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Abstract: This article extends the application of fractional-order time derivatives to replace their
integer-order counterparts within a system comprising two singular one-dimensional coupled partial
differential equations. The resulting model proves invaluable in representing radially symmetric
deformation and temperature distribution within a unit disk. The incorporation of fractional-order
derivatives in mathematical models is shown to significantly enhance their capacity for characterizing
real-life phenomena in comparison to their integer-order counterparts. To address the studied system
numerically, we employ the q-homotopy analysis transform method (q-HATM). We evaluate the
efficiency of this method in solving the problem through a series of illustrative examples. The
convergence of the derived scheme is assessed visually, and we compare the performance of the
q-HATM with that of the Laplace decomposition method (LDM). While both methods excel in
resolving the majority of the presented examples, a notable divergence arises in the final example:
the numerical solutions obtained using q-HATM converge, whereas those derived from LDM exhibit
divergence. This discrepancy underscores the remarkable efficiency of the q-HATM in addressing
this specific problem.

Keywords: q-homotopy; fractional derivative; coupled system; Laplace transform; decomposition
method; auxiliary parameter; symmetric deformation

1. Introduction

Applied mathematical models play a pivotal role in characterizing and studying a
wide array of real-life phenomena across diverse disciplines, including physics, astronomy,
chemistry, biology, economics, medicine, disease sciences, and engineering. Historically,
ordinary and partial differential equations have been fundamental tools in these domains.
However, since many natural phenomena exhibit continuous patterns, mathematical mod-
els based on integer-order ordinary and partial differential equations often fall short in
providing accurate characterizations. Consequently, the scientific community has increas-
ingly turned its attention to fractional ordinary and partial differential equations, which
offer more precise and realistic mathematical models for these phenomena. This shift
in focus has garnered significant global interest in recent decades. Within the existing
literature, numerous articles are dedicated to presenting fractional mathematical models
that describe physical and engineering processes. For a comprehensive overview, please
refer to [1–6] and the references therein.

Conversely, obtaining exact analytical solutions for these mathematical models re-
mains a formidable challenge. Consequently, various computational methods and numeri-
cal techniques have been developed by numerous researchers to address this issue. These
techniques include the Adomian decomposition method (ADM), pioneered by Adomian
in 1986 [7–10], the variational iteration method introduced by He [11,12], the finite differ-
ence method introduced by Crank-Nicolson in [13], the homotopy perturbation method
(HPM) proposed by He in 1999 [14–16], and the Laplace decomposition method (LDM),
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introduced by Khuri in [17,18]. Additionally, the homotopy analysis method (HAM), de-
veloped by Liao in 1992, is presented in [19–23]. A modified version of HAM, known
as the q-homotopy analysis method, has been introduced by El-Tavil and Huseen [24,25]
to accelerate its convergence, where q ∈ [0, 1

n ], and n is a positive integer. Furthermore,
a robust analytical numerical technique, the q-homotopy analysis transform method, is
presented in [26–28], which combines the q-homotopy analysis method with the Laplace
transform method.

The primary objective of this paper is to investigate the application and efficiency
of the q-homotopy analysis transform method in solving a fractional linear singular one-
dimensional thermo-elasticity coupled system. This mathematical model can be applied
to depict radially symmetric deformations and temperature distributions within a unit
disk [29]. Specifically, we will employ the q-homotopy analysis transform method to
numerically solve the following fractional coupled system:

∂µ

∂t
ξ(x, t)− d1

x
∂

∂x

(
x

∂ξ(x, t)
∂t

)
+ cx

∂ϑ(x, t)
∂x

= f1(x, t), 1 < µ ≤ 2,

∂ν

∂t
ϑ(x, t)− d2

x
∂

∂x

(
x

∂ϑ(x, t)
∂t

)
+ cx

∂2ξ(x, t)
∂x∂t

= f2(x, t), 0 < ν ≤ 1,

(1)

subject to the following initial conditions:
ξ(x, 0) = g1(x), ξt(x, 0) = g2(x), 0 < x < 1

ϑ(x, 0) = g3(x), 0 < x < 1
(2)

that satisfies the boundary conditions:

ξ(1, t) = ϑ(1, t) = 0, 0 < t < T, (3)

where di, i = 1, 2 and c are positive real numbers, fi, gj, i = 1, 2, j = 1, 2, 3 are known

functions, and ∂δ

∂t denotes the Caputo fractional derivative of order δ, where δ is a non-
integer positive real number. The physical meaning of the functions in Equation (1) can
be interpreted as follows: the function ξ represents the displacement, ϑ is the difference in
the absolute temperature, f1 is an external force, f2 is a heat supply, and d1, d2, and c are
positive constants.

The Caputo fractional derivative is often used in practical applications, as it enables
one to include the traditional initial and boundary conditions in formulating mathematical
models. Moreover, as in the integer-order derivative, the Caputo fractional derivative of a
constant is zero [30].

Let us mention that integer-order versions of model (1) are considered in [29,31,32].

Definition 1 ([33,34]). The Caputo fractional derivative of a non-integer-order δ of a function
θ(x, t) is defined by:

∂δ

∂tδ θ(x, t) =


1

Γ(n−δ)

∫ t
0

∂nθ(x,ω)
∂ωn (t−ω)n−δ−1 dω, n− 1 < δ < n,

∂n

∂tn θ(x, t), δ = n,

where Γ(n− δ) denotes the Gamma function.
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Definition 2 ([35,36]). The Laplace transform L of the Caputo fractional derivative ∂δ
t θ(x, t), n−

1 < δ < n, of a function θ(x, t) is defined as:

L
[ ∂δ

∂tδ
θ(x, t)

]
= sδF (x, s)−

n−1

∑
j=0

sδ−j−1θ(j)(x, 0+), (4)

where F (x, s) denotes the Laplace transform of the function θ(x, t).

The rest of the paper is organized as follows: In Section 2, we present the basic outlines
of the q-HATM. In Section 3, we apply the q-HATM to develop a numerical scheme for
solving models (1)–(3) as well as utilizing the LDM for the same goal. Section 4 is devoted
to the numerical computations, where we give a set of examples to test the efficiency of the
resulting iterative scheme. Finally, we discuss our findings and conclusions in Section 5.

