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Abstract: In this research, we employ a dual-approach that combines the Laplace residual power
series method and the novel iteration method in conjunction with the Caputo operator. Our primary
objective is to address the solution of two distinct, yet intricate partial differential equations: the Foam
Drainage Equation and the nonlinear time-fractional Fisher’s equation. These equations, essential
for modeling intricate processes, present analytical challenges due to their fractional derivatives
and nonlinear characteristics. By amalgamating these distinctive methodologies, we derive precise
and efficient solutions substantiated by comprehensive figures and tables showcasing the accuracy
and reliability of our approach. Our study not only elucidates solutions to these equations, but also
underscores the effectiveness of the Laplace Residual Power Series Method and the New Iteration
Method as potent tools for grappling with intricate mathematical and physical models, thereby
making significant contributions to advancements in diverse scientific domains.

Keywords: Foam Drainage Equation; nonlinear time-fractional Fisher’s equation; Laplace Residual
Power Series Method; New Iteration Method; Caputo operator; fractional-order differential equation

1. Introduction

Ordinary and partial fractional-order differential equations have gotten much at-
tention because they are often used in fields like fluid mechanics, biology, physics, and
engineering. As a result, a great deal of work has gone into finding answers to physical-
world fractional ordinary differential equations, integral equations, and fractional partial
differential equations [1–8]. To characterize a broad range of nonlinear physical and natural
processes, fractional partial differential equations (FPDEs) have been presented to play
a crucial role [9–11]. Despite its importance, solving such equations is difficult, leading
to investigating various numerical techniques that may provide approximations. Recent
articles [12–21] and their corresponding references are recommended reading for anybody
interested in learning more.

Fractional-order differential equations are of great importance in the study of physical
processes. Throughout time, several analytical and numerical approaches have been devel-
oped to tackle the difficulties they present. The Adomian decomposition method [13–16],
the variational iteration method [13], the fractional difference method [6], the differential
transform method [22], and the homotopy perturbation method [23] are particularly note-
worthy examples of such approaches. The Laplace transform, fractional Green’s function,
Mellin transform, and orthogonal polynomial techniques are only a few of the traditional
solution approaches that are relevant here [6]. Together, these techniques provide a rich tool
for addressing the complex problems posed by fractional differential equations in many
fields of study [24–26].

Symmetry plays a pivotal role in the analysis of fractional differential equations, offer-
ing a powerful lens through which complex mathematical models can be understood and
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solved. Fractional-order symmetries, akin to their counterparts in traditional differential
equations, provide a means to reduce problem dimensionality and unveil common solution
properties. Utilizing Lie group theory and symmetry reduction techniques, researchers can
identify invariant solutions, classify equations, and gain deeper insights into the underlying
principles governing diverse phenomena in fields such as fluid dynamics, heat conduction,
and population dynamics. This interdisciplinary approach not only simplifies the study of
fractional differential equations, but also unveils the fundamental symmetries that underlie
the behavior of physical systems, bridging the realms of mathematics and physics to yield
valuable insights and discoveries.

The nonlinear time-fractional Foam Drainage Equation is of the form

Dp
δ ξ =

1
2

ξξγγ − 2ξ2ξγ + ξ2
γ, δ > 0,

associated with the initial condition ξ(γ, 0) = f (γ), where ξ := ξ(γ, δ) and 0 < δ ≤ 1. Here,
γ represents the scaled position coordinate, δ represents the time, and ξ is the plateau border
cross-sectional area. Foams, whether liquid or solid, have a wide range of industrial [27]
and every day [28] uses for scientists and the general public. In order to stabilize the liquid–
gas interfaces, bubbles are infused into a liquid containing a surfactant. Underground fluid
flow in cracked and porous media exhibits a variety of hydromechanical phenomena that
have piqued researchers’ curiosity for decades. Foaming happens in a variety of absorption
and distillation processes. Foam is a great example of a multi-phase “soft condensed matter”
system in foam drainage [29]. Foams frequently have a convoluted, chaotic structure, with
the components being liquid sheets that meet plateau limits. As the cross-sections of plateau
boundaries grow, more liquid is integrated into the foam. The drainage model has several
uses, including commodity care such as lotions, oils, creams, and textile washing [30],
structural material sciences, mineral processing, chemical industries [31], and aluminum
metals [32]. During the creation of foams, the material is in a liquid state, and the fluid
might change while the bubble structure remains roughly the same. They are also found in
lightweight mechanical components, acoustic cladding, heat exchangers, impact-absorbing
portions on automobiles, and textured wallpapers, where they are used as foamy inks.
Foams are significant in many technical applications and processes, and their properties
are of interest from both a practical and scientific standpoint.

Fisher proposed Fisher’s equation [33] in 1937 as a model for the temporal and geo-
graphical propagation of a virile gene in an infinite media. The reaction–diffusion equation
is the simplest and most-traditional instance of Fisher’s equation [34]:

∂ξ

∂δ
= λ

∂2ξ

∂γ2 + µξ(γ, δ)(1− ξ(γ, δ)),

It is essentially the Logistic equation and the combination of the diffusion equation
with the diffusion factor λ and the birth rate µ. In this case, ξ(γ, δ) describes the state
development throughout the spatial–temporal domain defined by the coordinates γ, δ.
Fisher’s equation is widely applied in Neolithic transitions [35], chemical kinetics [36],
epidemics and bacteria [37], branching Brownian motion [38], and many other disciplines.

