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Abstract: The magnetohydrodynamics (1 + 1) dimension equation, with a force and force-free term,
is analysed with respect to its point symmetries. Interestingly, it reduces to an Abel’s Equation of the
second kind and, under certain conditions, to equations specified in Gambier’s family. The symmetry
analysis for the force-free term leads to Euler’s Equation and to a system of reduced second-order
odes for which singularity analysis is performed to determine their integrability.
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1. Introduction

In this paper, we focus on the magnetohydrodynamics (MHD) (1 + 1)-dimension
equation, as proposed in reference [1]. Fleischer et al. presents the effect of intermittency
in the turbulence of plasmas, by specifying a replica of the Burger’s equation for the
magnetohydrodynamics (MHD) equation. This paper discusses in detail the physical
significance of each parameter and the impact on the properties of the (1 + 1) dimensional
MHD under a nonzero external force. It is to be noted here that the model proposed by
Fleischer and Diamond is a plainer version of the presence of magnetic field to (1 + 1)-
dimensional MHD equation. As suggested in reference [1], it is to be considered as an
enhanced model in comparison to the one cited in reference [2]. Later on, Basu et al. [3]
discussed in detail the physical significance of the equation and its corresponding similarity
to certain well-known equations. Moreover, a comprehensive list of historical details of
the equation are provided in references [3–9]. The equation in (1 + 1) dimension is of the
following form:

ut + B0vx + uux + vvx = νuxx + f (t, x),
vt + B0ux + (uv)x = µvxx + g(t, x),

(1)

where f (t, x) and g(t, x) are external forces, ν, µ are fluid kinematic viscosity and magnetic
diffusivity, respectively. u and v are velocity field and magnetic field, respectively. B0 is a
mean magnetic field (independent of x and t).

In the literature, a comprehensive work has been carried out on the various dimensions
of MHD equations. In reference [10], Fuchs discussed the symmetries and the corresponding
reductions at a stretch for the three-dimensional MHD equation. The references of the paper
also cited some interesting work done by Nucci [11] on the group analysis of (1 + 3) dimen-
sional MHD equations along with the equations with respect to its magnetic component.
Further, we suggest that readers consult references [12,13] for an in-depth study. We also
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recommend references [14,15] which discuss the impact of symmetries on the stabilitiy of
the MHD equations. Also, in references [16,17] the constitution of the MHD equation is
specified elaborately.

Our main objective in this work is to compute certain new similarity reductions and
solutions for Equation (1) using Lie group analysis. The Lie point symmetry analysis does
provide new results for Equation (1). The equation reduces to Abel’s equation of the second
kind and, under certain conditions, leads to Gambier’s equation [18], the classification
number of which is presented against each equation. Also, we performed a symmetry
analysis of the force-free term. The subsequent reductions leads to an Euler’s equation and
to a system of second-order odes, with respect to travelling-wave, for which we conduct a
singularity analysis.

The application of the symmetry analysis can also be extended to problems consist-
ing of boundary conditions. The main criteria is that the equation under study remains
invariant under the transformations and all the properties of the domain are preserved.
It is to be noted that, for certain equations, a composition of solutions can be constructed
from the derived invariant solutions and that particular composition could possibly satisfy
the boundary conditions. Here, it is important to emphasize that the invaraint solutions
obtained by the symmetries can be considered to be more general, which remains valid for
any bounded or unbounded domain and, hence, it describes the system properly and effi-
ciently. Therefore, our main objective of the computation of solutions through the similarity
transformations is more generic, which could possibly satisfy the boundary conditions.

This paper is organised as follows. In Section 2, the preliminaries of the computation
of the point symmetries are mentioned. In Section 3, the point symmetries and subsequent
computations are done for the external forces. In Section 4, the reduction to the correspond-
ing odes and its symmetries, which are used for further reductions, are mentioned. In
Sections 5 and 6, the particular cases of a second-order equation obtained in Section 4 is
discussed in detail. Finally, in Section 7, a symmetry analysis of the Equation (1) without an
external force is presented and a singularity analysis test for certain reduced equations is
elaborated. The conclusion, acknowledgements, and proper references follow henceforth.

