
Citation: Baig, M.H.; Abbas, Q.;

Ahmad, J.; Mahmood, K.;

Alfarhood, S.; Safran, M.; Ashraf, I.

Differential Evolution Using

Enhanced Mutation Strategy Based

on Random Neighbor Selection.

Symmetry 2023, 15, 1916. https://

doi.org/10.3390/sym15101916

Academic Editors: Christos Volos

and Sergei D. Odintsov

Received: 31 July 2023

Revised: 7 September 2023

Accepted: 1 October 2023

Published: 14 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Differential Evolution Using Enhanced Mutation Strategy
Based on Random Neighbor Selection
Muhammad Hassan Baig 1, Qamar Abbas 1 , Jamil Ahmad 2, Khalid Mahmood 3 , Sultan Alfarhood 4,* ,
Mejdl Safran 4 and Imran Ashraf 5,*

1 Department of Computer Science, Faculty of Computing and Information Technology,
International Islamic University Islamabad, Islamabad 44000, Pakistan; hassanbayg@gmail.com (M.H.B.);
qamar.abbas@iiu.edu.pk (Q.A.)

2 Department of Computer Science, Hazara University, Mansehra 21120, Pakistan; jamil@ieee.org
3 Institute of Computing and Information Technology, Gomal University, Dera Ismail Khan 29220, Pakistan;

khalid@gu.edu.pk
4 Department of Computer Science, College of Computer and Information Sciences, King Saud University,

P.O. Box 51178, Riyadh 11543, Saudi Arabia; mejdl@ksu.edu.sa
5 Department of Information and Communication Engineering, Yeungnam University,

Gyeongsan 38541, Republic of Korea
* Correspondence: sultanf@ksu.edu.sa (S.A.); imranashraf@ynu.ac.kr (I.A.)

Abstract: Symmetry in a differential evolution (DE) transforms a solution without impacting the
family of solutions. For symmetrical problems in differential equations, DE is a strong evolutionary
algorithm that provides a powerful solution to resolve global optimization problems. DE/best/1
and DE/rand/1 are the two most commonly used mutation strategies in DE. The former provides
better exploitation while the latter ensures better exploration. DE/Neighbor/1 is an improved form
of DE/rand/1 to maintain a balance between exploration and exploitation which was used with a
random neighbor-based differential evolution (RNDE) algorithm. However, this mutation strategy
slows down convergence. It should achieve a global minimum by using 1000 × D, where D is the
dimension, but due to exploration and exploitation balancing trade-offs, it can not achieve a global
minimum within the range of 1000 × D in some of the objective functions. To overcome this issue,
a new and enhanced mutation strategy and algorithm have been introduced in this paper, called
DE/Neighbor/2, as well as an improved random neighbor-based differential evolution algorithm.
The new DE/Neighbor/2 mutation strategy also uses neighbor information such as DE/Neighbor/1;
however, in addition, we add weighted differences after various tests. The DE/Neighbor/2 and
IRNDE algorithm has also been tested on the same 27 commonly used benchmark functions on which
the DE/Neighbor/1 mutation strategy and RNDE were tested. Experimental results demonstrate
that the DE/Neighbor/2 mutation strategy and IRNDE algorithm show overall better and faster
convergence than the DE/Neighbor/1 mutation strategy and RNDE algorithm. The parametric
significance test shows that there is a significance difference in the performance of RNDE and IRNDE
algorithms at the 0.05 level of significance.

Keywords: mutation strategy; symmetry; function optimization; differential evolution; neighborhood
selection

1. Introduction

Today, the modern world has entered a post peta scale era; the requirements are grow-
ing exponentially for computation and data processing, and the need for high-performance
computation is increasing day by day; thus, the trend has changed from serial execution
to high-performance computation. For achieving high-performance computation, sev-
eral hurdles need to be tackled. Examples are those problems where the solution is very
hard to find, or the solution merely exists or is very hard to achieve, e.g., NP-complete

Symmetry 2023, 15, 1916. https://doi.org/10.3390/sym15101916 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15101916
https://doi.org/10.3390/sym15101916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4576-8585
https://orcid.org/0000-0001-6067-382X
https://orcid.org/0009-0001-1268-9613
https://orcid.org/0000-0002-7445-7121
https://orcid.org/0000-0002-8271-6496
https://doi.org/10.3390/sym15101916
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15101916?type=check_update&version=4

Symmetry 2023, 15, 1916 2 of 26

problems. To achieve the solution to those problems, we have very well-known heuristic
techniques which provide the solution to these types of problems, but those solutions are
not completely optimized. However, using optimization algorithms, such as the differen-
tial evolution (DE) and particle swarm optimization (PSO), optimized solutions to such
problems can still be found.

Moreover, we will observe and discuss its variants, as it is already known that the
original DE was first proposed by Storn and Price [1] in 1995; this drew the attention of
many researchers as it was the simplest algorithm that provided the optimized solutions to
many real-world problems. Thus, based on the original DE algorithm, different variants
were introduced later. Some of the well-known approaches were the hybridization with
other techniques, modification of mutation strategies, adaptation of mutation strategy and
parameter settings, and use of neighbor information.

1.1. Problem Statement

The local optima issue is a challenging issue if the population loses its diversity in
the differential evolution algorithm. The selection of parents is important to incorporate
diversity in mutation and crossover operations’ DE algorithm. The perturbation of a vector
that evolves the population around the neighborhood will be stuck in local optima because
of the imbalance between the exploration and exploitation capability of the algorithm. The
RNDE algorithm utilizes only one difference vector and a neighbor best vector from a set
of N neighbors, where N is taken from the interval of NLL and NUL. Less diversity and
slow convergence degrade the convergence speed of the RNDE Algorithm 1 [2].

Algorithm 1 Improved Random Neighbor-Based Differential Evolution

1: Randomly initialize population
2: Evaluate the objective function
3: FEs = NP
4: while FEs < Max(FEs) do
5: Calculate the number of neighbor’s Ni for each individual

Ni = Nlb + (Nub − Nlb).
f (Xi)− fmin+ψ

∑NP
j=1(f (Xj− fmin)+ψ

6: for i = 1 : NP do
7: Randomly choose Ni neighbors for ith individual and the best one Xnbest
8: Generate IRNDE mutant vector Vi according to

Vi = Xnbest + F(Xr1 − Xr2) + F(Xr3 − Xr4)
9: Execute the crossover operation to generate a trial vector Ui

10: Evaluate the trial vector Ui
11: FEs = FEs + 1
12: if Xi > f (Ui) then
13: Xi = Ui
14: else
15: Update CR by using adaptive shift
16: if f (Ui) > f (Xi) then
17: Flag = - Flag
18: end if
19: if Flag==1 then
20: CR = CRlarge + 0.1 ∗ randn
21: else
22: CR = CRsmall + 0.1 ∗ randn
23: end if
24: end if
25: end for
26: end while

Symmetry 2023, 15, 1916 3 of 26

1.2. Research Significance

The selection of the number of parents used in the perturbation of any individual is
considered important in the evolution of the DE algorithm. The RNDE algorithm utilizes a
difference vector that reduces the diversity in the population and, as a result, the algorithm
converges slowly. The perturbation of one neighborhood’s best vector results in more
exploitation than exploration and ultimately results in being stuck in local optima that can
be fixed by increasing the exploration capability of the DE algorithm.

1.3. Research Contributions

• This paper presents a novel mutation strategy in the RNDE algorithm to maintain the
balance between the exploration and exploitation of the DE algorithm. The proposed
IRNDE is helpful in increasing the convergence speed and average fitness solution
quality of results.

• Experimental results show that the performance of the improved RNDE algorithm is
superior, as compared to the RNDE algorithm for the standard test suit of benchmark
functions.

• Convergence graphs confirm the quick convergence of the proposed IRNDE algorithm
and statistical results show the significance of the IRNDE algorithm.

1.4. Research Question and Hypothesis

• Ways to increase population diversity and incorporate a balance between exploration
and exploration during the evolution process of the RNDE algorithm.

• Finding significance in the performance of the RNDE algorithm and proposed algo-
rithm.

In the rest of the paper, Section 2 shows how the DE algorithm works; a brief literature
review is presented in Section 3; material and methods are given in Section 4; results and
discussion are presented in Section 5; statistical analysis is given in Section 5.4; conclusion
and future are given in the last section.

2. Principle of the Classical Differential Evolution Algorithm

As mentioned earlier, the purpose of the DE algorithm is to provide optimized
solutions [3]. The algorithm keeps searching for the best individual among the given
population [4]. It is also considered that DE can solve the problem for immediate goals
using a given population and a set of parameters [5]. It is a population-based algorithm,
such as genetic algorithms, and uses crossover and mutation as operators; the last step is
the selection step. Moreover, it is self-adaptive, where all solutions have the same chance of
being selected, no matter what their fitness values are [6]. It follows the greedy approach,
especially in the selection phase. DE uses NP (number of population) D-dimensional pa-
rameter vectors, and it is a parallel direct search method. Once we obtain the result or new
offspring from the DE algorithm, we compare the new offspring/generation with their par-
ents and we evaluate both the parents and the new generation based on their fitness value.
We obtain a new individual by applying mutation, crossover, and selection operators. Those
who are better at fitness are kept, no matter whether it is a new generation or their parents.
In the selection operation, the greedy selection is applied to select the individual among
the target vector and trial vector [7]. DE uses NP, a Population Size, and D-dimensional
parameter vectors, and it is a parallel direct search method. The individual is represented
by Xi,j, i = 1, 2, . . . , NP, j = 1, 2, . . . , D and the population size for the population of each
generation G. The classical DE works in three phases: mutation, crossover, and selection.

Symmetry 2023, 15, 1916 4 of 26

2.1. Mutation Phase

The mutation phase is used to generate a mutant vector or donor vector that is then
used in a crossover operation. To calculate each target vector Xi,j, i = 1, 2,. . . , NP, the donor
or the mutant vector is generated according to

Vi,G+1 = Xr1,G + F.(Xr2,G − Xr3,G) (1)

This equation during the Gth generation generates a donor vector, Vi,G+1. r1 , r2 , r3 ε
1, 2, . . . , NP, with a mutually different integer and F > 0. The random integers r1, r2, and
r3 are taken from the running index i; thus, the NP should be greater or equal to four to
meet the condition. F is the real time constant factor, in which ε [0, 2], and is responsible for
amplification of differential variations of (Xr2, G− Xr3, G). It shows the two-dimensional
illustration which is responsible for the generation of Vi,G+1.

2.2. Crossover Phase

The crossover is introduced to increase the diversity of the disconcerted parameter
vectors [8]. The trial vector is

Vi,G+1 = Xr1,G + F . (Xr2,G − Xr3,G) (2)

Ui, G+1 = (u1i, G+1, u2i, G+1, . . . , uDi, G+1) (3)

where j = 1, 2, . . . , D.
In the crossover phase, randb(j) is the jth calculation of an unvarying random number

generator with outcome ε [0, 1]. CR is the crossover constant ε [0, 1], and this is set by the
user. The rnbr(i) is the randomly chosen index ε 1, 2, . . . , D which should make sure that
ui,G+1 always obtains at least one parameter from vi,G+1.

2.3. Selection Phase

The selection phase is responsible for deciding whether an individual should become
a member of G + 1 or not. Hence, trial vector ui,G+1 is always compared with target vector
vi,G+1 by using the greedy approach and if ui,G+1 to achieve minimum fitness value xi,G,
then xi,G+1 is set to ui,G+1; otherwise, the old value xi,G is taken [1].

