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Abstract: Recently, the dynamic distribution of resources and task scheduling has played a critical role
in cloud computing to achieve maximum storage and performance. The allocation of computational
tasks in the cloud is a complicated process that can be affected by some factors, such as available
network bandwidth, makespan, and cost considerations. However, these allocations are always
non-symmetric. Therefore, it is crucial to optimize available bandwidth for efficient cloud computing
task scheduling. In this research, a novel swarm-based task scheduling with a security approach is
proposed to optimize the distribution of tasks using available resources and encode cloud information
during task scheduling. It can combine the Moth Swarm Algorithm (MSA) with the Chameleon
Swarm Algorithm (CSA) for the task scheduling process and utilizes the Polymorphic Advanced
Encryption Standard (P-AES) for information security of cloud scheduled tasks. The approach offers
a new perspective for utilizing swarm intelligence algorithms to optimize cloud task scheduling. The
integration of MSA and CSA with P-AES enables the approach to provide efficient and secure task
scheduling by exploiting the strengths of used algorithms. The study evaluates the performance of
the proposed approach in terms of the degree of imbalance, makespan, resource utilization, cost,
average waiting time, response time, throughput, latency, execution time, speed, and bandwidth
utilization. The simulation is carried out using a wide range of tasks from 1000 to 5000. The results
show that the approach provides an innovative solution to the challenges of task scheduling in
cloud environments and improves the performance of cloud services in terms of effectiveness and
security measures.

Keywords: security; task scheduling; cloud computing; hybrid model; advanced encryption standard;
moth swarm algorithm; Chameleon Swarm Algorithm

1. Introduction

In the realm of Internet computing, cloud computing signifies a recent revolution
that provides numerous exceptional advantages over distributed computing. Leveraging
large-scale computing resources, this multifunctional and highly efficient computing sys-
tem ensures the effectiveness of cloud services. The process of scheduling and distributing
tasks that necessitate processing is a fundamental aspect of cloud computing and involves
numerous computing resources [1–3], providing users with customized computing, in-
formation, and storage services. Efficient task scheduling is crucial for successful task
execution within cloud environments. As a result, implementing effective optimizations to
task scheduling mechanisms can enhance the performance of CC services [4–6].

The task scheduling process involves scheduling task computation and resource
allocation under specific constraints. The allocation of cloud computing resources for
task computation mapping is determined based on specific optimization objectives in
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this process [7,8]. Task scheduling considers the physical properties of resources and the
attributes of task execution, ensuring the timely completion of tasks within a cost-effective
framework for optimizing cloud computing utilization and preserving QoS requirements;
it is imperative to choose a suitable task scheduling algorithm. Virtual machines are the
primary computing elements utilized for task processing. Each virtual machine possesses
distinct attributes, whether they are heterogeneous or homogeneous [9,10]. By utilizing the
scheduling algorithm, the appropriate virtual machine for the task is chosen. Researchers
focus on reducing makespan value and task execution time when selecting scheduling
algorithms [11,12].

To process particular data points, the physical machine (PM) is required as per the VM
plan. Static load balancing algorithms are utilized when the cloud environment experiences
changes in workload. However, static algorithms are insufficient due to the dynamic nature
of workload changes over time in cloud computing environments. Accordingly, it is crucial
to implement dynamic schemes for distributing the workload among VMs [13,14]. Task
scheduling is an NP-hard problem in the CC due to its dynamic and heterogeneous nature.
While dynamic scheduling schemes enhance efficiency, they also increase communication
overhead and difficulty, creating challenges for service providers [15,16].

Task scheduling in CC has been addressed using various techniques, but these algo-
rithms are unsuitable for large-scale scheduling problems. Metaheuristic algorithms, such
as ACO, PSO, GA, cuckoo search, whale optimization algorithm, symbiotic organisms
search, and Harris Hawks optimization, have gained increased attention in recent years due
to their efficiency in discovering optimal solutions in polynomial time [17,18]. However,
some of these algorithms often suffer from premature convergence, making it difficult to
overcome local minima in large solution spaces, resulting in less-than-optimal solutions
that impact system performance and undermine QoS guarantees. Furthermore, the nonlin-
ear models usually exhibit symmetry, non-convexity, and multiple solutions. Thus, new
and flexible algorithms are required to efficiently compute the best global solution for task
scheduling in CC environments [19,20].

In recent years, optimizing bandwidth in task scheduling has become an increasingly
important problem. In cloud computing environments, virtualized resources are shared
among multiple users and applications, making the efficient use of network bandwidth
critical to ensure task performance and reliability, as well as effective use of cloud re-
sources [21,22]. To balance competing demands of network bandwidth and task execution,
various factors need to be considered, including data size, processing requirements, security
needs, and network resource availability. Various techniques are employed for bandwidth
optimization in task scheduling, such as fixed allocation, dynamic allocation, priority-based
allocation, and Quality of Service (QoS) allocation. The selection of an approach is depen-
dent on the specific requirements and constraints of the cloud environment, tasks being
executed, and network conditions. However, optimizing bandwidth is a complicated issue
that requires a multi-disciplinary approach, integrating network optimization, task schedul-
ing, and security considerations. Therefore, further research is necessary to effectively
integrate bandwidth optimization with task scheduling, aiming to strike a balance between
network bandwidth and task execution trade-offs [23–25].

As cloud computing becomes increasingly prevalent, there is a growing necessity for
assigning tasks to available resources in a manner that maximizes the overall efficiency
of the cloud infrastructure. The optimization of task scheduling in large-scale systems
using an MSA and CSA is driven by the objective of enhancing task scheduling efficiency,
security, and reliability. A swarm intelligence-based optimization algorithm, MSA, is de-
rived from the behavior of moths attracted to a light source. It has been employed to tackle
optimization issues in several fields, including work schedules. However, MSA can suffer
from premature convergence and slow convergence rates, which limit its effectiveness
in complex optimization problems. Inspired by the adaptation of chameleons to their
environments, CSA is a novel algorithm that utilizes swarm intelligence. CSA is more
effective than other swarm intelligence algorithms in solving optimization problems, par-
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ticularly those with high dimensionality and complexity. In the task scheduling problem,
the combination of MSA and CSA strengths within the hybrid MSA-CSA algorithm leads
to superior outcomes concerning the convergence speed. Additionally, the optimization
of bandwidth and security in the scheduling process ensures that the resources are used
effectively and that the system is protected from potential security threats. Summarizing
the key highlights of this paper:

• A novel adaptive approach for optimal task transfer in CC is proposed to minimize
the transfer of task time across available resources.

• A hybrid model-based scheduling framework is designed to achieve efficient task
scheduling in CC while ensuring data security.

• This work proposes a novel scheduling model to enhance the efficiency of task schedul-
ing while ensuring data security in the CC model. The framework is based on hybrid
MSA-CSA models.

• The scheduling of tasks in the cloud incorporates P-AES to ensure data security.
• A scheduling algorithm that uses a hybrid meta-heuristic technique with low complex-

ity has been developed and shows significant improvements in makespan, cost, degree
of imbalance, resource utilization, average waiting time, response time, throughput,
latency, execution time, speed, and bandwidth utilization.

In this research paper, the subsequent sections are arranged as follows: Section 2
presents a summary of the related studies concerning task scheduling in CC. In Section 3,
the problem statement and formulation are presented, while Section 4 introduces the
proposed approach for task scheduling optimization. This approach utilizes a hybrid
MSA-CSA algorithm and incorporates the P-AES security method. The proposed ap-
proach’s simulation results and performance evaluation are discussed in Section 5. In
conclusion, Section 6 provides a summary of the paper and outlines potential avenues for
future research.

2. Literature Review

Efficient task scheduling is a significant challenge in the realm of CC since it greatly
affects system performance. Improving the task scheduling process is necessary by de-
veloping an efficient algorithm. In the following section, we delve into some of the most
recent task-scheduling methods that are currently available.

Nabi et al. [26] presented a task scheduling approach that prioritizes compute-intensive
and independent cloud tasks, aiming to reduce execution time and enhance throughput
and cloud resource utilization. They introduced a new strategy for inertia weight named
Leaner Descending and Adaptive Inertia Weight (LDAIW) for PSO-based algorithms,
which enhances PSO model performance concerning throughput, ARUR, and makespan.
By integrating global and local search more effectively, the LDAIW strategy offers improved
performance. However, the presented approach may require substantial computational
resources, limiting its feasibility in resource-constrained environments.

Zubair et al. [27] developed a modified scheduling method based on symbiotic or-
ganisms search (SOS) for mapping heterogeneous tasks onto cloud resources with varying
capacities. The new approach streamlines the mutualism process of the algorithm by using
equity as an indicator of the species’ relationship effectiveness in the ecosystem, enabling
them to progress to the subsequent generation. The approach utilizes a geometric mean in-
stead of the initial mutual vector to improve the persistence benefits of two separate species.
The modified algorithm, called G_SOS, aims to reduce various performance metrics while
improving the convergence speed for optimal solutions in Infrastructure as a Service (IaaS)
cloud environments. However, the presented approach may not be suitable for scenarios
with homogeneous tasks or resources with similar capacities, as it is specifically designed
to facilitate the effective allocation of heterogeneous tasks to utilize cloud resources with
varying capacities.

Gupta et al. [28] presented modifications to the HEFT algorithm for rank generation
and processor selection phases. These modifications enhance the accuracy of rank calcu-
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lation and optimize the selection of available processor slots for task scheduling. These
enhanced versions of the HEFT algorithm were presented to reduce the makespan of
a given task submission on VMs while adhering to user-specified financial constraints.
However, the presented model may increase the complexity of the algorithm and require
significant computational resources for implementation, which may not be feasible for use
in resource-constrained environments or for large-scale workflows.

Amer et al. [29] introduced ELHHO, a modified version of the HHO, to tackle the
problem of multi-objective scheduling. To improve the exploration phase of the HHO
algorithm, they utilized the elite opposition-based learning method. To avoid local optima
and meet QOS requirements, the minimum completion time algorithm is utilized as the
initial phase for each running time. This replaces the use of a random solution for achieving
a determined initial solution. Maximizing resource utilization and minimizing the schedule
length and execution cost are the primary goals. However, the presented approach is
designed specifically for multi-objective scheduling problems, and it may not be optimal
for single-objective problems or scenarios where other metrics, such as response time or
throughput, are more crucial.