2. Preliminaries

Any differential equation is understood to possess a symmetry, provided the equation
possesses its basic properties and characteristics, even after undergoing a transformation
with respect to its coordinates. Mathematically, it can be explained as follows:

Consider a PDE of the form F(x̂, u, û) = 0, where x̂ represents the array of independent
variables, u represents the dependent variable, and û represents the array of derivatives of
the dependent variable. Our objective is to compute the point symmetries of the PDE. First
of all, certain transformations need to be defined as follows:

x̂ = x̂ + εξ(x̂, u) +O(ε2)
u = u + εη(x̂, u) +O(ε2).

(2)

The transformations with respect to the each derivative term in û can be derived easily
using (2) with the aid of the Chain rule. Now, the PDE, to be invariant, need to satisfy
the condition

F(x̂, u, û) = F(x̂, u, û).

The set of transformations (2) forms a one-parameter Lie group, the generator of which
is represented as

Γ = ξ(x̂, u) + η(x̂, u). (3)

The operator (3) is the generator of the infinitesimal transformations ξ(x̂, u) and η(x̂, u).
This opertor is being used to define the characteristics using the method of the associated
Lagarange’s system and it is to be considered a point symmetry of the PDE under study.
Further, these generators are mainly used to reduce the order of the PDE, to compute
conservation laws, and, also, it has been used recently to derive nonlocal symmetries. The
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reader can follow references [19–25] to understand the basics of point symmetries and the
procedure of computation.

3. Lie Symmetries of the Magnetohydrodynamics Equation

Corresponding to the differential Equation (1), we write a general element of the
symmetry vector field of Equation (1), in the form

V = ξ1∂t + ξ2∂x + η1∂u + η2∂v. (4)

where ξ1, ξ2, η1, and η2 are functions of t, x, u, and v.
Requiring that the second prolongation Pr(1)V of Equation (4) should annihilate (1)

on the solution set, we obtain the determining equations for the coefficients ξ1,ξ2,η1, and
η2. The solution of the determining equations are given by

ξ1 = a1(t) (5)

ξ2 = a2(t) +
xȧ1

2
(6)

η1 = ä2 +
xä1

2
− uȧ1

2
(7)

η2 = −1
2
(v + B0)ȧ1 (8)

Provided f (t, x) and g(t, x) satisfies the following linear partial differential equations,

2a1 ft + (2a2 + xȧ1) fx + 3 f ȧ1 − 2ä2 − x
...
a 1 = 0 (9)

2a1gt + (2a2 + xȧ1)gx + 3gȧ1 = 0 (10)

where a1 and a2 are arbitrary functions of t. Then, the Lie symmetry algebra of Equation (1) is

Γ = a1(t)∂t +

(
a2(t) +

xȧ1

2

)
∂x +

(
ȧ2 +

xä1

2
− uȧ1

2

)
∂u +

(
−1

2
(v + B0)ȧ1

)
∂v (11)

Since (11) is a first-order partial differential equation, the equation of the characteristic
curve may be expressed invariantly using the Lagrange–Charpit method. Equation (11)
can be rewritten in the Lagrange form.

dt
a1

=
dx

1
2 ȧ1x + a2

=
d f

− 3
2 ȧ1 f + 1

2 x
...
a 1 + ä2

. (12)

The characteristic systems are

dx
dt
− ȧ1

2a1
x− a2

a1
= 0 (13)

d f
dt

+
3ȧ1

2a1
f −

...
a 1

2a1
x− ä2

a1
= 0. (14)

The first equation gives a characteristic z = (x−α)
ρ = constant, where a1 = ρ2 and

α = ρ
∫ a2

ρ3 dt.
Then, the Equation (14) becomes

d f
dt

+
3ȧ1

2a1
f − 1

2
(a

1
2
1 z + α)

...
a 1

a1
− ä2

a1
= 0 (15)

and gives the characteristic

H1(z) = f ρ3 − ρ2ρ̈x− (α̈ρ− αρ̈)ρ2 = constant.
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Then, the solution of Equation (9) is

f (x, t) = ρ̈

(
x− α

ρ

)
+ α̈ +

1
ρ3 H1

(
x− α

ρ

)
, (16)

where H is an arbitrary function of its argument.
Similarly,

g(x, t) =
1
ρ3 H2

(
x− α

ρ

)
, (17)

is the solution of Equation (10), where H2 is an arbitrary function of its argument.
It is important to note, here, that the analysis of the linear counterpart of Equation (1)

leads to certain important observations. The linear counterpart of Equation (1) is obtained by
considering the terms uux, vvx, and (uv)x equal to zero. The subsequent search for symmetries
lists certain trivial and nontrivial symmetries and certain equations similar to (9) and (10). The
explicit symmetries are as follows:

Γ1 = ∂t

Γ2 = ∂x

Γ3 = u∂u + v∂v.