2. Basic Outlines of q-HATM

The q-HATM is introduced by El-Tavil and Huseen [24,25], which is a modified version
of the HAM. In this section, we present basic concepts of this method. Thus, consider the
following general fractional partial differential equation in the Caputo sense:

∂δ

∂tδ
ϑ(x, t) + Rϑ(x, t) + Ñϑ(x, t) = F(x, t), n− 1 < δ ≤ n, (5)

in which ϑ(x, t) is a differentiable function, ∂δ

∂tδ is the Caputo derivative of order δ, R is
a linear differential operator, Ñ denotes a nonlinear differential operator, and F(x, t) is a
known function.

Then, applying Laplace transform to both sides of Equation (5) gives:

sδL
{

ϑ(x, t)
}
−

n−1

∑
k=0

sδ−k−1ϑ(k)(x, 0) +L
{

Rϑ(x, t) + Ñϑ(x, t)
}
= L

{
F(x, t)

}
,

or

L
{

ϑ(x, t)
}
−

n−1

∑
k=0

1
sk+1 ϑ(k)(x, 0) +

1
sδ
L
{

Rϑ(x, t) + Ñϑ(x, t)− F(x, t)
}
= 0.

Next, according to the HAM method [19], we define an operator N as follows:

N [ϕ(x, t; q)] = L
{

ϕ(x, t; q)
}
−∑n−1

k=0
1

sk+1 ϕ(k)(x, 0; q) + 1
sδ L
{

Rϕ(x, t; q)

+Ñϕ(x, t; q)− F(x, t)
}

,

where q ∈ [0, 1
n ], n ≥ 1, and ϕ is a real valued function in x, t and q. Thus, we take the

zeroth-order deformation equation to be:

(1− nq)L
[

ϕ(x, t; q)− ϑ0(x, t)
]
= qh̄N [ϕ(x, t; q)], (6)

where h̄ is a non-vanishing auxiliary parameter, which is used to control and adjust the
convergence region of the desired series solution, q ∈ [0, 1

n ] is an embedding parameter,
L denotes the traditional Laplace transform operator, ϑ0(x, t) is an initial guess for the exact
solution ϑ(x, t), and ϕ(x, t; q) is an unknown function.

It is clear that at q = 0 and q = 1
n , Equation (6) implies:

ϕ(x, t; 0) = ϑ0(x, t) and ϕ(x, t;
1
n
) = ϑ(x, t).

Thus, as q moves continuously from 0 to 1
n , the function ϕ(x, t; q) deforms from the

initial approximation ϑ0(x, t) to the exact solution ϑ(x, t).
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Next, the Taylor series expansion of ϕ(x, t; q) in powers of q implies:

ϕ(x, t; q) = ϑ0(x, t) +
∞

∑
m=1

ϑm(x, t)qm, (7)

where

ϑm(x, t) =
1

m!
∂m ϕ(x, t; q)

∂qm

∣∣∣∣
q=0

.

As mentioned in [22], if the auxiliary parameter h̄ and the initial guess ϑ0(x, t) are
properly chosen, then the power series (7) would converge at q = 1

n to one of the solutions
of the above problem, and it is given as:

ϑ(x, t) = ϑ0(x, t) +
∞

∑
m=1

(
1
n

)m
ϑm(x, t). (8)

In fact, the existence of the factor
(

1
n

)m
in the series (8) accelerates the convergence in

the q-HATM compared with the HAM.
Next, differentiating the zeroth order deformation Equation (6) m-times with respect

to q, dividing by m! and then setting q = 0, gives the following mth order deformation
equation:

L
{

ϑm(x, t)− χmϑm−1(x, t)
}
= h̄<(~ϑm−1), (9)

where
~ϑk(x, t) = [ϑ0(x, t), ϑ1(x, t), ..., ϑk(x, t)],

and

<(~ϑm−1) =
1

(m− 1)!

{
∂m−1

∂qm−1N [ϕ(x, t; q)]
}∣∣∣∣

q=0
.

Finally, applying the inverse Laplace transform to both sides of Equation (9) implies
that the components ϑm(x, t) can be determined recursively by the iterative scheme:

ϑm(x, t) = χmϑm−1(x, t) + h̄L−1
[
<(~ϑm−1)

]
, m = 1, 2, . . . , (10)

where

χj =

{
0, j ≤ 1,
n, j > 1.

3. Application
3.1. Application of the q-HATM

The q-HATM [24,25] is an accurate and efficient computational technique for handling
the solution of an integer-order as well as a fractional-order mathematical models. Thus, it
is widely used to solve a wide range of mathematical models in different scientific fields:
for example, see [26,27,37–40] and the references therein.

To explore the applicability and efficiency of the q-HATM for solving problem (1),
we apply Laplace transform to both sides of each equation in (1); then, in view of (2), we
obtain:

L[ξ(x, t)]− 1
s ξ(x, 0)− 1

s2 ξt(x, 0)− 1
sµ L
[

d1
x

∂
∂x

(
x ∂

∂x ξ(x, t)
)
− cx ∂

∂x ϑ(x, t) + f1(x, t)
]
= 0,

L[ϑ(x, t)]− 1
s ϑ(x, 0)− 1

sν L
[

d2
x

∂
∂x

(
x ∂

∂x ϑ(x, t)
)
− cx ∂2

∂x∂t ξ(x, t) + f2(x, t)
]
= 0.

Next, we define two operators N1 and N2 as follows:
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N1[ϕ1(x, t; q), ϕ2(x, t; q)] = L
{

ϕ1(x, t; q)
}
− 1

s ξ(x, 0)− 1
s2 ξt(x, 0)− 1

sµ L
{ d1

x
∂

∂x ϕ1(x, t; q)

+d1
∂2

∂x2 ϕ1(x, t; q)− cx ∂
∂x ϕ2(x, t; q) + f1(x, t)

}
,

N2[ϕ1(x, t; q), ϕ2(x, t; q)] = L
{

ϕ2(x, t; q)
}
− 1

s ϑ(x, 0)− 1
sν L
{ d2

x
∂

∂x ϕ2(x, t; q)

+d2
∂2

∂x2 ϕ2(x, t; q)− cx ∂
∂x∂t ϕ1(x, t; q) + f2(x, t)

}
.

