentum along the chain, the chain
of retarded functions extends from the final time t towards the earliest time tmin ≥ 0. There,
it meets a SK propagator containing the initial distribution function. At that time, there
is a (single) convolution product, which does not conserve energy. Instead, it creates just
enough oscillating deviations from the energy-conserving value to satisfy the uncertainty
relations. From the lowest time, another chain of advanced functions progresses back to
the final time. It conserves energy and momentum as well; however, the energy of the
advanced chain differs from the energy of the retarded chain. With the help of this energy
difference, the convolution product creates oscillations. It is easy to see that with increasing
time the uncertainty in energy becomes smaller, which is in the full agreement with the
uncertainty relations.

In certain special cases, energy is conserved at the remaining ∗-product. For instance,
this is the case when Fermi’s golden rule emerges.
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The remainder of this paper is organized as follows: first, we provide a short overview
of the PMNS-approach; then, we define the dynamics of our approach through the mass
mixing interaction Lagrangian LMix (9).

Our calculation is based on the DSE (12)–(15) and their closed form solution. This
solution defines the oscillating neutrino which possesses flavor as massive and weakly in-
teracting.

The equal time limit of the SK propagator is directly connected to the neutrino number,
as it is measured at time t. In the process of calculation, we show how the number of
complicated ∗-products appearing in the formal solution simplifies to a single ∗-product,
which is necessary for the time evolution and energy–time uncertainty relations.

As a result of this calculation, we obtain the neutrino number at time t. Projection to
the flavor degree of freedom exhibits oscillating behavior. This result is consistent with
Heisenberg’s uncertainty relations between time and energy. We reproduce the PMNS
result exactly within the limit of ultrarelativistic neutrinos and large time.

Finally, we discuss prospects for further research.
Further details and calculation can be found in Appendix A.

2. PMNS Theory of Neutrino Oscillation

In the PMNS theory of neutrino oscillation [71–75], three flavor neutrino states that
interact weakly are mixed to three different superpositions of the neutrino states of definite
mass (for mixing in gauge theories, see [6]). In the flavor states, neutrinos are emitted and
absorbed through weak processes; however, they travel as mass eigenstates.

This is mathematically expressed as

|να〉 = ∑
i

Uαi|νi〉 , |νi〉 = ∑
α

U∗αi|να〉 , (1)

where α = e, µ, τ are the flavor indices, respectively, e-electron neutrinos, µ-muon neutrinos,
and τ-tauon neutrinos, that label neutrinos with definite flavors, while mi, i = 1, 2, 3, are
the indices of the neutrino mass states. To describe antineutrinos, it is necessary to use
complex-conjugate matrices Uαi ↔ U∗αi. The matrix Uαi is the PMNS-matrix, introduced in
a way analogous to the CKM matrix describing the mixing of quarks.

The size of the matrix depends on theory. For the standard three-neutrino theory, the
matrix is 3× 3. For more neutrinos (including sterile ones), the matrix could be larger.
There are anomalies [4,5,76–86], suggesting that the model requires further refinement.

The 3× 3 PMNS matrix (2), for example, is provided in [22]:

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (2)

=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

eiα1/2 0 0
0 eiα2/2 0
0 0 1

,

where cij = cos θij and sij = sin θij. The phase factors α1 and α2 are relevant only if
the neutrinos are Majorana particles, i.e., if the neutrino is identical to its antineutrino,
otherwise they can be ignored. The phase factor δ measures the degree of violation of CP
symmetry, which has not yet been observed experimentally.

Note that Relation (1) is valid only approximately, as particles with the same energy
and momentum but different masses cannot simultaneously be on the mass shell. The same
feature appears in the usual treatment of neutrino oscillations in field theory, where it is
known as mass-shell approximation [69,70,87,88].

A neutrino travels through space as a massive neutrino. Its time evolution is described
(in units c = 1, h̄ = 1) by |νi(t)〉 = e− i (Eit−~pi ·~x)|νi(0)〉 for each mass- and energy-eigenstate
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|νi〉 with mass mi and eigenenergy Ei =
√

p2
i + m2

i . However, weak processes actually
produce flavor states |να〉, which are, in accordance with Equation (1), superpositions
of these mass- and energy-eigenstates |νi〉. Due to their energy differences Ei − Ej, such
superpositions have an energy uncertainty ∆E (5).

In the quantum mechanical treatment of neutrino oscillations, it is standard to assume
(for example, see [89,90]) that all mass eigenstates |νi〉 have the same momentum, i.e., their
energies Ei differ by their masses mi and the flavor neutrino state |να〉 is determined by
the momentum.

In the ultrarelativistic limit, |~pi| = pi � mi. Thus, pi ≈ E, the neutrino energy in the
limit mi → 0, such that ∀ i:

Ei ' pi +
m2

i
2pi
≈ E +

m2
i

2E
, and t ≈ L , (3)

where t is the time from the beginning of evolution and L is the distance traveled.
In the process of measurement, the neutrino is projected back to the flavor states. The

probability that the initial neutrino with flavor α will be detected later as having flavor β is
defined as

Pα→β =
∣∣〈νβ(L)

∣∣να

〉∣∣2 =

∣∣∣∣∑i U∗αiUβie−i
m2

i L
2E

∣∣∣∣2.

This can be written as

Pα→β = δαβ − 4 ∑
i>j

Re
(

U∗αiUβiUαjU∗βj

)
sin2

(
∆m2

ijL

4E

)

+2 ∑
i>j

Im
(

U∗αiUβiUαjU∗βj

)
sin

(
∆m2

ijL

2E

)
, (4)

where ∆m2
ij ≡ m2

i −m2
j .