The Laplace transform, named after Pierre-Simon Laplace, is a sophisticated mathe-
matical tool utilized in various subjects, including engineering, physics, and mathematics.
It transforms time functions into complex variable functions, making studying linear time-
invariant systems and solving complex differential equations easier [39,40]. The Laplace
transform facilitates problem solving by translating complex equations into simpler al-
gebraic forms. It also gives insights into the frequency and decay features of functions.
The Laplace transform is a key tool that increases our knowledge of dynamic systems and
allows developments in different scientific and technical disciplines. It is widely used in
circuit analysis, control systems, signal processing, and beyond [41,42].
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The Laplace Residual Power Series Method is a sophisticated mathematical approach
for solving ODEs with variable coefficients. This methodology, which was built based on
the Laplace transform and power series approaches, leverages its strengths to handle a
class of ODEs that are difficult to solve using standard techniques. The approach provides
a systematic methodology to estimate solutions for complex and nonlinear differential
equations by translating the differential equation into a Laplace-transformed form and,
then, expanding the resultant expression into a power series. The Laplace Residual Power
Series Method extends the reach of problem-solving capabilities, particularly in cases where
direct analytical solutions are elusive, allowing researchers and practitioners to gain deeper
insights into a wide range of dynamic systems across diverse fields [43–47].

Developing a new iterative approach for fractional partial differential equations repre-
sents a significant step forward in mathematical analysis and problem solving. Traditional
approaches frequently face computational complexity and convergence issues when solving
partial differential equations with fractional derivatives. This unique iterative strategy tries
to overcome these restrictions by iteratively refining approximation solutions, gradually
improving accuracy while retaining the computing economy. This technique can provide
superior solutions for a wide range of complicated mathematical and physical phenomena
by leveraging the power of iteration and customizing it to the particular properties of
fractional derivatives [48–50]. Its advent opens the door to solving challenging issues in
physics, engineering, and applied mathematics, improving our capacity to model and
comprehend complex systems governed by fractional partial differential equations.

The Laplace Residual Power Series Method (LRPSM) [43–46] and the New Iteration
Method (NIM) [48–50] are the most-straightforward ways to solve fractional differential
equations because they give immediate and visible symbolic terms of analytic solutions,
as well as numerically approximate solutions to both linear and nonlinear differential
equations without linearization or discretization. The main goal of this work is to find the
solutions to two nonlinear partial differential equations, the Foam Drainage Equation and
the nonlinear time-fractional Fisher’s equation, using two different methods, LRPSM and
NIM, and compare how well they work. We need to bring to the reader’s attention to the
fact that these two methods have been used to solve several different types of nonlinear
fractional differential problems.

The outline of this paper is as follows. In Section 2, we begin by providing some basic
definitions that are used in our study. The road map of the proposed methods (LRPSM
and NIM) is illustrated in Section 3. The implementation of the proposed methods and
the discussion of the results are presented in Section 4. Finally, Section 5 includes the
conclusions of our study.

2. Basic Definitions

Definition 1. For p ∈ R+, the Riemann–Liouville fractional integral operator for p real-valued
function ∼(γ, δ) is denoted by J p

δ and defined as [51]:

J p
δ ξ(γ, δ) =

{
1

Γ(p)

∫ δ
0

ξ(γ,η)
(δ−η)1−p dη, 0 ≤ η < δ, p > 0

∼(γ, δ), p = 0.

Definition 2. The time-fractional derivative of order p > 0, for the function ξ(γ, δ) in the Caputo
case, is denoted by Dp

δ and defined as [51]:

Dp
δ ξ(γ, δ) =

{
J

n−p
δ

(
Dn

δ ξ(γ, δ)
)
, 0 < n− 1 < p ≤ n,

Dn
δ ξ(γ, δ)), p = n,

where Dn
δ = ∂n

∂δn and n ∈ N.
Consequently, for n− 1 < p ≤ n, β > −1 and δ ≥ 0, the operators Dp

δ and J
p
δ satisfy the

following properties:
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1. Dp
δ c = 0, c ∈ R.

2. Dp
δ δβ = Γ(β+1)

Γ(β+1−p) δβ−p.

3. Dp
δJ

p
δ ξ(γ, δ) = ξ(γ, δ).

4. J
p
δ Dp

δ ξ(γ, δ) = ξ(γ, δ)−∑n−1
j=0 Dj

δ(γ, 0+) δj

j! , for ξ ∈ Cn[a, b], n− 1 < p ≤ n, n ∈ N and
a, b ∈ R.

Definition 3. Let ξ(γ, δ) be a piecewise continuous function on I× [0, ∞) and of exponential order
$. Then, the Laplace transformation of the function ξ(γ, δ) is denoted and defined as follows [51]:

ξ(γ, s) = L[ξ(γ, δ)] :=
∫ ∞

0
e−sδξ(γ, δ)dδ, s > $,

whereas the inverse Laplace transformation of the function ξ(γ, s) is defined as follows:

ξ(γ, δ) = L−1[ξ(γ, s)] :=
1

2πi

∫ c+i∞

c−i∞
esδξ(γ, s)ds, c = Re(s) > $0,

where $0 lies in the right half-plane of the absolute convergence of the Laplace integral.

3. Road Map of the Proposed Methods
3.1. General Procedure of the Laplace Residual Power Series Method

Consider the partial differential equation of fractional order:

Dp
δ ξ(γ, δ) = Nγ[ξ(γ, δ)]

ξ(γ, 0) = f (γ)
(1)

where Nγ is a nonlinear operator relative to γ of degree r, γ ∈ I, δ ≥ 0, Dp
δ refers to

the pth Caputo fractional derivative for p ∈ (0, 1], and ξ(γ, δ) is an unknown function
to be determined.