2.4. Commonly Used Mutation Strategies

As the focus of the current study is DE neighbor information, for classical DE and
in other variants of DE, the most commonly used group of mutation strategies [9] are
given below

Vi = Xr1 + F . (Xr2 − Xr3) (4)

Vi = Xbest + F . (Xr1 − Xr2) (5)

Vi = Xi + F . (Xbest − Xi) + F . (Xr1 − Xr2) (6)

Vi = Xr1 + F . (Xr2 − Xr3) + F . (Xr4 − Xr5) (7)

Vi = Xbest + F . (Xr1 − Xr2) + F . (Xr3 − Xr4) (8)

The above-mentioned mutation strategies are used, not only in neighbor informa-
tion types of DE algorithms, but also by different researchers of different variants of DE.
Moreover, these strategies are also used in the classical version of DE.

Symmetry 2023, 15, 1916 5 of 26

2.5. Major Contributions of Study

A number of studies by various researchers are available in the literature to han-
dle the local optima issue, balance between exploration and exploitation, improve the
convergence speed and improve the solution quality of the DE algorithm. A few of the
variants introduced by researchers include tournament selection-based DE [10], rank-based
DE [11], fuzzy-based DE [12], self-adaptive DE [13], adaptive DE [14], and Pool-based
DE [15] to maintain the balance between exploration and exploitation as well as to improve
the convergence performance of the DE algorithm in their research work.

There are two commonly used mutation strategies for DE. The first is DE/best/1, which
provides better exploitation, as it obtains the best population but results in poor exploration.
On the other hand, in the second strategy of DE/rand/1, in which exploration is better as it
obtains the base vector randomly, exploitation is not good, as there is no balance between ex-
ploration and exploitation. So far, to overcome this issue, the DE/Neighbor/1 mutation strat-
egy and random neighbor-based differential evolution (RNDE) algorithm were introduced
in [2] and tested on 27 extensively used benchmark functions a few years earlier. The authors
stated that the DE/Neighbor/1 and RNDE algorithm is successful in maintaining the balance
between exploration and exploitation. It is built to use the lower and upper bound limits to
control the balance between exploration and exploitation. However, this mutation strategy
shows a slow convergence. It should achieve a global minimum as the function falls within
1000 × D, but due to exploration and exploitation balancing trade-offs, it is unable to obtain
a global minimum within the range of 1000 × D in some of the objective functions.

This study introduces a new approach, based on the RNDE variant, namely, the
improved random neighbor-based differential evolution (IRNDE). The proposed algorithm
uses neighbor information similar to RNDE; however, in addition, we added a new concept:
weighted differences after various tests. The proposed IRNDE is tested on the same
27 commonly used benchmark functions on which RNDE was tested. Experiments are
performed to compare its performance with RNDE. Results demonstrate faster convergence
of IRNDE and its superior performance compared to RNDE.

The rest of this article is organized as follows. The related work is given in Section 3,
which is followed by a description of the proposed IRNDE algorithm in Section 4. Section 5
presents the results, while the conclusion is given in Section 6.

3. Related Work

Many researchers proposed models/techniques to improve the DE algorithm to pro-
vide better and more optimized results [16,17]. Few researchers provided techniques or
other algorithms that work with the DE algorithm to provide hybrid techniques obtain-
ing more optimized and satisfactory results. DE algorithm has attracted many scholars
around the globe; according to their work, the DE algorithm can be categorized in the
following sections.

3.1. Hybridization with Other Techniques

The study [18] proposed a hybrid algorithm CADE which combines a customized
canonical version of CA and DE. The canonical CA uses the ’Accept()’ function which
selects the best individual from the population; then, it is updated in the belief space
knowledge source by using the ’Update()’ function. The ’Influence()’ function selects
the knowledge source that affects the evolution of the next generation of the population.
The authors state that in CA, the major source of exploration is topographic knowledge,
which is the knowledge about the functional landscape. Moreover, DE can also provide a
complementary source of exploration knowledge hence it makes the perfect complement
of CA. Both algorithms share the same population space and hence follow high-level
teamwork. The study [19] proposed a mechanism, called ADE-ALC, which is abbreviated
to the adaptive DE algorithm with an aging leader and challenges, which is helpful to
solve optimization problems. It is introduced in the framework of DE, which helps in
maintaining the diversity of the population. Moreover, in the DE algorithm, it is critical

Symmetry 2023, 15, 1916 6 of 26

to retain the diversity of the evolutionary population in solving multimodal optimization
problems. ADE-ALC achieves the optimal solution with fast-converging speed. In the
ADE-ADC approach, the key parameters are updated that depend on the given probability
distribution that could learn from their successful experience in the next generation. In
the end, the effectiveness of the ADE-ALC algorithm is checked by numerical results of
twenty-five benchmark test functions, where they found that ADE-ALC shows better or
at least competitive optimization performance in terms of statistical performance. The
authors proposed a hybrid technique in [20] to provide a statistically better performance
in the optimization problems. The authors used a combination of the DE algorithm and
the stochastic fractal search algorithm. As the hybrid approach is used, the combination of
both algorithms has the strength of both competent algorithms and produces better results
than the single algorithm. Moreover, to test the performance of the hybrid approach, they
used the IEEE 30 benchmark suite, IEEE CEC2014. The results show a better performance
of the hybrid approach compared to a single algorithm, and results show the statistical
superiority of the hybrid approach.

3.2. Modification of Mutation Strategies

The study [21] proposed an approach to improve the search efficiency of the DE algo-
rithm. The performance of DE is badly affected by parameter settings and evolutionary
operators, e.g., the mutation, crossover, and selection process. To overcome this issue,
the authors proposed a new technique, called a combined mutation strategy. A guiding
individual-based parameter setting method and a diversity-based selection strategy are
used. The proposed algorithm uses the concept of sub-population and divides the pop-
ulation into two subcategories, superior and inferior. Experiments are performed using
CEC 2005 and CEC 2014 benchmarks. Moreover, their algorithm is different from greedy
selection strategies; hence, they proved their algorithm produced more efficient results than
previous proposed techniques. The study [22] points out that DE uses only the best solution
to deal with global optimization problems. Similarly, mutation strategies in the existing
literature utilize only one best solution. The authors challenged this concept and introduced
the concept of m best candidates. The authors proposed that m best candidates should be
selected to obtain the better gain or better achievement. A technique called the collective
information-powered DE (CIPDE) algorithm is proposed to obtain the m best candidates
and enhance the power of DE. The CEC2013 benchmark functions are used for experiments
that prove that the CIPDE technique is much better than existing mutation strategies. The
study [23] proposed a new technique in which they improved the structure of the DE
algorithm. The authors argue that the performance of DE is based on control parameters
and the mutation strategy; if we enhance both the selection of proper mutation strategy
and control parameter, we can obtain better results. An automated system is proposed to
produce an evolution matrix that later takes the place of the control parameter crossover
rate, Cr. Furthermore, parameter F is renewed in the evolution process. The mutation
strategy along with the time stamp system is also progressive in this study. The experiment
results showed that the proposed technique is very competitive with the existing strategies.

3.3. Adaptation of Mutation Strategy and Parameter Settings

The study [24] proposed a new algorithm that can investigate problem landscape
information and the performance histories of operators for dynamically selecting the most
suitable DE operator during the evolution process. The need for this mutation strategy
is justified by the fact that predominantly existing works use a single mutation strategy.
The authors present the concept of using multiple mutation strategies. Multiple mutation
strategy-based algorithms are reported to provide far better results than single mutation-
based algorithms. In such algorithms, the emphasis is to obtain the better performing
evolutionary operator, which will be totally based on performance history for creating
new offspring. This procedure is carried out dynamically; it selects the most suitable
evolutionary operator. Experimental results using 45 optimization problems show the

Symmetry 2023, 15, 1916 7 of 26

efficacy of the proposed algorithm. The study [21] proposed a new and improved version
of the DE algorithm. Firstly, the search strategy of the previous DE is improved by using
the information of individuals to set the parameter of DE and update the population, and
the combined mutation strategy is produced by combining two single mutation strategies.
Secondly, the fitness value of the original and guiding individual is used. Finally, a
diversity-based selection strategy is developed by applying a greedy selection strategy.
The performance is evaluated using CEC 2005 and CEC 2014 benchmarks, and better
results are reported. The study [25] investigates the high-level ensemble in the mutation
strategies of DE algorithms. For this purpose, a multi-population-based framework (MFT)
was introduced. An ensemble of differential evolution variants (EDEV) based on three high,
popular, and efficient DE versions is utilized. JADE-adaptive DE with optional external
archive, CoDE DE with composite trial vector generation strategies and control parameters,
and EPSDE DE algorithm with an ensemble of parameters and mutation strategies are
joined. Furthermore, the whole population of EDEV is divided into four subcategories. In
the end, the EDEV-based test is run on the CEC 2005 and CEC 2014, which shows better
performance of EDEV.

3.4. Use of Neighbor Information

The study [26] proposed an adaptive social learning (ASL) strategy for the DE algo-
rithm so that neighborhood relationship information of individuals in the current popula-
tion can be extracted; this is called the social learning of DE (SL-DE). In the classical DE
algorithm, parents in mutation are randomly selected from the population. However, in
the ASL strategy, the selection of parents is intelligently guided. In ASL, every individual
can only interact with their neighbor and parents. To check the efficacy of SL-DE, it is
applied to the advanced DE algorithm. Results demonstrate that SL-DE can achieve a better
performance than most of the existing variants of DE. The study [27] proposed the tech-
nique in which the authors applied the global numerical optimization and the index-based
neighborhood on DE. In this technique, the authors used information and population to
enhance the performance of DE. In the existing literature, neighborhood information of
the current population has not been systematically exploited in DE design. The authors
proposed neighborhood-adaptive DE (NaDE). The NaDE technique is based on the pool of
index-based neighborhood topologies. Firstly, several neighborhood interactions for every
discrete individual are recorded and later used adaptively for specific function selection.
Secondly, the authors introduced a neighborhood-directional mutation operator in NaDE to
obtain the new resolution in the designated neighborhood topology. Finally, NaDE is easy
to operate and implement and can be matched with earlier DE versions on different kinds
of optimization problems. The authors proposed a new approach called enhancing De
with a random neighbors-based strategy in [2]. Traditionally, DE/rand/1 and DE/best/1
mutation strategies are used with DE. In DE/rand/1, the base vector is chosen from the
population randomly for better exploration. On the other hand, the DE/best/1 strategy
has better exploitation and poor exploration. To overcome this issue, the authors proposed
DE/Neighbor/1. In the proposed technique, for each individual population at every gen-
eration, the neighbors are chosen from the population in a random manner and the base
factor of the DE/Neighbor/1 mutation strategy should be the best one among neighbors.
Xiong et al. [28] introduced a speciation-based DE algorithm in their research work. The
presented algorithm utilizes the mechanism of the adaptive neighborhood by consider-
ing multimodal benchmark functions. They used the concept of achievement to store
inferior individuals in each iteration and remove similar-performing individuals using
the mechanism of crowding relief. In their presented approach, the use can fine-tune the
parameters adaptively. Liao et al. [29] considered the system of non-linear equations using
the DE algorithm in their research work. They utilized neighborhood-based information to
increase the exploitation capability of the DE algorithm. The size of the neighborhood is
dynamically selected with the adjustment of parameter adaption in the state of evolution.
The search efficiency of the DE algorithm was enhanced by achieving significant results.

