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Abstract: Human errors (HEs) are common problems in manual assembly processes, impacting
product quality and resulting in additional costs. Based on expert judgments, this study aims to
identify the most significant factors affecting HEs in manual assembly processes and explore the
cause-and-effect relationships among those factors. In order to achieve this objective, a proposed
model is constructed using two types of Multi-Criteria Decision-Making (MCDM) techniques. Firstly,
using two rounds of the fuzzy Delphi method (FDM), twenty-seven factors with an influence score of
0.7 or higher were found to have a major impact on HEs during manual assembly processes, with
at least a 75% consensus among experts. After that, the twenty-seven factors affecting HEs were
given to experts in a third round to analyze the cause-and-effect relationships among those factors
using the fuzzy decision-making trial and evaluation laboratory (DEMATEL) method. In MCDM
techniques, symmetry refers to an important property that can be used to find relationships between
variables. It is based on the principle that the relative importance or preference between two variables
should remain the same regardless of their positions or roles. Therefore, symmetry is a factor that
MCDM approaches take into account to ensure that the relationships between variables are accurately
represented, leading to more reliable decision-making outcomes. The reliability and normality of the
surveying data were examined using the SPSS 22.0 software program. The study results revealed that
training level, poor workplace layout, a lack of necessary tools, and experience were the major factors
affecting HEs as root causes. Moreover, a failure to address the error-causing problem, unintentional
unsafe acts, fatigue, and poor error visual perception were found to be effect (dependent) factors.
The findings of this study can help organizations make better-informed decisions on how to reduce
worker errors and interest in the factors that contribute to assembly errors and provide a good basis
for reaching the quality of final assembled parts.

Keywords: human errors; manual assembly; multi-criteria decision-making

1. Introduction

The term “manual assembly” refers to a process in which human operators use their
innate dexterity, aptitude, and judgment to combine pre-existing parts to create a finished
product or a unit of a finished product. According to Richardson et al. [1], the activity of
manual assembly is a type of spatial problem-solving that requires workers to construct a
mental model in order to interpret and engage with spatial input. Work instructions, their
presentation, and the worker’s interaction with them are extremely important in manual
assembly operations [2–5]. Work instructions must be clear and unambiguous about which
parts to utilize and how they should be built in order to optimize the operators’ mental
abilities [4]. It is generally accepted that assembly instructions must be provided in a way
that allows everyone to read them and successfully complete the assembly [6]. In this
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manner, work instructions can help reduce the mental load on the operators, in particular
by simplifying the complexity of the tasks. Today, most manual assembly instructions
are provided digitally, on a computer display, and include text and visual content [2–5].
However, Mattsson et al. [7] believed that instructions should be highly perceptual, which
necessitates providing the operator with more sophisticated and timely sensory inputs.
Using three-dimensional models in work instructions improves their realism, accuracy, and
legibility in depicting the assembly process. Perspectives and basic assembly guidelines
might be included in these model-based instructions (MBI) [8,9].

The assembly process is crucial to manufacturing because it guarantees that the final
product meets the necessary quality standards. Several factors, such as flexibility, the vari-
ety of products, the volume of production, and productivity, are considered by engineers
when selecting an appropriate assembly system [6,10]. Despite the lower productivity
and production volume in manual assembly systems compared with automatic assembly
systems, manual systems have an increased flexibility and variety of products. Worker
productivity is a measure of the output or results achieved by an individual worker or a
group of workers within a specific time. Figure 1 illustrates the impact of assembly system
automation on these factors. Although industrial robots contribute greatly to the automa-
tion of manufacturing systems, including assembly systems, the complexity and diversity
of the product still represent significant challenges in manufacturing; therefore, manual
work remains a viable and irreplaceable alternative [6,11]. These manufacturing fields
include electronics, aerospace, automotive, combustion engine assembly, and industrial
machinery and equipment [12,13]. Manual assembly requires the precise execution of a
number of steps in order to yield a finished product of the requisite quality. Torabi et al. [14]
discussed the common human errors in the design, installation, and operation of variable
air volume air handling unit systems. They identified that many types of faults can occur,
including design, assembly, manufacturing, incorrect operation, maintenance, software,
and operator’s faults, and the mistakes that humans directly cause may be referred to as
errors. Park et al. [15] have designed a software tool called Foolproof Joint that simplifies
the assembly of laser-cut 3D models to reduce assembly errors by modifying finger joint
patterns. They [16] developed an intelligent detection approach to detect human errors
in the maintenance and assembly of components of a nuclear power plant using artificial
intelligence. Wang et al. [17] investigated the vibration characteristics of the spindle system
and discovered that the vibrations were caused by assembly errors.
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Furthermore, Miao et al. [18] and Wang et al. [19] mentioned that supporting bearing
assembly errors have a significant impact on bearing operating performance and spindle
vibration characteristics. Human error (HE) is one of the most common causes of accidents
in many industries. Previous studies indicate that HE contributes to 30–90% of all accidents
in work environments despite strict safety procedures in those industries [20]. Common
types of human errors (HEs) in assembly processes include unsecured links, missing parts,
improper part installation, the inadequate application of force to fasteners, breakage during
assembly, and contamination by foreign object debris [21,22]. Inadequate cognitive and
physical ergonomics have also been found to impact product quality and increase the
frequency of errors [11,23].

Moreover, there are many other kinds of human errors that are capable of occurring
throughout the assembly processes. Here are a few common examples:

(1) Omission errors: These occur when a step or task in the assembly process is missed
or skipped over entirely. For example, a worker might forget to install a specific
component or tighten a screw;

(2) Commission errors: Commission errors occur when a worker does an action incor-
rectly, such as installing a part backward or using the wrong tool;

(3) Transposition errors: These errors occur when two similar-looking parts or compo-
nents are confused with each other. For example, two screws of different lengths
might look similar, and a worker might accidentally use the wrong one;

(4) Timing errors: Timing errors occur when a worker completes tasks in the wrong order
or sequence, which can cause problems down the line. For example, a worker might
install a part before another part that should have gone in first;

(5) Procedural errors: These errors occur when workers do not follow the correct proce-
dures or instructions for a task. This could be due to a lack of training or understanding
of the instructions;

(6) Communication errors: Communication errors can occur when workers do not commu-
nicate effectively with each other or when instructions are unclear or misunderstood;

(7) Fatigue-related errors: Errors can also occur due to factors such as fatigue or stress,
affecting a worker’s attention and decision-making abilities.

It is essential to remember that these errors can frequently be connected to one another
and exacerbate one another, which might result in more severe issues throughout the
assembly processes. Therefore, it is important to identify these errors and know the factors
causing them as early as possible to prevent more significant issues.

With the advent of Industry 4.0, increased product customization will occur in highly
flexible production settings [6]. As a result of this widespread personalization, manu-
facturing is likely to become more complicated, possibly calling for more highly trained
employees [23]. Reducing HEs in this situation depends critically on a well-optimized
work system. A well-optimized work system refers to an effective arrangement of people,
processes, resources, and technology that maximizes productivity, quality, and overall
performance. It is designed to streamline workflows and reduce human errors to achieve
desired outcomes. Identifying the aspects and factors influencing operator performance is
crucial for optimizing assembly processes and minimizing errors. Many factors directly or
indirectly influence the assemblers’ errors during the manual assembling processes. Identi-
fying the most critical factors needs much research in the field, which is time-consuming
and expensive; moreover, some previous studies focused on defining and identifying some
of these factors and did not address identifying which factors are the most influential for
these errors. Therefore, the main objective of this study is to determine the most important
factors affecting HEs and identify the relationships between these factors in manual as-
sembly processes using two types of Multi-Criteria Decision-Making (MCDM) techniques:
the Fuzzy Delphi method (FDM) and Decision-Making Trial and Evaluation Laboratory
(DEMATEL). Symmetry is a crucial characteristic that can be employed in MCDM studies
to identify correlations between variables. It depends on the idea that, regardless of the
two variables’ positions or roles, their relative importance or preference should remain
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constant. In other words, symmetry is a consideration that MCDM techniques make to
help ensure that the relationships between variables are effectively represented, resulting
in more accurate decision-making outcomes.