Hence, we take the zeroth deformation equations as:

(1− nq)L
[

ϕ1(x, t; q)− ξ0(x, t)
]

= qh̄1N1[ϕ1(x, t; q), ϕ2(x, t; q)],

(1− nq)L
[

ϕ2(x, t; q)− ϑ0(x, t)
]

= qh̄2N2[ϕ1(x, t; q), ϕ2(x, t; q)],

which implies that the mth-order deformation equations are given by:

L[ξm(x, t)− χmξm−1(x, t)] = h̄1<1(~ξm−1,~ϑm−1),

L[ϑm(x, t)− χmϑm−1(x, t)] = h̄2<2(~ξm−1,~ϑm−1),

where

<1(~ξm−1,~ϑm−1) = L
{

ξm−1(x, t)
}
−
(
1− χm

n
)( 1

s ξ(x, 0) + 1
s2 ξ(x, 0)

)
− d1

sν L
{ 1

x
∂

∂x ξm−1

+d1
∂2

∂x2 ξm−1 − cx ∂
∂x ϑm−1 +

(
1− χm

n
)

f1(x, t)
}

,

<2(~ξm−1,~ϑm−1) = L
{

ϑm−1(x, t)
}
−
(
1− χm

n
) 1

s ϑ(x, 0)− d2
sν L
{ 1

x
∂

∂x ξm−1

+d2
∂2

∂x2 ϑm−1 − cx ∂
∂x∂t ξm−1 +

(
1− χm

n
)

f2(x, t)
}

.

Therefore, successive terms of the approximate series solution can be computed
recursively from the iterative schemes:

ξm(x, t) = χmξm−1(x, t) + h̄1L
−1
[
<1(~ξm−1,~ϑm−1)

]
, m ≥ 1,

ϑm(x, t) = χmϑm−1(x, t) + h̄2L
−1
[
<2(~ξm−1,~ϑm−1)

]
, m ≥ 1,

(11)

and the solution will be given as:

ξ(x, t) = ξ0(x, t) + ∑∞
i=1(

1
n )

mξi(x, t),

ϑ(x, t) = ϑ0(x, t) + ∑∞
i=1(

1
n )

mϑi(x, t).

3.2. Application of the LDM

To use the LDM [17,18] for solving problem (1), again we apply the Laplace transform
to both sides of each equation in this problem, taking into account the property (2), to
obtain:

L[ξ(x, t)] = 1
s ξ(x, 0) + 1

s2 ξt(x, 0) + 1
sµ L
[

d1
x

∂
∂x

(
x ∂

∂x ξ(x, t)
)
− cx ∂

∂x ϑ(x, t) + f1(x, t)
]
,

L[ϑ(x, t)] = 1
s ϑ(x, 0) + 1

sν L
[

d2
x

∂
∂x

(
x ∂

∂x ϑ(x, t)
)
− cx ∂2

∂x∂t ξ(x, t) + f2(x, t)
]
.

(12)
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Then, applying the inverse Laplace transform to each side of the equations in (12), we
obtain:

ξ(x, t) = ξ(x, 0) + ξt(x, 0)t +L−1
[

1
sµ L
[

d1
x

∂
∂x

(
x ∂

∂x ξ(x, t)
)
− cx ∂

∂x ϑ(x, t) + f1(x, t)
]]

,

ϑ(x, t) = ϑ(x, 0) +L−1
[

1
sν L
[

d2
x

∂
∂x

(
x ∂

∂x ϑ(x, t)
)
− cx ∂2

∂x∂t ξ(x, t) + f2(x, t)
]] (13)

Now, the LDM defines the solution of the system (1)–(3) in a series form as:

ξ(x, t) =
∞

∑
i=0

ξi(x, t), and ϑ(x, t) =
∞

∑
i=0

ϑi(x, t). (14)

Then, the components of this solution can be determined by substituting the series
in (14) into (13) and matching the terms on both sides to obtain the following recursive
relations:

ξ0(x, t) = ξ(x, 0) + ξt(x, 0)t +L−1
[

1
sµ L[ f1(x, t)]

]
,

ξi(x, t) = L−1
[

1
sµ L
[

d1
x

∂
∂x

(
x ∂

∂x ξi−1(x, t)
)
− cx ∂

∂x ϑi−1(x, t)
]]

, i = 1, 2, · · · ,
(15)

ϑ0(x, t) = ϑ(x, 0) +L−1
[

1
sν L[ f2(x, t)]

]
,

ϑi(x, t) = L−1
[

1
sν L
[

d2
x

∂
∂x

(
x ∂

∂x ϑi−1(x, t)
)
− cx ∂2

∂x∂t ξi−1(x, t)
]]

, i = 1, 2, · · · .
(16)

4. Numerical Results

In this section, we employ the iterative scheme (11), obtained by applying the q-
HATM [26–28], to solve numerically a set of examples to test the efficiency of this scheme
in handling the solution of fractional problems of the type (1)–(3), in which the function
ξ represents the displacement, and ϑ represents the difference absolute temperature in a
unit disk.

Example 1. Consider Equation (1) with d1 = d2 = c = 1:
∂µ

∂t
ξ(x, t)− 1

x
∂

∂x

(
x

∂ξ(x, t)
∂t

)
+ x

∂ϑ(x, t)
∂x

= −3 + 2t− 6t ln(x), 1 < µ ≤ 2,

∂ν

∂t
ϑ(x, t)− 1

x
∂

∂x

(
x

∂ϑ(x, t)
∂t

)
+ x

∂2ξ(x, t)
∂x∂t

= 1− 3t2 + 2 ln(x), 0 < ν ≤ 1,

subject to the following initial conditions:
ξ(x, 0) = 0, ξt(x, 0) = ln(x), 0 < x < 1,

ϑ(x, 0) = −3 ln(x), 0 < x < 1,

and satisfies the boundary conditions:

ξ(1, t) = ϑ(1, t) = 0, 0 < t < T.