Symmetry 2023, 15, 1916 8 of 26

The research work [30] presented binary differential evolution based on a self-adaptive
neighborhood method for change detection in super-pixels. The change detection process is
carried out by using a binary DE mutation strategy to reduce the dimension of super-pixels.
Lio et al. [31] introduced a variable neighborhood-based DE algorithm by utilizing a
history archive in their research work. During the evolution process, the neighborhood
size is dynamically controlled in their presented approach. The information exchange
process is performed between the current population and the population stored in the
achieved research. The information exchange is helpful to escape from local optima during
the evolutionary process. Liu et al. [32] considered the economic dispatch problem by
incorporating a direction-inducted strategy in neighborhood-based DE algorithm in their
research work. They have used a new mutation strategy named a neighborhood-based non-
elite direction strategy that enhances the exploitation capability of the presented algorithm.
Sheng el al. [33] introduced the concept of an adaptive neighborhood-based mutation
in the DE algorithm. The presented technique is helpful to focus on an intensive search
followed by an initial search by the DE algorithm. They also used a Gaussian local search
to evolve promising individuals during the search process. Wang et al. [34] introduced
an adaptive memetic-based neighborhood crossover strategy in their research work. They
used the concept of a multi-nitching sampling for the evolution of the sub-population to
ensure intensive search. They also presented the design of adaptive elimination-based
local search in their research work. Their neighborhood crossover strategy focuses on
an exploitation capability in the DE algorithm to encourage a good quality solution.
Cai et al. [35] presented a self-organizing DE algorithm in their research work that is
helpful in guiding the search process by utilizing neighborhood information. The adaptive
adjustment of various individuals in the explored works use a cosine similarity in the
self-organizing map. Segredo et al. [36] proposed a neighborhood based on proximity
in the DE algorithm that is helpful to balance between exploration and exploitation dur-
ing the evolution process. They used Euclidean-based distance to measure the similarity
between neighbors of individuals and termed it a similarity-based neighborhood search.
Baioletti et al. [37] presented algebraic differential evolution based on a variable neighbor-
hood concept in their research work. Their presented algorithm utilizes the information of
three neighborhoods for shifting and swapping purposes to form permutations. Tian and
Gao [38] introduced the adaptive evolution method by using the neighborhood mechanism
in the DE algorithm. They used a selection probability based on the selection of individuals,
as well as two mutation operators based on the neighborhood to improve the evolution pro-
cess. They also used a simple reduction method to adjust the population size to incorporate
diversity in the DE algorithm. Tarkhaneh and Moser [39] performed a cluster analysis by
incorporating a neighborhood search and Archimedean spiral in the DE algorithm in their
research work. Mantegna Levy’s flight mechanism was used in the Archimedean spiral by
generating robust solutions to balance between exploration and exploitation during the
searching process. In this section, we analyzed the DE variants in terms of mutation strate-
gies, use of neighbor information, hybridization of the DE algorithm, etc. Experimental
results and performance reports from these works indicate that the performance of DE can
be enhanced in several ways. Some of the studies used hybrid approaches to achieve the
enhancement while others used a combination of something likr test functions, etc. We
can say that, to some extent, researchers were able to obtain a better performance from
enhanced versions rather than from the simple version of the DE algorithm. However, to
achieve a better performance of DE, they had to make a trade-off. We realize that there are
many research challenges for DE to further improve its performance. This research aims
to enhance the concept of random neighbors; the focus is to obtain a faster convergence
compared to the existing random neighbors approach.

Symmetry 2023, 15, 1916 9 of 26

4. Materials and Methods
4.1. DE With Random Neighbor-Based Mutation Strategy

For this research, we selected the random neighbor-based differential evolution
(RNDE) approach by [2]. It was proposed to achieve a balance between a better exploration
and exploitation, which cannot be achieved using traditional DE/rand/1 and DE/best/1
mutation strategies. The mutation phase is RNDE, given as

Vi = Xnbest + F . (Xr1 − Xr2) (9)

The number of neighbors N plays a critical role in leading the balance between
exploration and exploitation by using the upper and lower bound limits. A small value of
N makes the mutation strategy similar to the DE/rand/1 strategy, which results in better
exploration and poor exploitation. Contrarily, the large value of N (near to NP) makes the
mutation strategy similar to DE/best/1, which provides a better exploitation. The large
value of N is not a wise choice because it can make the algorithm become stuck in the local
optimum. The authors also proposed a self-adaptive strategy that dynamically updates N
and the number of neighbors for each individual Xi, as follows

Ni = Nlb + (Nub − Nlb).
f (Xi)− fmin + ψ

∑NP
j=1
(

f
(
Xj
)
− fmin

)
+ ψ

(10)

where Nlb and Nub show lower bounds and upper bounds, respectively, fmin is the smallest
best value of the objective function in the population in the current generation and ψ is
used as the smallest constant to avoid a zero division-error.

The RNDE is successful in maintaining the balance between exploration and exploita-
tion, as it was built to use the lower and upper bound limits to control the balance between
exploration and exploitation. However, as the whole focus of the RNDE algorithm is to
maintain the balance between exploration and exploitation, this mutation strategy makes
convergence very slow, thus requiring a larger number of iterations in achieving the global
optimum.

4.2. Proposed Approach

To overcome the slower convergence problem of RNDE, this study proposes an im-
proved random neighbor-based mutation strategy for DE (IRNDE). The flow chart of the
proposed IRNDE is given in Figure 1. IRNDE also uses neighbor information, such as the
RNDE algorithm and DE/Neighbor/1 mutation strategy; however, in addition, we added
another term of weighted differences in the DE/neighbor/2 mutation strategy after various
tests. As we added an extra-weighted vector in the mutation phase, the upper and lower
bound limits of N, which is denoted by neighbors, are also increased. The proposed IRNDE
mutation equation is given as

Vi = Xnbest + F . (Xr1 − Xr2) + F . (Xr3 − Xr4) (11)

The original/base RNDE algorithm and DE/Neighbor/1 mutation strategy have one
weighted difference vector

Vi = Xnbest + F(Xr1 − Xr2) (12)

On the contrary, the proposed IRNDE algorithm and DE/neighbor/2 mutation strat-
egy have two weighted difference vectors

Vi = Xnbest + F(Xr1 − Xr2) + F(Xr3 − Xr4) (13)

In addition, the upper and lower neighbor bounds limits are also adjusted accordingly.
In the base algorithm RNDE, the mutation strategy DE/Neighbor/1 lower bound Nlb was
set to 3, and the Nub upper bound was set to 10 after experimentation. For the proposed

Symmetry 2023, 15, 1916 10 of 26

IRNDE, using the DE/neighbor/2 mutation strategy, we updated upper and lower bound
limits accordingly, and set Nlb to 5 and Nub to 12.

We used lower bound 5 because minimum vectors are 5 in our mutation equation.
Moreover, the range of implication factor F in the base algorithm RNDE and the proposed
algorithm IRNDE is between 0 to 2 and was varied according to the nature of the objective
functions. The value of F is kept differently for each function until the best result is achieved.
However, we have faced many difficulties during the implementation of IRNDE. In the
RNDE algorithm, N denotes the neighbors and is very important in maintaining the balance
between exploration and exploitation. If the individual from the population learns the best
information from their neighbors, the efficiency of the overall algorithm will be enhanced
and more fit offspring can be obtained.

Figure 1. Flowchart of proposed IRNDE algorithms.

Another major change from the original DE, which is used both by RNDE and the
proposed IRNDE, is the dynamic updation of CR, if the trial vector is worse than the
target/current vector. The idea behind the dynamic update of CR is that if the trial vector

Symmetry 2023, 15, 1916 11 of 26

is worse than the target/current vector, i.e., f (Ui) ≥ f (Xi), it means current CR cannot
provide the best solution; it needs to be updated. Conversely, if a small value of CR is
not suitable, then this method can shift the value to the larger one. This strategy, called
the adaptive shift strategy, is based on CRl and CRs and uses a standard deviation of 0.1
and the random number denoted by randn, which is a real number between 0 and 1. To
fulfill this, RNDE uses two terms CRl and CRs, where CRl means large and CRs means
the smaller value of CR. The value of CRl is set to 0.85 and the value of CRs is set to 0.1
after conducting many experiments. If the fitness of the trial vector is worse than the target
vector, then CR is updated using the negation from CRl to CRs or CRs to CRl using the
following equations

CR = CRl + 0.1× randn (14)

CR = CRu + 0.1× randn (15)

In IRNDE, the crossover phase is given as

Uij =

{
Vij, if randj(0, 1) ≤ CR or j = jrand

Xij otherwise
(16)

Equation (16) is responsible for performing the crossover operation, as it is used in
the same classical DE crossover phase studies. Moreover, where G = 1, 2, . . . , D, and
i = 1, 2, . . . , NP jrand randomly choose an integer from 1, 2, . . . , D, randj is a random value
consistently distributed in [0, 1], j = 1, 2, . . . , D, and, normally, CR should be in between
[0, 1], as it is a crossover probability.

However, in RNDE and IRNDE, CR is dynamically updated, because if the value of
CR is large, then the CR-made trial vector learns more from the mutant vector and less
from the target vector; this causes an increase in the population diversity and is contrary to
a small value of CR, making the trial vector learn more from the target vector and less from
the mutant vector. IRNDE selection phase is denoted as

Uij =

{
Vij, if randj(0, 1) ≤ CR or j = jrand

Xij otherwise
(17)

Equation (17) shows the selection phase of IRNDE, which is different from the classical
DE. As in classical DE, greedy choice is used between the Ui trial vector and Xi target vector,
and if Ui is better, then Xi is replaced with Ui. Hence, it survives in the next generation;
however, in RNDE and IRNDE, if the Ui trial vector is not better than the Xi target vector,
then Xi will be replaced with Xi and will dynamically update the CR. This is where
NP shows the number of individuals in the population, FEs is the number of function
evaluations, Max(FEs) is the maximum number of functions evaluated, Vi is the mutant
vector around the individual Xi (or called a target vector),Ui is the trial vector, fmin is the
minimum (best) value of the objective function in the population at the current generation,
and xi is the smallest constant in the computer to avoid a zero-division-error. Flag is used
to inverse the value of CR and is initialized with 0, CR is the crossover probability, CRlarge
is the large mean value which is generated by Gaussian distribution, CRsmall is a small
mean value that is generated by the Gaussian distribution, and 0.1 is the standard deviation.
After some experimentation and surveys, CRlarge is set to 0.85 and CRsmall is set to 0.1.

5. Results and Discussions

To evaluate the effectiveness of the proposed algorithm IRNDE and the new enhanced
mutation strategy, namely DE/Neighbor/2, we utilized 27 commonly used benchmark
functions in which the previous RNDE algorithm and DE/Neighbor/1 mutation strategy
were tested. For fair testing with the base algorithm, we implement both RNDE and

Symmetry 2023, 15, 1916 12 of 26

the proposed IRNDE using the DE/Neighbor/1 mutation strategy and DE/Neighbor/2
mutation strategy, respectively, on the same parameter settings.

5.1. Parameter Settings

As mentioned earlier, the original/base RNDE algorithm and DE/Neighbor/1 muta-
tion strategy have one amplified difference vector, however, the proposed IRNDE algorithm
and DE/neighbor/2 mutation strategy have two amplified difference vectors used to gen-
erate the mutant vector or donor vector. In addition, upper and lower bounds limits for the
calculation of neighbors are also adjusted accordingly. In the base algorithm, the RNDE
mutation strategy DE/Neighbor/1 lower bound Nlb was set to 3, and the Nub upper bound
was set to 10 after some research and experimentation. We have improved the mutation
equation in our algorithm and added an extra weighted difference vector in the proposed
IRNDE mutation strategy DE/neighbor/2. We have updated the upper and lower bound
limits as well and set Nlb = 5 and Nub = 12.