1.1. The Need and Motivation for the Study

This study needs to reduce worker errors and identify the factors contributing to
assembly errors. Hence, this study benefits several stakeholders, including the following:

(1) Businesses and Employers: This study can benefit companies and organizations
that rely on assembly or manufacturing processes. By understanding the factors
contributing to worker errors, businesses can implement strategies to reduce errors,
enhance productivity, and improve overall product quality. This, in turn, can lead
to cost savings, increased customer satisfaction, and improved competitiveness in
the market;

(2) Workers and Workforce: The study can directly benefit workers by improving their
working conditions and reducing the chances of errors. By identifying factors con-
tributing to assembly errors, interventions such as improved training programs, better
equipment and tools, ergonomic improvements, and enhanced safety measures can
be implemented to support workers in their tasks. This can lead to increased job
satisfaction, reduced stress, and improved worker well-being;

(3) Consumers: Consumers stand to benefit from the study as well. Reduced worker
errors in assembly processes can lead to higher product quality and reliability. This
means that consumers are more likely to receive products that meet their expectations,
with fewer defects or issues. Improved quality control can also contribute to enhanced
product safety features, reducing the risk of accidents or malfunctions.

(4) Researchers and Academia: The study of reducing worker errors and identifying
contributing factors can provide valuable insights and contribute to the body of knowl-
edge in fields such as human factors engineering, industrial psychology, and manu-
facturing management. Researchers can build upon this knowledge to develop new
theories, methodologies, and best practices for error reduction in various industries;

(5) Therefore, the primary motivation for this study was to improve overall productivity,
product quality, and worker well-being. By understanding the factors that contribute
to assembly errors, interventions can be implemented to reduce errors, minimize
waste, and optimize the assembly process. This leads to improved efficiency, cost
savings, and enhanced business competitiveness while providing employees with a
safer and more satisfying work environment. This study aims to contribute to scientific
knowledge and advance the understanding of human factors in manufacturing and
assembly processes.

1.2. Research Contributions

This research makes several contributions to the existing body of literature, including
the following:

(1) To the best of our knowledge, this study is considered one of the first to determine
factors affecting HEs in manual assembly processes and identify the relationships
between these factors using the MCDM techniques. Therefore, this research could
theoretically add to the current body of knowledge and fill existing gaps in studies of
factors driving manual assembly errors;

(2) This study provides a cause-and-effect model in order to identify the interactions
between factors affecting human errors in the manual assembly processes and analyze
the root causes of those errors;

(3) The proposed methodology allows managers and experts of manual assembly lines to
know the factors that cause assembly errors, which helps them focus on improving
the sources of those factors to reduce assembly errors.

This study is organized as follows: Section 2 describes the literature review, and
Section 3 presents the research methodology. Section 4 describes the fuzzy Delphi and
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DEMATEL models. The results and discussion are described in Section 5; Section 6 specifies
the conclusion and future work.

2. Literature Review

Human errors (HEs) refer to mistakes or deviations from intended actions made by
individuals when implementing some tasks. These errors can occur due to various reasons,
such as a lack of training, fatigue, poor work instructions, etc. Different types or categories
of human errors include slips (unintended actions), lapses (omission), mistakes (knowledge-
based errors), rule-based errors (applying incorrect rules), etc. The consequences or impacts
of these errors on productivity include delays in production timelines and quality involving
defects or rework, while in safety results, accidents lead to injuries.

In recent years, some studies have been conducted to find the influencing factors of
human errors in different fields. Lopez et al. [24] classified the influence factors on design
errors in construction into personal factors, such as adverse behavior, and organizational
factors, such as poor training and quality. Iraj et al. [25] reported that factors affecting HEs
in a mining process design are caused by individual factors (lack of knowledge and experi-
ence), task factors (multitasking and workload), organizational factors (poor management
and training), and environmental factors (inadequate lighting, noise, and poor air quality).
Noman et al. [26] have studied some factors affecting inspection and maintenance errors,
such as unclear instructions and procedures, stress, task complexity, and lack of experience
and training, in addition to other work environmental factors such as noise, lighting, etc.,
Yaniel et al. [27] analyzed human errors in a complex manual assembly line and identified
31 factors that caused those errors.

A comprehensive survey of the literature was conducted to summarize the main
factors affecting HEs in the manual assembly processes, as well as the related sub-factors.
These were then reviewed and discussed by academic and industry experts with at least ten
years of experience in manual assembly processes. Through a literature review, 51 factors
influencing human error were identified. The factors influencing human error were fi-
nally classified into five categories, namely individual factors, tool factors, task factors,
organizational factors, and environmental factors, as shown in Table 1.

Table 1. Identification and classification of factors influencing human error.

Category Influencing Factors Affecting HEs

Individual factors

Gender [28], age [28], lack of experience [29], lack of knowledge [30–34], fatigue [25], stress [2], body
physique [35], poor health [36], poor memory [36], personal life problems [36], personality type [25],
disappointment [25], lack of motivation [25], depression [25], fear of failure [37], poor error visual error
perception [25], financial problems [25,38], haste in doing work [39], low intelligence coefficient [25,38],
job dissatisfaction [39], lack of trust in performance [25], misunderstanding [39], unintentional unsafe
acts [39], sleep deprivation/disorder [6,27,40], risk-taking [41], and understanding roles and
responsibilities [25,38].

Tool factors Lack of necessary tools and using inappropriate tools [36,39].

Task factors Poor instructions and procedures [42], task complexity [43], time pressure [28], workload [2], repetitive
task [35,44], and multitasking [45–48].

Organizational factors

Poor management type [25], lack of training [25], poor planning [39], poor organization culture [25],
failure to address the error-causing problem [39], poor resource allocation [25,39], poor
supervision [25,39], improper quality control [39], and poor communication between worker and
organization [36,39].

Environmental factors
Noise [49,50], inappropriate lighting [49,50], improper temperature and humidity [49,50], poor indoor air
quality [25], poor ergonomics design of the workplace [28], accessibility problems [25], and poor
workplace layout [25].
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In the field of manufacturing, manual assembly processes play a crucial role in en-
suring product quality and efficiency. However, human errors are an inherent risk factor
that can significantly impact productivity, quality assurance, and worker safety. Therefore,
it is essential to understand the determining factors that contribute to human errors in
manual assembly processes in order to develop effective strategies for error prevention
and process improvement. This study aims to apply two Multi-Criteria Decision-making
(MCDM) techniques—Fuzzy Delphi (FDM) and DEMATEL methods—which can be used to
accurately determine the factors affecting human errors in manual assembly processes and
identify the relationships among them. These methods are often used to solve fuzzy com-
plex issues based on experts’ opinions. Therefore, the MCDM techniques are analytical tools
used to handle complex decision-making problems by simultaneously considering multiple
criteria or factors. These techniques provide a systematic framework for evaluating alterna-
tives based on various qualitative or quantitative attributes. In the context of determining
factors affecting human errors in manual assembly processes, MCDM methods offer a struc-
tured approach for gathering expert opinions and constructing cause-and-effect models.

Many MCDM techniques have been used by researchers and decision-makers in
the literature. The selection of an appropriate MCDM technique depends on the specific
characteristics of the decision problem, the available data, decision-maker preferences,
and the objectives of the decision-making process. According to the study of Taherdoost
and Madanchian [51], the twenty most-cited MCDM methods from 2012 to 2022 (based on
the “ScienceDirect” database) are shown in Table 2.

Table 2. The twenty most-cited MCDM methods during 2012–2022 [51].

Method Description Reference

AHP It decomposes complex decision problems into a hierarchical structure, allowing
pairwise comparisons of criteria and alternatives. Saaty [52]

DEA It is a non-parametric technique that evaluates the relative efficiency of alternatives
in relation to multiple criteria.

Charnes and
William [53]

FST Dealing with decision-making in the presence of uncertainty and imprecise data by
representing degrees of membership and non-membership using fuzzy sets. Zadeh [54]

TOPSIS It compares alternatives against ideal and anti-ideal solutions based on multiple
criteria. Hwang et al. [55]

GP It is an optimization-based technique aiming to simultaneously achieve multiple
goals or objectives.

Charnes and
William [56]

CBR It involves solving new decision problems by retrieving and adapting solutions
from similar historical cases. Kolodner [57]

GRA/GRM Measuring the relationship between alternatives and criteria by analyzing the grey
correlation coefficients. Deng [58]

ANP It extends the AHP to handle dependencies and feedback among criteria and
alternatives. Thomas [59]

FUZZY AHP It extends the AHP method by incorporating fuzzy logic to handle uncertainties and
vagueness in decision-making.