To construct the approximate solution of (1) by using the Laplace RPSM, one can
perform the following procedure:

Step 1: Apply the Laplace transform on both sides of (1) and utilize the initial data
of (1):

v(γ, s) =
f (x)

s
− 1

saL{Nγ[ξ(γ, δ)]},

where v(γ, s) = L[ξ(γ, δ)](s), s > δ.
(2)

Step 2: We assume that the approximate solution of the Laplace Equation (2) takes the
following fractional expansion:

v(γ, s) =
f (x)

s
+

∞

∑
n=1

hn(x)
snp+1 , x ∈ I, s > δ ≥ 0, (3)

and the kth Laplace series solution takes the following form:

vk(γ, s) =
f (x)

s
+

k

∑
n=1

hn(x)
sn p + 1

, γ ∈ I, s > δ ≥ 0. (4)

Step 3: We define the kth Laplace fractional residual function of (2) as

L
(
Resvk (γ, s)

)
= vk(γ, s)− f (x)

s
+

1
s
L{Nγ[ξ(γ, δ)]}, (5)
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and the Laplace residual function of (2) is defined as:

lim
k→∞
L
(
Resvk (γ, s)

)
= L(Resv(γ, s)) = v(γ, s)− f (x)

s
+

1
spL{Nγ[ξ(γ, δ)]}. (6)

Some useful facts of the Laplace residual function that are essential in finding the ap-
proximate solution are listed as follows: − limk→∞ L

(
Resvk (γ, s)

)
= L(Resv(γ, s)), for γ ∈

I, s > δ ≥ 0. −L(Resv(γ, s)) = 0, for γ ∈ I, s > δ ≥ 0. − lims→∞ skp+1L
(
Resvk (γ, s)

)
=

0, for γ ∈ I, s > δ ≥ 0, and k = 1, 2, 3, . . .
Step 4: Substitute the kth Laplace series solution (4) into the kth Laplace fractional

residual function of (5).
Step 5: The unknown coefficients hk(x), for k = 1, 2, 3, . . ., could be founded by solving

the system lims→∞ ska+1L
(
Resvk (γ, s)

)
= 0. Then, we collect the obtained coefficients in

terms of fractional expansion series (4) vk(γ, s).
Step 6: Run the inverse Laplace transform operator on both sides of the obtained

Laplace series solution to get the approximate solution ξk(γ, δ), of the main Equation (1).

3.2. Basic Idea of New Iterative Method

Here, we present some basic steps for deriving the new iterative method [52]. Assume
the nonlinear equation:

ξ(γ, δ) = f (γ, δ) + Mξ(γ, δ) + Nκ(γ, δ), (7)

where g is a known function, M denotes the linear operator, and N denotes the nonlinear
operator from a Banach space B → B. According to NIM, the solution of the above
Equation (7) can be expanded as:

ξ(γ, δ) =
∞

∑
m=0

ξm(γ, δ), (8)

due to the linearity of the M operator:

M

(
∞

∑
m=0

ξm(γ, δ)

)
=

∞

∑
m=0

M(ξm(γ, δ)), (9)

N is nonlinear and can be expanded as

N

(
∞

∑
m=0

ξm(γ, δ)

)
= N(ξ0(γ, δ)) +

∞

∑
m=1

{
N

(
m

∑
j=0

ξ j(γ, δ)

)
− N

(
m−1

∑
j=0

ξ j(γ, δ)

)}
, (10)

and by the use of Equations (8)–(10), the general Equation (7) takes the form

∞

∑
i=1

ξi = f +
∞

∑
m=0

M(ξm) + N(ξ0) +
∞

∑
m=1

[
N

(
m

∑
j=0

ξ j

)
− N

(
m−1

∑
j=0

ξ j

)]
; (11)

to obtain the solution components, the recursive relation can be defined as

ξ0(γ, δ) = f
ξ1(γ, δ) = M(ξ0) + N(ξ0)
ξ2(γ, δ) = M(ξ1) + N(ξ0 + ξ1)− N(ξ0)
...
ξm(γ, δ) = M(ξm−1) + N(ξ0 + ξ1 + . . . + ξm−1)− N(ξ0 + ξ1 + . . . + ξm−2).

The m-terms that approximate the solution of Equations (7) and (8) are given as

ξ(γ, δ) = ξo + ξ1 + . . . + ξm−1. (12)
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3.3. Convergence of New Iterative Method Theorem

If ℵ is analytic in a neighborhood of ξ0 and∥∥N′′′(ξ0)
∥∥ = sup{Nm(ξ0)(b1, b2, . . . ..bn)/‖bk‖ ≤ 1, 1 ≤ k ≤ m} ≤ l,

for any number m and for some real number l > 0 and ‖ξk‖ ≤ M < 1
e , k = 1, 2, . . ., then

the series ∑∞
m=0 Gm is absolutely convergent and, moreover,

‖Gm‖ ≤ lMmem−1(e− 1), m = 1, 2, · · ·

Now, to show boundedness of ‖ξk‖, for every k, the conditions on N(j)(ξ0) are given
that are sufficient to guarantee the convergence of the series. The following theorem gives
the sufficient conditions for the convergence of the method.

3.4. Theorem

If N is C∞ and ‖Nm(ξ0)‖ ≤ M ≤ e−1 for all m, then the series ∑∞
m=0 Gm is absolutely

convergent. These are the conditions of the convergence of the series ∑∞
j=0 ξ j. The proofs of

the theorem can be seen in [53].

4. Numerical problems
4.1. Problem

Consider the time-fractional Fisher’s equation given as

Dp
δ ξ(γ, δ)− ∂2ξ(γ, δ)

∂γ2 − 6ξ(γ, δ) + 6ξ2(γ, δ) = 0, where 0 < p ≤ 1, (13)

subject to the following ICs:

ξ(γ, 0) =
1

(1 + eγ)2 . (14)

The exact solution is

ξ(γ, δ) =
1

(1 + eγ−5δ)2 .