The second term is related to CP asymmetry:

A(αβ)
CP = P(να → νβ)− P(ν̄α → ν̄β) = 4 ∑

i>j
Im
(

U∗αi
Uβi UαjU∗β j

)
sin

(
∆m2

ijL

2E

)
.

With the help of the Jarlskog invariant Im
(

Uαi U
∗
βi

U∗αj
Uβ j

)
= J ∑γ,k εαβγεijk , the CP

asymmetry is expressed as

A(αβ)
CP = 16J ∑

γ

εαβγ sin

(
∆m2

21L
4E

)
sin

(
∆m2

32L
4E

)
sin

(
∆m2

31L
4E

)
.

Note that CP asymmetry in neutrino oscillations has not yet been observed.
Because

∆E ≤ max
i,j=1,2,3

(Ei − Ej) ≈
m2

i −m2
j

2E
, (5)

Equation (4) satisfies the time–energy uncertainty relation ∆E ∆t & 1 of Heisenberg (and of
Mandelstam and Tamm, as discussed in [90]) for

t &
2E

∆m2
ij

. (6)

For times shorter than (6), the uncertainty relations are fulfilled with the help of
neutrino production processes. Specifically, they produce the flavor states |να〉, which are
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superpositions (1) of |νi〉, the eigenstates of neutrino masses mi, which are so close that
they cannot be resolved in a time shorter than (6) [90].

The ultrarelativistic limit applies to all currently observed neutrinos, as it is known
that the differences of their squared masses are of the order 10−4 eV2 and their energies are
at least 1 MeV. Measured oscillation distances L are on the order of kilometers.

3. Neutrino Oscillation as a Dynamical Process
3.1. The Mass Mixing Term in the Interaction Lagrangian

In order to treat neutrino oscillation as a dynamical process, we start with the neutrino
mixing interaction LMix of the Dirac spinor Lagrangian, defined by:

L0(x) = ∑
α

ν̄α(x)i∂/να(x) (7)

LI = LW + LMix (8)

LMix(x) = ∑
α,i

ν̄α(x)U∗α,i MijUβ,jνβ(x) + antineutrinos (9)

M =

m1 0 0
0 m2 0
0 0 m3

 , (10)

where Uα,i is a 3× 3 matrix analogous to the PMNS-matrix. Here, να are neutrino spinor
wave functions for flavor α and mi represents the propagating neutrino masses. The
initial conditions are fixed through the neutrino distribution function (including either the
chirality or a handedness projection operator) which are built in the S f ,K component of the
flavor neutrino propagator. The massless chiral “flavor neutrinos” (with propagators S f (p)
and weak interaction) enter the DSE. The self-energy is identified from the next-to-lowest
order to the DSE through the use of (9) and (10), and is simply the constant matrix

Σα,β = Σα,β,R = Σα,β,A = −U∗α,i MijUβ,j, Σα,β,K = 0 (11)

The DSE for fermions and their formal solutions are provided in Appendix A, specifi-
cally, (A15)–(A19).

The DSEs for oscillating neutrinos are

S̃β,α,R = Sβ,Rδβ,α + iSβ,R ∗ Σβ,η,R ∗ S̃η,α,R (12)

S̃β,α,A = Sβ,Aδβ,α + iSβ,η,R ∗ Ση,ζ,A ∗ S̃ζ,α,A (13)

S̃β,α,K = Sβ,Kδβ,α + i[Sβ,η,R ∗ Ση,ζ,R ∗ S̃ζ,α,K (14)

+Sβ,η,K ∗ Ση,ζ,A ∗ S̃ζ,α,A + Sβ,η,R ∗ Ση,ζ,K ∗ S̃ζ,α,A] , (15)

where S denotes the lowest-order Green function and the same symbol with a tilde (S̃)
denotes the corresponding re-summed Green function, as explained in Appendix A.6.

3.2. Solution of the Dyson–Schwinger Equations for Oscillating Neutrinos

The formal solution for (12)–(15) is

S̃β,α,R = [1− iSR ∗ ΣR]
−1
β,η ∗ Sη,α,R = Sβ,η,R ∗ [1− iΣR ∗ SR]

−1
η,α,

S̃β,α,A = [1− iSA ∗ ΣA]
−1
β,η ∗ Sη,α,A = Sβ,η,A ∗ [1− iΣA ∗ SA]

−1
η,α,

S̃β,α,K = −Sβ,η,K,A ∗ (1− iΣA ∗ SA)
−1
η,α + (1− iSR ∗ ΣR)

−1
β,η ∗ Sη,α,K,R
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+i(1− iSR ∗ ΣR)
−1
β,η ∗ [Sη,ζ,R ∗ Σζ,ω,K ∗ Sω,θ,A − Sη,ζ,R ∗ Σζ,ω,R ∗ Sω,θ,K,A

+Sη,ζ,K,R ∗ Σζ,ω,A ∗ Sω,θ,A] ∗ (1− iΣA ∗ SA)
−1
θ,α . (16)

The solution simplifies owing to the following three reasons:

1. The self-energy is a simple matrix, not a retarded or advanced function;
2. The ∗-products among the bare propagators turn to algebraic products except for the

case where one factor is retarded (R or K,R) and the other is advanced (A or K,A);
3. The matrix U is unitary.