The lower bound is set to 5 because minimum vectors are 5 in our mutation equation.
Moreover, the range of implication factor F in the base algorithm RNDE and the proposed
algorithm IRNDE was between 0 and 2 and has been varied according to the nature of the
objective functions. The value of F is kept different for each function until the best result
is achieved. Finally, the selection phase is the same as used in the original DE algorithm
except for the updating process of CR, which is already explained.

5.2. Benchmark Functions

For experimental evaluation, we have used a test suite with 27 benchmark functions,
which are also used by the RNDE algorithm. The details of the test suit are provided
in Table 1.

Table 1. Test suite with 27 benchmark functions.

Function Name Search Range Global Optimum

Unimodal Functions

f1 Sphere [−100, 100] 0
f2 Schwefel2.22 [−10, 10] 0
f3 Schwefel1.2 [−100, 100] 0
f4 Schwefel2.21 [−100, 100] 0
f5 Rosenbrock’s [−30, 30] 0
f6 Step [−1.28, 1.28] 0
f7 Quartic with Noise [−100, 100] 0

Multimodal Functions

f8 Schwefel2.26 [−500, 500] −418.98
f9 Rastrigin’s [−5.12, 5.12] 0

f10 Ackley [−32, 32] 0
f11 Griewank’s [−600, 600] 0
f12 Penalized1 [−50, 50] 0
f13 Penalized2 [−50, 50] 0

Shifted Unimodal Functions

f14 Shifted Sphere Function [−100, 100] −450
f15 Shifted Schwefel’s Problem 1.2 [−100, 100] −450

f16 Shifted Rotated High Conditioned Elliptic
Function [−100, 100] −450

f17 Shifted Schwefel’s Problem 1.2 with Noise in
Fitness [−100, 100] −450

f18 Schwefel’s Problem 2.6 with Global Optimum
on Bounds [−100, 100] −310

Symmetry 2023, 15, 1916 13 of 26

Table 1. Cont.

Function Name Search Range Global Optimum

Shifted Multimodal Functions

f19 Shifted Rosenbrock’s Function [−100, 100] 390

f20 Shifted Rotated Griewank’s Function without
Bounds [0, 600] −180

f21 Shifted Rotated Ackley’s Function with Global
Optimum on Bounds [−32, 32] −140

f22 Shifted Rastrigin’s Function [−5, 5] −330

f23 Shifted Rotated Rastrigin’s Function [−5, 5] −330
f24 Shifted Rotated Weierstrass Function [−0.5, 0.5] 90
f25 Schwefel’s Problem 2.13 [−π, π] −460

f26 Shifted Expanded Griewank’s plus
Rosenbrock’s Function (F8F2) [−3, 1] −130

f27 Shifted Rotated Expanded Scaffer’s F6 Function [−100, 100] −300

5.3. Results

The list given in Table 1 is the list of benchmark functions, their ranges, and their
global minimum. These are the functions that we used to check the performance of both
algorithms, RNDE and IRNDE. For experiments, 5000 iterations are used to evaluate the
performance of both algorithms. Convergence graphs are shown only for f1 to f6; however,
tabular data are presented for f1 to f15.

Figure 2 shows the graphical representation of the fitness results of f1 to f6, where
iterations are 5000, population NP = 150, and dimension D = 50. Moreover, the overall
enhancement of the proposed algorithm IRNDE can be clearly observed.

(a) (b)

(c) (d)

Figure 2. Cont.

Symmetry 2023, 15, 1916 14 of 26

(e) (f)

Figure 2. Convergence graphs of f1 to f6 for RNDE and IRNDE. (a) Function f1 convergence graph
of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (b) Function f2 convergence graph
of RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (c) Function f3 convergence graph of
RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (d) Function f4 convergence graph of
RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, (e) Function f5 convergence graph of
RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000, and (f) Function f6 convergence graph of
RNDE and IRNDE for NP = 150, D = 30, Iterations = 5000.

The performance of both algorithms, RNDE and IRNDE, is analyzed with respect
to variations in the number of populations (NP) and dimensions that are denoted by D.
Results of fitness values are reported in Table 2 for population size NP = 150, dimension
size D = 50, and iterations = 5000. The results are divided into the pair of five benchmark
functions: f1 to f5, f6 to f10, and f11 to f15. It can be clearly observed that the proposed
algorithm IRNDE has performed far better than the base algorithm RNDE. There is a
visible difference, as the proposed algorithm IRNDE is reducing more quickly than the
base algorithm RNDE.

Results given in Table 3 are generated using population size NP = 150, dimension size
D = 50, and iterations = 5000 for f6 to f10. It can be observed that the proposed algorithm
IRNDE shows better performance compared to the base algorithm RNDE.

The results for f11 to f15 are given in Table 4, which is indicative of the superior
performance of the proposed IRNDE for f11 to f15. Results demonstrate that the proposed
IRNDE algorithm can obtain a global optimum with less numbers of iterations than the
RNDE algorithm.

In Table 5, results are given for both RNDE and IRNDE regarding the best, mean, and
worst values with standard deviation and number of iterations needed to reach the global
optimum. Results are generated using the population size NP = 150, dimension size D
= 10, and iterations = 5000. It can be observed that f14 RNDE at the 5000th iteration still
could not reach the global optimum, as −450 is the rounded value and the original value
is (−449.99983911013300), whereas IRNDE reached the global optimum in 3976 iterations.
While observing the number of iterations for f1 to f27, it can be observed that IRNDE can
achieve a global optimum with much less numbers of iterations compared to RNDE, which
shows the superiority of the proposed IRNDE algorithm.

Table 2. Fitness values of function f1 to f5 for NP = 150, D = 50, and iterations = 5000.

Iterations
f1 f2 f3 f4 f5

RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE

1 107,166 107,166 197,013 197,013 91.4529 91.4529 2.19833e+71 2.19833e+71 4.31944e+08 4.31944e+08

5 107,166 107,166 197,013 197,013 91.4529 91.4529 1.56318e+71 1.25631e+69 4.31944e+08 4.31944e+08

10 106,763 98,577.1 197,013 197,013 91.4529 91.4529 1.56318e+71 9.13478e+68 4.31944e+08 4.31944e+08

15 106,763 98577.1 197,013 197,013 91.4529 91.4529 1.36815e+71 6.45164e+68 4.31944e+08 4.31944e+08

Symmetry 2023, 15, 1916 15 of 26

Table 2. Cont.

Iterations
f1 f2 f3 f4 f5

RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE

20 106,763 98577.1 196,295 168,441 91.4529 91.4529 6.09134e+69 5.62354e+67 4.31944e+08 4.31944e+08

30 102,924 93,241.7 196,295 168,441 91.4529 91.4529 1.10354e+69 3.20042e+67 4.31944e+08 4.31944e+08

40 93,490.6 93,241.7 196,295 168,441 91.4529 91.4529 8.49963e+68 1.1789e+65 4.31944e+08 4.31944e+08

50 93,490.6 91,660.3 196,295 168,441 91.4529 91.4529 3.2853e+67 6.41441e+63 4.31944e+08 4.31944e+08

100 86,431.9 56,403.3 196,295 168,441 91.4065 89.2837 1.27491e+63 3.44804e+55 4.04911e+08 2.99116e+08

150 69,868.9 40,416.5 171,358 143,138 90.3058 89.2837 1.15333e+62 5.90041e+53 4.04911e+08 2.77088e+08

200 64,281 34,341.9 171,358 143,138 90.3058 89.0754 4.09299e+60 2.93405e+51 3.90937e+08 1.99466e+08

400 31,954.4 6800.34 164,102 113,800 89.5071 85.3248 8.52268e+57 6.13965e+47 2.92851e+08 1.51033e+07

600 17,025.5 1761.99 153,406 96,057.6 89.5071 74.6393 5.21376e+49 9.92589e+44 2.45835e+08 1.92694e+06

800 7159.23 271.509 153,406 96,057.6 88.0884 67.8502 1.49244e+47 4.0476e+43 1.54781e+08 350747

1000 2954.65 85.033 113,349 78,643.5 85.2505 56.0395 2.36147e+46 3.02577e+42 5.83435e+07 57207.6

1200 1411.61 12.6946 113,349 78571.1 81.3025 51.9173 4.34581e+45 7.79156e+40 1.66845e+07 23060.8

1400 705.528 3.36049 113,349 78,508.4 64.4952 43.103 3.27444e+42 1.04872e+38 1.06145e+07 6365.95

1600 330.4 0.705804 103,116 77,692 64.4952 38.9589 2.92916e+37 9.65888e+34 3.61785e+06 3784.11

1800 143.321 0.148906 103,116 76,766.7 58.7125 27.6752 2.68602e+33 1.27846e+34 1.06625e+06 1897.68

2000 72.6645 0.027825 102008 70697.2 49.5419 24.4122 2.62547e+33 1.74314e+32 861487 1077.72

2200 28.5524 0.00816997 100,863 61497.6 48.856 21.7797 2.3213e+31 2.27938e+30 263,768 916.068

2400 15.1582 0.00170155 97,335.3 51,589.8 43.1867 18.7337 2.27744e+30 1.26613e+27 195775 700.118

2600 5.75624 0.000385194 94,308.2 51,589.8 39.6438 14.7789 2.27744e+30 2.4849e+26 112,458 642.347

2800 2.84793 8.46806e-
05 94308.2 46713.4 36.3745 12.6463 1.06585e+30 1.44058e+26 108,988 578.795

3000 1.30338 1.73096e-
05 89,843.4 45,302.9 32.3394 9.99071 3.97908e+28 2.10136e+24 80144.5 515.251

3200 0.591442 4.38451e-
06 89,843.4 38085.9 27.8329 8.72914 3.97908e+28 9.46517e+23 49,036 462.433

3400 0.243082 1.02105e-
06 85,722.3 38,085.9 25.2841 6.37169 3.97908e+28 2.44522e+22 38,846.7 347.158

3600 0.112868 2.96409e-
07 58,333.6 37,141.8 25.2841 0.4367 3.97908e+28 3.53667e+20 30,109.7 347.158

3800 0.0454132 4.85207e-
08 58,087.2 33,533.5 22.1458 4.33106 3.97908e+28 3.23352e+19 21,079.1 301.099

4000 0.0233552 1.12556e-
08 58,087.2 32429.3 20.2136 3.77252 1.09389e+28 1.09388e+18 19,657.9 248.39

4200 0.0104778 2.35218e-
09 50,409.5 28,602.2 19.4409 3.06997 2.02774e+26 5.27283e+16 13542.1 188.169

4400 0.005075793.57897e-
10 48,908.5 24,143 16.6239 2.6146 1.14581e+21 2.90392e+16 7989.71 129.291

4600 0.001919555.69887e-
11 48,908.5 21,842.5 14.7613 2.18745 1.14581e+21 4.48367e+12 5393.15 75.9085

4800 0.0007905191.34205e-
11 48,908.5 19,772.3 14.4084 1.63888 1.14581e+21 1.43737e+11 4743.71 56.1816

5000 0.0002850692.70302e-
12 48,861.7 19,772.3 12.7042 1.38764 1.14581e+21 1.43737e+11 4269.41 49.7603

Symmetry 2023, 15, 1916 16 of 26

Table 3. Fitness values of function f6 to f10 for NP = 150, D = 50, and iterations = 5000.