Laarhoven and
Pedrycs [60]

ELECTRE It eliminates alternatives that do not meet certain criteria thresholds and ranks the
remaining ones. Benayoun et al. [61]

PROMETHEE It evaluates alternatives by considering criteria and decision-maker’s preferences. Brans et al. [62]

VIKOR Identifying the compromise solution among alternatives. Opricovic [63]

FUZZY TOPSIS Based on TOPSIS under a fuzzy environment. Chen [64]

DEMATEL Analyzing causal relationships relationships/interdependence among
different criteria. Gabus and Fontela [65]



Symmetry 2023, 15, 1967 7 of 28

Table 2. Cont.

Method Description Reference

PRAGMA It aggregates individual preferences to determine a collective ranking of alternatives. Matarazzo [66]

SAW It aggregates criteria scores by applying weights and sums them to obtain a total
score for each alternative.

Churchman and
Ackoff [67]

MAUT It quantifies the preferences of decision-makers by assigning utility functions to
criteria and alternatives. Keeney et al. [68]

BWM It is a technique for ranking and prioritizing criteria based on their relative
importance or preference. Rezaei [69]

SMART It combines weighted scores of criteria to evaluate and rank alternatives. Edwards [70]

Fuzzy ANP Fuzzy expression of criteria weights in ANP method. Ludmil and
Madan [71]

Note: AHP: Analytic Hierarchy Process; DEA: Data Envelopment Analysis; FST: Fuzzy Set Theory; TOPSIS:
Technique for Order of Preference by Similarity to Ideal Solution; GP: Goal Programming; CBR: Case-Based
Reasoning; GRA/GRM: Grey Relational Analysis/Grey Relational Model; ANP: Analytic Network Process;
ELECTRE: Elimination Et Choice Translating Reality; PRO-METHEE: Preference Ranking Organization Method for
Enrichment of Evaluations; VIKOR: VIseKriterijumska Optimizacija I Kompromisno Resenje; DEMATEL: Decision-
Making Trial and Evaluation Laboratory; PRAGMA: Preference Ranking Global Frequencies in Multicriterion
Analysis; SAW: Simple Additive Weighting; MAUT: Multi-Attribute Utility Theory; BWM: Best–Worst Method;
and SMART: Simple Multi-Attribute Rating Technique.

The DEMATEL method is one of the MCDM techniques employed for analyzing
causal relationships among different criteria. It was first used by Lin in 2008 in a fuzzy
environment study [72]. It involves constructing a cause-and-effect relationship model
based on expert opinions gathered through a questionnaire-based survey. The fuzzy
DEMATEL method uses the total-relation matrix to identify the criteria that are effective
(cause) and affected (effect) and looks into how these criteria relate to each other [25].

In this study, the Fuzzy DEMATEL method was selected depending on the specific
context and requirements of the decision problem at hand. While various MCDM tech-
niques are available, the Fuzzy DEMATEL offers certain advantages that make it suitable
for certain types of decision-making problems. The Fuzzy DEMATEL is particularly useful
when the decision problem involves complex interdependencies among criteria or fac-
tors [25]. It allows decision-makers to analyze the cause-and-effect relationships between
criteria and identify the strength and direction of these relationships [25,73]. This helps in
understanding the interdependencies and their impact on the decision problem. Therefore,
in this study, the Fuzzy DEMATEL was used to analyze the cause-and-effect relationships
between the factors affecting human errors in the manual assembly processes and identify
the factors that are effective (cause) and affected (effect).

The FDM is a potent instrument that helps researchers in a particular field of study
obtain a consensus based on expert viewpoints [74]. It is considered to be one of the most
common and reliable techniques for collecting expert opinions and carrying out question-
naires [75,76]. In addition, it is one of the most commonly utilized methodologies for
solving an extensive variety of group decision-making problems through choosing and/or
ranking factors, standards, questionnaire factors, or calculating index factors [77]. Combin-
ing the traditional Delphi method (DM) with fuzzy set theory led to the development of
a more robust FDM [25]. The FDM has some advantages, such as the ability to combine
expert opinions in order to establish a consensus [56], time and cost reduction compared
with the DM [3], and the reduction in rounds of expert-opinion gathering [38].

Moreover, the most notable characteristics of the FDM are that the answers gathered
are unexplored and unidentified, that it is dependent on a conditional phased statisti-
cal processing operation, and that it is based on processes that can be counted, limited,
and repeated while being controlled and managed by a phase focused on a results feedback
process. The FDM outputs also represent uniform, updated, and collective statistical scores.
Its other distinguishing features are its ability to address qualitative difficulties depending
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on nature through multiple survey rounds, to develop consensus opinions, and to facilitate
efficient decisions. As a result, the FDM has been extensively used in a wide variety of
interdisciplinary research to compile a consistent and evolving set of responses from expert
respondents in the course of numerous rounds of surveying [75–77].

Recently, in identifying factors affecting HEs, the Delphi method has been used in
some studies. Iraj et al. [25] have used the FDM to determine the factors affecting HEs
in a mining process design. In addition, they used the DEMATEL method to identify
the relationships among those factors. In the studies of Adel et al. [36], the FDM was
used to identify the influencing factors that lead to accidents as a result of HEs during
the construction of industrial park projects. The results of the survey showed that the
specific factors had a significant impact on the incidence of those accidents caused by HEs.
In a similar study for determining the factors affecting HEs in the construction industry
using the Delphi method, the study conducted by Daniel et al. [39] showed that most
influencing factors affecting construction industry errors were evaluated from medium
to strong. The study of Cheryl et al. [78] used a two-round Delphi technique to identify
human factors affecting nursing errors.

Comparing the fuzzy Delphi and DEMATEL methods reveals their distinct strengths
and limitations: The fuzzy Delphi method offers a systematic approach for expert consensus
building, ensuring comprehensive coverage of potential influential factors through iterative
feedback rounds. On the other hand, the DEMATEL method allows researchers to visualize
complex cause-and-effect relationships among identified factors while highlighting key
drivers or bottlenecks within the network. However, it is important to note that both
methods heavily rely on expert opinions, which may introduce biases based on individual
knowledge or experience levels.

From the literature, it can be found that there are a lack of in-depth studies to de-
termine the factors affecting HEs in the field of manual assembly processes and identify
the relationships between these factors using MCDM techniques. Previous studies fo-
cused mainly on factors affecting HEs in nursing [78], the construction of industrial park
projects [36,39,79], and mining process design [25]. Previous researchers used either the
FDM method for identifying factors affecting HEs or the DEMATEL method for identifying
the relationships among the factors affecting HEs.

Therefore, this study aims to advance the body of knowledge and fill existing gaps
relative to human error in manual assembly processes from the perspective of multiple
factors. In addition, this study provides a cause-and-effect model to identify the interactions
between factors affecting human errors in manual assembly processes and analyze the
root causes of those errors. To accomplish this goal, the MCDM techniques are considered
to determine the factors affecting HEs and identify the relationships among the factors
affecting HEs. The research questions focused on what the factors affecting human errors
are in manual assembly processes, how studies address those different types of factors,
and how the proposed model reduces clustering errors related to those factors. Therefore,
the main objectives of this study are as follows:

(1) Identify and classify the factors affecting human errors in manual assembly processes
from the literature review;

(2) Determine the most significant factors affecting human errors in manual assembly
processes using the FDM method;

(3) Determine the cause-and-effect relationships among those factors using the
DEMATEL method.

3. Research Methodology

The flow chart of the research methodology and the steps involved in its implementa-
tion are shown in Figure 2.
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Figure 2. Research methodology.

Several steps were taken to implement the proposed methodology, and these are
discussed and shown below.

Step 1: The literature was reviewed and factors affecting HEs in manual assembly
processes were identified.

Step 2: This step is called round 1. In this step, an initial fuzzy Delphi questionnaire
for factors affecting HEs in the manual assembly processes was developed. Experts with
high experience were selected and then the fuzzy Delphi questionnaire was emailed to
them to screen and classify the most important factors affecting HEs in manual assembly
processes based on individual, tool, task, organizational, and environmental classifications.
In addition, the experts were asked to review the influential factors and revise them by
adding any essential missing factors. The study of John Baker et al. [80] recommended
that researchers ensure accuracy in selecting experts for the fuzzy research by choosing
experts with a minimum of ten years’ experience. In this research, a panel of experts was
chosen based on their academic experience or level of knowledge in the field of manual
assembly processes.