Next, we calculate (1 − iΣR(A) ∗ SR(A))
−1
θ,α ; the matrix inversion is simple, and we

obtain

(1− iΣ ∗ SR)
−1
β,α(p) = ∑

i
U∗β,i

p2 + mi p/
p2 −m2

i + ip0ε
Uα,i . (17)

Then, we obtain the re-summed retarded propagator component:

S̃β,α,R(p) = (1− iΣ ∗ SR)
−1
β,ηSη,α,R(p) = ∑

i
U∗β,i

−i(mi + p/)

p2 −m2
i + ip0ε

Uα,i (18)

and the resummed advanced propagator component

S̃β,α,A(p) = (1− iΣ ∗ SA)
−1
β,ηSη,α,A(p) = ∑

i
U∗β,i

−i(mi + p/)

p2 −m2
i − ip0ε

Uα,i . (19)

We now have an important conclusion. Relations (18) and (19) express the re-summed
flavor propagator through the linear combination of “propagating” neutrino propagators.
This should be contrasted to the “similar” (mathematically ill-defined) relations between
wave functions of flavor and propagating neutrinos.

Now, we turn to the S̃β,α,K propagator. Insertion of (17)–(19) into (16) provides us with

S̃β,α,K = −δ f ,α ∑
i

U∗β,iUα,i
i

p2 −m2
i − ip0ε

×{[1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)− [1− 2n f̄ (−~p)]
p0 − |~p|

2|~p| (γ0|~p|+ ~γ~p)}1− γ5

2

+δβ, f ∑
i

U∗β,iUα,i
i

p2 −m2
i + ip0ε

×{[1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)− [1− 2n f̄ (−~p)]
p0 − |~p|

2|~p| (γ0|~p|+ ~γ~p)}1− γ5

2

+iδ f ,α ∑
i,j

U∗β,i
p2 + mi p/

(p2 −m2
i + ip0ε)(p2 + ip0ε)

Uα,i[−imi(−ip/)

∗{[1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)

−[1− 2n f̄ (−~p)]
p0 − |~p|

2|~p| (γ0|~p|+ ~γ~p)}1− γ5

2

+{[1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)
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−[1− 2n f̄ (−~p)]
p0 − |~p|

2|~p| (γ0|~p|+ ~γ~p)}1− γ5

2
] ∗ imj(−ip/)]

×U∗α,j
p2 + mj p/

(p2 −m2
j − ip0ε)(p2 − ip0ε)

Uβ,j , (20)

where f is the flavor of the initial neutrino beam.
The resummed Keldysh component S̃β,α,K of the neutrino propagator consists of two

contributions: (a) terms without ∗-products (which we call algebraic) and (b) the terms
with a single ∗-product (which we call convolutional).

This propagator carries the information which, after the equal time limit, provides the
number and momentum distribution of all types of flavor neutrinos measured at time t.

3.3. The ∗-Products and the Average of Equal Time Limits

The remaining ∗-product in (20) between the retarded and advanced functions is
expressed (see Equation (A2) for details) as follows:

CX0(p0,~p) =
∫

dp01dp02PX0(p0,
p01 + p02

2
)

i
2π

e−iX0(p01−p02+iε) − 1
p01 − p02 + iε

A∞,R(p01,~p)B∞,A(p02,~p),

PX0(p0, p′0) =
1
π

Θ(X0)
sin(2X0(p0 − p′0))

p0 − p′0
, (21)

where the label ∞ means that the values of A and B should be taken at infinite time. After
time t, the number of oscillating neutrinos is expressed through the average equal-time limit
of the re-summed Keldysh component S̃β,α,K of the neutrino propagator (see Appendix A):

1− 〈Nβ,~p(t) 〉

=
1

2π
[ lim

0<∆→0
+ lim

0>∆→0
]
∫

dp0 e−ip0∆ Tr[
γ0

4
S̃β,β,K,t(p)

1− γ5

2
], (22)

where ∆ = s01 − s02 and X0 = (s01 + s02)/2 = t. In this expression, we have taken
into account that the initial condition (A13) contains only flavor neutrinos of type f , not
antineutrinos, and we calculate number of flavor neutrinos of type β. The equal time limit
removes projector P from the above ∗-product:

1
π

lim
∆→0

∫
dp0 e−i∆p0 Cs02=t(p0,~p) =

∫
dp01dp02

i
2π

e−it(p01−p02) − 1
p01 − p02

A∞,R(p01,~p)B∞,A(p02,~p). (23)

3.4. Contributions to Neutrino Oscillation

To calculate neutrino oscillation, we start with chiral fermion number (22) and insert
the solution of the Dyson–Schwinger Equation (20).

Upon managing all ∗-products appearing in (20), we end up with two types of
contributions:

1. Contributions without any ∗-product. These contributions (the first pair in (20)) are
independent in time. They should reproduce the initial (input) density of neutrinos.
By calculating geometrical series term by term, one would obtain the lowest order
providing the input neutrino density. All the higher term would vanish, as they
are equal time limit of the product of two or more retarded functions (or two or
more advanced functions). The re-summed propagator is nonperturbative, and
consequently the result renormalizes the initial density. Nevertheless, we obtain
the input neutrino density.
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2. Contributions containing Sα,K (the second pair in (20)). These refer to the initial input
of flavor neutrinos of type α. They contribute to oscillation.

3.5. The Algebraic Term

Note here that we have to decide whether we approach equal time from above
or from below. The final result does not depend on our choice; however, for our choice
∆ = s01 − s02 > 0 the advanced contribution should vanish.