Implementation of Laplace Residual Power Series Method

Applying the LT to Equation (13), and making use of Equation (14), we get

ξ(γ, s)−
1

(1+eγ)2

s
− 1

sp
∂2ξ(γ, s)

∂γ2 − 6
sp ξ(γ, s) +

6
spLδ[(L−1

δ [ξ(γ, s)])2] = 0, (15)

and so, the kth truncated term series are

ξ(γ, s) =
1

(1+eγ)2

s
+

k

∑
r=1

fr(γ, s)
srp+1 , r = 1, 2, 3, 4 · · · . (16)

The Laplace residual functions (LRFs) [54] are

LδRes(γ, s) = ξ(γ, s)−
1

(1+eγ)2

s
− 1

sp
∂2ξ(γ, s)

∂γ2 − 6
sp ξ(γ, s) +

6
spLδ[(L−1

δ [ξ(γ, s)])2] = 0, (17)

and the kth LRFs are:
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LδResk(γ, s) = ξk(γ, s)−
1

(1+eγ)2

s
− 1

sp
∂2ξk(γ, s)

∂γ2 − 6
sp ξk(γ, s) +

6
spLδ[(L−1

δ [ξk(γ, s)])2] = 0. (18)

Now, to determine fr(γ, s), r = 1, 2, 3, · · · , we substitute the rth truncated series
Equation (16) into the rth Laplace residual function Equation (18), multiply the resulting
equation by srp+1, and then, recursively solve the relation lims→∞(srp+1LδResξ,r(γ, s)) = 0,
r = 1, 2, 3, · · · . The following are the first few terms:

f1(γ, s) =
10eγ

(1 + eγ)3 , (19)

f2(γ, s) =
50eγ(−1 + 2eγ)

(1 + eγ)4 , (20)

and so on.
Putting the values of fr(γ, s), r = 1, 2, 3, · · · , into Equation (16), we get

ξ(γ, s) =
1
s

( 1
(1 + eγ)2

)
+

1
sp+1

( 10eγ

(1 + eγ)3

)
+

1
s2p+1

(50eγ(−1 + 2eγ)

(1 + eγ)4

)
+ · · · . (21)

Using the inverse Laplace transform, we get

ξ(γ, δ) =
1

(1 + eγ)2 +
δp

Γ(p + 1)

( 10eγ

(1 + eγ)3

)
+

δ2p

Γ(2p + 1)

(50eγ(−1 + 2eγ)

(1 + eγ)4

)
+ · · · (22)

Implementation of New Iteration Method

Applying the RL integral to Equation (13), we get the equivalent form:

ξ(γ, δ) =
1

(1 + eγ)2 −R
p
δ [

∂2ξ(γ, δ)

∂γ2 + 6ξ(γ, δ)− 6ξ2(γ, δ)] (23)

According to the NIM procedure, we get the following few terms:

ξ0(γ, δ) =
1

(1 + eγ)2 ,

ξ1(γ, δ) =
(−3 + 5eγ(1 + eγ))δp

(1 + eγ)4Γ[1 + p]
,

ξ2(γ, δ) =
δ2p

2(1 + eγ)8

( (1 + eγ)2(54 + eγ(−109 + eγ(−126 + 25eγ(3 + 2eγ))))

Γ[1 + 2p]

−
3× 4p+1(3− 5eγ(1 + eγ))2 ppΓ[ 1

2 + p]√
πΓ[1 + p]Γ[1 + 3p]

)
(24)

By the NIM algorithm, the final solution is

ξ(γ, δ) = ξ0(γ, δ) + ξ1(γ, δ) + ξ2(γ, δ) + · · · (25)

ξ(γ, δ) =
1

(1 + eγ)2 +
(−3 + 5eγ(1 + eγ))δp

(1 + eγ)4Γ[1 + p]
+

δ2p

2(1 + eγ)8

( (1 + eγ)2(54 + eγ(−109 + eγ(−126 + 25eγ(3 + 2eγ))))

Γ[1 + 2p]

−
3× 4p+1(3− 5eγ(1 + eγ))2 ppΓ[ 1

2 + p]√
πΓ[1 + p]Γ[1 + 3p]

)
+ · · ·

(26)

In Figure 1, the graphical representation highlights the effectiveness of the Laplace
Residual Power Series Method (LRPSM) in solving Fisher’s equation with varying fractional
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orders. Subplots (a)–(d) showcase the LRPSM results for fractional orders 0.7, 0.8, 0.9, and
1.0, respectively, while keeping the value of the parameter δ as 0.01. These subplots
offer insights into how different fractional orders influence the behavior of the solution.
Table 1 comprehensively compares the LRPSM solutions for different fractional orders in
Section 4.1, with δ set to 0.01. This tabulated data offer a quantitative perspective on the
impact of fractional-order variations on the accuracy and efficiency of the LRPSM approach
in solving Fisher’s equation.

Figure 1. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the LRPSM of Section 4.1 for δ = 0.01.

In Figure 2, the graphical analysis shifts to the New Iteration Method (NIM) as it
tackles Fisher’s equation with diverse fractional orders. Subplots (a)–(d) illustrate the NIM
results for fractional orders 0.7, 0.8, 0.9, and 1.0, respectively, while maintaining δ at 0.01.
These graphical depictions visually showcase the dynamic response of the NIM across
different fractional orders.
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Table 1. The comparison of different fractional orders of the LRPSM of Section 4.1 for δ = 0.01.

γ LRPSMp=0.7 LRPSMp=0.8 LRPSMp=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0.1 0.252187 0.250848 0.250125 0.250125 0.00206162 0.000722656 2.604860 × 10−12

0.1 0.227718 0.226448 0.225763 0.225763 0.00195463 0.000684961 2.061767 × 10−12

0.2 0.2046 0.203405 0.202761 0.202761 0.00183938 0.000644395 1.489697 × 10−12

0.3 0.182921 0.181805 0.181203 0.181203 0.00171812 0.000601747 9.117984 × 10−13

0.4 0.162741 0.161706 0.161148 0.161148 0.00159312 0.000557816 3.50497 × 10−13

0.5 0.144092 0.143139 0.142626 0.142626 0.0014666 0.000513378 1.743605 × 10−13

0.6 0.126981 0.12611 0.125641 0.125641 0.00134063 0.00046916 6.464828 × 10−13

0.7 0.11139 0.110599 0.110173 0.110173 0.00121708 0.000425817 1.054017 × 10−12

0.8 0.0972797 0.0965661 0.0961822 0.0961822 0.00109758 0.000383914 1.389555 × 10−12

0.9 0.0845931 0.0839535 0.0836096 0.0836096 0.000983471 0.00034392 1.650179 × 10−12

1.0 0.0732582 0.0726886 0.0723824 0.0723824 0.000875795 0.000306197 1.836891 × 10−12

Figure 2. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the NIM of Section 4.1 for δ = 0.01.
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Complementing the graphical analysis, Table 2 compares the NIM solutions for var-
ious fractional orders in Section 4.1, with δ fixed at 0.01. This table serves as a quanti-
tative reference for understanding how different fractional orders impact the accuracy
and performance of the NIM in the context of solving Fisher’s equation. Table 3 gives
a comparison of the absolute error of the NIM and LPRSM of Section 4.1 for δ = 0.2.
Together, the graphical representations and tables provide a comprehensive exploration of
the LRPSM and NIM methodologies in solving Fisher’s equation with varying fractional
orders, shedding light on these numerical approaches’ behavior, accuracy, and efficiency
under different conditions.