Iterations
f6 f7 f8 f9 f10

RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE

1 21 21 1.42628e+10 1.42628e+10 −3516.54 −3516.54 728.486 728.486 20.7073 20.7073

5 20 21 1.42628e+10 1.42628e+10 −4303.27 −4484.28 710.839 728.486 20.7073 20.7073

10 20 19 1.42628e+10 1.42628e+10 −6262.3 −6764.29 710.839 728.486 20.6636 20.6009

15 20 19 1.42628e+10 1.42628e+10 −6282.13 −6935.1 710.839 724.258 20.6636 20.6009

20 20 19 1.42628e+10 1.12205e+10 −7428.17 −10,057 710.839 724.258 20.6636 20.5467

30 20 16 1.42628e+10 1.12205e+10 −9398.02 −14,537.2 710.839 724.258 20.6381 20.5467

40 20 16 1.42628e+10 1.05978e+10 −9534.25 −16,106.3 710.839 682.222 20.5408 20.5467

50 20 16 1.32638e+10 1.05978e+10 −10322.7 −19,528.8 710.839 679.314 20.4485 20.4571

100 17 13 1.26344e+10 6.24556e+09 −12489.3 −20,949 698.499 594.514 20.3311 19.7722

150 16 11 1.17699e+10 3.04017e+09 −14,918.2 −20,949 698.499 533.429 19.8555 19.2148

200 15 7 1.17699e+10 1.56747e+09 −16,420 −20,949 698.499 494.476 19.7466 17.9631

400 10 2 5.23897e+09 2.18584e+08 −20,949 −20,949 698.499 455.163 18.7771 13.0003

600 7 0 4.14472e+09 1.98573e+07 −20,949 −20,949 698.499 404.723 16.8826 8.77267

800 4 0 1.17689e+09 2.39732e+06 −20,949 −20,949 698.499 362.02 14.5523 5.26086

1000 4 0 2.94735e+08 229054 −20,949 −20,949 682.614 362.02 12.3433 3.72313

1200 3 0 5.57891e+07 34096.6 −20,949 −20,949 682.614 352.496 9.90552 2.51792

1400 2 0 1.79379e+07 2328.99 −20,949 −20,949 682.614 349.761 7.68546 1.84401

1600 2 0 4.92482e+06 268.371 −20,949 −20,949 682.614 349.212 5.72134 0.697559

1800 1 0 1.60315e+06 22.3301 −20,949 −20,949 661.983 349.212 4.52571 0.242736

2000 1 0 291,084 1.7914 −20,949 −20,949 661.983 349.212 4.08072 0.0935032

2200 1 0 149,086 0 −20,949 −20,949 661.983 346.007 3.42992 0.0420455

2400 1 0 64,393.3 0 −20,949 −20,949 661.983 346.007 2.92868 0.01849

2600 0 0 22,563.6 0 −20,949 −20,949 661.983 346.007 2.76194 0.00828884

2800 0 0 6538.42 0 −20,949 −20,949 661.983 346.007 2.45848 0.00367194

3000 0 0 1510.69 0 −20,949 −20,949 645.042 323.189 2.18228 0.00170531

3200 0 0 434.261 0 −20,949 −20,949 645.042 323.189 1.65711 0.00071923

3400 0 0 96.3754 0 −20,949 −20,949 637.334 323.189 0.958296 0.000306232

3600 0 0 29.8399 0 −20,949 −20,949 637.334 319.548 0.389258 0.000158771

3800 0 0 6.60063 0 −20,949 −20,949 618.245 319.548 0.233483 6.64578e-
05

4000 0 0 3.47587 0 −20,949 −20,949 618.245 319.548 0.176824 3.53399e-
05

4200 0 0 0 0 −20,949 −20,949 618.245 311.84 0.113753 1.68176e-
05

4400 0 0 0 0 −20,949 −20,949 618.245 311.84 0.0665963 6.99799e-
06

4600 0 0 0 0 −20,949 −20,949 618.245 311.84 0.041563 3.74626e-
06

4800 0 0 0 0 −20,949 −20,949 601.333 311.84 0.0263947 1.71841e-
06

5000 0 0 0 0 −20,949 −20,949 601.333 311.84 0.0188713 8.13691e-
07

Symmetry 2023, 15, 1916 17 of 26

Table 4. Fitness values of function f11 to f15 for NP = 150, D = 50, and iterations = 5000, * indicates
global optimum could not reach.

Iterations
f11 f12 f13 f14 f15

RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE RNDE IRNDE

1 1055.15 1055.15 1.08539e+09 1.08539e+09 2.00701e+09 2.00701e+09 168,301 168,301 398,585 398,585

5 1055.15 1055.15 1.0548e+09 1.08539e+09 2.00701e+09 2.00701e+09 159,042 166,735 355,510 334,098

10 1055.15 1039.8 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 125,808 163,621 355,510 283,650

15 1055.15 1039.8 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 125,808 162,531 335,683 250,962

20 1052.27 937.941 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 120,207 131,129 335,683 250,962

30 1052.27 937.941 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 120,207 118,288 335,683 250,962

40 1052.27 894.572 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 106,490 114,755 335,683 250,962

50 1002.21 710.905 1.05323e+09 1.08539e+09 2.00701e+09 2.00701e+09 106,490 109,345 263,847 228,577

100 1002.21 542.417 1.05323e+09 1.01396e+09 1.88035e+09 1.94988e+09 85847.8 64180.9 224,621 185,333

150 1002.21 347.765 1.05323e+09 5.11633e+08 1.88035e+09 1.11306e+09 81634.2 55196.3 224,621 155,871

200 966.712 270.401 9.49775e+08 4.21792e+08 1.84609e+09 8.48217e+08 69772.1 34856.8 224,452 155,871

400 917.708 52.6602 5.81916e+08 3.97822e+07 1.3873e+09 7.41636e+07 24635.1 5930.8 209,400 152,495

600 917.708 13.7598 5.63661e+08 953763 1.26871e+09 3.5074e+06 12060.9 1400.9 177,338 144,816

800 759.071 3.21318 4.32972e+08 1005.07 1.2686e+09 43217.1 5247.32 −48.6701 170,882 125,566

1000 729.991 1.60481 2.97419e+08 22.796 7.18698e+08 767.809 2420.72 −370.845 154,607 97994.6

1200 632.36 1.10341 4.74073e+07 9.4321 4.88062e+08 38.0572 838.294 −432.312 154607 97768.6

1400 564.399 1.01736 1.54405e+07 4.53885 1.71841e+08 16.5448 114.425 −446.984 153,222 94129.1

1600 450.362 0.658333 3.30737e+06 4.25549 4.75411e+07 3.86112 −167.851 −449.317 153,222 79506.3

1800 272.759 0.22698 310283 2.83376 1.47191e+07 1.10332 -296.65 −449.78 141,583 77475.6

2000 254.433 0.0445405 75962.6 2.3151 3.43088e+06 0.308245 −398.253 −449.961 135,500 74589.6

2200 198.676 0.00737067 126.916 2.12297 1.16831e+06 0.0776809 −424.14 −449.993 135,500 69304.9

2400 124.491 0.00171678 31.6576 1.76203 258691 0.0147251 −437.264 −449.998 127,620 62349.5

2600 96.0986 0.000409527 19.7927 1.47519 19247.4 0.00279349 −444.947 -450 127,620 56522

2800 66.9394 9.89848e-
05 12.1895 0.995179 296.106 0.000594427 −446.741 −450 123,796 55272.9

3000 46.4022 2.55152e-
05 11.0036 0.913088 62.8248 0.000129401 −449.27 -450 121,615 51567.8

3200 34.6919 5.18012e-
06 7.55257 0.536102 52.5342 2.94385e-05 −449.568 -450 112,014 47125.5

3400 21.599 6.62209e-
07 6.5113 0.282837 33.2308 7.30486e-06 −449.82 -450 97448.5 45670.9

3600 17.9387 1.96707e-
07 6.23303 0.0455196 14.0115 1.12448e-06 −449.929 −450 97356.9 44078.9

3800 10.8625 4.72381e-
08 5.51551 0.00797489 6.56287 2.64319e-07 −449.976 −450* 95037.9 43505.3

4000 7.99392 9.67328e-
09 3.45958 0.00158262 3.8305 5.15215e-08 −449.988 −450 95037.9 30530.6

4200 5.55138 1.67994e-
09 3.33907 0.000302378 1.87559 6.99077e-09 −449.994 −450 79005.2 28242.5

4400 4.71148 4.01571e-
10 3.33907 6.66714e-

05 0.657885 1.60463e-09 −449.997 −450 79005.2 27167.2

4600 3.69465 6.71285e-
11 3.27146 1.49248e-

05 0.458076 2.50137e-10 −449.999 −450 79005.2 27167.2

4800 2.52784 1.32597e-
11 3.27146 3.3658e-

06 0.255931 5.15735e-11 −450 -450 76609.3 18035

5000 2.1493 2.38842e-
12 3.27146 6.39102e-

07 0.107353 9.56412e-12 −450* −450 69629.2 17402.5

Symmetry 2023, 15, 1916 18 of 26

Results given in Tables 5–7 report the performance of both RNDE and IRNDE for
dimensions D of 10, 30, and 50. The performance is analyzed with respect to the number of
fitness evaluations (NFE). This test is based on 10 runs of fitness evaluation and will keep
running until the terminating condition is satisfied, where the termination condition is set
as 10,000 × D. The size of D varies from 10, and 30 to 50. For example, if the number of
dimensions is D = 30 then the algorithm has to run for 10,000 × 30 = 300,000 iterations to
achieve the global minimum. Moreover, if the algorithm reaches the global minimum in
300,000 iterations, then we record in how many iterations the global minimum is achieved;
if the algorithm is not able to achieve the global minimum in 300,000 iterations, it will
consider and mark that the global minimum is not achieved so the output will be the error,
as shown for f9 and f25 in Tables 6 and 7, where both RNDE and IRNDE are unable to
obtain the global minimum. Similarly from the above-mentioned discussion, it is concluded
that if there is a change in dimensions, then the iterations must change as there is a direct
relation between dimensions and iterations.

Table 5. Number of function evaluations for functions f1 to f15 for NP = 150, D = 10, and
iterations = 1000 × D.