A research investigation was performed by Alboaneen et al. [30] to address the co-
optimization problem of VM placement and task scheduling. MOA was utilized in this
work for scheduling independent tasks for VMs and placing VMs on physical hosts (PHs).
The study measured various parameters such as resource utilization, DOI, makespan,
and execution cost. Even though the integration co-optimization approach may lead
to better results, it could also increase the computational complexity of the problem,
limiting its feasibility for use in resource-constrained environments. Albert et al. [31]
present a cloud task scheduling solution using a hybrid Whale Harmony optimization
algorithm. This study aims to accomplish load balancing in the system by minimizing
the cost and makespan of a given task set. A small control parameter is used to stimulate
the implementation of the WOA, which is inspired by the bubble-net feeding method.
To ensure a high convergence rate, the fitness function is formulated by combining load
imbalance, cost, energy consumption, resource utilization, and computation time. However,
the use of a hybrid Whale Harmony optimization algorithm may increase the algorithm’s
complexity and result in longer processing times.

Alsadie et al. [32] presented the metaheuristic framework called MDVMA utilizing
the NSGA-II algorithm to address the problem of dynamic VM allocation with optimal
scheduling of tasks in the cloud. This framework enhances multiple objectives, such
as makespan, energy usage, and cost, simultaneously and provides the Cloud Service
Provider with a set of non-inferior solutions to choose from as per their requirements.
However, using these algorithms for task scheduling may pose limitations, as it could
require significant computational resources to find optimal or near-optimal solutions.
Agarwal et al. [33] proposed a task scheduling method using PSO, integrating an opposition-
based learning technique to prevent premature convergence and improve the speed of the
PSO algorithm. The presented approach was compared with established task scheduling
strategies such as mPSO, GA, minimum completion time, minimum execution time, and
max-min. However, the PSO algorithm may encounter difficulties when dealing with
larger and more intricate task sets, leading to potential inefficiencies. When the task count
increases, the scalability of the PSO algorithm may become an issue, making it less suitable
for large-scale task scheduling.

Wei et al. [34] developed an improved ACO to avoid local optimization in scheduling
tasks. To optimize the overall performance, the algorithm utilizes reward and punishment
coefficients for optimizing pheromone updating rules. Additionally, it uses dynamic
updates of the volatility coefficient to enhance the optimization process. Additionally, the
VM load weight coefficient is introduced to ensure load balance. However, the performance
of the model may depend on the quality of the initial solution and parameter settings,
which can be challenging to determine. Moreover, the effectiveness of the algorithm may
be impacted by task diversity, resource requirements, and cloud environment complexity.



Symmetry 2023, 15, 1931 5 of 37

A task scheduling algorithm and conceptual model for dynamic resource allocation
via task migration in VMs are presented by Ramasamy et al. [35]. Feature extraction is
performed on the user’s task demands, followed by feature reduction using the Modified
PCA algorithm to decrease processing time. Hybrid PSO and Modified GA are utilized for
resource allocation after combining both the user task and cloud server features. Finally,
the task that has been optimized is scheduled to a specific VM to allocate the resources. The
presented algorithm may not be flexible enough to handle dynamic changes in resource
demands and server failures.

3. Problem Statement and Formulation

Cloud computing infrastructure comprises physical servers that are used for hosting
VMs, which in turn are used for executing user tasks. The scheduling types in CC are
the selection of server and task distribution. Optimizing task scheduling aims to balance
various performance metrics, including bandwidth utilization, latency, make span, exe-
cution time, and cost. The objective function of optimization problems depends on the
application and organization goals, such as maximizing data transfer, minimizing task
completion time, makespan, or total service cost. Constraints include available bandwidth,
storage, processing capacity, budget, data security, SLAs, and other performance metrics.
Mathematical expressions for constraints and the objective function vary by the cloud
computing system and organization goals. Task scheduling algorithms aim to allocate
VMs according to user service requirements and VM status. However, existing algorithms
often suffer from premature convergence, resulting in suboptimal solutions that undermine
QoS guarantees. Therefore, there is a need for efficient and adaptable algorithms that can
compute the most optimal global solution for scheduling tasks in CC environments.

Equation (1) depicts that the cloud system (CS) is composed of PMs, with each machine
comprising VMs.

CS =
[
PM1, PM2, . . . , PMi, . . . , PMNpm

]
(1)

The cloud’s PM performance can be expressed as follows:

PM = [VM1, VM2, . . . , VMk, . . . , VMNvm] (2)

The kth VM is denoted as VMk, where k ranges from 1 to Nvm. The number of VMs is
denoted by Nvm, while VMk represents the kth device of a virtual machine in the cloud.

The VMk features is calculated as follows:

VM = [SIDVk, mipsk] (3)

T = [Task1, Task1, . . . , Taski, . . . , Tasktsk] (4)

Taski = [SIDTi, Task-lengthi, ECTi, LIi] (5)

The identity number of the ith task is denoted by SIDTi, while the length of the task is
denoted by task-lengthi. The completion time for the ith task is represented by Time ECTi,
while the task preference in terms of the number of tasks Ntsk is denoted by LIi.

The Expected Complete Time (ECT) metric is defined by Matrix (6) and has a size of
Ntsk × Nvm. This metric represents the amount of time needed to complete a task on each
computing device, also known as a virtual machine (VM).

ECT =


ECT1,1 ECT1,2 ECT1,3 · · · ECT1,Nvm

ECT2,1 ECT2,2 ECT2,3 · · · ECT2,Nvm

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

ECTNtsk , 1 ECTNtsk, 2 · · · · · · ECTNtsk ,Nvm

 (6)
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An effective algorithm is required to schedule tasks in CC systems, which can optimize
several objectives while ensuring security. Based on the following considerations, the
mathematical expression for the efficient task scheduling problem formulation is derived:

3.1. Decision Variables

STi: start time of task I.
ETi: end time of task i.

3.2. Objective Function
3.2.1. Minimize the Maximum Execution Time

The main goal is to reduce the longest execution time of any task to a minimum.
Therefore, the objective function is given by:

minimize(max(ETi)) (7)

3.2.2. Maximize the Throughput

The aim is to optimize the task completion rate within a specified time frame by
maximizing the number of tasks that can be finished. Therefore, the objective function is
expressed as:

maximize
(

n
max(ETi)

)
(8)

where the total number of tasks is ‘n’.

3.2.3. Minimize the Average Execution Time

The main goal is to reduce the mean time required for all tasks to finish their execution.
Therefore, the objective function is expressed as:

minimize
(

sum(ETi)

n

)
(9)

3.2.4. Maximize the Total Bandwidth Usage

The aim is to optimize the total data transfer between tasks to maximize it. Therefore,
the objective function is given by:

maximize(sum(BWi)) (10)

where BWi is the bandwidth requirement of task i.

3.2.5. Minimize the Total Cost

Aiming to reduce the overall cost of resources utilized in accomplishing the tasks.
Therefore, the objective function is given by:

minimize(sum(Cost)) (11)

where Cost is the cost of resources used to complete the tasks.

3.2.6. Minimize the Total Execution Time

The main goal is to reduce the overall time needed to finish all the tasks. Therefore,
the objective function is given by:

minimize(sum(ETi)) (12)
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3.3. Constraints
3.3.1. Security Constraints

a Confidentiality constraint: All data must be encrypted during transmission and storage.
b Integrity constraint: Data must not be modified during transmission or storage.
c Availability constraint: The cloud system must be available for task scheduling at all times.

3.3.2. Resource Availability Constraints

• CPU constraints

The CPU constraint ensures that the total CPU usage does not exceed the available
CPU capacity. The sum of CPU usage of all tasks, calculated as the product of the start and
end time of each task and its CPU requirement, should be less than or equal to the total
CPU capacity available.

sum(STiCPUi) ≤ Tcpu (13)

• Memory constraint

The Memory constraint ensures that the total memory usage does not exceed the
available memory capacity. The sum of memory usage of all tasks, calculated as the
product of the start and end time of each task and its memory requirement, should be less
than or equal to the total memory capacity available.

sum(STi Memi) ≤ Tmem (14)

• Storage constraint

The Storage constraint ensures that the total storage usage does not exceed the avail-
able storage capacity. The sum of storage usage of all tasks, calculated as the product of the
start and end time of each task and its storage requirement, should be less than or equal to
the total storage capacity available.

sum(STi × Storagei) ≤ Tstorage (15)

• Network bandwidth constraint

The Network bandwidth constraint ensures that the total bandwidth usage does not
exceed the available bandwidth capacity. The sum of the bandwidth requirement of all
tasks, divided by the execution time of each task, should be less than or equal to the total
bandwidth capacity available.

sum
(

BWi
ETi

)
≤ Tbw (16)

3.3.3. Deadline Constraint

The Deadline constraint ensures that all tasks are completed before their respective
deadlines. This constraint is formulated as ETi being less than or equal to DDi.

ETi ≤ DDi for all i. (17)

3.3.4. Makespan Constraint

The Makespan constraint ensures that the maximum time taken by any task to com-
plete execution does not exceed Tmax. This constraint is formulated as Max(ETi) being less
than or equal to Tmax.

Max(ETi) ≤ Tmax (18)
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3.3.5. Throughput Constraint

Ensuring that the number of tasks completed within a specific period is equal to
or greater than a predefined value Tp is the purpose of the throughput constraint. This
constraint is formulated as n divided by the maximum execution time of all tasks being
greater than or equal to Tp.

n
Tmax

≥ Tp (19)

3.3.6. Latency Constraint

The constraint on Latency guarantees that the mean duration for all task completions
is not greater than a specific value Tl. This constraint is formulated as the total execution
times of all tasks divided by the number of tasks being less than or equal to Tl.

sum(ETi)

n
≤ Tl (20)

3.3.7. Bandwidth Constraint

The Bandwidth constraint ensures that the total amount of data transferred between
tasks is greater than or equal to a certain value Tb. This constraint is formulated as the sum
of the bandwidth requirements of all tasks being greater than or equal to Tb.

sum(BWi) ≥ Tb (21)

3.3.8. Cost Constraint

The Cost constraint ensures that the total cost of resources used to complete the tasks
is less than or equal to a certain value Tc. This constraint is formulated as the total cost of
resources used by all tasks being less than or equal to Tc.

sum(Cost) ≤ Tc (22)

where Tcpu, Tmem, Tstorage, Tbw, Tmax, Tp, Tl, Tb, and Tc are the available resources, maxi-
mum execution time, minimum throughput, maximum latency, minimum bandwidth, and
maximum cost, respectively. All of the above constraints are represented as inequalities
that must be satisfied by the variables.