Now, along with these symmetries, certain arbitrary functions representing infinite-
dimensional symmetries are also obtained, which can be used productively to obtain the
reduced ordinary differential equations of the subsequent linear counterpart of Equation (1).
It is also important to note here that the symmetries mentioned as Γ1, Γ2, and Γ3 are the
trivial symmetries inherent to any linear equations and, hence, forms the main difference
between the linear and nonlinear equations. The reduced equations, using these symme-
tries, may lead to certain trivial equations which are easily solvable and, hence, the plot of
these solutions can be easily understood.

4. Reduction to an Ordinary Differential Equation

The characteristics corresponding to the generator (4) are found by solving the equation

dt
a1

=
dx

1
2 ȧ1x + a2

=
du

1
2 ä1x− 1

2 ȧ1u + ȧ2
=

dv
− 1

2 ȧ1(v + B0)
. (18)

The first characteristic for the Equation (18) is z = (x−α)
ρ , which is the new similarity

variable, where α and ρ are defined as a1 = ρ2 and α = ρ
∫ a2

ρ3 dt. The second characteristic
can be obtained by solving the equation

du
dt

+
ȧ1

2a1
u− ä1

2a1
(ρz + α)− ȧ2

a1
= 0. (19)

The solution is
G(z) = ρu− ρρ̇z− ρα̇. (20)

From the above solution, u can be written as

u = ρ̇z + α̇ +
G(z)

ρ
. (21)

The third characteristic can be obtained by solving the equation

dv
dt

+
ȧ1

2a1
v− B0

ä1

2a1
= 0. (22)
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The solution is
F(z) = ρv + ρB0. (23)

From the above solution, v can be written as

v =
F(z)

ρ
− B0. (24)

In the above, G(z) and F(z) are similarity functions, when one substitutes the values
of u, v, f , and g into Equation (1), we have

H1(z) + G′(z)G(z) + F′(z)F(z)− νG′′(z) = 0

−H2(z) + F(z)G′(z) + G(z)F′(z)− µF′′(z) = 0
(25)

Letting H1(z) = H′1(z) and H2(z) = H′2(z) and integrating (25) with respect to z, we
have a system of first-order ordinary differential equations:

G(z)2

2
+

F(z)2

2
+H1(z)− νG′(z) = 0 (26)

−F(z)G(z) +H2(z) + µF′(z) = 0 (27)

We can find the value of G(z) from Equation (27) and, substituting into Equation (26),
we get the second-order ordinary differential equation:

F′′ =
( µ

2ν
+ 1
) F′2

F
+

(
1
ν
+

1
µ

)
H2

F′

F
+

1
2νµ

F3 +
1

νµ
H1F− 1

µ
H′2 +

H2
2

2µνF
(28)

Now, apply the transformation F(z) = 1
w(z) and the above equation becomes

w′′ =
(

1− µ

2ν

)w′2

w
+

(
1
ν
+

1
µ

)
H2ww′ −

H2
2

2νµ
w3 +

1
µ
H′22 −

H1

µν
w− 1

2µνw
(29)

The general case does not fit into the known equation. However, we perform another
symmetry reduction and identify it to an Abel’s Equation of the second kind.

F′′ =
(

1 +
µ

2ν

) F′2

F
+

(
1
µ
+

1
ν

)
H2

F′

F
+

F3

2µν
+

H1F
µν
− H′2

µ
+

H2
2

2µνF
(30)

The infinitesimal generator is

Γ =

(
p2 −

p1zµ

µ− ν

)
∂z + F

(
p1µ

µ− ν

)
∂F, (31)

provided H1(z) = kH2(z) and H2(z) =
h1

(p1zµ+p2(ν−µ))2 .
The canonical coordinates corresponding to the vector field (31) are

r = −F(p1zµ + p2(ν− µ)) , s =
(µ− ν) log(p1zµ + p2(ν− µ))

p1µ
. (32)