Step 3: This step is called round 2. In this step, a final fuzzy Delphi questionnaire for
factors affecting HEs in manual assembly processes was developed and sent again to the ex-
perts to evaluate the effective factors. In both rounds of the Delphi study, thirty-two experts
who have academic experience and a level of knowledge in the field of manual assembly
processes responded to the questionnaire.
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Step 4: A fuzzy Delphi model was developed that integrates the opinions of all the
experts to identify the factors affecting HEs in manual assembly processes. In this step,
the factors must be rated, and the ones with low scores were eliminated [25,77]. In this
research, a factor with an evaluation score of 70% or more was accepted as an influencing
factor on HEs.

Step 5: The results were analyzed and the most important factors affecting HEs in
manual assembly processes based on expert opinions were selected with a consensus
agreement rate of 75% or more. Based on each expert’s agreement rating, the expert group’s
consensus needed to be derived for each factor [25,77].

Step 6: To ensure whether the number of experts was enough, a statistical analysis was
undertaken for the surveying data collected from the experts and then the data reliability
and normality was calculated using the SPSS 22.0 software program.

Step 7: This step is called round 3. In this step, the most important factors affecting
HEs, which are the outputs of the fuzzy Delphi model, were selected, and then a fuzzy
DEMATEL questionnaire was developed in the form of a pairwise matrix. After that,
the expert panel was selected and the pairwise matrix questionnaires were emailed to them
to evaluate the cause-and-effect relationships among the factors. In this round, fifteen
experts responded to the fuzzy DEMATEL questionnaire. The demographic data of the
experts in the fuzzy Delphi and DEMATEL studies are summarized in Table 3.

Table 3. The demographic data of the experts who participated in the study.

Characteristic Identifier
Delphi Study DEMATEL Study

Number (%) Number (%)

Gender
Male 25 (78.1) 10 (66.7)

Female 7 (21.9) 5 (33.3)

Age
<35 years old 6 (18.7) 5 (33.3)

36–50 years old 23 (71.9) 7 (46.7)
>50 years old 3 (9.4) 3 (20.0)

Education level
Bachler 14 (43.8) 7 (46.7)
Master 9 (28.1) 6 (40.0)

Doctoral 9 (28.1) 2 (13.3)

Experience in manual
assembly

10–15 years 24 (75) 5 (33.3)
16–20 years 3 (9.4) 4 (26.7)
21–25 years 2 (6.2) 4 (26.7)
>25 years 3 (9.4) 2 (13.3)

Job position

Academic 16 (50.0) 6 (40.0)
Assembly worker 13 (40.6) 6 (40.0)

Industrial engineer:
production manager, safety
manager, and production

supervisor.

3 (9.4) 3 (20.0)

Step 8: A fuzzy DEMATEL model was developed to evaluate the cause-and-effect
relationships among the factors.

Step 9: The outputs of the fuzzy DEMATEL model were analyzed to find the interaction
between factors. After that, the cause-and-effect diagram, which shows the relationships
among factors, must be drawn.

4. The Fuzzy Delphi and DEMATEL Models
4.1. The Fuzzy Delphi Model

In this study, the proposed model used fuzzy logic, which was suggested in 1955
by Lotfi A. Zadeh, and is a technique for evaluating uncertainty, dealing with ambiguity,
and assisting human decision-making. The fuzzy method contains different types of fuzzy
numbers used to convert expert opinions evaluation in the questionnaires from linguistic



Symmetry 2023, 15, 1967 11 of 28

factors to fuzzy numbers, and Trigonometric Fuzzy Numbers (TFNs) have been used in this
study. In this paper, the TFNs have used three real numbers, which are (a) as the smallest
likely value, (b) as the most probable value, and (c) as the largest possible value of the
expert opinion, as shown in Table 4.

Table 4. Linguistic terms and corresponding TFNs [25,36,81].

Symbol Linguistic Terms TFNs (a,b,c)

VL Very low influence (0, 0, 0.25)
L Low influence (0, 0.25, 0.5)
M Moderate influence (0.25, 0.5, 0.75)
H High influence (0.5, 0.75, 1)

VH Very high influence (0.75, 1, 1)

In this study, the Fuzzy Delphi model consists of the following steps:

4.1.1. Determining Average Fuzzy Rating Scores

• Calculate the average group decision fuzzy rating score for each possible factor. As-
suming the estimation value of the importance of No. j factor provided by an expert
No. i of n experts (total number) is measured in Equation (1):

∼
wij =

(
aij.bij.cij

)
, i = 1, 2, . . . n, j = 1, 2, . . . m. (1)

• Obtain the average of fuzzy numbers (
∼
wj) of No. j factor in Equation (2):

∼
wj =

(
aj.bj.cj

)
=

(
1
n

n

∑
i=1

aij.
1
n

n

∑
i=1

bij.
1
n

n

∑
i=1

cij

)
, j = 1, 2, . . . m. (2)

4.1.2. Determine the Most Factors Affecting HEs

• Specifying the defuzzification process: transforming the calculated average fuzzy

rating score
∼
wj of each factor j to its corresponding crisp values. Defuzzifying the

aggregated fuzzy rating scores (Sj) of factors using the simple center of gravity method
as Equation (3) [25]:

Sj =
aj+bj+cj

3
, j = 1, 2, . . . m. (3)

Evaluation rating scores (Sj) were used to rank the importance of each factor. Therefore,
if the factor has a score equal to 0.7 or higher based on expert judgments, the factor will
be accepted as an affecting factor of human errors. If not, it will be removed from the
study [25].

• Examine the acceptability of the estimation domain.

- For each factor j, compute the difference value (Dij) between the average fuzzy

number (
∼
wj), and each expert’s fuzzy estimation value (

∼
wij) as in Equation (4):

Dij =

√
1
3

[(
aj − aij

)2
+
(
bj − bij

)2
+
(
cj − cij

)2
]
. (4)

- Calculate the threshold value (d) of each factor j by utilizing Equation (5):

d =
1
n

n

∑
i=1

Dij. (5)
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- Check the threshold value (Thd) of each estimation domain with the use of
Equation (6):

Thd =
1
n

m

∑
i=1

dj. (6)

The acceptability of the estimation domain can be established from the Thd value.
In this research, an estimation domain is accepted if Thd ≤ 0.2.

- Test the expert group consensus (EAj) through calculating the expert agreement
on each evaluated factor as Equation (7) [77]:

EAj =
Ej

n
% (7)

where n represents the total number of experts, and Ej represents the distance

between their fuzzy estimation values
∼
wij on a specific factor j and the average

fuzzy number of all experts on that factor
∼
wj is ≤ 0.2. The expert group con-

sensus for each factor was screened out using the expert’s agreement with an
EAj ≥ 75%. Otherwise, the factors with an expert consensus of less than 75% will
be ignored [77].

4.2. The Fuzzy DEMATEL Model

The decision-making trial and evaluation laboratory (DEMATEL) was introduced in
1972 by Gabus et al. to analyze the interactions between variables [25]. Similar to the Delphi
method, the DEMATEL method also relies on expert judgment and uses various fuzzy
number types called Trigonometric Fuzzy Numbers (TFNs), which are described in Table 4,
to evaluate expert judgment in a questionnaire by converting it from linguistic factors
into fuzzy numbers in order to avoid ambiguity and achieve consensus among opinions.
In 2008, the DEMATEL method was first used in a fuzzy environment by Lin [72]. The fuzzy
DEMATEL technique looks into how criteria and sub-criteria relate to one another and uses
the total-relation matrix to identify the criteria that are effective (cause) and affected (effect).
In the DEMATEL method, the decision-making process is based on pairwise comparisons
and the acceptance of relationships, which gives this method an advantage over other
investigative techniques [82]. The fuzzy DEMATEL method is commonly employed in
a variety of research areas, including risk analysis and assessment, safety management
systems, and human resource management. The fuzzy DEMATEL model was implemented
in this study using the steps listed below.

4.2.1. Determine the Initial Direct-Relation Fuzzy Matrix

The initial direct-relation fuzzy matrix (
∼
Z

k

ij) is described as Equation (8) [83].

∼
Z

k

ij =

 1 · · · xk
1n

...
. . .

...
xk

n1 · · · 1

, k = 1, 2, . . . E. (8)

where E represents the number of experts.
A triangular fuzzy number (TFN) can be defined as a triplet (a, b, c) as shown in

Table 4; the membership function of the fuzzy number µN(x) is defined as Equation (9) [83].