We calculate the contribution of [1− iSRΣR]
−1Sα,K,R (at n f̄ (−~p) = 0

Iα,alg = 1− 〈Nα,alg(~p)(t) 〉 =
i
π

lim
s01→s02=t

∫
dp0e−ip0(s01−s02)

1
4

Trγ0δα, f ∑
i

U∗α,iUα,i
i

p2 −m2
i + ip0ε

[1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)
1− γ5

2

1
4

Trγ0(θ + ηp/)(γ0|~p|+ ~γ~p)[1− γ5] = θ|~p|

Iα,alg = lim
s01→s02=t

∫
dp0e−ip0(s01−s02) ∑

i
|Uα,i|2

i
p2 −m2

i + ip0ε
[1− 2n f (~p)]

p0 + |~p|
2π

(24)

Finally, we find

Iα,alg = δα, f [1− n f (~p)]. (25)

This contribution is the only time-independent contribution to neutrino yield. As we
will see, it confirms the conservation of the total number of neutrinos in our model. It
indicates that the eventual (finite) wave function renormalization is not necessary.

3.6. ∗-Product, Term Containing SK,R

In the terms with a convolution product, the chirality projector ( 1−γ5
2 ) appears twice:

once to select chiral neutrinos in initial distribution function, and a second time to be
selected by the weak interaction measurement device:

ISconv,SK,R
=

1
4

Trγ0
i

2π2

∫
dp01dp02

e−i(p01−p02)t − 1
p01 − p02

i[1− iΣSR]
−1SK,R}(p01){ΣSA[1− iΣSA]

−1}(p02)[1− γ5]/2

= δα, f ∑
i,j

U∗β,iUα,iU∗α,jUβ,jTrγ0
i

16π2

∫
dp01dp02

e−i(p01−p02)t − 1
p01 − p02

i
p2

1 + mi p/1

(p2
1 −m2

i + ip01ε)(p2
1 + ip01ε)

{[1− 2n f (~p)]
p01 + |~p|

2|~p| (γ0|~p| − ~γ~p)− [1− 2n f̄ (−~p)]
p01 − |~p|

2|~p| (γ0|~p|+ ~γ~p)}[1− γ5]mj(−ip/2)]

×
p2

2 + mj p/2

(p2
2 −m2

j − ip02ε)(p2
2 − ip02ε)

1− γ5

2

p1 = (p01,~p), p2 = (p02,~p). (26)

The trace is

1
4

Trγ0(p2
1 + mi p/1)[γ0|~p| ∓ ~γ~p][1− γ5](mj + p/2)[1− γ5] = 2mj p2

1|~p|. (27)

Now, we have
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ISconv,SK,R
= iδα, f ∑

i,j
U∗β,iUα,iU∗α,jUβ,j

im2
j

4π2

∫
dp01dp02

e−i(p01−p02)t − 1
p01 − p02

{[1− 2n f (~p)](p01 + |~p|)− [1− 2n f̄ (−~p)](p01 − |~p|)}
(p2

1 −m2
i + ip01ε)(p2

2 −m2
j − ip02ε)

. (28)

The integrals are performed by closing the integration path from below for dp01
and from above for dp02.

∫
dp01

e−i(p01−p02)t − 1
p01 − p02

p01 ± |~p|
p2

1 −m2
i + iεp01

= −iπ ∑
λi=±1

(e−i(λiωi−p02)t − 1)(ωi ± λi|~p|)
ωi(λiωi − p02)∫

dp02
e−i(λiωi−p02)t − 1

(λiωi − p02)(p2
2 −m2

j − ip02ε)
= iπ ∑

λj=±1
λj

e−i(λiωi−λjωj)t − 1
ωj(λiωi − λjωj)

(29)

Here, ωi = [|~p|2 + m2
i ]

1/2 and ωj = [|~p|2 + m2
j ]

1/2

Thus, the contribution consists of contributions from all singularities (four terms):

ISconv,SK,R
= −

m2
j

4
δα, f ∑

ij
U∗β,iUα,iU∗α,jUβ,j ∑

λi ,λj=±1
λj

e−i(λiωi−λjωj)t − 1
ωiωj(λiωi − λjωj)

[λi|~p| − n f (~p)(ωi + λi|~p|) + n f̄ (−~p)](ωi − λi|~p|)]. (30)

After setting n−α(−~p) = 0, the integral is

ISconv,SK,R
= −

m2
j

4
δα, f ∑

ij
U∗β,iUα,iU∗α,jUβ,j ∑

λi ,λj=±1
λj

e−i(λiωi−λjωj)t − 1
ωiωj(λiωi − λjωj)

[λi|~p| − n f (~p)(ωi + λi|~p|)

ωi = [|~p|2 + m2
i ]

1/2, ωj = [|~p|2 + m2
j ]

1/2. (31)

3.7. ∗-Product, Term Containing SK,A and i↔ j Terms

This integral is similar to the previous one:

ISconv,SK,A
= −

m2
i

4
δα, f ∑

ij
U∗β,iUα,iU∗α,jUβ,j ∑

λi ,λj=±1
λi

e−i(λiωi−λjωj)t − 1
ωiωj(λiωi − λjωj)

[λj|~p| − n f (~p)(ωj + λj|~p|)]. (32)

With i and j interchanged, the contributions are

ISconv,SK,R ji = −
m2

i
4

δα, f ∑
ij

U∗β,jUα,jU∗α,iUβ,i ∑
λi ,λj=±1

λi
e−i(λjωj−λiωi)t − 1
ωiωj(λjωj − λiωi)