Then, it is easy to see that

ds
dr

=
ν− µ

(p1zµ + p2(ν− µ))(−p1µF− (p1zµ + p2(ν− µ))F′)
.
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If we choose v to be
(

ds
dr

)−1

dv
dr

=
p2

1µ2F + (p1zµ + p2(ν− µ))(3p1µF′ + (p1zµ + p2(ν− µ))F′′)
(ν− µ)(p1µF + (p1zµ + p2(ν− µ))F′)

(33)

r2
(

4µ3(µ + 6ν) + r2
)
+ 2r(2µ(µ− ν) + 5r) + 4µ(µ− ν)v(r)(

µ + ν + 2µ2r(µ + 5ν) + µνr(µ− ν)
dv
dr

)
+ 4µ3(µ− ν)2(µ + 2ν)v(r)2 + 1 = 0 (34)

5. Particular Cases of Equation (28)
5.1. Case 1 (Gambier.B 19)

Let µ = −ν = i
2
√

2
,H2 = 0,H1 = −2ν2 and apply the transformation z → x, F → y,

we obtain

y′′ =
y′2

y
+ 4y3 + 2y,

with the analytic solution ∫ dy√
4y2 + 4 ln(y) + y0y

= x− x0.

The numerical evolution of the latter equation is presented in Figure 1.

0.0 0.5 1.0 1.5 2.0

-0.2

-0.1

0.0

0.1

0.2

x

y

Solution of Gambier.B 19

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 1. Qualitative evolution of the Gambier.B 19 equation.

5.2. Case 2 (Gambier.B 29)

Let µ = −ν = i√
3
,H1 = H2 = 0, and apply the transformation z → x, F → y,

we obtain

y′′ =
y′2

y
+

3
2

y3,
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with the analytic solution

y(x) =
8y0e−

√
2

2y1
x

(y0)
2e−

√
2

y1
x − 48

and y(x) =
8y0e

√
2

2y1
x

(y0)
2e
√

2
y1

x − 48
.

The numerical evolution of the latter equation is presented in Figure 2.

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

x

y

Solution of Gambier.B 29

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 2. Qualitative evolution of the Gambier.B 29 equation.

5.3. Case 3 (Gambier.B 30)

Let µ = −ν = i√
3
,H1 = 2βµν,H2 = γν, and apply the transformation z→ x, F → y,

we obtain

y′′ =
y′2

2y
+

3
2

y3 + 2βy− γ2

2y

where the solution is given in terms of the elliptic integral∫ 2dy√
4y2y0 + 6y4 + 16y2β ln a + 2γ2

= x− x0.

This can be considered a variant of Gambier.B 30 for α = 0,

y′′ =
y′2

2y
+

3
2

y3 + 4αy2 + 2βy− γ2

2y
.

The numerical evolution of the latter equation is presented in Figure 3.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.010

-0.005

0.000

0.005

0.010

x

y

Solution of Gambier.B 30 for β=-1 & γ=0.02

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 3. Qualitative evolution of the Gambier.B 30 equation.

5.4. Case 4 (Second Painlevé Transcendent)

Let µ = −2ν = i√
2

,H2 = 0, H1 = −2ν2z and apply the transformation F → w, z→ x.
We obtain the second Painlevé transcendent:

w′′3 + xw = 0.
The numerical evolution of the latter equation is presented in Figure 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.10

-0.05

0.00

0.05

0.10

x

y

Solution of Second Painleve transcendent

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 4. Qualitative evolution of the second Painlevé transcendent equation.
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5.5. Case 5 (Kummer–Schwarz Equation)

If µ = ν and H2 = 0, and apply the transformation z → x, F → y, we obtain the
second-order Kummer–Schwarz equation

F′′ = 3
2

F′2
F + 1

2µ2 F3 + H1
µ2 F.

The numerical evolution of the latter equation is presented in Figure 5.

0 1 2 3 4

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

x

F

Solution of Kummer-Schwarz equation for μ=1 & H1=-1

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 5. Qualitative evolution of the Kummer–Schwarz equation.

5.6. Case 6 (Duffing Equation)

If H1 is constant H2 = 0 and µ = −2ν, and apply the transformation z → x, F → y,
we obtain the undamped and unforced Duffing equation:

F′′ + 1
4ν2 F3 + 1

2ν2H1F = 0
The numerical evolution of the latter equation is presented in Figure 6.