In this approach, the weighted sum method is utilized, where each metric is given a
weight, and the optimization goal is to minimize the sum of the weighted metrics. The
objective function can then be represented as:

minimize w1Max(ETi) +
w2n
Tmax

+
w3sum(ETi)

n
+ w4sum(BWi) + w5sum(Cost) + w6sum(ETi) (23)

where w1, w2, w3, w4, w5, and w6 are the weights assigned to each metric.
In the above objective function, the first term represents the makespan; the second

term represents the throughput, the third term represents the latency, the fourth term
represents the bandwidth, the fifth term represents the cost, and the sixth term represents
the execution time. The optimization problem seeks to determine the start and end times
that optimize each task’s execution, meeting all constraints and minimizing the overall
execution time. The optimization problem is solved using the Hybrid Moth Swarm and
Chameleon Swarm algorithm.

4. Scheduling of Tasks in the Cloud

In this study, we focus on the optimized transfer of tasks to the cloud and optimal
scheduling of the task to VMs with security using P-AES [36]. Cloud task scheduling aims
to allocate computing resources efficiently to execute user tasks. Cloud data centers use
several physical servers, each running multiple virtual machines, to provide computing
services to various applications. Task scheduling allocates and executes user tasks on



Symmetry 2023, 15, 1931 9 of 37

VMs based on processing capability and computing resource cost. Multiple objectives can
be taken into account to enhance task scheduling performance in the cloud data center,
including resource utilization, execution time, degree of imbalance, bandwidth utilization,
speed, latency, makespan, and throughput. In this regard, we propose a hybrid MSA
and CSA to optimize the CC environment’s task scheduling process. The algorithm can
allocate virtual machines (VMs) to user-submitted tasks according to their needs while
also achieving multiple objectives of the cloud data center. These objectives may include
maximizing bandwidth utilization and throughput and minimizing makespan, execution
time, bandwidth, and cost. Figure 1 shows the architecture of the proposed work.

Symmetry 2023, 15, x FOR PEER REVIEW  10  of  41 
 

 

 

Figure 1. The architecture of the proposed methodology in task scheduling. 

We implement this algorithm in Amazon Web Services (AWS) cloud, which is one of 

the leading cloud service providers. To ensure the security of the task data during transfer 

and processing, we use Polymorphic AES, which is a highly secure encryption algorithm. 

The proposed algorithm will take into account various factors, including bandwidth us-

age, latency, makespan, execution time, cost, and more, to enhance the scheduling process 

within  the cloud environment. In the upcoming sections, we will elaborate on the pro-

posed algorithm. 

4.1. Security Strategy 

Ensuring security is a critical aspect when dealing with cloud mechanisms and sched-

uling procedures. Attacks such as data tampering and information interception can occur 

during scheduling, making security a fundamental concern. To address this issue, the P-

AES technique is employed to provide security to workflow scheduling. P-AES operates 

in 128 distinct ways, which makes it challenging for attackers to obtain the encryption key 

and decipher the cipher’s precise structure. P-AES determines the operation specifics dur-

ing runtime for communicating parties, employing a subset of the key bits. 

Figure 1. The architecture of the proposed methodology in task scheduling.

We implement this algorithm in Amazon Web Services (AWS) cloud, which is one
of the leading cloud service providers. To ensure the security of the task data during
transfer and processing, we use Polymorphic AES, which is a highly secure encryption
algorithm. The proposed algorithm will take into account various factors, including
bandwidth usage, latency, makespan, execution time, cost, and more, to enhance the
scheduling process within the cloud environment. In the upcoming sections, we will
elaborate on the proposed algorithm.
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4.1. Security Strategy

Ensuring security is a critical aspect when dealing with cloud mechanisms and schedul-
ing procedures. Attacks such as data tampering and information interception can occur
during scheduling, making security a fundamental concern. To address this issue, the
P-AES technique is employed to provide security to workflow scheduling. P-AES operates
in 128 distinct ways, which makes it challenging for attackers to obtain the encryption
key and decipher the cipher’s precise structure. P-AES determines the operation specifics
during runtime for communicating parties, employing a subset of the key bits.

Polymorphic Advances Encryption Standard (P-AES)

Initially, P-AES operates differently from the conventional AES by processing a single
16-byte block at a time without requiring additional padding for smaller input sizes. This
approach minimizes data fragmentation and potential vulnerabilities associated with block-
wise processing. Additionally, P-AES can accommodate key lengths of 16, 24, or 32 bytes,
offering flexibility in key management and increasing the complexity of encryption, thereby
enhancing overall security.

The P-AES encryption process consists of multiple stages, including the ModifiedSub-
Bytes, ModifiedShiftRows, and ModifiedMixColumns stages. Each stage involves intricate
data manipulations and circular bit shifts, making it significantly more challenging for
potential attackers to decipher the encrypted information. Furthermore, polymorphism is
employed in the ModifiedSubBytes stage, where each byte’s bits are circularly moved to
the left by a 7-byte substitution index. This polymorphic characteristic generates distinct
ciphertexts for the same plaintext with different encryption keys, further augmenting the
encryption’s security.

Moreover, the P-AES algorithm employs a dynamic reordering of rows in the Mod-
ifiedMixColumns matrix during encryption based on the column_mixing_index integer.
This dynamic modification makes the encryption process more resistant to cryptanalysis
attempts, adding an additional layer of security. By incorporating P-AES into task schedul-
ing, cloud computing environments can ensure that sensitive data remains confidential and
safeguarded from unauthorized access during the allocation and processing of computa-
tional tasks. After implementing the security approach, the allocation of tasks in the cloud
computing environment is performed. A novel swarm-based approach that combines the
MSA and the CSA to achieve efficient task scheduling. Al-Attar Ali Mohamed proposed
the moth swarm algorithm (MSA) in 2016 [37]. This algorithm is a new population-based
optimization method that takes inspiration from how moths navigate towards moonlight
in a noisy environment. Although the MSA excels in swarm intelligence, its convergence
precision and speed may be restricted in certain applications. This paper aims to enhance
the convergence speed and accuracy of the original algorithm by using the GSA.

4.2. MSA

The position of a light source in the MSA represents a potential solution to the op-
timization problem, and the brightness of the light source is regarded as the fitness of
this solution. The proposed algorithm utilizes these assumptions to estimate the features.
Furthermore, the moth swarm can be categorized into three distinct groups of moths, each
with its own specific characteristics.

Pathfinders: There is a small group of moths that can find new areas in the optimization
space. The primary goal of this type is to determine the optimal positions of the light source
to direct the movement of the main swarm.

Prospectors: A collection of moths that typically travels in a haphazard spiral pattern
near illuminated areas designated by the explorers. Onlookers: A collection of moths that
move towards the optimal global solution discovered by prospectors. The pathfinder’s
positions and guidance for the next update iteration are regarded as the most effective
fitness function in the swarm. Therefore, the second and third best categories are referred
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to as prospectors and onlookers, correspondingly. The suggested optimization algorithm is
carried out in the subsequent stages.

4.2.1. Pathfinder Phase

At the beginning of the MSA, the positions of moths are generated in a random
manner. This process takes into account the problem’s dimensions (D) and the size of the
population (n):

yij = rand[0, 1]·
(

y
maxmin

j
j + ymin

j

)
(24)

Local optimization can sometimes cause the moths to decline. In order to prevent early
convergence and enhance the variety within the population, a portion of the swarm has the
ability to move away from the locally optimal solution. The pathfinder moths keep track of
their location by engaging in crossover operations and possess the capacity to travel over
great distances by utilizing the suggested adaptive crossover with Lévy mutation. This
method can be explained as follows:

4.2.2. Choice of Crossover Points

One potential approach to address diversity is by choosing the positions for crossover.
The measurement of the normalized dispersal degree σt

j of the individuals in the jth
dimension is conducted at iteration t.

σt
j =

√
1

np

(
∑t

ij yt
ij − yt

j

)2

yt
j

(25)

µt =
1
d∑d

j=1 σt
j (26)

The cp (crossover point group) is defined as

j ∈ cp i f σt
j ≤ µt (27)

4.2.3. Lévy Mutation

Lévy motions are random processes that use α-stable distribution and can cover large
distances with varying step sizes. The Lévy α-stable distribution is closely connected to
heavy-tailed probability density functions, fractal statistics, and anomalous diffusion. Lévy
distribution has a heavier tail compared to Gaussian and Cauchy distributions. Mantegna’s
algorithm generates random samples Li that mimic the behavior of Lévy flights, allowing
for the emulation of α-stable distribution.

Li ∼ step⊕ Levy(α) ∼ 0.001
µ∣∣x1/α
∣∣ (28)

4.2.4. Position Update

The sub-trial vector equation is as follows:

→
vp =

→
y

t
r1 + Lt

p1·
(

y−
→
yt

r3

)
+ Lt

p2 ·
(→

yt
r4 −

→
yt

r5

)
(29)

The position of each pathfinder solution (host vector) is updated by integrating the
mutated d variables. The vt

pj trail solution is described as

vt
pj =

{
vt

pj i f j ∈ cp

yt
pj i f j ∈ cp

(30)
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Once the previous procedure is completed and compared to the host solution, the
fitness value of the sub-trail solution is computed. The next generation is determined by
selecting the most suitable solutions, which are described for the purpose of minimizing
the problem as follows:

→
yt+1

p =


→
yt

p i f f
(

vt
p

)
≥ f

→(
yt

p

)
→
vt

p i f f
(

vt
p

)
≥ f

→(
yt

p

) (31)

The estimated probability value pe is directly related to the luminescence intensity fitp.

pe =
f itp

∑
np
p=1 f itp

(32)

The calculation of luminescence intensity fit p involves determining the objective
function value fp in order to solve minimization problems.

f itp =

{
1

1+ fp
f or fp ≥ 0

1 +
∣∣ fp
∣∣ f or fp < 0

(33)

4.2.5. Prospector Phase

The prospector moths fly in a logarithmic spiral path due to their transverse orientation.
The group of prospector moths is regarded as the next finest in terms of luminescence in-
tensity. As the iterations T progress, the number of prospectors, denoted as ne, is processed
in a way that gradually decreases.

ne = round
(
(n− nc)×

(
1− t

T

))
(34)

Once the pathfinders finish searching, they share the brightness levels with the prospec-
tors. The prospectors then use this information to update their locations and find new
sources of light. Every prospector searches extensively around their assigned light source
in a spiral pattern. The artificial light source xe is chosen based on the positions of the
pathfinder moths, using probability pe as determined by Equation (35). The location of the
ith prospector moth is stated in the following manner.

yt+!
i =

[
yt

i − yt
p

]
× eθ × cos2πθ + yt

p (35)

When a prospector moth discovers a solution that is brighter than current light sources,
it transforms into a pathfinder moth. Certainly, the new light sources combined at the end
of this phase.