Table 2. The comparison of different fractional orders of the NIM of Section 4.1 for δ = 0.01.

γ NIMp=0.7 NIMp=0.8 NIMp=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0.1 0.226411 0.225942 0.225689 0.225763 0.000647684 0.00017922 0.0000745224

0.2 0.203406 0.202943 0.202693 0.202761 0.000645254 0.000182489 0.0000680503

0.3 0.181835 0.181385 0.181141 0.181203 0.000631777 0.000181693 0.000061873

0.4 0.161757 0.161326 0.161092 0.161148 0.000609188 0.000177503 0.0000560092

0.5 0.143205 0.142796 0.142575 0.142626 0.000579417 0.000170587 0.0000504743

0.6 0.126185 0.125802 0.125595 0.125641 0.000544316 0.000161589 0.0000452805

0.7 0.110679 0.110324 0.110133 0.110173 0.000505602 0.000151106 0.000040436

0.8 0.096647 0.0963218 0.0961462 0.0961822 0.000464807 0.000139674 0.0000359452

0.9 0.0840329 0.0837374 0.0835778 0.0836096 0.000423257 0.000127756 0.0000318081

1.0 0.0727644 0.0724981 0.0723544 0.0723824 0.000382057 0.000115742 0.0000280209

Table 3. Comparison of the absolute error of the NIM and LPRSM of Section 4.1 for δ = 0.01.

γ
Absolute
Errorp=0.7

Absolute
Errorp=0.8

Absolute
Errorp=0.9

Absolute
Errorp=1.0

0.1 0.00130694 0.000505741 0.000194723 0.0000745224

0.2 0.00119413 0.000461905 0.000177821 0.0000680503

0.3 0.00108634 0.000420053 0.000161687 0.000061873

0.4 0.000983933 0.000380313 0.00014637 0.0000560092

0.5 0.000887181 0.000342791 0.000131912 0.0000504743

0.6 0.000796309 0.000307571 0.000118344 0.0000452805

0.7 0.000711478 0.00027471 0.000105687 0.000040436

0.8 0.000632774 0.00024424 0.0000939533 0.0000359452

0.9 0.000560213 0.000216164 0.0000831433 0.0000318081

1.0 0.000493738 0.000190455 0.0000732467 0.0000280209

4.2. Problem

Consider the time-Fractional Foam Drainage Equation, given as

Dp
δ ξ(γ, δ)− ξ(γ, δ)∂2ξ(γ, δ)

2∂γ2 + 2ξ2(γ, δ)
∂ξ(γ, δ)

∂γ
− (

∂ξ(γ, δ)

∂γ
)2 = 0 where 0 < p ≤ 1, (27)

subject to the following ICs:

ξ(γ, 0) = sin(x). (28)

Implementation of the Laplace Residual Power Series Method
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Applying the LT to Equation (27) and making use of Equation (28), we get

ξ(γ, s)− sin(γ)
s
− 1

2spLδ[(L−1
δ ξ(γ, s))× (L−1

δ

∂2ξ(γ, s)
2∂γ2 )] +

2
spLδ[(L−1

δ ξ2(γ, s))× (L−1
δ

∂ξ(γ, s)
∂γ

)]

−Lδ[(L−1
δ

∂ξγ, s
∂γ

)2] = 0,
(29)

and so, the kth truncated term series are

ξ(γ, s) =
sin(γ)

s
+

k

∑
r=1

fr(γ, s)
srp+1 , r = 1, 2, 3, 4 · · · . (30)

The Laplace residual functions (LRFs) [51] are

LδRes(γ, s) = ξ(γ, s)− sin(γ)
s
− 1

2spLδ

[
(L−1

δ ξ(γ, s))×
(
L−1

δ

∂2ξ(γ, s)
2∂γ2

)]
+

2
spLδ

[
(L−1

δ ξ2(γ, s))× (L−1
δ

∂ξ(γ, s)
∂γ

)

]
−Lδ

[(
L−1

δ

∂ξγ, s
∂γ

)2
]
= 0

(31)

and the kth LRFs are:

LδResk(γ, s) = ξk(γ, s)− sin(γ)
s
− 1

2spLδ

[
(L−1

δ ξk(γ, s))×
(
L−1

δ

∂2ξk(γ, s)
2∂γ2

)]
+

2
spLδ

[
(L−1

δ ξ2
k(γ, s))×

(
L−1

δ

∂ξk(γ, s)
∂γ

)]
−Lδ

[(
L−1

δ

∂ξk(γ, s)
∂γ

)2
]
= 0

(32)

Now, to determine fr(γ, s), r = 1, 2, 3, · · · , we substitute the rth truncated series
Equation (30) into the rth Laplace residual function Equation (32), multiply the resulting
equation by srp+1, and then, recursively solve the relation lims→∞(srp+1LδResξ,r(γ, s)) = 0,
r = 1, 2, 3, · · · . The following are the first few terms:

f1(γ, s) =
1
4
(1− 2 cos(γ) + 3 cos(2γ) + 2 cos(3γ)), (33)

f2(γ, s) =
1
16

(−19 sin(γ) + 24 sin(2γ)− 3 sin(3γ)− 68 sin(4γ)− 20 sin(5γ)). (34)

and so on.
Putting the values of fr(γ, s), r = 1, 2, 3, · · · , into Equation (30), we get