Solution.
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Let ξ0(x, t) = ξ(x, 0) = 0 and ϑ0(x, t) = ϑ(x, 0) = −3 ln(x). Then, in view of (11),
using n = 1 and h̄1 = h̄2 = h̄, the first few terms of the series solution are given as:

ξ1(x, t) =
2h̄t1+µ

Γ[2 + µ]
(3 ln(x)− 1),

ϑ1(x, t) =
6h̄t2+ν

Γ[3 + ν]
− h̄tν(1 + 2 ln(x))

Γ[1 + ν]
,

ξ2(x, t) =
−2h̄2tν+µ

Γ[1 + ν + µ]
− 2h̄2t1+µ(1− 3 ln(x))

Γ[2 + µ]
+

2ht1+µ(3 ln(x)− 1)
Γ[2 + µ]

,

ϑ2(x, t) =
6ht2+ν

Γ[3 + ν]
− htν(1 + 2 ln(x))

Γ[1 + ν]
− h2tν

Γ[1 + ν]
+

6h2t2+ν

Γ[3 + ν]
+

6h2tν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]

+
6h2µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
− 2h2tν ln(x)

Γ[1 + ν]
,

ξ3(x, t) = − 2ht1+µ

Γ[2 + µ]
− 4h2t1+µ

Γ[2 + µ]
− 2h3t1+µ

Γ[2 + µ]
− 4h2tν+µ

Γ[1 + ν + µ]
− 4h3tν+µ

Γ[1 + ν + µ]

+
6ht1+µ ln(x)

Γ[2 + µ]
+

12h2t1+µ ln(x)
Γ[2 + µ]

+
6h3t1+µ ln(x)

Γ[2 + µ]
,

ϑ3(x, t) = − htν

Γ[1 + ν]
− 2h2tν

Γ[1 + ν]
− h3tν

Γ[1 + ν]
+

6ht2+ν

Γ[3 + ν]
+

12h2t2+ν

Γ[3 + ν]
+

6h3t2+ν

Γ[3 + ν]

+
12h2tν+µΓ[1 + r]

Γ[2 + µ]Γ[1 + ν + µ]
+

12h3tν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
+

12h2µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]

+
12h3µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
− 2htν ln(x)

Γ[1 + ν]
− 4h2tν ln(x)

Γ[1 + ν]
− 2h3tν ln(x)

Γ[1 + ν]
,

· · · .

Hence, the solution of the coupled system is given by:

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + · · ·

=
2h̄t1+µ

Γ[2 + µ]
(3 ln(x)− 1)

−2h̄2tµ(tνΓ[2 + µ] + tΓ[1 + ν + µ](1− 3 ln(x)))
Γ[2 + µ]Γ[1 + ν + µ]

+
2h̄t1+µ(3 ln(x)− 1)

Γ[2 + µ]

+ · · · ,

(17)
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ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + · · ·

= −3 ln(x) +
6h̄t2+ν

Γ[3 + ν]
− h̄tν(1 + 2 ln(x))

Γ[1 + ν]
+

6ht2+ν

Γ[3 + ν]

−htν(1 + 2 ln(x))
Γ[1 + ν]

− h2tν

Γ[1 + ν]
+

6h2t2+ν

Γ[3 + ν]
+

6h2tν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]

+
6h2µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
− 2h2tν ln(x)

Γ[1 + ν]

+ · · · .

(18)

Figure 1 displays the h-curve corresponding to the 15th-order truncated series solution.
It follows from this figure that the values of the parameter h̄ required for the convergence
of the series solution are lying in the range −1.8 < h̄ < 0.
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Figure 1. The h̄-curve corresponding to the 15th-order approximate series solution at x = 0.6, t = 0.01,
µ = 1.3, and ν = 0.2.

Figure 2 shows the graph of the truncated series solution using a distinct number
of terms of the truncated series solution of Example 1 at x = 0.2, h̄ = −0.7, µ = 1.3 and
ν = 0.7. It shows the rapid convergence of these approximate solutions.
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Figure 2. Truncated series solution ξ [m](x, t) & ϑ[m](x, t) of Example 1 using several values of m.
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We noticed that for integer values of µ = 2 and ν = 1, and setting h̄ = −1, the solution
given by the series (17) and (18) reduces to:

ξ(x, t) =
t3

3
+ t ln(x) +

2
3

t3(−2 + 3 ln(x))− t3(−1 + 3 ln(x))

=
(
t− t3) ln(x),

ϑ(x, t) = 4t− 3 ln(x) + 6t ln(x)− 4t(1 + ln(x))

= (−3 + 2t) ln(x),

which is the exact solution of Example 1 in this case.
In Tables 1 and 2, we present the numerical solutions of Example 1 resulting from

the kth-order truncated series solution ξ [k]&ϑ[k] generated by the q-HATM and LDM for
several values of k, x, and t, rounded to 6 significant digits. These tables illustrate the rapid
convergence of these truncated solutions just after few terms. As it appears in these tables,
both methods show good performance for this example.

Table 1. Comparative numerical results between q-HATM and LDM at d1 = 1, d2 = 1, c = 1,
µ = 1.3 ν = 0.4, h̄ = −1, and different values of k, x, and t.

t

0.1 1 5

k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] −0.200720 −0.226554 3.59117 2.2964 227.281 207.308
ϑ[k] 5.28214 4.91095 0.831902 3.58913 −96.6100 −38.8371

2 ξ [k] −0.226554 −0.226554 2.29640 2.29640 207.308 207.308
ϑ[k] 4.91095 4.91095 3.58913 3.58913 −38.8371 −38.8371

20 ξ [k] −0.226554 −0.226554 2.29640 2.29640 207.308 207.308
ϑ[k] 4.91095 4.91095 3.58913 3.58913 −38.8371 −38.8371

0.5 1 ξ [k] −0.0578117 −0.0836456 1.60200 0.307238 89.5254 69.5526
ϑ[k] 1.89810 1.52691 −0.368544 2.38868 −94.5321 −36.7592

2 ξ [k] −0.0836456 −0.0836456 0.307238 0.307238 69.5526 69.5526
ϑ[k] 1.52691 1.52691 2.38868 2.38868 −36.7592 −36.7592

20 ξ [k] −0.0836456 −0.0836456 0.307238 0.307238 69.5526 69.5526
ϑ[k] 1.52691 1.52691 2.38868 2.38868 −36.7592 −36.7592