µN(x) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, x ≥ c

(9)

where a represents the left score, b is the medium score, and c is the correct score of the
triangular fuzzy numbers.
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4.2.2. Normalize the Triangular Fuzzy Numbers

The triangle fuzzy numbers are described as the following equations.

xak
ij =

ak
ij − minak

ij

∆max
min

(10)

xbk
ij =

bk
ij − minbk

ij

∆max
min

(11)

xck
ij =

ck
ij − minck

ij

∆max
min

(12)

∆max
min = maxck

ij − minak
ij (13)

where 0 ≤ xij ≤ 1

4.2.3. Calculate Left (as) and Right (cs) Normalized Values

The left and right normalized values are described as Equations (14) and (15).

xas
k
ij =

xbk
ij

1 + xbk
ij − xak

ij

(14)

xcs
k
ij =

xck
ij

1 + xck
ij − xbk

ij
(15)

4.2.4. Calculate the Crisp Values

The crisp values (xk
ij) are described as Equation (16) [83].

xk
ij =

xas
k
ij ×

(
1 − xas

k
ij

)
+
(

xcs
k
ij

)2

1 − xas
k
ij + xcs

k
ij

(16)

4.2.5. Calculate the Total Normalized Crisp Values

The total normalized crisp values (Zk
ij) are described as Equation (17).

Zk
ij = minak

ij + xk
ij × ∆max

min (17)

4.2.6. Generate the Direct Relation Matrix

The direct relation matrix
(

k
ij

)
has been generated by integrating the crisp values from

all factors as shown in Equation (18).

k
ij =

Z1
ij + Z2

ij + . . . + Zn
ij

n
(18)

4.2.7. Generaet the Standardized Direct Influence Matrix

The standardized direct influence matrix T =
[
tij
]

n×n, and 0 ≤ tij ≤ 1 is described as
Equation (19).

T = k
ij × S. (19)
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And S =
1

max
1≤i≤n

n
∑

j=1

k
ij

, i, j = 1, 2, . . . , n (20)

4.2.8. Calculate the Total Relation Matrix X =
[
xij
]

n×n
The element xij indicates the indirect relationship of factors i and j. The total relation

matrix X reflects the overall impact relationship between elements. The total relation matrix
cab be calculated as Equation (21).

X = T × (I − T)−1 (21)

where I is denoted as the identity matrix.

4.2.9. Calculate the Di-Value and Rj-Value

Di and Ri values can be calculated from the total relation matrix (X) as shown in
Equations (22) and (23):

Di =
n

∑
j=1

xij, (j = 1, 2, . . . , n), (22)

Rj =
n

∑
i=1

xij, (i = 1, 2, . . . , n). (23)

where Di is the total number of elements in each row in the total-relation matrix. It shows
the degree to which that factor affects other factors. And Rj is the total number of elements
in each column in the total-relation matrix. It shows the degree to which that factor is
affected by other factors [25].

4.2.10. Drawing the Cause and Effect Diagram

To draw the cause and effect diagram: Firstly, use Di and Rj values to calculate the
values of

(
Di + Rj

)
and

(
Di − Rj

)
. Secondly, mapping the dataset of

(
Di + Rj

)
on the

horizontal axis and
(

Di − Rj
)

on the vertical axis. The values of
(

Di + Rj
)

show how much
one factor affects and is affected by other factors. In other words, the higher value of Di + Rj
means there is a high interaction between the factor and other factors in a system. While
the values of

(
Di − Rj

)
show how strongly one factor affects other factors in a system.

Therefore, when the value of Di + Rj is positive, the factor will be considered a cause
factor. Similarly, when the value of Di + Rj is negative, the factor will be considered an
effect factor.

5. Results and Discussion

A literature review was conducted to identify and extract important factors influencing
HEs during manual assembly processes. After that, these factors were analyzed by experts
and classified into five groups: individual, tool, task, organizational, and environmental
factors. Furthermore, a developed model was proposed by applying FDM and DEMATEL
methods to accurately determine the factors affecting human errors in manual assembly
processes and identify the relationships among them. The results and discussion are
explained in detail in the following subsections.

5.1. Reliability and Validity Test of the Survey Data

To evaluate the reliability of the survey data, Cronbach’s α coefficients for each factor
were calculated using the SPSS 22.0 software program, as shown in Table 5. It was noted
that the subscale Cronbach’s α coefficients were all greater than 0.70; thus, the scale’s
reliability is high [15]. Furthermore, the questionnaire’s overall reliability is 0.91, indicating
that the survey data were reliable enough for further statistical analysis.
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Table 5. Reliability analysis of the questionnaire.

Main Factors Number of Items Cronbach’s α
Value

Cronbach’s α Value of
All Factors

Individual factors 26 0.91

0.91
Tool factors 2 0.79
Task factors 6 0.71

Organizational
factors 9 0.86

Environmental factors 8 0.83

5.2. Factors Descriptive Statistics

Regarding experts’ responses, the descriptive statistics of the factors affecting HEs in
manual assembly processes are shown in Table 6.

Table 6. Descriptive statistics of the factors affecting HEs in the assembly processes.

Main Factors Mean SD Mode Median Skewness

Individual factors 3.715 0.224 3 4 −0.33
Tool factors 4.093 0.447 4 4 0.12
Task factors 4.140 0.264 4 4 −0.50

Organizational factors 3.580 0.340 3 3 −0.14
Environmental factors 3.644 0.235 4 4 −0.07

Statistical parameters such as mean, standard deviation, mode, median, and skewness
were calculated in the descriptive statistics section. All of these parameters are used to
describe the influence of these factors on human errors in assembly processes. For example,
by asking the experts about the influence of individual factors on human errors in assem-
bly processes, there were different answers ranging from 1 to 5. However, the mean of
these answers was 3.715, indicating a high effect of individual factors on human errors in
assembly processes. The variation answer of the answers was not high, as indicated by the
standard deviation value for this response (0.224). In addition, most of the answers were
greater than the mean since the mode was 3. The median and mean were very close to each
other, which indicates a normal distribution of the data. This is also supported by the value
of the skewness, which was close to zero.

Moreover, the tool and task factors had a high mean of more than four and have
the same mode and median that are very close to their mean. In addition, they have a
skewness close to zero. It is worth noting that the tool factor has a positive skewness, which
means its distribution is on the right side but is close to zero. Finally, the organizational
and work environment factors have a very close mean, and their mode and median are
equal. In addition, they have a skewness very close to zero.

5.3. Normality Test of the Survey Data

The normality test of the survey data was performed to check whether the data are
normally distributed or not and to check if the data can be analyzed using parametric or
nonparametric statistical methods.

Additionally, normality tests can help to identify outliers, which are values that are
significantly different from the rest of the data. Outliers can affect the results of statistical
analyses and can lead to incorrect conclusions. By identifying outliers, researchers can
decide how to handle them, either by removing them from the analysis or by using robust
statistical methods that are less sensitive to outliers. Overall, normality tests are important
in survey research to ensure that the data are appropriate for the statistical analyses being
used and to identify any potential outliers that may affect the results.

Examining whether or not the survey data in this study follows a normal distribution
was performed using the Shapiro–Wilk test. The Shapiro–Wilk test is a more powerful test
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when the sample size is small (less than 50 samples), and it is less sensitive to deviations
from normality in the tails of the distribution [39]. The test statistic for the Shapiro–Wilk
test is based on the correlation between the observed sample values and the expected
normal distribution values, and it provides a p-value that indicates the probability of
observing such a deviation from normality if the data were actually normally distributed.
Hypothesis testing for the full survey (including individual factors, tool factors, task factors,
organizational factors, and environmental factors) is shown in Table 7. The results showed
a significance level of >0.05. Therefore, the data followed a normal distribution for the
research factors, and the null hypothesis was accepted with a 95% confidence level.

Table 7. Normality estimation of survey using the Shapiro–Wilk test.

Main Factors
Shapiro–Wilk Test

α Hypothesis
Confirmation

Normal
DistributionSig. Statistics

Individual factors 0.085 0.942 0.05 H0 Yes
Tool factors 0.120 0.996 0.05 H0 Yes
Task factors 0.110 0.992 0.05 H0 Yes

Organizational factors 0.100 0.980 0.05 H0 Yes
Environmental factors 0.380 0.961 0.05 H0 Yes

5.4. One-Sample t-Test

In this section, the one-sample t-test was used as a statistical hypothesis test to de-
termine whether the mean of a single sample of data is significantly different from a
hypothesized value (a test value = 3) [39]. For the primary research factor (human er-
rors during assembly processes), the means of the individual, tool, task, organizational,
and environmental factors were 3.715, 4.093, 4.140, 3.580, and 3.644, respectively (Table 8).
The mean of the overall questionnaire was 3.834. The difference with the test result was
significant and above average because the p-values of all the factors were less than 0.05.
In contrast, since both the upper and lower bounds of the confidence range are positive,
it is possible that all of the factors under examination should be interpreted as “strong”
human error factors generating assembly process errors.