0 2 4 6 8 10

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

x

F

Solution of Duffing equation for ν=1 & H1=1

y0=0.01,y0'=0

y0=-0.01,y0'=0

y0=0.01,y0'=0.01

y0=-0.01,y0'=0.01

Figure 6. Qualitative evolution of the Duffing equation.
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6. General Cases of Equation (29)

Equation (29) can be considered as a particular case of the following two
Gambier ’s equations:

6.1. Case 7 Gambier.B 28

y′′ = y′2
2y − yy′ + qy′ + y3

2 − 2qy2 + 3(q′ + q2

2 )y−
72r2

y

6.2. Case 8 Gambier.B 27

y′′ = (1− 1
n )

y′2
2y + fn(q, r)yy′+ φn(q, r)y′− n−2

n
y′
y + n f 2

n
(n+2)2 y3 + n( f ′n+ fnφn

(n+2) y2 +ψn(q, r)y

+ φn +
1

ny

7. The Case f = 0, g = 0

The equation has the Lie point symmetries

Γ1 = ∂t

Γ2 = ∂x

Γ3 = t∂x + ∂u

In the subsequent subsections, we study the reductions with respect to Γ1, Γ2, Γ3,
and the travelling-wave. In Section 7.2, the singularity analysis of the reduced ode is
also mentioned explicitly.

7.1. Case 6a.

The reduction, with respect to Γ1, leads to the reduced ode

F1(x)F′1(x) + B0G′1(x) + G1(x)G′1(x) = νF′′1 (x),
B0F′1(x) + G1(x)F′1(x) + F1(x)G′1(x) = µG′′1 (x),

(35)

where u(t, x) = F1(x) and v(t, x) = G1(x). The point symmetries of Equation (35) are

Γ1a = ∂x,
Γ2a = x∂x − F1∂F1 − (B0 + G1)∂G1 .

(36)

The reductions with respect to Γ1a and Γ2a does not yield any positive result. The
singularity analysis of the Equation (35), too, does not provide any fruitful result.

Next, we look for the reduction with respect to Γ2, which leads to the simpler first-order
ode F′2(t) = 0, and G′2(t) = 0, where u(t, x) = F2(t) and v(t, x) = G2(t).

Further, the reduction with respect to Γ3, leads to an Euler’s equation, which is

F3(t) + tF′3(t) = 0,
B0 + G3(t) + tG′3(t) = 0,

(37)

where u(t, x) = x
t + F3(t) and v(t, x) = G3(t).

7.2. Case 6b.

In this subsection, we perform the reductions with respect to the travelling-wave. The
reduction leads to a system of two second-order odes, which are

B0F′1(z) + F1(z)F′1(z)− cG′1(z) + G1(z)G′1(z) = νG′′1 (z),
−cF′1(z) + G1(z)F′1(z) + B0G′1(z) + F1(z)G′1(z) = µF′′1 (z),

(38)
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where the similarity variables are

x− ct = z,

u(t, x) = G1(z),

v(t, x) = F1(z).

The Lie point symmetries of equation (38) are

Γ1b = ∂z,

Γ2b = z∂z − (B0 + F1)∂F1 + (c− G1)∂G1 .

The reduction, with respect to Γ1b and Γ2b, does not provide any fruitful result, sim-
ilar to Equation (35). Therefore, we dwell on the singularity analysis to comprehend
its integrability.

Singularity Analysis of Equation (38).
We substitute F1 → αzp and G1 → βzq, in Equation (38). The substitution leads to

B0 pz−1+pα + pz−1+2pα2 − cqz−1+qβ + qz−1+2qβ2 + qz−2+qβν− q2z−2+qβν = 0,
−cpz−1+pα + B0qz−1+qβ + pz−1+p+qαβ + qz−1+p+qαβ + pz−2+pαµ− p2z−2+pαµ = 0,

(39)

One of the possible values for the exponents p and q is −1. After substituting the
values of p and q in Equation (39), we use the dominant terms to compute the leading-order
coefficients α and β. The terms are

− α2

z3 −
β2

z3 −
2βν
z3 ,

− 2αβ

z3 −
2αµ

z3

(40)

Solving Equation (40) for α and β leads to the following possible values

(α→ 0, β→ 0),
(

α→ −
√

2µν− µ2, β→ −µ
)

,(
α→

√
2µν− µ2, β→ −µ

)
, (α→ 0, β→ −2ν).