10 Runs Fitness Evaluations for NP = 150/D = 10

Best Median Worst Mean ± Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f1 RNDE 504 518 526 5.157e+2 ± 8.68012e+0 100% 516
IRNDE 340 345 357 3.468e+2 ± 5.05085e+0 100% 348

f2 RNDE 1457 1480 1528 1.4885e+3 ± 2.25549e+1 100% 1549
IRNDE 784 819 875 8.26e+2 ± 3.32031e+1 100% 802

f3 RNDE 820 846 874 8.456e+2 ± 1.42533e+1 100% 477
IRNDE 590 625 647 6.207e+2 ± 1.82638e+1 100% 336

f4 RNDE 808 823 847 8.251e+2 ± 1.19856e+1 100% 832
IRNDE 342 349 359 3.495e+2 ± 5.01664e+0 100% 618

f5 RNDE 1652 1715 1757 1.7163e+3 ± 3.54622e+1 100% 1737
IRNDE 1034 1072 1132 1.0773e+3 ± 3.23661e+1 100% 1087

f6 RNDE 1 15 27 1.45e+1 ± 7.15309e+0 100% 13
IRNDE 7 13 22 1.34e+1 ± 4.29987e+0 100% 12

f7 RNDE 187 192 204 1.955e+2 ± 6.62067e+0 100% 205
IRNDE 122 132 139 1.316e+2 ± 5.05964e+0 100% 138

f8 RNDE 18 27 31 2.66e+1 ± 3.62706e+0 100% 30
IRNDE 9 11 17 1.22e+1 ± 2.65832e+0 100% 11

f9 RNDE 830 871 908 8.742e+2 ± 2.23696e+1 100% 915
IRNDE 906 1126 1265 1.1178e+3 ± 1.04919e+2 100% 1227

f10 RNDE 797 817 839 8.198e+2 ± 1.18771e+1 100% 815
IRNDE 552 565 574 5.653e+2 ± 7.33409e+0 100% 569

f11 RNDE 1729 2065 2328 2.037e+3 ± 2.02333e+2 100% 2621
IRNDE 1996 2586 3700 2.7613e+3 ± 5.16669e+2 100% 3453

f12 RNDE 446 468 493 4.671e+2 ± 1.26179e+1 100% 484
IRNDE 321 331 344 3.327e+2 ± 7.39444e+0 100% 328

f13 RNDE 472 488 506 4.879e+2 ± 1.13671e+1 100% 476
IRNDE 332 338 346 3.393e+2 ± 4.49815e+0 100% 327

f14 RNDE 503 511 524 5.112e+2 ± 6.47731e+0 100% 503
IRNDE 337 353 359 3.512e+2 ± 7.56894e+0 100% 353

f15 RNDE 1440 1484 1558 1.4951e+3 ± 3.86018e+1 100% 1539
IRNDE 810 824 887 8.363e+2 ± 2.70803e+1 100% 858

f16 RNDE 496 522 542 5.204e+2 ± 1.26947e+1 100% 499
IRNDE 343 350 359 3.519e+2 ± 5.95259e+0 100% 345

f17 RNDE 1471 1532 1603 1.5474e+3 ± 4.45676e+1 100% 1496
IRNDE 844 858 907 8.693e+2 ± 2.34902e+1 100% 832

Symmetry 2023, 15, 1916 19 of 26

Table 5. Cont.

10 Runs Fitness Evaluations for NP = 150/D = 10

Best Median Worst Mean ± Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f18 RNDE 616 643 679 6.494e+2 ± 1.96932e+1 100% 652
IRNDE 513 535 558 5.346e+2 ± 1.12862e+1 100% 518

f19 RNDE 265 274 295 2.777e+2 ± 9.84378e+0 100% 265
IRNDE 220 227 238 2.292e+2 ± 5.82714e+0 100% 233

f20 RNDE 400 431 484 4.396e+2 ± 2.63236e+1 100% 518
IRNDE 228 261 308 2.683e+2 ± 2.55345e+1 100% 352

f21 RNDE 343 355 369 3.562e+2 ± 8.25698e+0 100% 365
IRNDE 297 304 320 3.063e+2 ± 8.28721e+0 100% 310

f22 RNDE 388 396 411 3.991e+2 ± 7.37036e+0 100% 393
IRNDE 257 268 274 2.681e+2 ± 5.21643e+0 100% 267

f23 RNDE 286 308 316 3.066e+2 ± 1.01784e+1 100% 306
IRNDE 195 206 213 2.059e+2 ± 5.46606e+0 100% 196

f24 RNDE 761 803 831 8.008e+2 ± 1.98203e+1 100% 773
IRNDE 616 634 649 6.343e+2 ± 1.09143e+1 100% 612

f25 RNDE 3620 5080 9495 5.83986e+3 ± 2.00043e+3 70% 3217
IRNDE 286 423 1088 4.74111e+2 ± 2.39794e+2 90% 1608

f26 RNDE 179 182 216 1.918e+2 ± 1.31976e+1 100% 172
IRNDE 108 117 123 1.164e+2 ± 4.16867e+0 100% 127

f27 RNDE 214 223 229 2.234e+2 ± 4.74224e+0 100% 228
IRNDE 162 169 171 1.683e+2 ± 2.71006e+0 100% 169

Table 6. Number of function evaluations for functions f1 to f15 for NP = 150, D = 30, and iterations
= 1000 × D.

10 Runs Fitness Evaluations for NP = 150/D = 30

Best Median Worst Mean±Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f1 RNDE 2555 2627 2745 2.6491e+3 ± 6.40424e+1 100% 2675
IRNDE 1736 1753 1792 1.7634e+3 ± 2.09401e+1 100% 1802

f2 RNDE 57202 59993 66380 6.05669e+4 ± 2.46933e+3 100% 57718
IRNDE 23162 23828 24961 2.39414e+4 ± 5.28169e+2 100% 24016

f3 RNDE 8581 8825 9258 8.9154e+3 ± 2.28402e+2 100% 9119
IRNDE 5464 5532 5841 5.6021e+3 ± 1.32403e+2 100% 5546

f4 RNDE 4294 4340 4476 4.356e+3 ± 6.34333e+1 100% 4480
IRNDE 3086 3169 3395 3.1891e+3 ± 8.24155e+1 100% 3303

f5 RNDE 12504 12915 13721 1.30622e+4 ± 4.15667e+2 100% 13426
IRNDE 7377 7580 7803 7.5919e+3 ± 1.51639e+2 100% 7659

f6 RNDE 179 225 272 2.27e+2 ± 3.39706e+1 100% 227
IRNDE 118 143 168 1.437e+2 ± 1.75439e+1 100% 142

f7 RNDE 1150 1224 1289 1.2318e+3 ± 4.22816e+1 100% 1239
IRNDE 811 840 902 8.455e+2 ± 2.53213e+1 100% 886

f8 RNDE 70 108 137 1.017e+2 ± 2.17718e+1 100% 102
IRNDE 25 35 58 3.68e+1 ± 8.9666e+0 100% 52

f9 RNDE 39881 43293 48764 4.37697e+4 ± 2.6549e+3 100% 41835
IRNDE - - - - 0% 6.58946e+1

f10 RNDE 3998 4089 4208 4.0932e+3 ± 7.4265e+1 100% 4147
IRNDE 2700 2730 2770 2.7372e+3 ± 2.18469e+1 100% 2718

f11 RNDE 4072 4147 4297 4.1676e+3 ± 8.43567e+1 100% 4146
IRNDE 1827 2017 2161 2.0213e+3 ± 1.14815e+2 100% 2092

Symmetry 2023, 15, 1916 20 of 26

Table 6. Cont.

10 Runs Fitness Evaluations for NP = 150/D = 30

Best Median Worst Mean±Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f12 RNDE 2569 2701 2840 2.6904e+3 ± 7.63081e+1 100% 2782
IRNDE 1719 1739 1823 1.7558e+3 ± 3.35354e+1 100% 1752

f13 RNDE 2586 2616 2719 2.6462e+3 ± 5.21575e+1 100% 2661
IRNDE 1738 1769 1838 1.7794e+3 ± 3.34139e+1 100% 1809

f14 RNDE 2646 2667 2742 2.6824e+3 ± 3.43615e+1 100% 2630
IRNDE 1746 1780 1833 1.7887e+3 ± 3.41989e+1 100% 1867

f15 RNDE 58341 60131 62726 6.07395e+4 ± 1.69443e+3 100% 59989
IRNDE 23938 24436 24956 2.44474e+4 ± 3.02649e+2 100% 23667

f16 RNDE 2574 2642 2752 2.651e+3 ± 5.04094e+1 100% 2674
IRNDE 1770 1803 1842 1.8056e+3 ± 2.39499e+1 100% 1780

f17 RNDE 61575 61985 65619 6.29908e+4 ± 1.38551e+3 100% 62862
IRNDE 25129 26032 27197 2.62584e+4 ± 7.24199e+2 100% 27668

f18 RNDE 4695 4781 4878 4.7949e+3 ± 6.23154e+1 100% 4890
IRNDE 3486 3638 3821 3.6549e+3 ± 8.90661e+1 100% 3741

f19 RNDE 1018 1039 1088 1.0458e+3 ± 1.88255e+1 100% 1023
IRNDE 805 823 844 8.251e+2 ± 1.46246e+1 100% 803

f20 RNDE 4386 4728 5203 4.7566e+3 ± 2.72762e+2 100% 4829
IRNDE 2633 2936 3887 3.0857e+3 ± 3.68177e+2 100% 3050

f21 RNDE 1257 1279 1311 1.2815e+3 ± 1.75768e+1 100% 1307
IRNDE 1029 1050 1056 1.0457e+3 ± 1.02746e+1 100% 1082

f22 RNDE 2078 2151 2228 2.1589e+3 ± 4.80681e+1 100% 2653
IRNDE 1399 1424 1507 1.4387e+3 ± 3.33801e+1 100% 1532

f23 RNDE 1629 1685 1734 1.6867e+3 ± 3.29209e+1 100% 1699
IRNDE 1084 1121 1181 1.1264e+3 ± 2.89988e+1 100% 1111

f24 RNDE 6375 6465 6618 6.4829e+3 ± 8.03388e+1 100% 6556
IRNDE 4785 4939 5162 4.946e+3 ± 1.2686e+2 100% 4926

f25 RNDE 50303 - - - 10% 2549.54
IRNDE - - - - 0% 966.653

f26 RNDE 1988 2448 3554 2.5159e+3 ± 4.72809e+2 100% 1570
IRNDE 985 1202 1350 1.1722e+3 ± 1.12576e+2 100% 937

f27 RNDE 1069 1104 1148 1.1106e+3 ± 2.85081e+1 100% 1088
IRNDE 765 788 806 7.859e+2 ± 1.30933e+1 100% 778

Table 7. Number of function evaluations for functions f1 to f15 for NP = 150, D = 50, and iterations
= 1000 × D.

10 Runs Fitness Evaluations for NP = 150/D = 50

Best Median Worst Mean ± Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f1 RNDE 7214 7445 7721 7.4651e+3 ± 1.41869e+2 100% 7391
IRNDE 3869 3921 4028 3.9451e+3 ± 5.64298e+1 100% 3888

f2 RNDE 109913 113260 120046 1.14284e+5 ± 2.98052e+3 100% 109893
IRNDE 67118 69546 70788 6.91903e+4 ± 1.32311e+3 100% 74815

f3 RNDE 38400 39679 41609 4.01089e+4 ± 9.56063e+2 100% 37964
IRNDE 22579 23704 24492 2.35874e+4 ± 6.57373e+2 100% 24331

f4 RNDE 19633 21491 22899 2.14575e+4 ± 8.63521e+2 100% 20941
IRNDE 12048 14038 15583 1.4151e+4 ± 1.31694e+3 100% 11980

f5 RNDE 53747 56423 65062 5.67883e+4 ± 3.33907e+3 100% 57945
IRNDE 21985 22926 23565 2.29314e+4 ± 5.33276e+2 100% 23786

Symmetry 2023, 15, 1916 21 of 26

Table 7. Cont.