Table 8. One-sample t-test results of the factors affecting HEs in manual assembly processes.

Main Factor Mean SD
Test Value = 3

Lower Limit Upper Limit
df T p-Value

Individual factors 3.715 0.224 31 18.046 0.001 0.634 0.795
Tool factors 4.093 0.447 31 13.814 0.001 0.932 1.255
Task factors 4.140 0.264 31 24.372 0.001 1.045 1.236

Organizational factors 3.580 0.340 31 9.628 0.001 0.457 0.702
Environmental factors 3.644 0.235 31 15.469 0.001 0.559 0.729

5.5. Ranking Factors Influencing HEs Based on the Fuzzy Delphi Method

Based on the fuzzy Delphi method, the most factors affecting human errors in manual
assembly processes were identified, as shown in Table 9. It is worth noting that the de-
fuzzified evaluation rating scores (Sj) were calculated for each factor based on Equation (3).
Thus, if the score Sj of the factor was found to be 0.7 or higher based on expert opinions, the
factor was accepted as an affecting factor of human errors. Otherwise, it would be removed
from the study. In addition, the expert group consensus for each factor was screened
out using the expert’s agreement with an EAj ≥ 75% based on Equation (7). The results
revealed that the following factors strongly affected human error in manual assembly
processes: a lack of experience, poor instructions and procedures, misunderstanding, a lack
of knowledge, poor error visual perception, risk-taking, task complexity, and a lack of
training. The tool factors, such as using inappropriate tools and a lack of necessary tools
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exerted the strongest effects on HEs. As for task factors, poor instructions and procedures,
task complexity, and time pressure have strongly influenced HEs. For the organizational
factors, the lack of training and the poor supervision were shown to have the strongest
effects on HEs. Finally, the environmental factors, such as inappropriate lighting and noise,
were found to be the strongest factors affecting HEs.

Table 9. The most important factors affecting HEs in the manual assembly processes.

Subgroup Affecting Factors Index Sj EAj

Individual factors

Lack of experience F1 0.88 100%

Misunderstanding F2 0.83 100%

Lack of knowledge F3 0.82 94%

Poor error visual perception F4 0.82 91%

Risk-taking F5 0.82 100%

Poor memory F6 0.81 91%

Fatigue F7 0.78 88%

Stress F8 0.78 94%

Non-understanding roles and responsibilities F9 0.78 94%

Unintentional unsafe acts F10 0.78 88%

Haste in doing work F11 0.76 84%

Poor health F12 0.75 81%

Low intelligence coefficient F13 0.74 81%

Tool factors
Using inappropriate tools F14 0.76 94%

Lack of necessary tools F15 0.75 81%

Task factors

Poor instructions and procedures F16 0.85 97%

Task complexity F17 0.82 94%

Time pressure F18 0.81 97%

Workload F19 0.75 88%

Multitasking F20 0.71 78%

Organizational factors

Lack of training F21 0.82 100%

Poor supervision F22 0.74 88%

Failure to address the error-causing problem F23 0.70 78%

Environmental factors

Inappropriate lighting F24 0.75 88%

Noise F25 0.73 75%

Poor ergonomics design of the workplace F26 0.72 78%

Poor workplace layout F27 0.72 78%

5.6. Determining Cause-and-Effect Relationships among Factors Affecting HEs Based on the Fuzzy
DEMATEL Method

In this section, the twenty-seven factors with an influencing score of 0.7 or higher,
which are shown in Table 9, were screened for the Fuzzy DEMATEL study and then given
to the experts in the form of a pairwise-matrix questionnaire (Table 10) to analyze the cause-
and-effect relationships among the factors. After expert opinions were collected, the direct-
relation fuzzy matrix was created to acquire the mean of opinions. Next, the normalized
direct-relation matrix was formed. Finally, the total relation matrix was created to describe
the effects of factors on each other, as shown in Table 11. In the total relation matrix, the
addition of factors in each row measured the D-value, which illustrates how the factor
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affects other factors, and the addition of factors in each column measured the R-value,
which illustrates how the factor is impacted by other factors, as shown in Table 12. Then,
the interaction of factors

(
Di + Rj

)
, as shown in Figure 3 and the relationship between

factors
(

Di − Rj
)
, as shown in Figure 4, were calculated using Di and Rj values. A positive(

Di − Rj
)

relationship indicated that a factor was effective (cause), whereas a negative(
Di − Rj

)
relationship indicated that a factor was affected (effect). According to

(
Di + Rj

)
values in Figure 3, misunderstanding, fatigue, and stress had the highest level of interaction
with other factors; on the contrary, noise, inappropriate lighting, and a poor ergonomic
design of the workplace had the lowest level of interaction with other factors.

Table 10. A pairwise-matrix shows an example of original data from one of the experts.

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

F1 VH VH H H H VH H H H H L VH H L M H VL H VH H L VH L VL L L
F2 VL VH H H VH H M L H H M VH H L L L VL H M L L VH VL VL L VL
F3 VH VH H VH H VH H H H VH L VH H VL L H VL H H M M VH VL VL L L
F4 L H L L L L L L VL VL VL L L L VL VL VL M M L VL H L L VL VL
F5 L M H H L L L VL H H VL M L VL L VL VL L VL VL VL H VL VL VL VL
F6 H VH H H H VH H VH H H H H H L M L VL H H L L VH VL VL VL VL
F7 L M L H L M H M L M H M M M L VL VL M L L L VH VL VL L L
F8 M H M H H H VH M H H M M H VL L VL L M L L L VH VL VL L L
F9 L VH L VH H VL VH VH VH VH VL VL M VL M H M H VL VL VL VH VL VL VL VL
F10 VL L VL L H L L L VL H H L M L M VL VL L L L L H VL VL VL VL
F11 L L L H H L H H VL M L L H L H VL L H M L L H VL VL VL VL
F12 H H H H H VH H M H M M VH M L M VL VL H M L L H VL VL VL VL
F13 H H VH VH H H H H H H H L H L M L VL M L L L H VL VL VL VL
F14 H M H VH M M H H M H L H H L H H H H L L L VH VL VL L L
F15 L H L VH M M VH H VL H M L L H H H H H M L L VH VL VL L L
F16 L H L VH H M H H VH H M L L H VL VH H H L VL VL VH VL VL VL VL
F17 VL VH VL VH L L VH VH H VH M VL VL M L H VH VH H VL VL VH VL VL VL VL
F18 VL VH VL VH VH VL VH VH M VH VH VL VL H VL VL VL VH VL VL VL VH VL VL VL VL
F19 L H L H H M H VH VL M M L L L L L VL VL L VL VL VH VL VL L L
F20 VL H L VH VL VL VH VH H H L VL L VL VL L VH VH VH VL VL H VL VL VL VL
F21 H VH VH VH H H H H VH H M VL M H L L H VH H L L H VL VL VL VL
F22 VL H M M M L M L VH H M L VL H L H H H VL VL L H VL VL VL VL
F23 VL L VL M VL VL VL VL VL H L VL VL L L M VL VL L L VL VL VL VL VL VL
F24 VL VL H VH L VL H M L M L VL VL H VL H M H H VL VL VL L VL M L
F25 VL VL H M VL VL M VH L VL VL VL VL VL VL VL L H H VL VL VL H VL H L
F26 VL VL VL H VL VL VH H L L L H VL L VL L L H H VL VL VL H VL VL M
F27 VL VL L H VL VL H M L M L M VL L L H L H H L H H H M H H

Table 11. The total relation matrix shows the relationships between factors.