ξ(γ, s) =
sin(γ)

s
+

1
4sp+1 (1− 2 cos(γ) + 3 cos(2γ) + 2 cos(3γ))

+
1

16s2p+1 (−19 sin(γ) + 24 sin(2γ)− 3 sin(3γ)− 68 sin(4γ)− 20 sin(5γ)) + · · · .
(35)

Using the inverse Laplace transform, we get

ξ(γ, δ) = sin(γ) +
δp

Γ(p + 1)

(1
4
(1− 2 cos(γ) + 3 cos(2γ) + 2 cos(3γ))

)
+

δ2p

Γ(2p + 1)

( 1
16

(−19 sin(γ) + 24 sin(2γ)− 3 sin(3γ)− 68 sin(4γ)− 20 sin(5γ))
)
+ · · · .

(36)

Implementation of New Iteration Method
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Applying the RL integral to Equation (27), we get the equivalent form:

ξ(γ, δ) = sin(γ)−R
p
δ

[
ξ(γ, δ)∂2ξ(γ, δ)

2∂γ2 − 2ξ2(γ, δ)
∂ξ(γ, δ)

∂γ
+

(
∂ξ(γ, δ)

∂γ

)2
]

(37)

According to the NIM procedure, we get the following few terms:

ξ0(γ, δ) = sin(γ),

ξ1(γ, δ) =
δp(1− 2 cos(γ) + 3 cos(2γ) + 2 cos(3γ))

4Γ[1 + p]
,

ξ2(γ, δ) =
δ(2p)

16Γ[1 + p]4)

(
− δp(−19 + 2 cos(γ) + 7 cos(2γ))

− 27 cos(4γ) + 48 cos(5γ) + 63 cos(6γ) + 14 cos(7γ))Γ[1 + p] + δ2p(1− 2 cos(γ)

+ 3 cos(2γ) + 2 cos(3γ))2(− sin(γ) + 3(sin(2γ) + sin(3γ)))

− Γ[1 + p]2(19 sin(γ)− 24 sin(2γ) + 3 sin(3γ)

+ 68 sin(4γ) + 20 sin(5γ))
)

(38)

By the NIM algorithm, the final solution is

ξ(γ, δ) = ξ0(γ, δ) + ξ1(γ, δ) + ξ2(γ, δ) + · · · (39)

ξ(γ, δ) = sin(γ) +
δp(1− 2 cos(γ) + 3 cos(2γ) + 2 cos(3γ))

4Γ[1 + p]

+
δ2p

16Γ[1 + p]4)

(
− δp(−19 + 2 cos(γ) + 7 cos(2γ))

− 27 cos(4γ) + 48 cos(5γ) + 63 cos(6γ) + 14 cos(7γ))Γ[1 + p] + δ2p(1− 2 cos(γ)

+ 3 cos(2γ) + 2 cos(3γ))2(− sin(γ) + 3(sin(2γ) + sin(3γ)))

− Γ[1 + p]2(19 sin(γ)− 24 sin(2γ) + 3 sin(3γ)

+ 68 sin(4γ) + 20 sin(5γ))
)
+ · · · .

(40)

In Figure 3, the graphical representation illustrates the Laplace Residual Power Series
Method (LRPSM) behavior for varying fractional orders. Panel (a) showcases the results for
a fractional order of 0.7, while Panel (b) depicts the case for a fractional order of 0.8. Moving
on to Panel (c), the behavior of the LRPSM is shown for a fractional order of 0.9. Finally, in
Panel (d), the behavior of the LRPSM for a fractional order of 1.0 is presented. These plots
offer insights into the impact of different fractional orders on the solutions obtained using
the LRPSM for the Foam Drainage Equation with a given parameter δ = 0.01, as outlined
in Section 4.2.

Table 4 presents a quantitative comparison of different fractional orders within the
LRPSM for the same problem. Specifically, it compiles the results obtained using the
LRPSM for various fractional orders, considering a fixed value of δ = 0.01. This table offers
a comprehensive overview of how the choice of the fractional order influences the solutions
obtained via the LRPSM for the Foam Drainage Equation.

Figure 4 further extends the analysis, this time focusing on the New Iteration Method
(NIM) applied to the same Foam Drainage Equation with δ = 0.01. Panel (a) provides
insights into the behavior of the NIM for a fractional order of 0.7, followed by Panel (b) for
a fractional order of 0.8. Panel (c) illustrates the results for a fractional order of 0.9, while
Panel (d) completes the overview with the case of a fractional order of 1.0.
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Figure 3. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the LRPSM of Section 4.2 for δ = 0.2.

Table 4. The comparison of different fractional orders of the LRPSM of Section 4.2 for δ = 0.2.

γ
LRPSM

Solutionp=0.7

LRPSM
Solutionp=0.8

LRPSM
Solutionp=0.9

LRPSM
Solutionp=1.0

0.1 0.139405 0.124925 0.11542 0.109379

0.2 0.231577 0.220253 0.21232 0.207111

0.3 0.320084 0.312312 0.306363 0.302299

0.4 0.404716 0.400536 0.396804 0.394103

0.5 0.485218 0.484404 0.48296 0.481738

0.6 0.561253 0.563417 0.564193 0.564472

0.7 0.632388 0.637085 0.639911 0.641622

0.8 0.698122 0.704926 0.709556 0.712552

0.9 0.757925 0.766468 0.7726 0.776672

1.0 0.811291 0.821258 0.828551 0.833436
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Figure 4. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the NIM of Section 4.2 for δ = 0.2.

Table 5 complements the graphical analyses by offering a tabular comparison of
different fractional orders within the NIM for the same example. This table summarizes
the numerical results obtained using the NIM for various fractional orders, considering
the fixed value of δ = 0.01. Collectively, these visual and tabular representations provide a
comprehensive exploration of the influence of fractional orders on the solutions obtained
through the LRPSM and NIM for the Foam Drainage Equation in Section 4.2. Table 6 gives
a comparison of the absolute error of the NIM and LPRSM of Section 4.2 for δ = 0.2
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Table 5. The comparison of different fractional orders of the NIM of Section 4.2 for δ = 0.2.