0.9 1 ξ [k] −0.00561994 −0.0314538 0.875532 −0.419230 39.2154 19.2426
ϑ[k] 0.662211 0.291022 −0.806961 1.95026 −93.7732 −36.0004

2 ξ [k] −0.0314538 −0.0314538 −0.419230 −0.419230 19.2426 19.2426
ϑ[k] 0.291022 0.291022 1.95026 1.95026 −36.0004 −36.0004

20 ξ [k] −0.0314538 −0.0314538 −0.419230 −0.419230 19.2426 19.2426
ϑ[k] 0.291022 0.291022 1.95026 1.95026 −36.0004 −36.0004
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Table 2. Comparative numerical results between q-HATM and LDM at d1 = 1, d2 = 1, c = 1,
µ = 1.75, ν = 0.65, h̄ = −1, and different values of k, x, and t.

t

0.1 0.5 5

x k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] −0.0668385 −0.226571 1.27317 0.602298 287.393 255.466
ϑ[k] 1.97995 5.76698 1.37805 2.27969 −112.984 −20.3642

2 ξ [k] −0.0695093 −0.226571 0.602298 0.602298 255.466 255.466
ϑ[k] 1.73925 5.76698 2.27969 2.27969 −20.3642 −20.3642

20 ξ [k] −0.0695093 −0.226571 0.602298 0.602298 255.466 255.466
ϑ[k] 1.73925 5.76698 2.27969 2.27969 −20.3642 −20.3642

0.5 1 ξ [k] −0.0668385 −0.0695093 0.699324 0.0284545 112.934 81.0069
ϑ[k] 1.97995 1.73925 0.125798 1.02744 −107.633 −15.0128

2 ξ [k] −0.0695093 −0.0695093 0.0284545 0.0284545 81.0069 81.0069
ϑ[k] 1.73925 1.73925 1.02744 1.02744 −15.0128 −15.0128

20 ξ [k] −0.0695093 −0.0695093 0.0284545 0.0284545 81.0069 81.0069
ϑ[k] 1.73925 1.73925 1.02744 1.02744 −15.0128 −15.0128

0.9 1 ξ [k] −0.00947778 −0.0121486 0.489749 −0.181120 49.2199 17.2923
ϑ[k] 0.508974 0.268272 −0.331539 0.570103 −105.679 −13.0584

2 ξ [k] −0.0121486 −0.0121486 −0.181120 −0.181120 17.2923 17.2923
ϑ[k] 0.268272 0.268272 0.570103 0.570103 −13.0584 −13.0584

20 ξ [k] −0.0121486 −0.0121486 −0.181120 −0.181120 17.2923 17.2923
ϑ[k] 0.268272 0.268272 0.570103 0.570103 −13.0584 −13.0584

Example 2. Consider Equation (1) with d1 = 1, d2 = 1, and c = 5:
∂µ

∂t
ξ(x, t)− 1

x
∂

∂x

(
x

∂ξ(x, t)
∂t

)
+ 5x

∂ϑ(x, t)
∂x

= 5 + 5t + 2 ln(x), 1 < µ ≤ 2,

∂ν

∂t
ϑ(x, t)− 1

x
∂

∂x

(
x

∂ϑ(x, t)
∂t

)
+ 5x

∂2ξ(x, t)
∂x∂t

= 10t + ln(x), 0 < ν ≤ 1,

subject to the following initial conditions:
ξ(x, 0) = ln(x), ξt(x, 0) = 0, 0 < x < 1,

ϑ(x, 0) = ln(x), 0 < x < 1,

which satisfies the boundary conditions:

ξ(1, t) = ϑ(1, t) = 0, 0 < t < T.

Solution.
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Let ξ0(x, t) = ξ(x, 0) = ln(x) and ϑ0(x, t) = ϑ(x, 0) = ln(x). Then, in view of (11),
using n = 1 and h̄1 = h̄2 = h̄, the first few terms of the series solution are as follows:

ξ1(x, t) = − 5ht1+µ

Γ[2 + µ]
− 2htµ ln(x)

Γ[1 + µ]
,

ϑ1(x, t) = − 10ht1+ν

Γ[2 + ν]
− htν ln(x)

Γ[1 + ν]
,

ξ2(x, t) = − 5ht1+µ

Γ[2 + µ]
− 5h2t1+µ

Γ[2 + µ]
− 5h2tν+µ

Γ[1 + ν + µ]
− 2htµ ln(x)

Γ[1 + µ]
− 2h2tµ ln(x)

Γ[1 + µ]
,

ϑ2(x, t) = − 10ht1+ν

Γ[2 + ν]
− 10h2t1+ν

Γ[2 + ν]
− 10h2µt−1+ν+µΓ[r]

Γ[1 + µ]Γ[ν + µ]
− htν ln(x)

Γ[1 + ν]
− h2tν ln(x)

Γ[1 + ν]
,

ξ3(x, t) = − 5ht1+µ

Γ[2 + µ]
− 10h2t1+µ

Γ[2 + µ]
− 5h3t1+µ

Γ[2 + µ]
− 10h2tν+µ

Γ[1 + ν + µ]
− 10h3tν+µ

Γ[1 + ν + µ]

−2htµ ln(x)
Γ[1 + µ]

− 4h2tµ ln(x)
Γ[1 + µ]

− 2h3tµ ln(x)
Γ[1 + µ]

,

ϑ3(x, t) = − 10ht1+ν

Γ[2 + ν]
− 20h2t1+ν

Γ[2 + ν]
− 10h3t1+ν

Γ[2 + ν]
− 20h2µt−1+ν+µΓ[r]

Γ[1 + µ]Γ[ν + µ]
− 20h3µt−1+ν+µΓ[µ]

Γ[1 + µ]Γ[ν + µ]

−htν ln(x)
Γ[1 + ν]

− 2h2tν ln(x)
Γ[1 + ν]

− h3tν ln(x)
Γ[1 + ν]

,

. . . .

