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1 Finite-time Lyapunov exponents

1.1 Finite-time Lyapunov exponents for a n-dimensional
vector field

We describe in this section a general method to compute Lyapunov exponents
which is valid for n-dimensional vector fields. Let us start with a n-dimensional
set of nonlinear ordinary differential equations in the vector form

ẋ = f(x, t), x = (x1, . . . , xn),

f(x, t) = (f1(x1, . . . , xn, t), . . . , fn(x1, . . . , xn, t)).
(1)

The Lyapunov exponent at a point x0 is given by

Λ(x0) = lim
t→∞

lim
‖δx(0)‖→0

ln(‖δx(t)‖/‖δx(0)‖)
t

, (2)

where δx(t) = x1(t) − x0(t), x0(t), and x1(t) are solutions of the set (1),
x0(0) = x0. The limit (2) exists, is the same for almost all the choices of δx(0)
and has a clear geometrical sense: trajectories of two nearby particles diverge
(converge) in time exponentially (in average) with the coefficients given by the
Lyapunov exponents.

Due to smallness of δx, one can linearize the set (1) in a vicinity of a given
trajectory x0(t) and obtain a set of time-dependent linear equationsδẋ1

. . .
δẋn

 = J(t)

δx1

. . .
δxn

 , (3)

where J(t) is the Jacobian matrix of the set (1) along the trajectory x0(t)

J(t) =


∂f1(x0(t), t)

∂x1
. . .

∂f1(x0(t), t)

∂xn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂fn(x0(t), t)

∂x1
. . .

∂fn(x0(t), t)

∂xn

 . (4)

Solution of the linear set (3) can be found with the help of the evolution matrix
G(t, t0) δx1(t)

. . . . . .
δxn(t)

 = G(t, t0)

δx1(t0)
. . . . . . .
δxn(t0)

 . (5)

The evolution matrix obeys the differential equation which can be obtained after
substituting (5) into (3)

Ġ = JG, (6)
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with the initial conditionG(t0, t0) = I, where I is the unit matrix. Any evolution
matrix has the important multiplicative property

G(t, t0) = G(t, t1)G(t1, t0). (7)

One can decompose the evolution matrix as follows:

G(t, t0) = U(t, t0)Σ(t, t0)V T (t, t0), (8)

which is known as “a singular-value decomposition”. Here U , V are orthogo-
nal matrices, and Σ = diag(σ1, . . . , σn) is a diagonal matrix. The quantities
σ1, . . . , σn are called singular values of the matrix G.

The maximum value lim
‖δx(0)‖→0

‖δx(t)‖
‖δx(0)‖

for the set (3) equals to σ1(G(t)). It

is the maximum singular value of the matrix G(t). If lim
t→∞

σ2(G(t))

σ1(G(t))
= 0, where

σ2(G(t)) is the next (smaller) singular value of the matrix G(t) in magnitude,
then (2) can be redefined as follows:

Λmax = lim
t→∞

lnσ1(G(t))

t− t0
. (9)

The quantity

Λ =
lnσ1(G(t))

t− t0
(10)

is called the finite-time Lyapunov exponent (FTLE). It is the ratio of the loga-
rithm of a maximal possible stretching of a vector to a time interval t− t0. The
“instantaneous” Lyapunov exponent Λ0 is a Lyapunov exponent of the set of
linear equations δẋ1

. . .
δẋn

 = J(0)

δx1

. . .
δxn

 . (11)

It is the rate of exponential diverging of trajectories at a given point and at a
given instant of time.

Equation (6) can not be numerically integrated over a large time because the
elements of the corresponding evolution matrix grow exponentially, if one of the
Lyapunov exponents is positive. However, we can divide a large time interval on
subintervals with the duration which is less or order of the Lyapunov timescale,
tΛ = 1/Λ, and represent the whole evolution matrix as a product of the evolution
matrices computed on these subintervals using the property (7). We compute
this product and the corresponding singular values using the GNU Multiple
Precision Arithmetic Library in order to preserve the absolute precision of our
representation of the evolution matrix.