[λj|~p| − n f (~p)(ωki + λi|~p|)] (33)

and

ISconv,SK,A ji = −
m2

j

4
δα, f ∑

ij
U∗β,jUα,jU∗α,iUβ,i ∑

λi ,λj=±1
λj

e−i(λjωj−λiωi)t − 1
ωiωj(λjωj − λiωi)
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[λi|~p| − n f (~p)(ωki + λi|~p|)]. (34)

3.8. The Dominant Contribution

The results of the previous section are consistent with Heisenberg’s uncertainty condi-
tion between energy and time. In our further calculations, we assume that the time is large
compared to the energy differences |ωi − ωj|. Together with the fact that the measured
neutrinos (mi << |~p|) are mostly ultrarelativistic, with |~p| ranging from 1 MeV to 10 MeV,
the following approximations are justified:

ωi −ωj ≈
m2

i −m2
j

2|~p| , ωi + ωj ≈ 2|~p|, ωi + |~p| ≈ 2|~p| and ωi − |~p| ≈
m2

i
2|~p| . (35)

Owing to the above, all contributions proportional to [1 − 2n f (~p)] are dominated by
λi = λj = +1, while the contributions proportional to [1− 2nα,−(−~p)] are dominated by
λi = λj = −1. The contribution from the constant 1 in [1− 2n f ] is killed by this procedure.

Notice, however, that for short times (t ≤ h
4π|ωi−ωj |

, i 6= j) the approximations are not

justified, and it is necessary to deal with the full expression. in order to satisfy Heisenberg’s
uncertainty relations among time and energy.

The above contributions then become

ISconv,SK,R d = m2
j δα, f ∑

ij
U∗β,iUα,iU∗α,jUβ,j

e−i
m2

i −m2
j

2|~p| t − 1
m2

i −m2
j

n f (~p) (36)

ISconv,SK,A
d = m2

i δα, f ∑
ij

U∗β,iUα,iU∗α,jUβ,j
e−i

m2
i −m2

j
2|~p| t − 1

m2
i −m2

j
n f (~p) (37)

ISconv,SK,R jid = m2
i δα, f ∑

ij
U∗β,jUα,jU∗α,iUβ,i

ei
m2

i −m2
j

2|~p| t − 1
m2

i −m2
j

n f (~p) (38)

and

ISconv,SK,A jid = m2
j δα, f ∑

ij
U∗β,jUα,jU∗α,iUβ,i

ei
m2

i −m2
j

2|~p| t − 1
m2

i −m2
j

n f (~p) . (39)

By adding the contributions, we obtain

ISconv,SK
= ISconv,SK,R d − ISconv,SK,A

d + ISconv,SK,R jid − ISconv,SK,A
jid

= δα, f ∑
i≤j
{U∗β,iUα,iU∗α,jUβ,j[e

−i
m2

i −m2
j

2|~p| t − 1]− [U∗β,jUα,jU∗α,iUβ,ie
i

m2
i −m2

j
2|~p| t − 1]} n f (~p) , (40)

which can be further written as

ISconv,SK
= − n f (~p) ∑

i≤j

δα, f n f (~p)[− 4Re(U∗β,iUα,iU∗α,jUβ,j) sin2
m2

i −m2
j

4|~p| t + 2 Im(U∗β,jUα,jU∗α,iUβ,i) sin
m2

i −m2
j

2|~p| t ] . (41)
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4. Final Result

From the preceding section, notably Equation (22), and from Appendix A, notably
Appendix A.8, it can be seen that at time t the total number of particles of the flavor β
stemming from the initial flavor α is

〈Nβ, f ,~p(t) 〉 = δα, f nα,+(~p) + n f (~p)δα, f ∑
i≤j

[− 4Re(U∗β,iUα,iU∗α,jUβ,j) sin2
m2

ki −m2
l j

4|~p| t

+ 2Im(U∗β,jUα,jU∗α,iUβ,i) sin
m2

i −m2
j

2|~p| t ] . (42)

Let us point out a few features of this expression:

1. The result (42) is identical to the standard PMNS expression (4). The ultrarelativistic
relation (3) reveals the equality of the arguments of the sines, while division by the
initial distribution of the number of particles n f recasts (42) in terms of probability, as
in (4). Thus, with the same presently available inputs, our result (42) would provide
the same numerical results as, for example, [86].

2. If we sum over β, the oscillating contribution vanishes. This reflects the fact that the
total neutrino number is conserved within the realm of chiral neutrinos; notably, the
sterile neutrinos are not involved! Notice that our conclusion is valid for low energy
neutrino beams as well; this is easily verified by looking at (31)–(34).

3. The results are valid for moderate energies, although it is necessary to skip the
simplifications in (3) and (35) and include all contributions.

Conclusions

In this paper, we apply the Finite Time Path Field Theory (FTPFT), originally de-
signed to deal with out-of-equilibrium many-body statistical ensembles, to the problem
in particle physics. We demonstrate that FTPFT is an appropriate tool for the treatment of
neutrino oscillations.

We calculate neutrino oscillation within a simple model, with the interaction La-
grangian containing the term LMix built as mass mixing through the PMNS-matrix with a
built-in Dirac spinor and chirality structure. The model is exactly solvable. This is an
extension of standard PMNS-case, as it involves sterile neutrinos, at least those with the
same mass as flavor and propagating neutrinos. Of course, more sophisticated sterile
neutrinos would require additional model building.