Hence, the solution is given by the following:

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + · · ·

= ln(x)− 5ht1+µ

Γ[2 + µ]
− 2htµ ln(x)

Γ[1 + µ]
− 5ht1+µ

Γ[2 + µ]
− 5h2t1+µ

Γ[2 + µ]

− 5h2tν+µ

Γ[1 + ν + µ]
− 2htµ ln(x)

Γ[1 + µ]
− 2h2tµ ln(x)

Γ[1 + µ]
+ · · ·,

(19)

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + · · ·

= ln(x)− 10ht1+ν

Γ[2 + ν]
− htν ln(x)

Γ[1 + ν]
− 10ht1+ν

Γ[2 + ν]
− 10h2t1+ν

Γ[2 + ν]

−10h2µt−1+ν+µΓ[r]
Γ[1 + µ]Γ[ν + µ]

− htν ln(x)
Γ[1 + ν]

− h2tν ln(x)
Γ[1 + ν]

+ · · · .

(20)

Figure 3 displays the h-curve corresponding to the 16th-order truncated series solution.
It follows from this figure that the values of the parameter h̄ required for the convergence
of the series solution are in the range −1.5 < h̄ < −0.4.
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Figure 3. The h̄-curve corresponding to the 16th-order approximate series solution at x = 0.3, t = 0.01,
µ = 1.4, and ν = 0.75.

Figure 4 shows the graph of the truncated series solution using a distinct number
of terms of the truncated series solution of Example 2 at x = 0.5, h̄ = −0.8, µ = 1.3 and
ν = 0.7. It shows the rapid convergence of these approximate solutions.
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Figure 4. Truncated series solution ξ [k](x, t) & ϑ[k](x, t) of Example 2 using several values of m.

It is noticed that for integer values of µ = 2 and ν = 1, and using h̄ = −1, the solution
given by the series (19) and (20) reduces to:

ξ(x, t) = −5h(2 + h)t1+µ

Γ[2 + µ]
− 5h2tν+µ

Γ[1 + ν + µ]
+

(−2h(2 + h)tµ + Γ[1 + µ]) ln(x)
Γ[1 + µ]

=
(
t2 + 1

)
ln(x),

ϑ(x, t) = −10h(2 + h)t1+ν

Γ[2 + ν]
− 10h2µt−1+ν+µΓ[µ]

Γ[1 + µ]Γ[ν + µ]
+

(−h(2 + h)tν + Γ[1 + ν]) ln(x)
Γ[1 + ν]

= (t + 1) ln(x),

which is the exact solution of Example 2 in this case.
Tables 3 and 4 present the numerical solutions of Example 2 resulting from the kth-

order truncated series solution ξ [k]&ϑ[k] generated by the q-HATM and LDM for several
values of k, x, and t, rounded to six significant digits. These tables illustrate the rapid
convergence of the these truncated solutions just after few terms. Again, as it appears from
these tables, both methods perform very well for solving this example.
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Table 3. Comparative numerical results between q-HATM and LDM at d1 = 1, d2 = 1, c = 5,
µ = 1.3 ν = 0.4 h̄ = −1, and different values of k, x, and t.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] −2.49107 −2.55566 −4.38644 −7.62334 41.2062 −8.72583
ϑ[k] −3.01524 −5.21112 3.15269 −7.85278 69.3833 35.4296

2 ξ [k] −2.55566 −2.55566 −7.62334 −7.62334 −8.72583 −8.72583
ϑ[k] −5.21112 −5.21112 −7.85278 −7.85278 35.4296 35.4296

20 ξ [k] −2.55566 −2.55566 −7.62334 −7.62334 −8.72583 −8.72583
ϑ[k] −5.21112 −5.21112 −7.85278 −7.85278 35.4296 35.4296

0.5 1 ξ [k] −0.743360 −0.807945 −0.0180716 −3.25498 65.1720 15.2400
ϑ[k] −0.683663 −2.87954 6.57607 -4.42941 74.4459 40.4921

2 ξ [k] −0.807945 −0.807945 −3.25498 −3.25498 15.2400 15.2400
ϑ[k] −2.87954 −2.87954 −4.42941 −4.42941 40.4921 40.4921

20 ξ [k] −0.807945 −0.807945 −3.25498 −3.25498 15.2400 15.2400
ϑ[k] −2.87954 −2.87954 −4.42941 −4.42941 40.4921 40.4921

0.9 1 ξ [k] −0.105074 −0.169659 1.57731 −1.65959 73.9246 23.9926
ϑ[k] 0.167859 −2.02802 7.82632 −3.17915 76.2948 42.3410

2 ξ [k] −0.169659 −0.169659 −1.65959 −1.65959 23.9926 23.9926
ϑ[k] −2.02802 −2.02802 −3.17915 −3.17915 42.3410 42.3410

20 ξ [k] −0.169659 −0.169659 −1.65959 −1.65959 23.9926 23.9926
ϑ[k] −2.02802 −2.02802 −3.17915 −3.17915 42.3410 42.3410

Table 4. Comparative numerical results between q-HATM and LDM at d1 = 1, d2 = 1, c = 5,
µ = 1.75, ν = 0.65, h̄ = −1, and different values of k, x, and t.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] −2.35149 −2.35817 −4.03540 −5.71257 44.3256 −35.4934
ϑ[k] −2.72454 −3.04503 1.87245 −6.17798 86.2490 9.62286

2 ξ [k] −2.35817 −2.35817 −5.71257 −5.71257 −35.4934 −35.4934
ϑ[k] −3.04503 −3.04503 1.87245 −6.17798 9.62286 9.62286

20 ξ [k] −2.35817 −2.35817 −5.71257 −5.71257 −35.4934 −35.4934
ϑ[k] −3.04503 −3.04503 1.87245 −6.17798 9.62286 9.62286
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Table 4. Cont.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.5 1 ξ [k] −0.706464 −0.713141 −0.424620 −2.10179 79.3945 −0.424480
ϑ[k] −0.714807 −1.03530 5.26992 −2.78051 92.9483 16.3222

2 ξ [k] −0.713141 −0.713141 −2.10179 −2.10179 −0.424480 −0.424480
ϑ[k] −1.03530 −1.03530 −2.78051 −2.78051 16.3222 16.3222

20 ξ [k] −0.713141 −0.713141 −2.10179 −2.10179 −0.424480 −0.424480
ϑ[k] −1.03530 −1.03530 −2.78051 −2.78051 16.3222 16.3222