10 Runs Fitness Evaluations for NP = 150/D = 50

Best Median Worst Mean ± Std. Dev. Success Rate RNDE vs IRNDE (# of
Iterations)

f6 RNDE 2093 2695 3858 2.7862e+3 ± 4.73772e+2 100% 2801
IRNDE 390 558 644 5.562e+2 ± 7.65721e+1 100% 464

f7 RNDE 4389 4620 4960 4.6433e+3 ± 1.99158e+2 100% 4743
IRNDE 2012 2074 2110 2.0685e+3 ± 3.06132e+1 100% 2166

f8 RNDE 174 220 378 2.451e+2 ± 6.85492e+1 100% 472
IRNDE 40 60 77 6.e+1 ± 1.09341e+1 100% 64

f9 RNDE 363687 - - - 10% 2.69166e+1
IRNDE - - - - 0% 2.17122e+2

f10 RNDE 11610 11833 12182 1.19068e+4 ± 1.86668e+2 100% 12179
IRNDE 5818 5979 6111 5.9913e+3 ± 9.06116e+1 100% 6069

f11 RNDE 20074 21698 23867 2.19229e+4 ± 1.05793e+3 100% 22594
IRNDE 3846 4025 4310 4.0539e+3 ± 1.37402e+2 100% 4014

f12 RNDE 16969 18456 24620 1.90873e+4 ± 2.41333e+3 100% 21185
IRNDE 5077 5680 6303 5.7656e+3 ± 4.00958e+2 100% 5537

f13 RNDE 8787 9155 10266 9.484e+3 ± 5.46782e+2 100% 9104
IRNDE 3997 4158 4232 4.154e+3 ± 6.94358e+1 100% 4149

f14 RNDE 7136 7254 7679 7.3257e+3 ± 1.76951e+2 100% 7320
IRNDE 3905 3945 4055 3.9735e+3 ± 5.40684e+1 100% 3999

f15 RNDE 111558 113908 123780 1.15099e+5 ± 3.86545e+3 100% 115568
IRNDE 64774 68523 71652 6.89078e+4 ± 1.95258e+3 100% 68125

f16 RNDE 7278 7311 7637 7.3623e+3 ± 1.05346e+2 100% 7636
IRNDE 3836 3996 4063 3.9862e+3 ± 7.47274e+1 100% 4004

f17 RNDE 117296 124557 128845 1.24642e+5 ± 3.76015e+3 100% 125185
IRNDE 74880 78511 82122 7.8798e+4 ± 2.27369e+3 100% 80990

f18 RNDE 15527 16158 17455 1.64022e+4 ± 6.10143e+2 100% 17064
IRNDE 12863 13177 13876 1.32738e+4 ± 3.59021e+2 100% 12389

f19 RNDE 1896 1937 2031 1.9478e+3 ± 4.20972e+1 100% 1949
IRNDE 1519 1530 1580 1.5368e+3 ± 1.88078e+1 100% 1531

f20 RNDE 14092 16088 20233 1.67794e+4 ± 2.10221e+3 100% 21606
IRNDE 13981 18900 34239 2.20096e+4 ± 5.75139e+3 100% 25853

f21 RNDE 2333 2433 2483 2.4255e+3 ± 4.67529e+1 100% 2434
IRNDE 1873 1933 2044 1.9509e+3 ± 5.22865e+1 100% 1949

f22 RNDE 5807 6420 7360 6.4919e+3 ± 4.23616e+2 100% 6823
IRNDE 3137 3243 3660 3.3141e+3 ± 1.69914e+2 100% 3916

f23 RNDE 4805 5018 5360 5.0267e+3 ± 1.55067e+2 100% 5029
IRNDE 2509 2575 2685 2.5812e+3 ± 5.33621e+1 100% 2592

f24 RNDE 15928 16317 16709 1.63417e+4 ± 2.60714e+2 100% 15566
IRNDE 12581 13007 13582 1.31475e+4 ± 3.50596e+2 100% 12686

f25 RNDE 401842 - - - 10% 3.44991e+3
IRNDE - - - - 0% 7.49417e+5

f26 RNDE 5996 7521 8927 7.407e+3 ± 9.59153e+2 100% 6808
IRNDE 3368 4557 6620 4.7084e+3 ± 1.10688e+3 100% 4394

f27 RNDE 2314 2404 2460 2.4018e+3 ± 5.12636e+1 100% 2415
IRNDE 1644 1686 1750 1.6957e+3 ± 3.59755e+1 100% 1710

Moreover, we performed the abovementioned tests on the same well-known 27 bench-
mark functions that were used by the RNDE algorithm for its evaluation. In addition, we
also discussed the different scenarios, such as how many iterations are required for both
algorithms to achieve the global minimum if the algorithms obtain the worst, median, or
best population data and what the success rate of both algorithms is in achieving the global
minimum during the calculation of NFE. Finally, Figures 3 and 4 show a bar graph of the

Symmetry 2023, 15, 1916 22 of 26

median values of both algorithms and demonstrate the performance of both algorithms. It
is noteworthy to point out that the proposed IRNDE outperforms the RNDE algorithm.

(a) (b)

Figure 3. Number of fitness evaluations for RNDE and IRNDE. (a) NFE comparison of RNDE and
IRNDE when NP = 150 and D = 10; (b) NFE comparison of RNDE and IRNDE when NP = 150 and
D = 30.

5.4. Statistical Significance

The statistical significance performance of average fitness values of two algorithms are
analyzed using the two-sampled pair t-test significant test. The null hypothesis states that
there is no significance difference between the average fitness performance of the RNDE
algorithm (µ1) and IRNDE algorithm (µ2). The s.t µ1− µ2 = 0 and alternate hypothesis
state that there is a significance difference between the average fitness performance of the
RNDE algorithm and IRNDE algorithm(µ2) s.t µ1 6= µ2. We used a 0.05 level of significance
test to generate significant t-Test results, which are reported in Table 8 of this paper. The
degree of freedom used in the research was 34 for 35 observations used to generate test
statistics, the sample mean, variance, Pearson correlation, and p values for two-tailed
critical t-test values. We generated significant values for fifteen functions; the results of
the rest of the functions were similar. It can be observed from the table that all p-values
except f4 and f14 are less than the level of significance (0.05). It can be summarized that
overall there is a significant difference in the performance of the RNDE algorithm and
IRNDE algorithm.

Symmetry 2023, 15, 1916 23 of 26

Figure 4. NFE comparison of RNDE and IRNDE when NP = 150 and D = 50.

Table 8. Statistically paired two-sample significance t-test for means of RNDE vs. IRNDE.

Function Algorithm Mean Variance Pearson
Correlation t-Stat p-Value

f1 RNDE 3.16e+04 2.00e+09 - - -

IRNDE 2.65e+04 1.75e+09 9.79e-01 3.23e+00 2.77e-03

f2 RNDE 1.23e+05 3.08e+09 - - -

IRNDE 9.24e+04 3.78e+09 9.72e-01 1.21e+01 7.92E-14

f3 RNDE 5.92e+01 9.70e+02 - - -

IRNDE 4.53e+01 1.42e+03 9.69e-01 7.66e+00 6.71e-09

f4 RNDE 1.94e+70 3.02e+141 - - -

IRNDE 6.36e+69 1.38e+141 6.40e-01 1.82e+00 7.82e-02

f5 RNDE 1.55e+08 3.83e+16 - - -

IRNDE 1.21e+08 3.48e+16 9.25e-01 2.71e+00 1.04e-02

Symmetry 2023, 15, 1916 24 of 26

Table 8. Cont.

Function Algorithm Mean Variance Pearson
Correlation t-Stat p-Value

f6 RNDE 7.00e+00 7.35e+01 - - -

IRNDE 5.14e+00 6.32e+01 9.59e-01 4.50e+00 7.47e-05

f7 RNDE 4.58e+09 3.97e+19 - - -

IRNDE 3.19e+09 2.89e+19 9.10e-01 3.10e+00 3.86e-03

f8 RNDE -1.72e+04 3.59e+07 - - -

IRNDE -1.85e+04 2.79e+07 8.99e-01 2.82e+00 7.95e-03

f9 RNDE 6.70e+02 1.39e+03 - - -

IRNDE 4.44e+02 2.64e+04 7.98e-01 9.92e+00 1.43E-11

f10 RNDE 9.63e+00 7.74e+01 - - -

IRNDE 7.37e+00 8.45e+01 9.51e-01 4.69e+00 4.35e-05

f11 RNDE 5.00e+02 2.03e+05 - - -

IRNDE 2.54e+02 1.67e+05 7.69e-01 4.93e+00 2.14e-05

f12 RNDE 3.85e+08 2.30e+17 - - -

IRNDE 3.05e+08 2.25e+17 9.19e-01 2.46e+00 1.92e-02

f13 RNDE 7.72e+08 8.16e+17 - - -

IRNDE 5.73e+08 7.80e+17 8.91e-01 2.83e+00 7.72e-03

f14 RNDE 3.74e+04 3.17e+09 - - -

IRNDE 3.68e+04 3.73e+09 9.78e-01 2.63e-01 7.94e-01

f15 RNDE 1.82e+05 9.61e+09 - - -

IRNDE 1.23e+05 1.01e+10 9.84e-01 1.93e+01 6.53E-20

6. Conclusions

Differential evolution is a strong evolutionary algorithm that provides a powerful
solution to resolve global optimization problems. However, the existing mutation strate-
gies, DE/best/1 and De/rand/1, do not provide a balance between better exploitation
and exploration. So far, to overcome this issue, the DE/Neighbor/1 mutation strategy and
RNDE algorithm have been introduced. The DE/Neighbor/1 mutation strategy maintains
a balance between exploration and exploitation, as it was built to use the lower and upper
bound limits. However, this mutation strategy makes the whole procedure or convergence
very slow, and requires a higher number of iterations for convergence. This study over-
comes this limitation by introducing IRNDE with a DE/neighbor/2 mutation strategy.
Contrary to the DE/Neighbor/1 mutation strategy in the RNDE algorithm, the proposed
IRNDE adds weighted differences after various tests. The proposed IRNDE algorithm and
DE/neighbor/2 mutation strategy are tested on the same 27 commonly used benchmark
functions, on which the DE/Neighbor/1 mutation strategy and RNDE algorithm were
tested. Experimental results demonstrate that the new mutation strategy DE/neighbor/2
and IRNDE algorithm is better and faster overall in convergence. Moreover, while perform-
ing successful tests on both state-of-the-art algorithms, we have gone through different
situations during the implementation of benchmark functions concerning minimum, mean,
and worst values. Although it has been proven that the proposed algorithm IRNDE is
better and more successful overall, not only in maintaining the balance between exploration
and exploitation but also in converging more quickly than the base RNDE algorithm, it may
not provide optimal results in some scenarios. For results using 27 benchmark functions’
test suites, the proposed algorithm IRNDE performs better than the base algorithm RNDE
except for the f9 Rastrigin function and f25 Schwefels Problem. The experimental results of
the average fitness ensures the significant difference between the performance of RNDE
and IRNDE algorithms using a two-tailed paired t-test at a 0.05 level of significance. The
limitation of this study is that it is applied to constrained problems. Applying this study

Symmetry 2023, 15, 1916 25 of 26

to unconstrained problems could be a good idea in future work. Finally, we intend to
apply the proposed algorithm to complex, real-world problems, such as steganography,
which remains an attractive topic. Another future work of this study could be the usage
of memory to store the convergence track of parameters associated with the proposed
algorithm based on user-defined time periods.