The result is consistent with Heisenberg’s uncertainty relation between energy and
time. The flavor neutrinos are chiral spin 1/2 particles, though a massive neutrino propa-
gator should additionally contain the right-handed component along with the re-summed
oscillating propagator. Nevertheless, the result is chirally invariant, as it is dictated from
the weak interaction Lagrangian (LW) taken into account through the factors (1 − γ5)
appearing at the beginning (production) and end (detection) stages. The sterile neutrinos
do not contribute to oscillations, even for low energy beams. Our result coincides with
the PMNS-formula for large times and for the ultrarelativistic case.

In the derivation of our result, the PMNS relation (1) is not used. Instead of using the
relation which mixes flavor and propagating neutrino states (and in which at least one state
cannot be on mass shell), the mass mixing Lagrangian through DSE provides an equally
significant relation among the oscillating neutrino propagators obtained from DSE (18) and
(19). They enable the calculation of the Keldysh component of the propagator S̃β,α,K (20),
which by application of AETL provides measurable particle numbers (42).

The FTPFT approach successfully passes the test of neutrino oscillations, in the sense
that we demonstrate how to perform calculations of these oscillations using the presented
approach. We reproduce the standard PMNS results in the present model, which introduces
the neutrino masses precisely through the PMNS-matrix in the mixing part of the model
Lagrangian. This means that while the present approach does not address the issue of the
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origin of neutrino masses, and in general does not provide answers about the dynamics
and physics of processes, the existing knowledge can be used as an input in the form of
masses, matrices, self-energies, etc.

The application of the FTPFT approach to neutrino oscillations shows that it is an
interesting candidate for a complementary tool to the S-matrix, which is formulated for
infinite times and involves switching interactions on and off adiabatically. In the case
of phenomena where finite times are essential, such as the presently pertinent neutrino
oscillations as well as the oscillation of kaons and B and D mesons, decays, and symmetry
violations, it has been necessary to use largely heuristic methods, such as elementary
quantum mechanics in the PMNS approach and the Gell-Mann–Pais approach for kaons.
In such cases, the FTPFT approach is obviously a candidate for a more rigorous description.

Further tests of the FTPFT approach could proceed along the following main lines:

1. Improving the model by taking into account the eventually-confirmed anomalies.
2. If suitable for considering decays of heavier neutrinos, the model could be easily

adapted to build these features in. In this case, the self-energies should again be
provided through an adequate calculation.

3. Applying the formalism to other oscillating and decay processes (e,g., decays of K0,
D0, and B0 mesons, positronium, the Cabbibo angle,etc.). This work is in progress and
almost completed. It roughly confirms the Gell-Mann–Pais results. The factor which
limits the predictive power is the rudimentary knowledge of the self-energies in the
existing literature. Authors have mostly been concerned with obtaining the imaginary
parts (decay rates), while the real parts (mass shifts) often involve renormalization.

4. In a classical out-of-equilibrium problem, the damping rates are the first thing to
address. Braaten–Pisarski re-summation has provided a good start. Even for this case,
two-loop self-energy diagrams contain minimal time vertices, and possible “upgrades”
could be very tricky. This is another area where work is in progress.

Author Contributions: Conceptualization, I.D. and D.K.; Methodology, I.D.; Software, I.D.; Valida-
tion, I.D. and D.K.; Formal analysis, D.K.; Investigation, D.K.; Data curation, D.K.; Writing—original
draft, D.K. All authors have read and agreed to the published version of the manuscript.
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Appendix A

Appendix A.1. Finite Time Path Field Theory

To calculate neutrino oscillations, we use Finite Time Path Field Theory (FTPFT), often
called the closed time path thermal field theory (CTP-TFT). “Thermal” is used here for
historical reasons, as the theory was first constructed to treat ensembles at the thermal
equilibrium or very close to it. Now, we find it to be an appropriate tool for calculation of a
wide variety of problems, including equilibrium and nonequilibrium TFT problems (within
the linear response approximation) as well as scattering processes, decays, and oscillations.
There are a number of specific features distinguishing it from S-matrix theory:

1. The time path C is closed and finite: C = (0+ iε, t+ iε)U(t+ iε, t− iε)U(t− iε, 0− iε).
2. The subject of the S-matrix is amplitude (“wave function”), while in FTPFT it is a

two-point function.
3. The product of two point functions is not algebraic, instead being a convolution

product (see Appendix A.2); only under special conditions does it become an alge-
braic product.

4. Instead of Feynman propagators, matrix propagators Sij, i = 1, 2, j = 1, 2 are ob-
tained. These are linearly transformed into SR (retarded), SA (advanced), and SK
(Keldysh) propagators. Our method further separates SK into its retarded and ad-
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vanced pieces (SK = SK,R − SK,A); SK contains single particle distribution functions of
the unperturbed system (i.e., as they are determined at t = 0).

5. A measured quantity is obtained as an equal time limit of SK. Compared to a scattering
matrix, these measured quantities are more inclusive: one particle is separated (and
measured), while the others are integrated over. This is equivalent to the exclusive
S-matrix approach. In addition, the calculated quantities correspond to a yield, i.e., the
number of particles found at time t, while the equivalent in the S-matrix approach is
the cross-section, i.e., related to the time derivative of the yield.

6. While primarily developed for thermal equilibrium and out-of-equilibrium (partic-
ularly “almost equilibrated”) ensembles, nothing prevents it from being applied to
decays and oscillations (as in this paper), or to scattering processes.