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

F1 0.00 0.17 0.13 0.13 0.15 0.12 0.19 0.16 0.13 0.16 0.15 0.07 0.14 0.14 0.05 0.10 0.12 0.05 0.16 0.13 0.08 0.04 0.16 0.03 0.03 0.04 0.03
F2 0.06 0.00 0.12 0.11 0.13 0.12 0.15 0.11 0.07 0.13 0.13 0.07 0.13 0.12 0.04 0.07 0.05 0.04 0.13 0.08 0.04 0.04 0.13 0.01 0.01 0.02 0.01
F3 0.11 0.17 0.00 0.13 0.16 0.12 0.18 0.15 0.12 0.16 0.16 0.07 0.14 0.13 0.03 0.08 0.10 0.05 0.15 0.11 0.06 0.06 0.15 0.01 0.01 0.03 0.03
F4 0.04 0.09 0.04 0.00 0.05 0.04 0.06 0.06 0.04 0.04 0.03 0.02 0.04 0.04 0.03 0.02 0.02 0.02 0.07 0.05 0.03 0.01 0.07 0.02 0.02 0.01 0.01
F5 0.04 0.07 0.08 0.07 0.00 0.05 0.06 0.06 0.03 0.09 0.09 0.02 0.06 0.05 0.01 0.04 0.02 0.03 0.06 0.03 0.01 0.01 0.08 0.01 0.01 0.01 0.01
F6 0.11 0.17 0.12 0.12 0.14 0.00 0.18 0.15 0.14 0.15 0.14 0.10 0.12 0.13 0.05 0.09 0.06 0.04 0.15 0.10 0.05 0.04 0.15 0.01 0.01 0.02 0.02
F7 0.05 0.10 0.06 0.09 0.07 0.08 0.00 0.11 0.08 0.08 0.09 0.08 0.07 0.08 0.05 0.06 0.03 0.04 0.09 0.05 0.03 0.03 0.11 0.01 0.01 0.03 0.02
F8 0.07 0.12 0.09 0.10 0.12 0.10 0.15 0.00 0.08 0.12 0.12 0.07 0.09 0.11 0.02 0.06 0.04 0.04 0.10 0.06 0.04 0.03 0.12 0.01 0.01 0.03 0.03
F9 0.05 0.13 0.06 0.10 0.11 0.05 0.14 0.13 0.00 0.12 0.13 0.03 0.04 0.07 0.02 0.07 0.08 0.04 0.11 0.04 0.02 0.02 0.11 0.01 0.01 0.01 0.01
F10 0.03 0.06 0.03 0.04 0.09 0.05 0.06 0.06 0.03 0.00 0.09 0.07 0.05 0.07 0.03 0.06 0.02 0.03 0.06 0.04 0.03 0.02 0.08 0.01 0.01 0.01 0.01
F11 0.05 0.07 0.06 0.09 0.10 0.06 0.12 0.11 0.04 0.10 0.00 0.05 0.06 0.10 0.03 0.09 0.03 0.04 0.11 0.06 0.03 0.03 0.10 0.01 0.01 0.01 0.01
F12 0.10 0.14 0.12 0.11 0.13 0.13 0.15 0.12 0.11 0.12 0.11 0.00 0.13 0.10 0.04 0.09 0.05 0.04 0.13 0.08 0.04 0.04 0.12 0.01 0.02 0.02 0.02
F13 0.10 0.14 0.13 0.12 0.13 0.11 0.15 0.13 0.11 0.14 0.13 0.06 0.00 0.12 0.04 0.09 0.05 0.04 0.11 0.06 0.04 0.04 0.12 0.01 0.01 0.02 0.01
F14 0.10 0.13 0.11 0.13 0.12 0.10 0.16 0.14 0.11 0.15 0.10 0.10 0.11 0.00 0.04 0.11 0.10 0.09 0.14 0.07 0.04 0.04 0.14 0.01 0.01 0.03 0.03
F15 0.06 0.13 0.07 0.12 0.10 0.09 0.16 0.13 0.06 0.13 0.10 0.06 0.07 0.12 0.00 0.10 0.09 0.09 0.13 0.08 0.04 0.03 0.13 0.01 0.01 0.03 0.03
F16 0.06 0.13 0.07 0.12 0.12 0.08 0.14 0.13 0.12 0.13 0.11 0.06 0.07 0.11 0.02 0.00 0.10 0.08 0.13 0.06 0.02 0.02 0.13 0.01 0.01 0.01 0.01
F17 0.04 0.14 0.05 0.11 0.07 0.06 0.15 0.14 0.10 0.14 0.10 0.04 0.05 0.09 0.04 0.10 0.00 0.10 0.14 0.08 0.02 0.02 0.12 0.01 0.01 0.02 0.01
F18 0.04 0.12 0.05 0.09 0.11 0.04 0.13 0.12 0.07 0.11 0.12 0.03 0.04 0.08 0.02 0.04 0.03 0.00 0.12 0.03 0.02 0.01 0.10 0.01 0.01 0.01 0.01
F19 0.05 0.10 0.06 0.08 0.10 0.07 0.11 0.12 0.04 0.09 0.08 0.05 0.06 0.06 0.03 0.05 0.03 0.02 0.00 0.05 0.02 0.01 0.10 0.01 0.01 0.03 0.02
F20 0.04 0.12 0.05 0.10 0.06 0.04 0.14 0.13 0.09 0.12 0.07 0.03 0.05 0.05 0.02 0.05 0.09 0.10 0.13 0.00 0.02 0.01 0.10 0.01 0.01 0.01 0.01
F21 0.11 0.17 0.14 0.13 0.14 0.12 0.17 0.15 0.13 0.15 0.13 0.05 0.10 0.13 0.04 0.08 0.10 0.11 0.15 0.07 0.00 0.04 0.14 0.01 0.01 0.02 0.02
F22 0.05 0.12 0.08 0.08 0.09 0.06 0.11 0.08 0.11 0.12 0.10 0.05 0.04 0.11 0.04 0.10 0.09 0.08 0.07 0.04 0.03 0.00 0.10 0.01 0.01 0.02 0.01
F23 0.02 0.04 0.01 0.04 0.02 0.01 0.03 0.03 0.01 0.07 0.03 0.01 0.01 0.03 0.02 0.04 0.01 0.03 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.00
F24 0.04 0.06 0.08 0.09 0.07 0.04 0.12 0.08 0.05 0.09 0.07 0.03 0.04 0.09 0.02 0.08 0.06 0.08 0.11 0.03 0.02 0.01 0.06 0.00 0.01 0.04 0.03
F25 0.03 0.04 0.07 0.05 0.04 0.03 0.08 0.10 0.04 0.04 0.04 0.02 0.02 0.03 0.01 0.02 0.03 0.07 0.09 0.02 0.01 0.01 0.08 0.00 0.00 0.06 0.02
F26 0.03 0.05 0.03 0.08 0.04 0.03 0.12 0.10 0.05 0.06 0.06 0.07 0.03 0.05 0.01 0.04 0.04 0.08 0.10 0.02 0.01 0.01 0.08 0.00 0.01 0.00 0.03
F27 0.04 0.07 0.06 0.10 0.06 0.04 0.13 0.10 0.06 0.10 0.08 0.07 0.04 0.07 0.03 0.09 0.06 0.10 0.12 0.05 0.07 0.07 0.10 0.04 0.06 0.07 0.00
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Table 12. The prominence and relation axis for the cause and effect group.

Affecting Factors Index Di Rj Di+Rj Di−Rj Category

Lack of experience F1 3.124 1.616 4.741 1.508 Cause

Misunderstanding F2 2.659 2.843 5.502 −0.184 Effect

Lack of knowledge F3 2.959 2.078 5.037 0.881 Cause

Poor error visual perception F4 1.220 2.434 3.655 −1.214 Effect

Risk-taking F5 1.170 2.719 3.890 −1.549 Effect

Poor memory F6 2.940 2.216 5.156 0.724 Cause

Fatigue F7 2.000 3.556 5.555 −1.556 Effect

Stress F8 2.362 3.060 5.422 −0.698 Effect

Non-understanding roles
and responsibilities F9 2.351 3.326 5.677 −0.975 Effect

Unintentional unsafe acts F10 1.294 3.027 4.322 −1.733 Effect

Haste in doing work F11 2.038 2.475 4.513 −0.438 Effect

Poor health F12 2.530 1.530 4.060 1.000 Cause

Low intelligence coefficient F13 2.508 1.948 4.456 0.560 Cause

Using inappropriate tools F14 2.521 2.489 5.010 0.032 Cause

Lack of necessary tools F15 2.347 0.964 3.311 1.384 Cause

Poor instructions and procedures F16 2.218 2.125 4.343 0.093 Cause

Task complexity F17 1.843 2.956 4.798 −1.113 Cause

Time pressure F18 2.142 2.679 4.822 −0.537 Cause

Workload F19 1.856 3.073 4.929 −1.217 Effect

Multitasking F20 1.769 1.644 3.413 0.125 Cause

Lack of training F21 2.692 0.937 3.630 1.755 Cause

Poor supervision F22 1.707 0.801 2.507 0.906 Cause

Failure to address the
error-causing problem F23 0.716 2.911 3.627 −2.195 Effect

Inappropriate lighting F24 1.565 0.326 1.892 1.239 Cause

Noise F25 1.284 0.390 1.673 0.894 Cause

Poor ergonomics design
of the workplace F26 1.343 0.652 1.996 0.691 Cause

Poor workplace layout F27 2.111 0.496 2.607 1.616 Cause

Based on
(

Di − Rj
)