Author Contributions: Conceptualization, M.H.B. and Q.A.; Data curation, Q.A. and J.A.; Formal
analysis, M.H.B. and J.A.; Funding acquisition, S.A.; Investigation, K.M. and S.A.; Methodology, J.A.;
Project administration, S.A. and M.S.; Software, K.M. and M.S.; Supervision, I.A.; Validation, I.A.;
Visualization, K.M. and M.S.; Writing—original draft, M.H.B. and Q.A.; Writing—review and editing,
I.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Researchers Supporting Project Number (RSPD2023R890),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to King Saud University for funding this
research through Researchers Supporting Project Number (RSPD2023R890), King Saud University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Storn, R.; Price, K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
2. Peng, H.; Guo, Z.; Deng, C.; Wu, Z. Enhancing differential evolution with random neighbors based strategy. J. Comput. Sci. 2018,

26, 501–511. [CrossRef]
3. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in

optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]
4. Hu, Z.; Gong, W.; Li, S. Reinforcement learning-based differential evolution for parameters extraction of photovoltaic models.

Energy Rep. 2021, 7, 916–928. [CrossRef]
5. Kharchouf, Y.; Herbazi, R.; Chahboun, A. Parameter’s extraction of solar photovoltaic models using an improved differential

evolution algorithm. Energy Convers. Manag. 2022, 251, 114972. [CrossRef]
6. Yu, X.; Liu, Z.; Wu, X.; Wang, X. A hybrid differential evolution and simulated annealing algorithm for global optimization. J.

Intell. Fuzzy Syst. 2021, 41, 1375–1391. [CrossRef]
7. Cheng, J.; Pan, Z.; Liang, H.; Gao, Z.; Gao, J. Differential evolution algorithm with fitness and diversity ranking-based mutation

operator. Swarm Evol. Comput. 2021, 61, 100816. [CrossRef]
8. Kumar, R.; Singh, K. A survey on soft computing-based high-utility itemsets mining. Soft Comput. 2022, 26, 1–46. [CrossRef]
9. Abbas, Q.; Ahmad, J.; Jabeen, H. The analysis, identification and measures to remove inconsistencies from differential evolution

mutation variants. Scienceasia 2017, 43S, 52–68. [CrossRef]
10. Abbas, Q.; Ahmad, J.; Jabeen, H. A novel tournament selection based differential evolution variant for continuous optimization

problems. Math. Probl. Eng. 2015, 2015, 1–21. [CrossRef]
11. Li, J.; Yang, L.; Yi, J.; Yang, H.; Todo, Y.; Gao, S. A simple but efficient ranking-based differential evolution. IEICE Trans. Inf. Syst.

2022, 105, 189–192. [CrossRef]
12. Kaliappan, P.; Ilangovan, A.; Muthusamy, S.; Sembanan, B. Temperature Control Design with Differential Evolution Based

Improved Adaptive-Fuzzy-PID Techniques. Intell. Autom. Soft Comput. 2023, 36, 781–801. [CrossRef]
13. Chen, X.; Shen, A. Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch

problem. Neural Comput. Appl. 2022, 34, 11769–11787. [CrossRef]
14. Deng, W.; Ni, H.; Liu, Y.; Chen, H.; Zhao, H. An adaptive differential evolution algorithm based on belief space and generalized

opposition-based learning for resource allocation. Appl. Soft Comput. 2022, 127, 109419. [CrossRef]
15. Abbas, Q.; Ahmad, J.; Jabeen, H. Random controlled pool base differential evolution algorithm (RCPDE). Intell. Autom. Soft

Comput. 2017, 24, 377–390. [CrossRef]
16. Thakur, S.; Dharavath, R.; Shankar, A.; Singh, P.; Diwakar, M.; Khosravi, M.R. RST-DE: Rough Sets-Based New Differential

Evolution Algorithm for Scalable Big Data Feature Selection in Distributed Computing Platforms. Big Data 2022, 10, 356–367.
[CrossRef]

17. Zhan, Z.H.; Li, J.Y.; Zhang, J. Evolutionary deep learning: A survey. Neurocomputing 2022, 483, 42–58. [CrossRef]
18. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. CADE: A hybridization of cultural algorithm and differential evolution

for numerical optimization. Inf. Sci. 2017, 378, 215–241. [CrossRef]

http://doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.jocs.2017.07.010
http://dx.doi.org/10.1007/s00500-020-05527-x
http://dx.doi.org/10.1016/j.egyr.2021.01.096
http://dx.doi.org/10.1016/j.enconman.2021.114972
http://dx.doi.org/10.3233/JIFS-210239
http://dx.doi.org/10.1016/j.swevo.2020.100816
http://dx.doi.org/10.1007/s00500-021-06613-4
http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43S.052
http://dx.doi.org/10.1155/2015/205709
http://dx.doi.org/10.1587/transinf.2021EDL8053
http://dx.doi.org/10.32604/iasc.2023.030047
http://dx.doi.org/10.1007/s00521-022-07068-w
http://dx.doi.org/10.1016/j.asoc.2022.109419
http://dx.doi.org/10.1080/10798587.2017.1295678
http://dx.doi.org/10.1089/big.2021.0267
http://dx.doi.org/10.1016/j.neucom.2022.01.099
http://dx.doi.org/10.1016/j.ins.2016.10.039

Symmetry 2023, 15, 1916 26 of 26

19. Fu, C.; Jiang, C.; Chen, G.; Liu, Q. An adaptive differential evolution algorithm with an aging leader and challengers mechanism.
Appl. Soft Comput. 2017, 57, 60–73. [CrossRef]

20. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Jaser, E. A decremental stochastic fractal differential evolution for global numerical
optimization. Inform. Sci. 2016, 372, 470–491. [CrossRef]

21. Tian, M.; Gao, X.; Dai, C. Differential evolution with improved individual-based parameter setting and selection strategy. Appl.
Soft Comput. 2017, 56, 286–297. [CrossRef]

22. Zheng, L.M.; Zhang, S.X.; Tang, K.S.; Zheng, S.Y. Differential evolution powered by collective information. Inf. Sci. 2017,
399, 13–29. [CrossRef]

23. Meng, Z.; Pan, J.S. QUasi-Affine TRansformation Evolution with External ARchive (QUATRE-EAR): An enhanced structure for
differential evolution. Knowl.-Based Syst. 2018, 155, 35–53. [CrossRef]

24. Sallam, K.M.; Elsayed, S.M.; Sarker, R.A.; Essam, D.L. Landscape-based adaptive operator selection mechanism for differential
evolution. Inf. Sci. 2017, 418, 383–404. [CrossRef]

25. Wu, G.; Shen, X.; Li, H.; Chen, H.; Lin, A.; Suganthan, P.N. Ensemble of differential evolution variants. Inf. Sci. 2018, 423, 172–186.
[CrossRef]

26. Cai, Y.; Liao, J.; Wang, T.; Chen, Y.; Tian, H. Social learning differential evolution. Inf. Sci. 2018, 433, 464–509. [CrossRef]
27. Cai, Y.; Sun, G.; Wang, T.; Tian, H.; Chen, Y.; Wang, J. Neighborhood-adaptive differential evolution for global numerical

optimization. Appl. Soft Comput. 2017, 59, 659–706. [CrossRef]
28. Xiong, S.; Gong, W.; Wang, K. An adaptive neighborhood-based speciation differential evolution for multimodal optimization.

Expert Syst. Appl. 2023, 211, 118571. [CrossRef]
29. Liao, Z.; Zhu, F.; Mi, X.; Sun, Y. A neighborhood information-based adaptive differential evolution for solving complex nonlinear

equation system model. Expert Syst. Appl. 2023, 216, 119455. [CrossRef]
30. Gao, T.; Li, H.; Gong, M.; Zhang, M.; Qiao, W. Superpixel-based multiobjective change detection based on self-adaptive

neighborhood-based binary differential evolution. Expert Syst. Appl. 2023, 212, 118811. [CrossRef]
31. Liao, Z.; Mi, X.; Pang, Q.; Sun, Y. History archive assisted niching differential evolution with variable neighborhood for

multimodal optimization. Swarm Evol. Comput. 2023, 76, 101206. [CrossRef]
32. Liu, D.; Hu, Z.; Su, Q. Neighborhood-based differential evolution algorithm with direction induced strategy for the large-scale

combined heat and power economic dispatch problem. Inf. Sci. 2022, 613, 469–493. [CrossRef]
33. Sheng, M.; Chen, S.; Liu, W.; Mao, J.; Liu, X. A differential evolution with adaptive neighborhood mutation and local search for

multi-modal optimization. Neurocomputing 2022, 489, 309–322. [CrossRef]
34. Wang, Z.; Chen, Z.; Wang, Z.; Wei, J.; Chen, X.; Li, Q.; Zheng, Y.; Sheng, W. Adaptive memetic differential evolution with

multi-niche sampling and neighborhood crossover strategies for global optimization. Inf. Sci. 2022, 583, 121–136. [CrossRef]
35. Cai, Y.; Wu, D.; Zhou, Y.; Fu, S.; Tian, H.; Du, Y. Self-organizing neighborhood-based differential evolution for global optimization.

Swarm Evol. Comput. 2020, 56, 100699. [CrossRef]
36. Segredo, E.; Lalla-Ruiz, E.; Hart, E.; Voß, S. A similarity-based neighbourhood search for enhancing the balance exploration–

Exploitation of differential evolution. Comput. Oper. Res. 2020, 117, 104871. [CrossRef]
37. Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering

problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [CrossRef]
38. Tian, M.; Gao, X. Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf.

Sci. 2019, 478, 422–448. [CrossRef]
39. Tarkhaneh, O.; Moser, I. An improved differential evolution algorithm using Archimedean spiral and neighborhood search based

mutation approach for cluster analysis. Future Gener. Comput. Syst. 2019, 101, 921–939. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2017.03.032
http://dx.doi.org/10.1016/j.ins.2016.08.032
http://dx.doi.org/10.1016/j.asoc.2017.03.010
http://dx.doi.org/10.1016/j.ins.2017.02.055
http://dx.doi.org/10.1016/j.knosys.2018.04.034
http://dx.doi.org/10.1016/j.ins.2017.08.028
http://dx.doi.org/10.1016/j.ins.2017.09.053
http://dx.doi.org/10.1016/j.ins.2016.10.003
http://dx.doi.org/10.1016/j.asoc.2017.06.002
http://dx.doi.org/10.1016/j.eswa.2022.118571
http://dx.doi.org/10.1016/j.eswa.2022.119455
http://dx.doi.org/10.1016/j.eswa.2022.118811
http://dx.doi.org/10.1016/j.swevo.2022.101206
http://dx.doi.org/10.1016/j.ins.2022.09.025
http://dx.doi.org/10.1016/j.neucom.2022.03.013
http://dx.doi.org/10.1016/j.ins.2021.11.046
http://dx.doi.org/10.1016/j.swevo.2020.100699
http://dx.doi.org/10.1016/j.cor.2019.104871
http://dx.doi.org/10.1016/j.ins.2019.08.016
http://dx.doi.org/10.1016/j.ins.2018.11.021
http://dx.doi.org/10.1016/j.future.2019.07.026

	Introduction
	Problem Statement
	Research Significance
	Research Contributions
	Research Question and Hypothesis

	Principle of the Classical Differential Evolution Algorithm
	Mutation Phase
	Crossover Phase
	Selection Phase
	Commonly Used Mutation Strategies
	Major Contributions of Study

	Related Work
	Hybridization with Other Techniques
	Modification of Mutation Strategies
	Adaptation of Mutation Strategy and Parameter Settings
	Use of Neighbor Information

	Materials and Methods
	DE With Random Neighbor-Based Mutation Strategy
	Proposed Approach

	Results and Discussions
	Parameter Settings
	Benchmark Functions
	Results
	Statistical Significance

	Conclusions
	References