7. For application to scattering processes, it is necessary to choose initial single parti-
cle distributions (i.e., for incoming particles) as two plane waves of extremely low
intensities. After calculation it is then necessary to carry out the t→ ∞ limit. In our
experience, the results are physically equivalent to S-matrix calculation. Adiabatic
switching (on and off) of the interaction is not possible in finite time. With an infinite
time limit (t→ ∞), the lack of adiabatic switching does not matter.

Appendix A.2. Convolution Product of Two Two-Point Functions

The convolution product [61] of two Green functions is defined as

C = A ∗ B⇔ C(x, y) =
∫

dzA(x, z)B(z, y). (A1)

In terms of Wigner transforms (see [61] for more details), it becomes

CX0(p0,~p) =
∫

dp01 dp02 PX0(p0,
p01 + p02

2
)

i
2π

e−iX0(p01−p02+iε)

p01 − p02 + iε
A∞(p01,~p)B∞(p02,~p) , (A2)

where the projector PX0 is

PX0(p0, p′0) =
1

2π
Θ(X0)

∫ 2X0

−2X0

ds0eis0(p0−p′0) =
1
π

Θ(X0)
sin(2X0(p0 − p′0))

p0 − p′0
(A3)

and

e−is0 p′0 Θ(X0)Θ(2X0 + s0)Θ(2X0 − s0) =
∫

dp0e−is0 p0 PX0(p0, p′0). (A4)

It is important to note that

lim
X0→∞

PX0(p0, p′0) = lim
X0→∞

1
π

sin(2X0(p0 − p′0))
p0 − p′0

= δ(p0 − p′0). (A5)

The retarded (advanced) function is supposed to satisfy the following properties [61]:

(1) The function of p0 is analytic above (below) the real axis;
(2) The function vanishes as |p0| approaches infinity in the upper (lower) semiplane.

If A is an advanced projected operator, we can integrate the expression (A2) even
further. After closing the p01 integration contour in the lower semi-plane, we obtain

CX0(p0,~p) =
∫

dp01PX0(p0, p01)A∞(p01,~p)B∞(p01,~p). (A6)

If B is a retarded projected operator, we can achieve the same result by closing the p02
integration contour in the upper semi-plane.

In the X0 → ∞ limit (A5), Equation (A6) becomes the simple algebraic product

C∞(p0,~p) = A∞(p0,~p)B∞(p0,~p). (A7)
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Note that Equations (A6) and (A7) are valid for combinations AABA, AABR, ARBR,
but not for ARBA.

For AR (retarded) and BA (advanced), the Equal Time Limit (ETL) of the convolution
product is obtained as follows:

1
π

lim
∆→0

∫
dp0e−i∆p0 CX0(p0,~p) =

∫
dp01dp02

i
2π

e−iX0(p01−p02) − 1
p01 − p02

A∞,R(p01,~p)B∞,A(p02,~p) (A8)

where ∆ = s01 − s02 and X0 = (s01 + s02)/2. The ETL is finally changed to AETL (the
average of ETL), where lim∆→0 is replaced by 1

2 [lim0<∆→0 + lim0>∆→0]. From the numera-
tor, the constant term (−1) could have been subtracted, because for this term it is possible
to close the integration path dp01 from below (or to close the integration path dp02 from
above), in order to find that the contribution vanishes. The resulting “kernel” is not singular,
and we omit the iε prescription.

From now on, we skip the index ∞ as self-understandable.

Appendix A.3. Massive Neutrino Propagator

The massive neutrino propagators with masses mi 6= 0, i = 1, 2, 3 for the case when
the fermion and antifermion distribution are equal:

n+(ωp,~p) = n−(ωp,−~p) is simple,

DR(p) = (p/ + m) GR(p, m) ,

DA(p) = (p/ + m) GA(p, m) ,

GR(A)(p, m) =
−i

p2 −m2 ± 2ip0ε
,

DK(p) = DK,R(p)− DK,A(p),

DK,R(p) = −[1− 2n(ωp)] (P/ +
mp0

ωp
) GR(p, m),

DK,A(p) = −[1− 2n(ωp)] (P/ +
mp0

ωp
) GA(p, m),

p/ = γµ pµ, p = (p0,~p), P/ = γµPµ, P = (ωp,
p0

ωp
~p), ωp =

√
~p2 + m2 , (A9)

where n(ωp) is the initial fermion distribution function.

Appendix A.4. “Flavor Neutrino” Propagator

Flavor neutrinos νe, νµ, and ντ are, by assumption, massless and chiral; only left-
handed flavor neutrinos and right-handed antineutrinos exist:

S f ,R(p) = p/ GR(p, 0) ,

S f ,A(p) = p/ GA(p, 0) ,

GR(A)(p, 0) =
−i

p2 ± 2ip0ε
,

p/ = γµ pµ, p = (p0,~p), P/ = γµPµ, P = (|~p|, p0

|~p|~p) . (A10)
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For unequal flavor neutrino and flavor antineutrino distributions, we have

n(p0,~p) =
1− γ5

2
Θ(p0)n+(~p)−

1− γ5

2
Θ(−p0)n−(−~p) , (A11)

where n(p0,~p) is now a 4 × 4 matrix.
Now, we decompose Keldysh propagator into its retarded and advanced parts:

S f ,K(p) = S f ,K,R(p)− S f ,K,A(p) ,

S f ,K,R(p) = −GR(p, 0) L f (p0,~p) ,

S f ,K,A(p) = −GA(p, 0) L f (p0,~p) , (A12)

where

L f (p0,~p) = [1− 2n f (~p)]
p0 + |~p|

2|~p| (γ0|~p| − ~γ~p)
1− γ5

2

− [1− 2n f̄ (−~p)]
p0 − |~p|

2|~p| (γ0|~p|+ ~γ~p)
1− γ5

2
. (A13)

We define the propagator for flavor antineutrinos by S̄ , which is obtained from S via
the replacement of n f ↔ n f̄ . These propagators satisfy the following properties under
inversion:

S f ,R(−p) = −S̄ f ,A(p), S f ,K,R(−p) = −S̄ f ,K,A(p).