values in Figure 4, a lack of training, poor workplace layout, a lack
of necessary tools, and a lack of experience were the most effective factors and were less
affected by other factors. This indicates that these factors had a strong directing influence
with minor dependence on other factors. Therefore, if these factors are strengthened,
assembly-process errors are decreased, which results in a large decrease in human errors.
On the contrary, the factors most affected (effects) by other cause factors were a failure
to address the error-causing problem, unintentional unsafe acts, fatigue, and poor error
visual perception.
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Based on the cause-and-effect relationship, as shown in Figure 5, the factors have been
divided into two groups, which are causes and effects. It is worth noting that a lack of
training (F21), poor workplace layout (F27), a lack of necessary tools (F15), and a lack of
experience (F1) factors have the highest

(
Di − Rj

)
values with 1.76, 1.45, 1.37, and 1.33,

respectively, among all the cause group factors. This indicates that these factors have
more impact on the effect group factors. In other words, manual assembly organizations
should focus and pay attention to these factors in order to reduce manual assembly errors.
On the other hand, a failure to address the error-causing problem (F23)-, unintentional
unsafe acts (F10)-, fatigue (F7)-, and poor error visual perception (F4)-affected factors have(

Di − Rj
)

values with (−2.31), (−1.82), (−1.74), and (−1.54), respectively, among all the
effect group factors. In addition, the results showed that the most influencing factors
among the main factors are the individual factors, the organizational factors, the tool
factors, the environmental factors, and the task factors. Based on the results, this study
developed a useful framework for practitioners based on the identified cause-and-effect
factors, as shown in Table 13. This framework illustrates how factors are affected by each
other. From Table 13, it can be noticed that a lack of experience influences most other
factors such as misunderstanding, knowledge level, poor error visual perception, etc.,
and it is affected by seven factors, which are knowledge level, memory, stress, health,
intelligence, using tools, and training. In addition, it is noticable that some factors are only
influencing and not affected by any factor; these factors are a lack of necessary tools, poor
supervision, and all of the environmental factors. Therefore, the developed framework will
help practitioners delve deeper into understanding the root causes of human errors related
to manual assembly processes to develop effective strategies and make more informed,
evidence-based decisions that will contribute to reducing assembly errors.
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Table 13. A framework of cause-and-effect relationships among factors.

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

F1
Affects on X X X X X X X X X X X X X X X X X X

Affected by X X X X X X X

F2
Affects on X X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X

F3
Affects on X X X X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X

F4
Affects on X X

Affected by X X X X X X X X X X X X X X X X X X X X X X

F5
Affects on X X X X X

Affected by X X X X X X X X X X X X X X X X X X X

F6
Affects on X X X X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X

F7
Affects on X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X X

F8
Affects on X X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X X

F9
Affects on X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X

F10
Affects on X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X X X

F11
Affects on X X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X

F12
Affects on X X X X X X X X X X X X X X X X X

Affected by X X X X X X X

F13
Affects on X X X X X X X X X X X X X X X

Affected by X X X X X X X X
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Table 13. Cont.

Factor F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

F14
Affects on X X X X X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X

F15
Affects on X X X X X X X X X X X X X X X

Affected by

F16
Affects on X X X X X X X X X X X X X X

Affected by X X X X X X X X X X X X X X

F17
Affects on X X X X X X X X X X X X X X

Affected by X X X X X X X X X

F18
Affects on X X X X X X X X X X

Affected by X X X X X X X X X X X

F19
Affects on X X X X X X X X X

Affected by X X X X X X X X X X X X X X X X X X X X X

F20
Affects on X X X X X X X X X X X

Affected by X X X X X X X X

F21
Affects on X X X X X X X X X X X X X X X X X X

Affected by X

F22
Affects on X X X X X X X X X X X X X X

Affected by

F23
Affects on X

Affected by X X X X X X X X X X X X X X X X X X X X X X X X X

F24
Affects on X X X X X X X X X

Affected by

F25
Affects on X X X X X X

Affected by

F26
Affects on X X X X X X X

Affected by

F27
Affects on X X X X X X X X X X X

Affected by
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The findings of this study showed the importance of parameters, such as worker
experience and knowledge, using appropriate tools, clear instructions of tasks, training,
and good environmental work, in reducing worker errors in manual assembly processes.
In previous research, some studies have confirmed the relationship between the parameters
of this study and human errors in the manual assembly processes. The results of this
study demonstrate that experience and technical knowledge are the root cause of human
errors in manual assembly processes. Based on some previous studies [29], the experience
factor is an important factor affecting human errors in assembly systems. Some studies,
such as [30–34], demonstrated that the lack of experience and knowledge of the assembler
were the most effective personal factors that led to assembly errors. In addition, some
studies demonstrated many personal factors, such as misunderstanding [39], visual er-
ror perception [25,38,84], risk-taking [41], worker memory [35,36,39], fatigue [6,25,85–87],
stress [2], understanding roles and responsibilities [25,38], unintentional unsafe acts and
haste in doing work [39], worker health [36], and intelligence coefficient [25,38], were the
root causes of human errors in manual assembly processes.

Moreover, many studies focusing on human error have emphasized tool factors,
such as using necessary and appropriate tools [36,39], and task factors, such as instruc-
tions and procedures [42], task complexity [43], time pressure [2], workload [2], and
multitasking [45–48]. Human errors have been studied extensively, with many previous
studies concentrating on organizational factors such as training [25], a lack of supervi-
sion, and avoiding the root cause of the error [39]. Appropriate lighting and noiseing in
environmental work improves awareness and cognitive performance [49,50]. The poor
ergonomic design of the workplace [28] and poor workplace layout [25] led to increased
human errors. The findings of this study will help organizations make better-informed
decisions on how to reduce worker errors and the factors that contribute to assembly errors.
In addition, the findings demonstrate a reasonable basis for reaching the quality of the final
assembled parts.

6. Conclusions and Future Research

This study aimed to determine the factors influencing human errors in manual assem-
bly processes and identify the cause-and-effect relationships among them using two types
of MCDM techniques. Based on the literature and experts, five main factors affecting
HEs in manual assembly processes were identified: individual, tool, task, organizational,
and work environment factors. Related to the five main factors, fifty-one factors were
recognized by analyzing earlier literature on factors affecting HEs in manual assembly
processes. The fuzzy Delphi model has developed, and the fuzzy Delphi survey was built.
Based on two rounds of the fuzzy Delphi study, twenty-seven factors with an affecting
score of 0.7 and higher were selected as the most influencing HEs in manual assembly
processes. After that, the DEMATEL method was used to analyze the cause-and-effect
relationships among the twenty-seven factors affecting HEs.

The findings of this study indicated that the root causes of HEs in the manual assembly
processes were as follows: level of training, poor workplace design, a lack of appropriate
tools, and experience. Furthermore, a failure to address the error-causing problem, un-
intentional unsafe acts, fatigue, and poor error visual perception were found to be effect
(dependent) factors. The practical implications of this study for organizations will be in
identifying the factors that contribute to assembly errors; organizations can make decisions
to control those factors to reduce worker errors, increase the quality of assembled parts,
and save the costs associated with assembly errors.

There are some limitations related to this paper that should be taken into consid-
eration for future work. They are as follows: This paper provides a summary of the
factors that cause human errors during manual assembly processes and interactions be-
tween these factors. Future research should be undertaken using other methods, such as
structure-equation modeling, to study the interrelationship between the factors affecting
human errors. In addition, empirical studies should be investigated to verify the structural
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correlations revealed in the study model. It also encourages the researchers to perform
some experiments to measure the mental and physical workloads of the workers while
performing manual assembly processes to know the root causes of the factors affecting
human errors that contribute to decreasing efficiency and the discomfort of humans in
the workplace.
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