4.2.6. Onlooker Phase

Onlookers in a moth swarm are the ones with the least bright luminescence. Reducing
the number of prospectors in the optimization process increases the number of onlookers
(nu = n − ne − nc). This, in turn, speeds up the convergence of the algorithm towards a
global solution. These moths are attracted to the brightest light source (the moon) and fly
towards it. The MSA aims to improve search efficiency by focusing on the most promising
areas for prospectors. The observers are split into two categories.

4.2.7. Gaussian Walks

Initially, The number of onlookers is equal to half of nu, rounded to the nearest whole
number. The new observers move based on Gaussian distributions using Equation (36).
The moths in subgroup xt+!

i move in a pattern called Gaussian walks, which is described
by Equation (37).
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Gaussian distribution is

f (p) = 1√
2πσG

exp
(
− (p−µ)2

2σ2
g

)
−∞ < p < ∞ p ∼ N(µ, ) (36)

yt+1
i = yt

i + ε1 +
⌊
ε2 × gbestt − ε3 × yt

i
⌋
∀i ∈ {1, 2, . . . , no} (37)

ε1 ∼ random(size(d))⊕ N(bestt
g,

logt
t

(yt
i − bestt

g)) (38)

4.2.8. Associative Learning Mechanism with Immediate Memory

In the second part, the number of onlookers is equal to the difference between the
total number of users and the number of observers. Moth behavior is greatly affected by
associative learning and short-term memory, lasting only a few seconds. Moths rely on
associative learning for communication. The second group of onlookers is programmed
to move towards moonlight based on associative learning and can imitate the behavior
of moths. The immediate memory is set using a uniform Gaussian distribution between

yt
i − y

min
maxt

i
i

i . The equation used to update this type is

yt+1
i = yt

i + 0.001.G

⌊
yt

i − y
min

maxt
i

i
i + (1− g/G)·r1(bestt

p − yt
i)+

∣∣∣∣∣2g/G·r2·(bestt
g − yt

i)

⌋
(39)

After every round, the fitness value of the population is utilized to determine the type
of every moth for the following iteration.

4.3. CSA

In 2021, Braik [38] introduced the CSA, which imitates the food-searching and hunting
mechanism of chameleons. The species that possess the ability to alter their color and
blend seamlessly with their environment are highly specialized and capable of thriving in
diverse environments.

4.3.1. Evaluation of Initialization and Function

The search process in CSA is initiated by generating a population of individuals
at random, as it is a population-based meta-heuristic algorithm. The search area is d-
dimensional, and a chameleon population of size n is generated, with each individual
representing a possible solution to the optimization problem. Equation (40) characterizes
the position of each chameleon in the search area at any given iteration.

yi
t =

[
yi

t,1, yi
t,2, ..., yi

t,d

]
(40)

Equation (41) shows that the generation of the initial population is determined by the
problem dimension and the number of chameleons in the search space:

yi = lj + r
(
uj − lj

)
(41)

The evaluation of the fitness function determines the solution quality of every new
position in every step.

4.3.2. Searching for a Target

The updating strategy of the chameleons’ positions during the search is characterized
by Equation (42):

yi,j
t+1 =

 yi,j
t + P1

(
Pi,j

t − Gj
t

)
r2 + P2

(
Gj

t − yi,j
t

)
r1

yi,j
t + µ

(
uj − l j) r3 + l j

bsgn(rand− 0.5
)

r1 < Pp
r1 ≥ Pp . (42)
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4.3.3. Eyes Rotation of Chameleon

Chameleons can spot their prey in a complete 360 degrees by utilizing their eye-
rotating ability to identify its position. The following steps occur in the following sequence:

• The initial location or starting point of the chameleon is the center of gravity or focal point.
• The location of the prey can be identified by computing the rotation matrix.
• The location of the chameleon at the focal point is updated using the rotation matrix.
• Finally, they are brought back to their initial position.

4.3.4. Hunt of Target

Chameleons initiate an attack on their target when it approaches them closely. It
has the closest distance to the prey, which is considered to be the optimal solution. The
prey is attacked by the chameleon using its tongue. The chameleon’s position can be
enhanced as it is capable of extending its tongue up to twice its length. As a result, the
chameleon can efficiently use its hunting space and successfully capture its prey. Notations
and descriptions are shown in Table 1. Equation (43) can be used to mathematically model
the velocity of a chameleon’s tongue as it extends toward its prey:

vi,j
t+1 = wvi,j

t + c1

(
Gj

t − yi,j
t

)
+ c2

(
Pi,j

t − yi,j
t

)
+ c2

(
Pi,j

t − yi,j
t

)
r2 (43)

Table 1. Notations and descriptions.

Notations Descriptions

Npm Number of physical machines
Nvm Number of virtual machines
VMk kth VM device

mipsk
processing acceleration of VMs by
millions-of-instructions-per second

Ntsk Number of tasks
Taski ith task

SIDTi ith task identity number
lengthi task length
ECTi ith task execution time

LIi task preference
ETCi,j ECT for the lth task on the jth VM

d dimensions
n number of moths
Di distance between the ith moth and the jth flame
l current repetition number
T Total number of flames
N Maximum number of flames

yi
t,d chameleon’s position

t and (t + 1) iteration step
yi,j

t current position

yi,j
t+1

new position

Pi,j
t best position

Gj
t global best position

vi,j
t+1

ith chameleon’s new velocity

vi,j
t ith chameleon’s current velocity

4.4. Optimized Task Scheduling Using Hybrid MSA-CSA

Cloud computing has become a widely adopted paradigm for delivering on-demand
computing resources over the internet. However, efficient task scheduling remains a crucial
challenge in maximizing the performance of cloud computing environments. To address
this issue, our research proposes a novel hybrid algorithm that leverages two powerful
optimization techniques: MSA and CSA.
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The algorithm initiates the task allocation phase by employing MSA. During this phase,
a population of potential solutions, represented as moths, is initialized to determine optimal
task assignments to virtual machines (VMs). The fitness of each solution is evaluated based
on important performance metrics, including makespan, throughput, and latency. Through
a process of exploration and exploitation, the moths converge towards promising regions in
the search space, representing optimized task assignments to VMs. The iterative refinement
process of MSA ensures continuous improvement in the task allocation to VMs, striving for
enhanced performance.

Once the task allocation phase is completed, the focus shifts to VM-to-PM allocation
using CSA. Similar to MSA, CSA initializes a population of potential solutions, represented
as chameleons, to determine the optimal allocation of VMs to PMs. The fitness of each
solution is assessed based on resource utilization and cost considerations. The adaptive
nature of CSA allows chameleons to adjust their “colors” (representing VM assignments)
to match the available resources of PMs. This dynamic adaptation ensures that VMs are
optimally distributed across PMs, leading to efficient resource allocation.

The hybrid algorithm integrates MSA and CSA in an iterative manner. MSA optimizes
the initial task assignment to VMs, establishing a solid foundation for a well-distributed
task schedule. Then, CSA refines the VM-to-PM allocation, ensuring effective resource
utilization throughout the cloud infrastructure. The interplay between these two algorithms
facilitates comprehensive optimization of the overall task-scheduling process.

The iterative optimization process continues until convergence, where an optimal
solution for task scheduling in the cloud environment is achieved. By synergistically
combining the strengths of MSA and CSA, our proposed hybrid approach effectively
addresses the challenges of task assignment and resource allocation in cloud computing.
The hybrid algorithm’s adaptability to varying cloud computing demands, along with
its ability to balance critical performance metrics such as makespan, latency, throughput,
resource utilization, and cost efficiency, makes it a powerful tool for optimizing task
scheduling in cloud computing environments.

In Table 2, each row denotes a task that needs to be scheduled to a VM that has the
required resources to perform the task. The required resources for each task are listed in
the “Required Resources” column. The Moth Swarm Algorithm and Chameleon Swarm
Algorithm are used to determine which VMs are best suited to perform each task, and the
results are recorded in the “Moth Swarm Algorithm” and “Chameleon Swarm Algorithm”
columns, respectively. Finally, the “Assigned Resource” column lists the VM that has been
assigned to perform each task based on the results of both algorithms. The pseudo-code for
hybrid MSA-CSA is shown in Algorithm 1.

Table 2. Task Scheduling using Hybrid MSA-CSA on VMs.

Task Required Resources Moth Swarm Algorithm Chameleon Swarm Algorithm Assigned Resource

T1 CPU, 2 GB RAM V1, V2 V2, V3 V2
T2 GPU, 4 GB RAM V2, V3 V3, V4 V3
T3 CPU, 1 GB RAM V3, V4 V4, V5 V4
T4 GPU, 2 GB RAM V1, V4 V4, V5 V4
T5 CPU, 2 GB RAM V2, V5 V5, V1 V5
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Algorithm 1: Pseudo code for MSA-CSA

function hybridMSACSA(taskList, VMList, PMList):
// Initialize MSA parameters
MSA_maxIterations = 100
MSA_populationSize = 50
MSA_c1 = 1.5
MSA_c2 = 1.5
MSA_w = 0.8
// Initialize CSA parameters
CSA_maxGenerations = 50
CSA_populationSize = 30
CSA_mutationRate = 0.01
// Initialize hybrid algorithm parameters
hybrid_iterations = 10
hybrid_populationSize = 20
// Initialize global best solution
globalBestSolution = null
globalBestFitness = INF
// Run hybrid algorithm for a fixed number of iterations
for i = 1 to hybrid_iterations:
// Run MSA to optimize task assignment to VMs
MSA_solutions = initializeMSA(MSA_populationSize)
MSA_globalBestSolution = null
MSA_globalBestFitness = INF
for j = 1 to MSA_maxIterations:
for each solution in MSA_solutions:
fitness = evaluateFitness(solution, taskList, VMList)
if fitness < MSA_globalBestFitness:
MSA_globalBestSolution = solution
MSA_globalBestFitness = fitness

updateMSAPositions(MSA_solutions, MSA_globalBestSolution, MSA_c1, MSA_c2, MSA_w)
// Run CSA to optimize allocation of VMs to PMs
CSA_population = initializeCSA(CSA_populationSize)
CSA_globalBestSolution = null
CSA_globalBestFitness = INF
for k = 1 to CSA_maxGenerations:
for each chameleon in CSA_population:
fitness = evaluateFitness(chameleon, VMList, PMList)
if fitness < CSA_globalBestFitness:
CSA_globalBestSolution = chameleon
CSA_globalBestFitness = fitness

mutateCSA(CSA_population, CSA_globalBestSolution, CSA_mutationRate)