Appendix A.5. Oscillating Neutrino Propagator

In addition to flavor and propagating neutrinos, we have defined “oscillating neutri-
nos” above by solving Equations (12)–(15) through partial re-summation of DSE over the
powers of the mixing mass interaction self-energies.

Appendix A.6. Dyson–Schwinger Equation for Fermions

Here, S is the lowest order Green function and S̃ is the re-summed Green function:

[S−1 − iΣ] ∗ S̃ = 1, (A14)

where

S =

(
SR SK
0 SA

)
, Σ =

(
ΣR ΣK
0 ΣA

)
,

S̃ =

(
S̃R S̃K
0 S̃A

)
(A15)

or in components,

S̃R = SR + iSR ∗ ΣR ∗ S̃R

S̃A = SA + iSA ∗ ΣA ∗ S̃A

S̃K = SK + i[SR ∗ ΣK ∗ S̃A

+SK ∗ ΣA ∗ S̃A + SR ∗ ΣR ∗ S̃K]. (A16)
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The formal solution is

S̃R = [1− iSR ∗ ΣR]
−1 ∗ SR = SR ∗ [1− iΣR ∗ SR]

−1,

S̃A = [1− iSA ∗ ΣA]
−1 ∗ SA = SA ∗ [1− iΣA ∗ SA]

−1,

S̃K = +iS̃RΣK S̃A + S̃RS−1
R SKS−1

A S̃A (A17)

S̃K = −SK,A ∗ (1− iΣA ∗ SA)
−1 + (1− iSR ∗ ΣR)

−1 ∗ SK,R

+i(1− iSR ∗ ΣR)
−1 ∗ [SR ∗ ΣK ∗ SA − SR ∗ ΣR ∗ SK,A

+SK,R ∗ ΣA ∗ SA] ∗ (1− iΣA ∗ SA)
−1, (A18)

where we have used

SK = SK,R − SK,A, ΣK = ΣK,R − ΣK,A. (A19)

Appendix A.7. Fermion Particle Number

The number of fermions of momentum ~p at the time t is obtained from the time
evolution of the of number operator, which is the Average of the Equal Time Limit (AETL)
of the propagator SK,s01,s02 . The average is necessary because we must distinguish the limit
from above s01− s02 = ∆ > 0 and the limit from below ∆ < 0. If the propagator S̃K,s01,s02(p)
has a pole which is apart from the real axis for the finite imaginary part, these two limits
will be different, in which case we take the average. Using AETL, we are able to understand
the limit:

AETL =
1
2
[ lim
0<∆→0

+ lim
0>∆→0

]. (A20)

The particle number is defined as

〈N~p(t) 〉 = (2π)3 dN/(d3xd3 p) (A21)

and

1− 〈N f ,~p(t) 〉 =
1

2π
[ lim
0<∆→0

+ lim
0>∆→0

]
∫

dp0e−ip0∆ Tr[
γ0

4
S̃K,t(p) ], (A22)

where ∆ = s01 − s02 and X0 = (s01 + s02)/2 = t.
The contribution (A22) corresponds to a single polarization. To sum over the polariza-

tions, an additional factor of 2 is necessary.
When acting on the momentum and spin eigenstates of fermions |+,~p, s 〉 and an-

tifermions |−,−~p, s 〉 (both normalized to 〈 ±,±~p, s|±,±~p, s 〉 = 1/m), the projectors Λ±
satisfy

Λ+(ωp,~p)|+,~p, s 〉 = |+,~p, s 〉 and Λ−(ωp,~p)|+,~p, s 〉 = 0 , while
Λ+(ωp,~p)|−,−~p, s 〉 = 0 and Λ−(ωp,~p)|−,−~p, s 〉 = |−,−~p, s 〉.
In the rest of this paper, the distribution functions are assumed to depend on |~p|

and not on the direction of ~p. The lowest order contribution (N0
f+ f̄ ,~p(t)) is identical to the

initial distribution (for n f̄ (ωp) = 0):

1− 〈N0
f ,~p(t) 〉 = 1− n+ f (ωp) . (A23)
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Appendix A.8. Massless Chiral Fermion Particle Number

For a massless chiral particle there is one more helicity projector (1 − γ5)/2 with
respect to the trace in Equation (A22). The particle number becomes (22):

1 − 〈Nβ,~p(t) 〉

=
1

2π
[ lim

0<∆→0
+ lim

0>∆→0
]
∫

dp0 e−ip0∆ Tr[
γ0

4
S̃β,β,K,t(p)

1− γ5

2
] . (A24)

Here, 〈Nβ,~p(t) 〉 is the number of neutrinos of flavor f and momentum ~p detected at
time t.

Note that one more helicity projector 1−γ5
2 is necessary to ensure the proper helicity

(chirality) of the detected neutrinos. The lowest-order contribution for a massless chiral
particle is identical to the initial distribution:

1− 〈N0
f~p(t)〉 = 1− n f (|~p|) . (A25)
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