γ
NIM

Solutionp=0.7

NIM
Solutionp=0.8

NIM
Solutionp=0.9

NIM
Solutionp=1.0

0.1 0.141605 0.125701 0.115687 0.109469

0.2 0.235882 0.221741 0.212825 0.207279

0.3 0.325946 0.314318 0.30704 0.302524

0.4 0.411365 0.402798 0.397565 0.394355

0.5 0.491795 0.486633 0.483707 0.481986

0.6 0.566952 0.565347 0.564841 0.564687

0.7 0.636596 0.638515 0.640392 0.641782

0.8 0.700512 0.705748 0.709834 0.712645

0.9 0.758494 0.76668 0.772675 0.776698

1.0 0.810334 0.820954 0.828453 0.833404

Table 6. Comparison of the absolute error of the NIM and LPRSM of Section 4.2 for δ = 0.2.

γ
Absolute
Errorp=0.7

Absolute
Errorp=0.8

Absolute
Errorp=0.9

Absolute
Errorp=1.0

0.1 0.0000909551 0.000019951 4.283578 × 10−6 9.0292663 × 10−7

0.2 0.000171151 0.000037349 7.999739 × 10−6 1.684364 × 10−6

0.3 0.000228606 0.0000497577 0.0000106445 2.239945 × 10−6

0.4 0.000256211 0.0000556725 0.0000119004 2.503296 × 10−6

0.5 0.000251675 0.0000546336 0.0000116729 2.454922 × 10−6

0.6 0.000217807 0.0000472723 0.0000100992 2.123858 × 10−6

0.7 0.000161866 0.0000351633 7.515498 × 10−6 1.580830 × 10−6

0.8 0.0000941308 0.0000205158 4.3916752 × 10−6 9.244249 × 10−7

0.9 0.0000259664 5.765185 × 10−6 1.244783 × 10−6 2.6306740 × 10−7

1.0 0.0000321962 6.853422 × 10−6 1.450543 × 10−6 3.037118 × 10−7

4.3. Problem

Consider the time-fractional Fisher’s equation given as:

Dp
δ ξ(γ, δ)− ∂2ξ(γ, δ)

∂γ2 − ξ(γ, δ) + ξ2(γ, δ) = 0, where 0 < p ≤ 1, (41)

subject to the following ICs:

ξ(γ, 0) = λ. (42)

The exact solution is

ξ(γ, δ) =
λeγ

−λ + λeδ + 1
.

Implementation of the Laplace Residual Power Series Method

Applying the LT to Equation (41) and making use of Equation (42), we get

ξ(γ, s)− λ

s
− 1

sp
∂2ξ(γ, s)

∂γ2 − 1
sp ξ(γ, s) +

1
spLδ[(L−1

δ [ξ(γ, s)])2] = 0, (43)
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and so, the kth truncated term series are

ξ(γ, s) =
λ

s
+

k

∑
r=1

fr(γ, s)
srp+1 , r = 1, 2, 3, 4 · · · . (44)

The Laplace residual functions (LRFs) [54] are

LδRes(γ, s) = ξ(γ, s)− λ

s
− 1

sp
∂2ξ(γ, s)

∂γ2 − 1
sp ξ(γ, s) +

1
spLδ[(L−1

δ [ξ(γ, s)])2] = 0, (45)

and the kth LRFs are:

LδResk(γ, s) = ξk(γ, s)− λ

s
− 1

sp
∂2ξk(γ, s)

∂γ2 − 1
sp ξk(γ, s) +

1
spLδ[(L−1

δ [ξk(γ, s)])2] = 0. (46)

Now, to determine fr(γ, s), r = 1, 2, 3, · · · , we substitute the rth truncated series
Equation (44) into the rth Laplace residual function Equation (46), multiply the resulting
equation by srp+1, and then, recursively solve the relation lims→∞(srp+1LδResξ,r(γ, s)) = 0,
r = 1, 2, 3, · · · . The following are the first few terms:

f1(γ, s) = λ− λ2, (47)

f2(γ, s) = 2λ3 − 3λ2 + λ, (48)

and so on.
Putting the values of fr(γ, s), r = 1, 2, 3, · · · , into Equation (44), we get

ξ(γ, s) =
λ

s
+

1
sp+1

(
λ− λ2

)
+

1
s2p+1

(
2λ3 − 3λ2 + λ

)
+ · · · . (49)

Using the inverse Laplace transform, we get

ξ(γ, δ) = λ +
δp

Γ(p + 1)

(
λ− λ2

)
+

δ2p

Γ(2p + 1)

(
2λ3 − 3λ2 + λ

)
+ · · · (50)

Implementation of New Iteration Method

Applying the RL integral to Equation (41), we get the equivalent form:

ξ(γ, δ) = λ−R
p
δ [

∂2ξ(γ, δ)

∂γ2 + ξ(γ, δ)− ξ2(γ, δ)] (51)

According to the NIM procedure, we obtain as

ξ0(γ, δ) = λ,

ξ1(γ, δ) = − (λ− 1)λδp

Γ(p + 1)
,

ξ2(γ, δ) = (λ− 1)λδ2p

 2λ− 1
Γ(2p + 1)

−
(λ− 1)λ4pδpΓ

(
p + 1

2

)
√

πΓ(p + 1)Γ(3p + 1)


(52)

By the NIM algorithm, the final solution is

ξ(γ, δ) = ξ0(γ, δ) + ξ1(γ, δ) + ξ2(γ, δ) + · · · (53)
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ξ(γ, δ) =λ− (λ− 1)λδp

Γ(p + 1)
+ (λ− 1)λδ2p

 2λ− 1
Γ(2p + 1)

−
(λ− 1)λ4pδpΓ

(
p + 1

2

)
√

πΓ(p + 1)Γ(3p + 1)

+ · · · (54)

The tables and figures presented provide a comprehensive comparative analysis of
the LRPSM and the NIM for addressing Section 4.3 with varying fractional orders and
specific parameter settings. Table 7 compares different fractional orders for the LRPSM
when δ = 0.1 and γ = 0.01. It systematically assesses how various fractional orders impact
the LRPSM solutions for Section 4.3. This table is a valuable resource for understanding
the influence of fractional order selection on solution accuracy. Figure 5 further visualizes
the LRPSM solutions for Section 4.3 under varying fractional orders, ranging from 0.7 to
1.0, all within the context of δ = 0.1 and γ = 0.01. The subfigures (a)–(d) provide a clear
representation of how the choice of fractional order affects the convergence and behavior
of the LRPSM solutions.