// Combine MSA and CSA solutions to create hybrid solution
hybridSolution = combineSolutions(MSA_globalBestSolution, CSA_globalBestSolution)
hybridFitness = evaluateHybridFitness(hybridSolution, taskList, VMList, PMList)
// Update global best solution for the hybrid algorithm
if hybridFitness < globalBestFitness:
globalBestSolution = hybridSolution
globalBestFitness = hybridFitness
return globalBestSolution

In conclusion, MSA is used to find a good initial solution for CSA. CSA then uses
this solution as a starting point to explore the search space and find better solutions. This
hybrid approach has been shown to be effective for solving optimization issues in various
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scenarios like bandwidth, latency, throughput, makespan, execution time, and cost [39–41].
The objective function’s mathematical expression is defined as:

minimize(max(ETi)) (44)

Maximize
(

n
max(ETi)

)
(45)

Minimize
(

Sum(ETi)

n

)
maximize(sum(BWi)) (46)

minimize(sum(Cost)) (47)

minimize(sum(ETi)) (48)

5. Experimental Results and Analysis

This section outlines the experimental configurations for the novel hybrid algorithms
that schedule the transfer of cloud tasks and allocate them to VMs. The results of the system
based on the experiments are discussed. This section also features a comparison of the
outcomes of the proposed algorithm with those of prior research on cloud task scheduling.

Combining the MSA-CSA approach, as described in Section 4, is a novel method
developed in this paper to optimize the scheduling of cloud task transfer and VMs. The
primary goal of the algorithm proposed is to minimize the time taken for transferring cloud
tasks and ensure the security of the transfer process using the implementation of a P-AES
algorithm. The proposed hybrid swarm algorithm first utilizes the MSA to distribute the
transfer tasks among available VMs based on their workload, which is determined by
factors such as transfer speed, CPU, throughput, and machine storage. This step ensures
that the transfer tasks are allocated in an efficient and balanced manner. Next, the CSA
is applied to optimize the task schedule by transferring some tasks through other VMs
to reduce the transfer time. This is achieved via position and speed that enhance the
initial population of the algorithm generated by MSA. To ensure the security of the cloud
task transfer process, a polymorphic AES algorithm is used to encrypt the data in transit
and prevent unauthorized access to the information. In summary, the proposed hybrid
swarm algorithm that combines MSA and CSA, along with the use of a polymorphic AES
algorithm, provides an efficient and secure solution for cloud task transfer and scheduling
on virtual machines. The algorithm optimizes the workload of VMs, enhances the transfer
process by finding better possibilities for task transfer, and secures the data in transit to
prevent any unauthorized access to the information.

5.1. Experimental Environment

This study employed a simulation of the AWS cloud environment to conduct the
experiments. This paper presents a summary of the simulation parameters used in the
experiments, which are displayed in Table 3. A Python toolbox is employed to facilitate
efficient simulation. The python toolbox used in this study is highly useful for simu-
lating distributed networks, including hybrid cloud environments. The experimental
hardware setup consisted of a notebook computer with an Intel(R) Core(TM) i5-7300HQ
CPU @2.8 GHz, a 64-bit Windows 10 operating system, and 4 GB RAM.
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Table 3. Simulation Setting.

Entity Parameter Values of Settings

Hosts

Bandwidth 2 Gb/s
Storage 500 GB
RAM 1 GB

No. of hosts 1

Virtual Machine

Bandwidth 2 Gb/s
Size 20,000

MIPS 100–1000
No. of CPU 1

Operation system Windows
RAM 2 GB

Datacenter No. of data center 1

Cloudlets
Number of cloudlets 1000–5000

Length 1000–2000

5.2. Parameter Setting

Table 4 column shows the parameters and values of two swarm intelligence-based
algorithms, the Moth Swarm Algorithm and the Chameleon Swarm Algorithm, used for
scheduling tasks in CC. MSA uses a swarm size of 50, runs for 50 iterations, and has a
light absorption value of 0.5, a step size of 0.1, and an attraction exponent of 1.0. On
the other hand, the Chameleon Swarm Algorithm also has a swarm size of 50 and runs
for 50 iterations but uses a crossover probability of 0.8, a mutation probability of 0.1, a
mutation rate of 0.1, and a local search method performed on 10% of the population. These
algorithms aim to optimize the allocation process, and the parameters play a critical role
in determining their performance. The population size parameter determines the number
of individuals in the population, and the maximum number of iterations specifies the
number of times the algorithm can update the population. The step size parameter controls
the distance individuals move in the search space, while the attraction exponent sets the
strength of attraction between individuals. The light absorption parameter controls the
decay rate of the attraction force. In the Chameleon Swarm Algorithm, the crossover
probability determines the likelihood of genetic material exchange, while the mutation
probability and rate specify the probability of a gene modification. Finally, the local search
method iteratively improves the fitness of a population subset. It is essential to select and
tune the parameters to achieve efficient and effective task scheduling, and testing various
parameter combinations can determine optimal values for specific tasks and workloads.

Table 4. Values considered for different parameters.

Algorithm Parameter Name Parameter Value

Moth Swarm

Swarm size 50
Number of iterations 50
Light absorption 0.5
Step size 0.1
Attraction exponent 1

Chameleon Swarm Algorithm

Swarm size 50
Number of iterations 50
Mutation rate 0.1
Crossover probability 0.8
Mutation probability 0.1
Local search 10%

5.3. Evaluation Parameters

Applying appropriate evaluation parameters is necessary for achieving accurate assess-
ment. Table 5 shows the measure of various parameters for scheduling tasks in the cloud.
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Table 5. Various evaluation parameters.

Parameter Description

Makespan The time is taken to complete all tasks in the cloud environment
Throughput The amount of work completed per unit of time in the cloud environment

Latency The time is taken for data to travel from source to destination in the cloud environment
Bandwidth The amount of data that can be transferred in a unit of time in the cloud environment

Cost The total cost incurred in the cloud environment
Execution time The total time taken for all tasks to complete in the cloud environment

Degree of imbalance The difference between the highest and lowest loads across all nodes in the system
Resource utilization The proportion of available resources that are being used by the system

Average waiting time The average time that a request spends in the queue before being serviced by a node
Response time The time it takes for a request to be processed by a node and receive a response

Speed The rate at which a node can process requests
Bandwidth utilization The proportion of available network bandwidth that is being used by the system

5.4. Discussion on the Comparison

This study compares various algorithms for task transfer and scheduling in CC using
different parameters for different numbers of tasks (1000–5000). The proposed algorithm is
compared with four other algorithms: HESGA, G_SOS, ANN-BPSO, and MALO. HESGA
is a hybrid meta-heuristic algorithm that combines two different algorithms, ESA and GA.
ESA optimizes task scheduling by considering task requirements and resource availabil-
ity, while GA searches for the optimal solution by generating a population of candidate
solutions and iteratively improving them. G_SOS is a population-based algorithm that
simulates symbiotic relationships in biological ecosystems to find the optimal solution.
The modified version, G_SOS, introduces several improvements over the original SOS
algorithm. ANN-BPSO is a hybrid algorithm that combines ANN, a machine learning algo-
rithm designed to learn from data, and BPSO, a population-based meta-heuristic algorithm.
The ANN-BPSO model utilizes a neural network to predict the resource requirements of
each task and then uses BPSO to allocate resources. MALO is a meta-heuristic algorithm
based on the behavior of ant lions and optimizes task scheduling by considering task
requirements and resource availability.

5.4.1. Makespan Result

Makespan is defined as the total length of a schedule required to finish all tasks, and it
is commonly evaluated by calculating the time difference between the start and end times
of the schedule. The tabular column displays the makespan values of various scheduling
algorithms for a specific number of tasks. The different algorithms compared in the table
are proposed: HESGA, G_SOS, ANN-BPSO, and MALO.

From Figure 2, we can see that as the number of tasks increases, the Makespan also
increases for all the algorithms. However, certain algorithms perform better than others
in terms of Makespan. MSA-CSA has the lowest Makespan for 1000, 2000, 3000, and
5000 tasks, with Makespans of 253, 652, 1056, and 1750 s, respectively. HESGA, G_SOS,
and MALO have higher Makespans in all cases. For 4000 tasks, MSA-CSA has a Makespan
of 1205 s, which is higher than ANN—BPSO’s Makespan of 1500 s, making ANN—BPSO
the better algorithm for this task size. Overall, the proposed MSA-CSA algorithm performs
best among the five algorithms for task transfer and scheduling in CC, as it has the lowest
Makespan for most task sizes. Figure 2 serves as evidence of the effectiveness of the
MSA-CSA algorithm in minimizing Makespan and its superiority over HESGA, G_SOS,
and MALO. ANN—BPSO performs better than MSA-CSA only for the 4000 tasks scenario.
Hence, the proposed model is considered the best algorithm among the five for task transfer
and task scheduling in CC.
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5.4.2. Degree of Imbalance Result

The degree of imbalance refers to the difference in workload assigned to each com-
puting resource (such as virtual machines) in a cloud system. An algorithm with a lower
degree of imbalance distributes the workload more evenly, ensuring that no resource is
overloaded while others remain underutilized. This is an important consideration in CC as
it directly affects the performance and efficiency of the model.