1.2 Singular-value decomposition and evolution matrix for
two-dimensional case

The singular-value decomposition is a representation of any m×n-matrix in the
form

M = UΣV, (12)
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where U and V are m × m and n × n unitary matrices, respectively, Σ is a
diagonal m × n-matrix. The diagonal elements of Σ are singular values of the
matrix M . The eigenvectors u and v, such that Mv = σu and M∗u = σv (σ is
a singular value of M), are, respectively, left and right singular vectors of the
matrix M . If M is real-valued then its singular values are real as well. U and
V are orthogonal matrices. The matrix Σ and its singular-value decomposition
are defined to an accuracy of the permutation of singular values. Therefore, one
may require to order the singular values of Σ as a nonincreasing sequence, and
such a decomposition is unique.

If the matrix M is squared then its singular-value decomposition has a sim-
ple geometric meaning. Action of any matrix to a vector can be represented
as the following three successive transformations: the first rotation/reflection
by the matrix V , a stretching/contraction along the coordinate axis by the ma-
trix Σ and the second rotation/reflection by the matrix U . Thus, the matrix
M transforms a sphere of the unit radius in an ellipsoid with the semiaxis to
be equal to singular values directed along the left singular vectors. The right
singular vectors are correspondingly pre-images of the ellipsoid’s semiaxis.

Let us consider now a 2D flow with a 2×2 evolution matrix with the singular-
value decomposition

G = UDV ⇒
(
a b
c d

)
=

(
cosφ2 − sinφ2

sinφ2 cosφ2

)(
σ1 0
0 σ2

)(
cosφ1 − sinφ1

sinφ1 cosφ1

)
.

(13)
Transformations of a circle with the unit radius by those matrices and its sin-
gular vectors are shown in Fig. 1. Reflection matrices are not used in this
decomposition, therefore, singular values can be negative. However, it is clear
from general consideration that the evolution matrix of a continuous flow cannot
contain reflections.

Multiplying the matrices, one gets the set with four equations and four
variables(
a b
c d

)
=

(
σ1 cosφ1 cosφ2 − σ2 sinφ1 sinφ2 −σ1 sinφ1 cosφ2 − σ2 cosφ1 sinφ2

σ1 cosφ1 sinφ2 + σ2 sinφ1 cosφ2 −σ1 sinφ1 sinφ2 + σ2 cosφ1 cosφ2

)
.

(14)
Let us introduce the following notations:

α = a+ d, β = a− d, γ = c+ b, δ = c− b,
ξ = σ1 + σ2, η = σ1 − σ2, Φ = φ1 + φ2, Ψ = φ2 − φ1.

(15)

Adding and deducting Eqs. 14 and using the notations (15), we get

α = ξ cos Φ, β = η cos Ψ, γ = η sin Ψ, δ = ξ sin Φ. (16)

Solution of the set (16) is

ξ =
√
α2 + δ2, η =

√
β2 + γ2, Φ = arctan2 (δ, α), Ψ = arctan2 (γ, β),

(17)
where arctan2 (y, x) is an angle between the vector (x, y) and the axis x which
can be defined as

arctan2 (y, x) =

{
arctan (y/x), x ≥ 0,

arctan (y/x) + π, x < 0.
(18)
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Figure S1: Geometric meaning of the singular-value decomposition of a 2 × 
2 matrix.

The final solution is

σ1 =

√
(a+ d)2 + (c− b)2 +

√
(a− d)2 + (b+ c)2

2
,

σ2 =

√
(a+ d)2 + (c− b)2 −

√
(a− d)2 + (b+ c)2

2
,

φ1 =
arctan2 (c− b, a+ d)− arctan2 (c+ b, a− d)

2
,

φ2 =
arctan2 (c− b, a+ d) + arctan2 (c+ b, a− d)

2
.

(19)

It is evident from the solution that the singular values are ordered in a
nonincreasing way, i.e., σ1 ≥ σ2. The product σ1σ2 defines the ratio of the
final area to the initial and equals to DetM . It follows from the definition of a
singular-value decomposition that

σ1 >
‖Mx‖
‖x‖

> σ2, (20)

where ‖ · ‖ is the Euclidean norm. In other words, the length of any vector x is
changed under the action of the matrix M in σ2 times as minimum and in σ1

times as maximum.
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