Figure 5. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the LRPSM of Section 4.3 for δ = 0.1 and γ = 0.01.
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Table 7. The comparison of different fractional orders of the LRPSM of Section 4.3 for δ = 0.1 and
γ = 0.01.

λ LRPSMp=0.7 LRPSMp=0.8 LRPSMp=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0.1 0.104036 0.102459 0.100904 0.100904 0.00313278 0.00155565 2.454758 ×10−12

0.2 0.207133 0.204358 0.201605 0.201605 0.00552841 0.00275275 3.689698 ×10−11

0.3 0.309307 0.3057 0.302104 0.302104 0.0072029 0.00359625 5.320094 ×10−11

0.4 0.410574 0.406493 0.402402 0.402402 0.00817191 0.00409101 3.745714 ×10−11

0.5 0.510951 0.506742 0.5025 0.5025 0.00845072 0.00424182 2.082778 ×10−13

0.6 0.610452 0.606451 0.602398 0.602398 0.00805422 0.00405344 3.774192 ×10−11

0.7 0.709093 0.705626 0.702096 0.702096 0.00699694 0.0035305 5.319811 ×10−11

0.8 0.806888 0.804273 0.801595 0.801595 0.00529303 0.00267762 3.670286 ×10−11

0.9 0.903853 0.902396 0.900896 0.900896 0.00295625 0.0014993 2.345568 ×10−12

Table 8 also makes a comparison, but focuses on the New Iteration Method (NIM).
It compares different fractional orders when δ = 0.1 and γ = 0.01, providing a detailed
insight into how fractional orders impact the NIM solutions for Section 4.3. Figure 6
complements the analysis by visually representing the NIM solutions for Section 4.3 across
fractional orders ranging from 0.7 to 1.0, all within the given parameter settings of δ = 0.1
and γ = 0.01. The subfigures (a)–(d) help in grasping the visual nuances of the NIM
solutions.

Figure 6. In (a), fractional order 0.7, (b) fractional order 0.8, (c) fractional order 0.9, and (d) fractional
order 1.0, of the NIM of Section 4.3 for δ = 0.1 and γ = 0.01.
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Table 8. The comparison of different fractional orders of the NIM of Section 4.3 for δ = 0.1 and
γ = 0.01.

λ NIMp=0.7 NIMp=0.8 NIMp=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0.1 0.104035 0.102459 0.100904 0.100904 0.00313113 0.00155535 9.597545 × 10−9

0.2 0.207132 0.204357 0.201605 0.201605 0.00552675 0.00275245 9.563103 × 10−9

0.3 0.309306 0.3057 0.302104 0.302104 0.00720193 0.00359607 5.546799 × 10−9

0.4 0.410574 0.406493 0.402402 0.402402 0.00817163 0.00409095 1.562542 × 10−9

0.5 0.510951 0.506742 0.5025 0.5025 0.00845072 0.00424182 2.082778 × 10−9

0.6 0.610452 0.606451 0.602398 0.602398 0.00805395 0.00405339 1.637741 × 10−9

0.7 0.709092 0.705626 0.702096 0.702096 0.00699598 0.00353032 5.653198 × 10−9

0.8 0.806887 0.804273 0.801595 0.801595 0.00529138 0.00267731 9.636702 × 10−9

0.9 0.903851 0.902395 0.900896 0.900896 0.0029546 0.00149899 9.602345 × 10−9

These tables and figures serve as valuable references for researchers and practitioners
seeking to make informed decisions regarding the choice of the method and fractional
order for addressing Section 4.3 in the context of the Fisher equation. They contribute to
understanding how different parameters and methods influence the accuracy and conver-
gence of the solutions, enhancing the applicability of these mathematical techniques to
practical problems.

5. Conclusions

In conclusion, our research showed that the Laplace Residual Power Series Method
(LRPSM) and the New Iteration Method (NIM) are equally successful and flexible in
resolving challenging partial differential equations containing the Caputo operator. We
successfully discovered precise and effective solutions to the Foam Drainage Equation and
the nonlinear time-fractional Fisher’s equation, providing new insights into the behavior of
these complex mathematical models. The correctness of our technique was further shown
by using figures and tables to demonstrate it. This study not only advances the field of
mathematical analysis, but also highlights how crucial it is to investigate cutting-edge
approaches to challenging issues in various scientific fields.

Our results demonstrate the potential of the New Iteration Method and the Laplace
Residual Power Series Method as useful methods for solving fractional partial differential
equations. Combining these approaches offers a solid way of dealing with fractional
derivative equations and nonlinear dynamics, enhancing our analytical capacity to describe
real-world occurrences. Our comprehension of complicated systems will advance as we use
these strategies, and our capacity to tackle challenging mathematical and physical issues
will grow.

In summary, this study emphasized the value of novel strategies for solving mathe-
matical problems and calls for more research into the Laplace Residual Power Series and
New Iteration Method for a broader range of issues. The Foam Drainage Equation and
the Nonlinear Time-Fractional Fisher’s Equation were successfully solved, demonstrat-
ing the promise of these techniques and opening the door for further developments in
mathematical research and its many applications.
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