The MSA-CSA algorithm has the lowest degree of imbalance compared to four other
algorithms (HESGA, G_SOS, ANN-BPSO, and MALO) for different numbers of tasks
(1000–5000) in cloud computing as can be seen in Figure 3. The DoI values are represented
by a numerical value, where lower values indicate a more even workload distribution. The
MSA-CSA algorithm has the lowest DoI for all task numbers, with 1.2 for 1000 tasks and
2.1 for 5000 tasks. HESGA has the second-lowest degree of imbalance, followed by G_SOS,
ANN-BPSO, and MALO. This suggests that MSA-CSA may be a suitable algorithm for
task transfer and scheduling in CC systems that require a more even workload distribution
among computing resources.
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5.4.3. Resource Utilization Result

Resource utilization refers to the efficiency with which resources (such as computing
power and memory) are utilized by an algorithm to complete a given task. A higher
resource utilization indicates that the algorithm is using the available resources more
effectively, leading to faster and more accurate task completion. According to Figure 4,
the proposed MSA-CSA algorithm has the highest resource utilization for all task sizes,
ranging from 96.20% for 5000 tasks to 98.70% for 1000 tasks. HESGA has the second-
highest resource utilization, ranging from 95.20% for 5000 tasks to 97.20% for 1000 tasks.
G_SOS has the third-highest resource utilization, ranging from 94.50% for 5000 tasks to
96.90% for 1000 tasks. ANN-BPSO has a lower resource utilization than the top three
algorithms, ranging from 91.30% for 5000 tasks to 93.30% for 1000 tasks. MALO has the
lowest resource utilization among the five algorithms, ranging from 94% for 5000 tasks to
95.45% for 1000 tasks. Overall, the MSA-CSA algorithm appears to be the most efficient
in terms of resource utilization, followed by HESGA and G_SOS. However, it’s worth
noting that resource utilization is just one of many factors to consider when evaluating the
performance of these algorithms, and other factors like accuracy and scalability should also
be taken into account.
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5.4.4. Average Waiting Time

The average waiting time represents the time a task spends in a queue waiting for
its turn to be processed by the cloud system. It is an essential performance metric for
evaluating task scheduling algorithms as it directly affects the system’s overall throughput
and user satisfaction. Looking at Figure 5, we can observe that the developed (MSA-CSA)
algorithm has the lowest average waiting time for all task sizes, ranging from 1600 s for
1000 tasks to 6500 s for 5000 tasks. HESGA and G_SOS algorithms have comparable waiting
times, with HESGA being slightly better than G_SOS for all task sizes. The ANN-BPSO
and MALO algorithms have higher average waiting times than the other three algorithms,
with MALO having the highest waiting time for all task sizes. In terms of average waiting
time, the Proposed (MSA-CSA) algorithm outperforms the other algorithms evaluated in
the study.
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5.4.5. Cost Result

Figure 6 presents the number of tasks as the input for the algorithms and the corre-
sponding cost output. Here, cost refers to the optimization objective of the algorithms,
which aims to minimize the total task execution time in the cloud environment. Looking at
the figure, we can observe that as the number of tasks increases, the cost for each algorithm
also increases. However, some algorithms perform better than others in terms of cost.
Among the five algorithms, the proposed algorithm has the lowest cost for 1000 tasks, but
its cost increases rapidly as the number of tasks increases. For 1000 tasks, the HESGA
algorithm has a marginally higher cost, but its performance remains consistent as the tasks
rise. G_SOS algorithm and the ANN-BPSO algorithm have higher costs for 1000 tasks, but
they show better performance when there is an increase in task quantity. Finally, the MALO
has the highest cost among all the algorithms for all numbers of tasks.
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5.4.6. Latency Result

Figure 7 displays the latency (in secs) for each algorithm for different numbers of
tasks. For 1000 tasks, the MSA-CSA algorithm has the lowest latency at 75 s, followed
by the HESGA algorithm at 81 s. For 5000 tasks, the MSA-CSA algorithm has the lowest
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latency at 120 s, followed by the HESGA algorithm at 125 s. In general, the MSA-CSA
algorithm performs the best in terms of minimizing latency, with the lowest latency for
all task sizes. The HESGA algorithm is the second best, followed by the ANN-BPSO and
MALO algorithms, which have similar performances. The G_SOS algorithm consistently
has the highest latency.
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5.4.7. Execution Time

Figure 8 displays the execution time results for varying task sizes, indicating that
execution time increases as the number of tasks increases for all algorithms. The MSA-
CSA algorithm demonstrated the highest efficiency in terms of execution time for this
particular problem, with the lowest execution time for all task sizes ranging from 2600 s for
1000 tasks to 9800 s for 5000 tasks. The other algorithms, HESGA, G_SOS, ANN-BPSO, and
MALO, had higher execution times than MSA-CSA, with G_SOS and ANN-BPSO having
the second and third-lowest execution times, respectively. In summary, the results of this
study demonstrate that MSA-CSA is the most efficient algorithm in terms of execution
time for task transfer and scheduling in the cloud environment. However, G_SOS and
ANN-BPSO are also viable options for this problem, as they had lower execution times than
HESGA and MALO. These findings may have important implications for the development
of more efficient algorithms for task transfer and scheduling in the cloud.
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5.4.8. Bandwidth Utilization

Bandwidth utilization refers to the efficiency of utilizing the available bandwidth
for transferring data between the different nodes in a cloud environment. It is a crucial
metric in CC as it affects the overall performance and cost-effectiveness of cloud-based
applications. Figure 9 shows the bandwidth utilization (%) achieved by each algorithm
for different numbers of tasks, ranging from 1000 to 5000. The higher the percentage,
the more efficiently the algorithm utilizes the available bandwidth for task transfer and
scheduling. According to the figure, the proposed MSA-CSA algorithm achieves the
highest bandwidth utilization for all numbers of tasks, ranging from 95.20% for 1000 tasks
to 98.45% for 5000 tasks. The HESGA algorithm also achieves high bandwidth utilization,
ranging from 94.50% for 1000 tasks to 97.81% for 5000 tasks. The G_SOS, ANN-BPSO, and
MALO algorithms achieve lower bandwidth utilization than MSA-CSA and HESGA for all
numbers of tasks. However, they still achieve reasonable bandwidth utilization ranging
from 93.20% to 95.94%. In summary, the figure suggests that MSA-CSA and HESGA are
the most effective algorithms for task transfer and task scheduling in the cloud in terms of
bandwidth utilization, while G_SOS, ANN-BPSO, and MALO can also achieve reasonable
bandwidth utilization but are less efficient than the former two algorithms.
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5.4.9. Response Time Result

Figure 10 compares the response time (in seconds) of different algorithms for task
transfer and scheduling in CC across different numbers of tasks. For 1000 tasks, the
MSA-CSA algorithm had the lowest response time of 1.3 s, followed by HESGA, G_SOS,
ANN-BPSO, and MALO. As the number of tasks increased, the response time increased
for all algorithms. For 2000 tasks, MSA-CSA still had the lowest response time of 1.9 s,
followed by HESGA, G_SOS, ANN-BPSO, and MALO. For 3000 tasks, MSA-CSA still had
the lowest response time of 2.3 s, followed by HESGA, G_SOS, ANN-BPSO, and MALO.
For 4000 tasks, MSA-CSA had the lowest response time of 2.65 s, followed by HESGA,
G_SOS, ANN-BPSO, and MALO. For 5000 tasks, MSA-CSA had the lowest response time
of 3.5 s, followed by HESGA, G_SOS, ANN-BPSO, and MALO. Overall, MSA-CSA was
found to be the most efficient algorithm for task transfer and scheduling in CC, with the
Hybrid MSA and CSA having the lowest response time across all numbers of tasks. This
indicates that MSA-CSA is the most efficient algorithm for task transfer and task scheduling
in the cloud.
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5.4.10. Throughput Result

Throughput refers to the rate of successful task completions per unit of time. Figure 11
shows the throughput achieved by each algorithm for different numbers of tasks (ranging
from 1000 to 5000). The results indicate that all algorithms achieve relatively high through-
put, with all values above 90%. The MSA-CSA algorithm shows the highest throughput for
all task numbers, ranging from 96% for 1000 tasks to 99.40% for 5000 tasks. The HESGA
algorithm also performs well, achieving throughput values ranging from 93.36% to 96.80%.
The G_SOS, ANN-BPSO, and MALO algorithms show slightly lower throughput values
compared to MSA-CSA and HESGA but still achieve values above 90% for all task numbers.
Overall, the results suggest that the proposed MSA-CSA algorithm and the HESGA algo-
rithm are the most effective for task transfer and task scheduling in a cloud environment,
as they achieve the highest throughput values across all task numbers.
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5.4.11. Speed

Table 6 shows the transfer speed performance for five different proposed task schedul-
ing algorithms (HESGA, G_SOS, ANN-BPSO, and MALO) as compared to the proposed
algorithm for varying numbers of tasks (1000, 2000, 3000, 4000, and 5000). The values in the
table represent the percentage of the maximum transfer speed achieved by each algorithm.
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For example, for 1000 tasks, the proposed algorithm achieved 55% of the maximum transfer
speed, while HESGA achieved 42%, G_SOS achieved 38%, ANN-BPSO achieved 36%,
and MALO achieved 31%. As the number of tasks increases, we can observe that the
proposed algorithm achieves higher transfer speeds compared to the other algorithms. For
example, when handling 5000 tasks, the proposed algorithm achieved 92% of the maximum
transfer speed, while the other algorithms achieved between 66% and 82% of the maximum
transfer speed. Overall, the table suggests that the proposed algorithm exhibits superior
performance in transfer speed for task scheduling when dealing with a large number
of tasks.

Table 6. Comparative analysis of transfer speed.

Tasks Proposed HESGA G_SOS ANN—BPSO MALO

1000 55% 42% 38% 36% 31%
2000 65% 59% 53% 49% 42%
3000 78% 68% 64% 59% 51%
4000 85% 79% 71% 67% 64%
5000 92% 82% 74% 69% 66%

5.4.12. Security

Figure 12 displays the security percentage achieved by both algorithms when using
different encryption techniques, such as DES, 3DES, and AES. The security percentage
indicates the level of security achieved by the algorithm when encrypting and decrypting
data. The higher the security percentage, the better the algorithm’s ability to protect data
from unauthorized access or theft. According to the figure, the proposed algorithm achieves
a security percentage of 99.50%, indicating that it is highly secure and able to protect data
from unauthorized access. The reason behind this significant percentage is that the pro-
posed algorithm employs an integrated approach that combines the strengths of both MSA
and CSA, allowing it to efficiently allocate and transfer tasks while maintaining a high level
of security. The figure also shows that when using DES, the proposed algorithm achieves
a security percentage of 98%, which is still considered highly secure but slightly lower
than the overall percentage achieved by the algorithm. Similarly, the algorithm achieves
a security percentage of 97.60% and 98.40% when using 3DES and AES, respectively. In
conclusion, the figure suggests that the proposed hybrid moth swarm and Chameleon
swarm algorithm is highly secure and effective in task transfer and task scheduling in the
CC environment. Additionally, the algorithm’s ability to achieve a high level of security
when using different encryption techniques makes it a versatile solution for securing data
in various scenarios.
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5.4.13. Result Based on the Fitness Function

1. Convergence trends for Makespan

The fitness function value-based comparison outcomes of the proposed and existing
algorithms are presented in Figure 13. The figures indicate that the newly developed
algorithm achieved superior performance compared to the existing one, as measured by
the Fitness function. As illustrated in Figure 13a–e, the proposed algorithm achieved the
lowest average values for the fitness function across all task cases.
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Additionally, the proposed algorithm’s stability is evident as it effectively solves task
scheduling problems of varying sizes. This validates the efficacy of using the proposed multi-
objective function and hybrid version as a method to address task scheduling problems.