0.9 1 ξ [k] −0.105680 −0.112357 0.894081 −0.783093 92.2020 12.3831
ϑ[k] 0.0191709 −0.301323 6.51072 −1.53971 95.3950

2 ξ [k] −0.112357 −0.112357 −0.783093 −0.783093 12.3831 12.3831
ϑ[k] −0.301323 −0.301323 −1.53971 −1.53971 18.7688

20 ξ [k] −0.112357 −0.112357 −0.783093 −0.783093 12.3831 12.3831
ϑ[k] −0.301323 −0.301323 −1.53971 −1.53971 18.7688 18.7688

Example 3. Consider Equation (1) with d1 = 2, d2 = 3, and b = 5:
∂µ

∂t
ξ(x, t)− 2

x
∂

∂x

(
x

∂ξ(x, t)
∂t

)
+ 5x

∂ϑ(x, t)
∂x

= 5(1 + t + t2) + 6t ln(x), 1 < µ ≤ 2,

∂ν

∂t
ϑ(x, t)− 3

x
∂

∂x

(
x

∂ϑ(x, t)
∂t

)
+ 5x

∂2ξ(x, t)
∂x∂t

= 15t2 − 5 + (1 + 2t) ln(x), 0 < ν ≤ 1,

subject to the following initial conditions:
ξ(x, 0) = −3 ln(x), ξt(x, 0) = − ln(x), 0 < x < 1,

ϑ(x, 0) = ln(x), 0 < x < 1,

and satisfies the boundary conditions:

ξ(1, t) = ϑ(1, t) = 0, 0 < t < T.

Solution.
Let ξ0(x, t) = ξ(x, 0) = −3 ln(x) and ϑ0(x, t) = ϑ(x, 0) = ln(x). Then, in view of (11),

using n = 1 and h̄1 = h̄2 = h̄, the first few terms of the series solution are given by:

ξ1(x, t) = − 5ht1+µ

Γ[2 + µ]
− 10ht2+µ

Γ[3 + µ]
+ ht ln(x)− 6ht1+µ ln(x)

Γ[2 + µ]
,

ϑ1(x, t) =
5htν

Γ[1 + ν]
− 30ht2+ν

Γ[3 + ν]
− htν ln(x)

Γ[1 + ν]
− 2ht1+ν ln(x)

Γ[2 + ν]
,
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ξ2(x, t) = − 5ht1+µ

Γ[2 + µ]
− 5h2t1+µ

Γ[2 + µ]
− 10ht2+µ

Γ[3 + µ]
− 10h2t2+µ

Γ[3 + µ]
− 5h2tν+µ

Γ[1 + ν + µ]
− 10h2t1+ν+µ

Γ[2 + ν + µ]

+ht ln(x) + h2t ln(x)− 6ht1+µ ln(x)
Γ[2 + µ]

− 6h2t1+µ ln(x)
Γ[2 + µ]

,

ϑ2(x, t) =
5htν

Γ[1 + ν]
+

10h2tν

Γ[1 + ν]
− 30ht2+ν

Γ[3 + ν]
− 30h2t2+ν

Γ[3 + ν]
− 30h2tν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]

− 30h2µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
− htν ln(x)

Γ[1 + ν]
− h2tν ln(x)

Γ[1 + ν]
− 2ht1+ν ln(x)

Γ[2 + ν]
− 2h2t1+ν ln(x)

Γ[2 + ν]
,

· · · .

Thus, the series solution is given by:

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + · · · ,

= −3 ln(x)− 5ht1+µ

Γ[2 + µ]
− 10ht2+µ

Γ[3 + µ]
+ ht ln(x)− 6ht1+µ ln(x)

Γ[2 + µ]

− 5ht1+µ

Γ[2 + µ]
− 5h2t1+µ

Γ[2 + µ]
− 10ht2+µ

Γ[3 + µ]
− 10h2t2+µ

Γ[3 + µ]
− 5h2tν+µ

Γ[1 + ν + µ]
− 10h2t1+ν+µ

Γ[2 + ν + µ]

+ht ln(x) + h2t ln(x)− 6ht1+µ ln(x)
Γ[2 + µ]

− 6h2t1+µ ln(x)
Γ[2 + µ]

+ · · · ,

(21)

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + · · ·

= ln(x) +
5htν

Γ[1 + ν]
− 30ht2+ν

Γ[3 + ν]
− htν ln(x)

Γ[1 + ν]
− 2ht1+ν ln(x)

Γ[2 + ν]

5htν

Γ[1 + ν]
+

10h2tν

Γ[1 + ν]
− 30ht2+ν

Γ[3 + ν]
− 30h2t2+ν

Γ[3 + ν]
− 30h2tν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]

− 30h2µtν+µΓ[1 + µ]

Γ[2 + µ]Γ[1 + ν + µ]
− htν ln(x)

Γ[1 + ν]
− h2tν ln(x)

Γ[1 + ν]
− 2ht1+ν ln(x)

Γ[2 + ν]
− 2h2t1+ν ln(x)

Γ[2 + ν]

+ · · · .

(22)

Figure 5 shows the h-curve corresponding to the 14th-order truncated series solution.
It shows that the values of h̄ producing a convergent series solution are located in the range
−1.4 < h̄ < −0.2.

Figure 6 shows the graph of the truncated series solution using a distinct number
of terms of the truncated series solution of Example 3 at x = 0.4, h̄ = −1.1, µ = 1.3 and
ν = 0.4. It shows the rapid convergence of these approximate solutions.
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Figure 5. The h̄-curve corresponding to the 14th-order approximate series solution at x = 0.1, t = 0.01,
µ = 1.8, and ν = 0.7.
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Figure 6. Truncated series solution ξ [k](x, t) & ϑ[k](x, t) of Example 2 using several values of m.