(41)

Next, to compute the resonance, we substitute F1 ∼ αzp + m1zp+s, G1 ∼ βzq + m2zq+s

in Equation (38). The substitution leads to

0 = −B0m1z−2+s + cm2z−2+s + B0m1sz−2+s − cm2sz−2+s −m2
1z−3+2s −m2

2z−3+2s + m2
1sz−3+2s + m2

2sz−3+2s

− B0α
z2 − 2m1z−3+sα + m1sz−3+sα− α2

z3 + cβ

z2 − 2m2z−3+sβ + m2sz−3+sβ− β2

z3 − 2m2z−3+sν

+3m2sz−3+sν−m2s2z−3+sν− 2βν

z3 ,
0 = cm1z−2+s − B0m2z−2+s − cm1sz−2+s + B0m2sz−2+s − 2m1m2z−3+2s + 2m1m2sz−3+2s + cα

z2

−2m2z−3+sα + m2sz−3+sα− B0β

z2 − 2m1z−3+sβ + m1sz−3+sβ− 2αβ

z3 − 2m1z−3+sµ + 3m1sz−3+sµ

−m1s2z−3+sµ− 2αµ

z3 .

(42)

We select the linear terms with respect to m1 and m2, corresponding to various powers
of z. For z−2+s, we have

(−B0 + B0s)m1 + (c− cs)m2 = 0,
(c− cs)m1 + (B0s− B0)m2 = 0.

(43)

For system (43) to possess a non-trivial solution, the necessary requirement is∣∣∣∣∣∣
B0(s− 1) c(1− s)
c(1− s) B0(s− 1)

∣∣∣∣∣∣ = 0.
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The possible values of s = 1(2). Similarly, for z−3+s, we have

−2m1α + m1sα− 2m2β + m2sβ− 2m2ν + 3m2sν−m2s2ν = 0,
−2m2α + m2sα− 2m1β + m1sβ− 2m1µ + 3m1sµ−m1s2µ = 0

(44)

Similarly to Equation (43), for the existence of a non-trivial solution, the system

(s− 2)

∣∣∣∣∣∣
−α −(β + ν− sν)
−α −(βµ− sµ)

∣∣∣∣∣∣ = 0,

leads to the following possible values of s.

s→ 2, s→ βµ + βν + 2µν−
√

β2µ2 + 4α2µν− 2β2µν + β2ν2

2µν
, s→ βµ + βν + 2µν +

√
β2µ2 + 4α2µν− 2β2µν + β2ν2

2µν
.

Now, for (α, β) = (0,−2ν), the possible values of s are

s→ − ν
µ −

√
4µ2ν2 − 8µν3 + 4ν42µν,

s→ − ν
µ +

√
4µ2ν2 − 8µν3 + 4ν42µν.

(45)

For
(

α→ −
√

2µν− µ2, β→ −µ
)

, the possible values of s are

s→ 1
2 −

µ
2ν −

√
µ4−2µ3ν+µ2ν2+4µν(−µ2+2µν)

2µν ,

s→ 1
2 −

µ
2ν +

√
µ4−2µ3ν+µ2ν2+4µν(−µ2+2µν)

2µν .
(46)

Similar results are obtained for
(

α→
√

2µν− µ2, β→ −µ
)

. The generic value of
the resonance s being −1 is not obtained for both the computations, and, hence, as cited
in references [26–29], the integrability of Equation (38) cannot be determined.

Still, a possibility exists when ν, fluid kinematic viscosity, and µ magnetic diffusivity
are equal. This leads to s = −1. Therefore, under a special circumstance of ν = µ, we have
s = −1, and from the analysis of Equation (44) s also takes the value 2. The readers can
easily verify the consistency test and, hence, we conclude that the Laurent expansion leads
to a right Painlevé series.

8. Conclusions

In this work, reductions concerned with that of the arbitrary functions are deduced
for the magnetohydrodynamics(MHD) (1 + 1)-dimension equation. The reduction leads to
a certain well-known family of equations which are connected to Gambier’s, Abel’s, and
Kummer–Schwarz equations. The reductions of the force-free equation are generally trivial
but the traveling-wave reduction leads to equations which are devoid of point symmetries.
Hence, the computation of a series solution using singularity analysis leads to a right
Painlevé series, provided the kinematic viscosity and magnetic diffusivity parameters are
equal. The physical significance of such a situation is yet to be ascertained and forms the
basis of our future work.
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