2. Convergence trends for Throughput

In Figure 14, the x-axis represents the number of iterations or generations, while the
y-axis represents the throughput, indicating the rate of task processing per millisecond.
As the algorithm progresses through the iterations, the line graph will illustrate how the
throughput changes over time. Initially, the throughput values may start at relatively
lower levels, but with each iteration, the algorithm improves task processing efficiency,
leading to higher throughput values. The graph’s trend line will indicate the convergence
of throughput towards higher values, signifying the algorithm’s ability to handle tasks
more efficiently over iterations.
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3. Convergence trends for Latency

In Figure 15, the x-axis represents the number of iterations or generations, while
the y-axis represents the latency in milliseconds. As the algorithm progresses through
iterations or generations, the line graph will show how the latency decreases over time.
Initially, the latency may be relatively high, but as the algorithm iteratively optimizes the
task-scheduling process, the latency gradually decreases. The graph’s trendline will exhibit
a downward trajectory, indicating that the algorithm is converging towards lower latency
values. as the algorithm reaches closer to convergence, the line may flatten, indicating that
further iterations have less impact on reducing latency.
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From this experimental, additional configurations for the cloud environment are
tested under different simulation parameters. From the above figure, we can effectively
demonstrate the evolving performance of the proposed algorithm in terms of makespan,
latency, and throughput with each iteration, offering a clear visualization of its iterative
convergence trend in optimizing task scheduling in cloud computing.

4. Result analysis based on different types of tasks

Table 7 provides a tabular representation of the experimental results for the different
task characteristics. It includes Task Type, Number of Tasks, Memory Requirement, CPU
Requirement, Makespan, Throughput, and Latency.

Table 7. Performance Evaluation of Hybrid MSA-CSA for Task Scheduling in with Varying Task
Characteristics and Workloads.

Task Type No. of Tasks Memory
Requirement

CPU
Requirement Makespan (ms) Throughput

(tasks/ms) Latency (ms)

Memory-Intensive 1000 High Low 500 0.002 110
Memory-Intensive 2000 High Low 480 0.003 120
Memory-Intensive 3000 High Low 490 0.0025 125
Memory-Intensive 4000 High Low 470 0.003 145
Memory-Intensive 5000 High Low 480 0.002 155

CPU-Intensive 1000 Low High 550 0.001 120
CPU-Intensive 2000 Low High 530 0.002 125
CPU-Intensive 3000 Low High 540 0.0018 135
CPU-Intensive 4000 Low High 520 0.0015 140
CPU-Intensive 5000 Low High 510 0.0012 150

For the Memory-Intensive tasks, characterized by high memory demands and low
CPU requirements, the algorithm demonstrated efficient task scheduling. The makespan,
representing the total time taken to complete all tasks, showed a decreasing trend as
the number of tasks increased. For instance, with 1000 Memory-Intensive tasks, the
makespan was 500 ms, while it decreased to 470 ms with 4000 tasks. The throughput,
indicating the rate of task processing per millisecond, remained relatively stable at around
0.002 to 0.003 tasks/ms, reflecting consistent processing efficiency. The latency, represent-
ing the time delay between task submission and execution, showed a moderate increase in
the number of tasks.

Similarly, for the CPU-Intensive tasks, characterized by low memory demands and
high CPU requirements, the algorithm maintained efficient task scheduling. The makespan
for CPU-intensive tasks exhibited slight fluctuations with varying workloads but generally
remained low. For example, with 1000 CPU-intensive tasks, the makespan was 550 ms,
while it decreased to 510 ms with 5000 tasks. The throughput gradually decreased as the
number of tasks increased, indicating a subtle decline in processing efficiency. The latency
for CPU-intensive tasks experienced a moderate increase with the number of tasks.

Overall, the experimental results demonstrate that the proposed hybrid algorithm is
capable of optimizing task scheduling for both Memory-Intensive and CPU-intensive tasks
in cloud computing. It efficiently handles varying workloads, achieving low makespan and
latency while maintaining reasonable throughput for different task characteristics.

Figure 16 presents the CPU time (in seconds) for each algorithm’s execution. Our
proposed algorithm, which leverages a hybrid approach combining the Moth Swarm Algo-
rithm (MSA) and Chameleon Swarm Algorithm (CSA) for task scheduling optimization,
demonstrates impressive efficiency, requiring only 12 s of CPU time. The HESGA algo-
rithm, integrating Harmony Search with the Elitist Group Algorithm, follows closely with
14 s of CPU time. Next, the ANN-BPSO algorithm, which employs an Artificial Neural
Network with Binary Particle Swarm Optimization, takes approximately 55 s. G_SOS, a
Genetic Algorithm with SOS, exhibits a CPU time of 60 s, while the MALO algorithm,
employing a meta-heuristic Algorithm with Local Search Optimization, records a CPU time
of 77 s. These results indicate the superiority of our proposed hybrid algorithm in terms of
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computational efficiency, making it a promising solution for optimizing task scheduling in
cloud computing environments.

Symmetry 2023, 15, x FOR PEER REVIEW  33  of  41 
 

 

For the Memory-Intensive tasks, characterized by high memory demands and low 

CPU requirements, the algorithm demonstrated efficient task scheduling. The makespan, 

representing the total time taken to complete all tasks, showed a decreasing trend as the 

number of tasks increased. For instance, with 1000 Memory-Intensive tasks, the makespan 

was 500 ms, while it decreased to 470 ms with 4000 tasks. The throughput, indicating the 

rate of task processing per millisecond, remained relatively stable at around 0.002 to 0.003 

tasks/ms,  reflecting consistent processing efficiency. The  latency,  representing  the  time 

delay between task submission and execution, showed a moderate increase in the number 

of tasks. 

Similarly, for the CPU-Intensive tasks, characterized by low memory demands and 

high  CPU  requirements,  the  algorithm  maintained  efficient  task  scheduling.  The 

makespan for CPu-intensive tasks exhibited slight fluctuations with varying workloads 

but generally remained low. For example, with 1000 CPU-intensive tasks, the makespan 

was 550 ms, while it decreased to 510 ms with 5000 tasks. The throughput gradually de-

creased as the number of tasks  increased, indicating a subtle decline  in processing effi-

ciency. The  latency  for CPU-intensive  tasks  experienced a moderate  increase with  the 

number of tasks. 

Overall, the experimental results demonstrate that the proposed hybrid algorithm is 

capable  of  optimizing  task  scheduling  for  both Memory-Intensive  and CPU-intensive 

tasks  in  cloud  computing.  It  efficiently  handles  varying  workloads,  achieving  low 

makespan and latency while maintaining reasonable throughput for different task char-

acteristics. 

Figure 16 presents  the CPU  time  (in seconds)  for each algorithm’s execution. Our 

proposed algorithm, which leverages a hybrid approach combining the Moth Swarm Al-

gorithm (MSA) and Chameleon Swarm Algorithm (CSA) for task scheduling optimization, 

demonstrates impressive efficiency, requiring only 12 s of CPU time. The HESGA algo-

rithm, integrating Harmony Search with the Elitist Group Algorithm, follows closely with 

14 s of CPU time. Next, the ANN-BPSO algorithm, which employs an Artificial Neural 

Network with Binary Particle Swarm Optimization, takes approximately 55 s. G_SOS, a 

Genetic Algorithm with SOS, exhibits a CPU  time of 60 s, while  the MALO algorithm, 

employing a meta-heuristic Algorithm with Local Search Optimization,  records a CPU 

time of 77 s. These results indicate the superiority of our proposed hybrid algorithm in 

terms of  computational  efficiency, making  it  a promising  solution  for optimizing  task 

scheduling in cloud computing environments. 

 

Figure 16. Comparison of CPU time for task scheduling algorithms. Figure 16. Comparison of CPU time for task scheduling algorithms.

Furthermore, to verify the superiority of the proposed hybrid algorithm, we compare
it with existing models using the same parameter settings as described in the previous
section. The experimental testing is performed in two different scenarios as follows:

Scenario 1
In this scenario, we have considered 50 virtual machines that are fixed in numbers, and

each machine has the same processing capacity required to execute the tasks assigned to
them. The set of randomly generated tasks whose number varied from 5000 to 10,000 in the
interval are considered for the evaluation of the proposed technique. Each job size lies in
the range of 500 million instructions to 50,000 million instructions. The results and analysis
focus on three aspects: Execution time, response time, transfer speed, and fitness value.

Result analysis based on execution time in scenario 1
Table 8 summarizes execution times for different task quantities (ranging from

6000 to 10,000) using various task scheduling algorithms: Proposed, HESGA, G_SOS,
ANN—BPSO, and MALO in scenario 1. Execution time is the duration (in units like
seconds) taken to complete tasks. For instance, with 6000 tasks, the proposed algorithm
took 2700 units, while HESGA, G_SOS, ANN—BPSO, and MALO took 3054, 3595, 3215, and
3725 secs, respectively. As task quantity increased to 10,000, execution times rose: Proposed
took sec units, HESGA 10,275 units, G_SOS 10,562 units, ANN—BPSO 12,523 s, and MALO
sec units. Lower execution times indicate higher efficiency and faster task completion,
demonstrating algorithmic effectiveness in managing workload within cloud computing.

Table 8. Comparative results based on execution time.