On the other hand, it is found that if µ = 2 and ν = 1 take integer values and h̄ = −1,
then the solution given by the series (21) and (22) reduces to:

ξ(x, t) = −3 ln(x)− t ln(x) + t3 ln(x)

=
(
t3 − t− 3

)
ln(x),

ϑ(x, t) = ln(x) + t ln(x) + t2 ln(x)

=
(
t2 + t + 1

)
ln(x),

which is the exact solution of Example 3 in this case.
Tables 5 and 6 present the computed approximate numerical solutions of Example 3

generated from the kth-order truncated series solution ξ [k]&ϑ[k] obtained by using the
q-HATM and LDM for several values of k, x, and t, rounded to six significant digits.
It appears from these tables that the approximate solutions generated by the q-HATM
converge rapidly to the numerical solution of the fractional system in this example, while
those obtained by LDM diverge away from it.
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Table 5. Comparative numerical results between q-HATM and LDM at d1 = 2, d2 = 3, c = 5,
µ = 1.3, ν = 0.4, h̄ = −1, and different values of k, x, and t.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] 7.13659 −5.70225 8.15776 −225.788 95.1809 9327.71
ϑ[k] −3.14325 −14.2973 −6.90776 −1000.92 567.526 104,323

2 ξ [k] 7.13571 −48.9027 6.90776 −19793.9 −269.402 2.18094× 106

ϑ[k] −2.64825 −906.041 −6.90776 −57,543.6 −32.4740 −4.48396× 106

4 ξ [k] 7.13571 −23,084.0 6.90776 −1.49985× 109 −269.402 −2.03399× 1012

ϑ[k] −2.64825 −2.83707×107 −6.90776 −3.90236× 1010 −32.4740 −1.11455× 1013

0.5 1 ξ [k] 2.14894 1.85859 3.32944 5.00487 283.485 −2324.10
ϑ[k] −1.29220 1.57557 −2.07944 −25.9033 590.224 4778.26

2 ξ [k] 2.14806 1.73289 2.07944 −89.7380 −81.0982 42115.8
ϑ[k] −0.797202 −25.4133 −2.07944 −192.244 −9.77565 4281.22

4 ξ [k] 2.14806 −8.60542 2.07944 −25,471.4 −81.0982 −2.35197× 107

ϑ[k] −0.797202 −610.033 −2.07944 −9.77565 −175,454 −2.68279× 107

0.9 1 ξ [k] 0.327387 0.401310 1.56608 8.69824 352.256 −2985.78
ϑ[k] −0.616177 1.77678 −0.316082 −14.8761 598.514 1485.35

2 ξ [k] 0.326512 0.380032 0.316082 −8.58753 −12.3272 12334.8
ϑ[k] −0.121177 −6.34458 −0.316082 −22.0275 −1.48593 4887.13

4 ξ [k] 0.326512 −1.94451 0.316082 −2128.81 −12.3272 319,519
ϑ[k] −0.121177 −133.995 −0.316082 −7827.00 −1.48593 −10,299.8

Table 6. Comparative numerical results between q-HATM and LDM at d1 = 2, d2 = 3, c = 5,
µ = 1.75, ν = 0.65, h̄ = −1, and different values of k, x, and t.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.1 1 ξ [k] 7.13458 3.83500 7.82014 −181.595 103.806 9818.09
ϑ[k] −4.17120 −1.82618 −5.89382 −641.931 472.924 98,809.2

2 ξ [k] 7.12751 2.12439 5.15639 −6433.88 −210.775 698,279
ϑ[k] −2.96769 −116.019 −10.4020 −24,560.5 9.82302 −5.55911× 106

4 ξ [k] 7.12751 −52.1407 5.15639 −5.85746× 107 −210.775 −2.95017× 1012

ϑ[k] −2.96769 −265,147 −10.4020 −6.11186× 109 9.82302 −1.18729× 1013
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Table 6. Cont.

t

0.1 1 5

x k H AT M LDM H AT M LDM H AT M LDM

0.5 1 ξ [k] 2.14920 2.07148 3.56567 1.60583 273.436 −1819.880
ϑ[k] −2.11295 1.1827 −0.329041 −13.5076 510.471 4669.25

2 ξ [k] 2.14213 2.06707 0.901923 −25.8340 −41.1445 28,486.1
ϑ[k] −0.909437 −2.73552 −4.83725 −138.091 47.3700 3870.46

4 ξ [k] 2.14213 1.93882 0.901923 −2014.43 −41.1445 −2.38004× 107

ϑ[k] −0.909437 −8.46116 −4.83725 −27079.7 47.3700 −3.71281× 107

0.9 1 ξ [k] 0.328481 0.343344 2.01188 4.67504 335.387 −2514.04
ϑ[k] −1.36125 1.19248 1.70329 −5.84939 524.184 1366.79

2 ξ [k] 0.321411 0.342650 −0.651863 −0.372439 20.8067 8949.48
ϑ[k] −0.157739 −0.00607621 −2.80492 −28.9225 61.0826 5635.91

4 ξ [k] 0.321411 0.305315 −0.651863 −202.622 20.8067 −323,568
ϑ[k] −0.157739 −1.33735 −2.80492 −1529.67 61.0826 −587,610

5. Conclusions

This article extends integer-order time derivatives in a system of two singular one-
dimensional coupled partial differential equations to fractional-order derivatives, utilizing
Caputo’s sense. The resulting coupled system is numerically solved using the q-HATM
method. Three illustrative examples demonstrate the efficiency of this derived numerical
scheme. Notably, when the fractional orders are replaced by traditional integer orders, the
numerical solutions for these examples converge to their exact solutions. The convergence
of these numerical solutions is graphically tested by plotting truncated series solutions with
varying numbers of terms, as depicted in Figures 2, 4 and 6. These plots vividly depict the
rapid convergence of the resulting numerical solutions after only a few iterations.

Furthermore, we compare the numerical values of the obtained solutions with those
obtained by LDM for different values of the fractional orders µ and ν as well as vari-
ous values of the independent variables x and t. It is evident that when d1 = d2 = 1,
as in Examples 1 and 2, both methods exhibit excellent performance, as evidenced in
Tables 1 and 4. However, in Example 3, where these coefficients deviate from unity, the
q-HATM method continues to perform admirably, while the numerical values obtained
by LDM diverge, as shown in Tables 5 and 6. Consequently, these results underscore the
reliability and efficiency of the q-HATM method for solving singular fractional problems of
this nature as well as other analogous mathematical problems.
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