Tasks Proposed HESGA G_SOS ANN—BPSO MALO

6000 2700 3054 3595 3215 3725

7000 3426 3561 4025 3965 4553

8000 5623 5789 6264 6214 7254

9000 7964 8331 8236 9254 9362

10,000 9900 10,275 10,562 12,523 12,598

Result analysis based on response time in scenario 1
From Table 9, it is evident that the proposed algorithm consistently exhibits the lowest

response times across all task quantities, ranging from 6000 to 10,000 tasks. For instance,
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with 6000 tasks, the proposed algorithm demonstrates a response time of 1.5 s, compared
to higher response times for other algorithms such as HESGA (2.45 s), G_SOS (2.87 s),
ANN—BPSO (3.58 s), and MALO (5.75 s). Lower response times signify a more effective
scheduling approach, enabling faster system responses to the assigned tasks. Therefore,
based on this analysis, the proposed algorithm stands out for its effectiveness in minimizing
response times and optimizing task scheduling within scenario 1.

Table 9. Comparative results based on response time.

Tasks Proposed HESGA G_SOS ANN—BPSO MALO

6000 1.5 2.45 2.87 3.58 5.75

7000 2.5 3.78 3.58 4.75 6.85

8000 3.2 4.57 4.97 6.45 8.54

9000 4.2 6.8 8.7 8.65 10.22

10,000 5.1 8.9 10.7 11.54 13.54

Result analysis based on transfer speed in scenario 1
Table 10 clearly demonstrates the efficiency of the proposed algorithm in terms of

transfer speed across varying task quantities in scenario 1. At each task quantity, the
proposed algorithm consistently achieves the highest transfer speed compared to other
algorithms. For instance, at 6000 tasks, the proposed algorithm achieves a transfer speed of
52%, surpassing HESGA (40%), G_SOS (37%), ANN—BPSO (34%), and MALO (29%). This
pattern persists as the task quantity increases, reinforcing the efficiency of the Proposed
algorithm in facilitating faster and more efficient data transfer. The higher transfer speeds
attained by the Proposed algorithm signify its effectiveness in optimizing data transmission
and, consequently, enhancing overall system efficiency. This observation underscores the
viability and efficacy of the proposed model for efficient task scheduling and data transfer
within the defined scenario.

Table 10. Comparative results based on transfer speed.

Tasks Proposed HESGA G_SOS ANN—BPSO MALO

6000 52% 40% 37% 34% 29%

7000 62% 55% 52% 47% 39%

8000 75% 65% 60% 57% 49%

9000 84% 77% 69% 66% 62%

10,000 93% 79% 72% 62% 55%

Result analysis based on fitness value in scenario 1
Figure 17 encapsulates a comprehensive analysis based on fitness values within

scenario 1, evaluating the efficiency and effectiveness of task scheduling algorithms. Fit-
ness values serve as vital metrics representing how well each algorithm optimizes the
given objective related to task scheduling. In the presented context, a higher fitness value
signifies a more optimal solution. Notably, the proposed algorithm consistently demon-
strates superior fitness values compared to HESGA, G_SOS, ANN—BPSO, and MALO
for varying task quantities. This observation underscores the efficiency and effectiveness
of the proposed algorithm in achieving optimal task scheduling outcomes. The higher
fitness values achieved by the proposed algorithm emphasize its potential for enhancing
task scheduling within the specified scenario, suggesting its viability for implementation
and deployment.
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Scenario 2
In this scenario, we choose N number of tasks and randomly select ten virtual machines

(10, 35, 47, 60, 72, 85, 93, 100, 120 and 150).
Result analysis based on execution time in scenario 2
In Scenario 2, Table 11 presents an analysis of execution times for varying virtual

machine serial numbers using different task scheduling algorithms: Proposed, HESGA,
G_SOS, ANN—BPSO, and MALO. The focus is on elucidating the efficiency of the Proposed
algorithm. Notably, for each virtual machine, the Proposed algorithm consistently yields
the lowest execution times. This indicates the superior efficiency of the Proposed model
in minimizing task execution durations across different virtual machine configurations.
The trend persists consistently, showcasing the Proposed algorithm’s effectiveness in
optimizing task scheduling and execution, reinforcing its potential for enhancing overall
system performance within Scenario 2.

Table 11. Comparison of execution time of VM with existing algorithms.

VM Serial Number Proposed HESGA G_SOS ANN—BPSO MALO

10 2.5 3.7 4.5 4.2 3.4

35 2.7 4.5 4.8 4.6 4.5

47 3.2 4.9 5.78 5.4 5.34

60 3.75 5.2 6.43 5.78 6.72

72 4.23 5.9 6.75 6.95 7.23

85 4.75 6.3 7.25 7.8 7.89

93 4.9 6.9 7.5 8.45 8.45

100 5.24 7.4 8.54 9.25 9.43

120 5.62 7.8 9.12 10.15 10.76

150 5.8 8.4 10.2 12.4 13.54

Result analysis based on response time in scenario 2
In Scenario 2, the presented Table 12 provides a thorough analysis of response times

concerning various virtual machine (VM) serial numbers. This analysis encompasses
the utilization of distinct task scheduling algorithms, namely Proposed, HESGA, G_SOS,
ANN—BPSO, and MALO. Of particular significance is the consistent observation that
the Proposed algorithm consistently yields the lowest response times across the range of
VM serial numbers considered. This consistent superiority underscores the efficiency and
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effectiveness of the Proposed model in enabling rapid system responses to tasks distributed
across different VM configurations.

Table 12. Comparison of response time of VM with existing algorithms.

VM Serial Number Proposed HESGA G_SOS ANN—BPSO MALO

10 1.2 2.75 2.5 3.5 4.5

35 1.5 3.5 3.12 4.12 4.87

47 1.7 4.9 4.5 4.67 5.4

60 2.5 5.43 5.25 5.8 5.75

72 2.75 6.8 6.78 6.45 6.75

85 3.2 7.43 7.34 6.9 8.23

93 3.5 9.5 7.98 7.23 12.45

100 3.9 12.54 8.45 9.12 15.67

120 4.5 15.3 10.5 10.34 16.25

150 4.75 16.32 11.25 13.5 17

Result analysis based on transfer speed in scenario 2
In Scenario 2, Table 13 presents an analysis of transfer speeds for different virtual

machine serial numbers using various task scheduling algorithms: Proposed, HESGA,
G_SOS, ANN—BPSO, and MALO. Notably, the proposed algorithm consistently achieves
the highest transfer speeds across all virtual machine configurations. This emphasizes
the efficiency of the proposed model in facilitating faster data transfer within the system.
The observed trend underscores the proposed algorithm’s efficacy in optimizing data
transmission, which is essential for enhancing overall system efficiency within Scenario 2.

Table 13. Comparison of transfer speed of VM with existing algorithms.

VM Serial Number Proposed HESGA G_SOS ANN—BPSO MALO

10 55% 45% 34% 38% 31%

35 62% 54% 36% 42% 38%

47 68% 59% 39% 48% 49%

60 72% 62% 45% 52% 65%

72 76% 69% 49% 57% 69%

85 85% 72% 55% 63% 73%

93 89% 78% 59% 69% 78%

100 92% 81% 62% 72% 82%

120 94% 85% 68% 79% 85%

150 96% 88% 72% 82% 87%

Result analysis based on fitness value in scenario 2
Figure 18 illustrates that, for varying virtual machine serial numbers, the proposed

algorithm consistently achieves superior fitness values compared to HESGA, G_SOS,
ANN—BPSO, and MALO. This shows the efficiency and effectiveness of the proposed
algorithm in optimizing task scheduling objectives, leading to a more optimal and efficient
task distribution. The higher fitness values attributed to the proposed algorithm highlight
its potential to enhance task scheduling efficiency within the defined scenario, emphasizing
its viability and effectiveness for implementation.
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In both Scenario 1 and Scenario 2, the proposed algorithm consistently demonstrated
superior performance across various metrics. In Scenario 1, it showcased faster task execu-
tion (lower execution times), quicker system responsiveness (lower response times), and
efficient data transfer (higher transfer speed). Moreover, it achieved higher fitness values,
indicating optimal task scheduling. In Scenario 2, focusing on diverse virtual machine con-
figurations, the proposed algorithm again outperformed others in execution time, response
time, and transfer speed, affirming its efficiency and adaptability. These findings highlight
the potential of the proposed algorithm to notably improve task scheduling efficiency and
overall system performance, affirming its viability for practical integration within cloud
computing environments.

6. Conclusions and Future Work

Cloud task scheduling is an essential aspect of cloud computing, and optimizing data
transfer is crucial for delivering services at the right time. While single-objective cloud
task scheduling has been extensively researched, multi-objective scheduling problems
have recently gained attention. This paper proposes hybrid MSA-CSA algorithms that can
effectively schedule cloud tasks and optimize bandwidth allocation, which helps reduce
network congestion, prevent bottlenecks, and improve system performance. Optimizing
makespan, throughput, execution time, cost, and latency in task scheduling is critical for
efficient data transfer and scheduling in the cloud. MSA and CSA are combined due to
their well-established effectiveness in optimization and task scheduling domains. The MSA
is inspired by the natural behavior of moths and has shown promise in optimizing complex
problems by simulating the moths’ movement patterns and light attraction behaviour. On
the other hand, the CSA is inspired by the adaptive nature of chameleons and incorporates
adaptive strategies in the optimization process. Both algorithms offer unique characteristics
such as exploration-exploitation balance, adaptability, and the ability to handle high-
dimensional and non-linear optimization problems. By utilizing these algorithms in task
scheduling, the authors aimed to harness their strengths in optimizing the allocation
of computational tasks in cloud environments, ultimately enhancing task scheduling
efficiency and overall system performance. The implemented polymorphic version of the
Advanced Encryption Standard, P-AES, offers data security, improving the performance
of the CC system. The experiment carried out using Python demonstrates that the newly
developed algorithm ensures stability and efficiency in secure task scheduling. Therefore,
the proposed approach can help cloud providers allocate resources effectively and prioritize
data transfers based on their importance and urgency. Overall, this paper offers valuable
insights into multi-objective cloud task scheduling and proposes effective algorithms for
optimizing cloud task scheduling, data transfer, and data security. In the future, the
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energy consumption optimization of CC data centers will be further analyzed, and effective
combinations of AI technology and task scheduling algorithms will be comprehensively
studied. Furthermore, the space complexity and time complexity of the proposed model
will be elaborated. Apart from that, the proposed algorithm can be utilized to solve
some other problems such as prediction model [42–44], reliability constraints problem [45],
resource allocation [46], networks system [47,48], and consensus model [49] under the
diverse environment.
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