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Abstract: Digital image forensics is a crucial emerging technique, as image editing tools can modify
them easily. Most of the latest methods can determine whether a specific operator has edited an
image. These methods are suitable for high-resolution uncompressed images. In practice, more than
one operator is used to modify image contents repeatedly. In this paper, a reliable scheme using
information fusion and deep network networks is presented to recognize manipulation operators and
the operator’s series on two operators. A transposed convolutional layer improves the performance
of low-resolution JPEG compressed images. In addition, a bottleneck technique is utilized to extend
the number of transposed convolutional layers. One average pooling layer is employed to preserve
the optimal information flow and evade the overfitting concern among the layers. Moreover, the
presented scheme can detect two operator series with various factors without including them in
training. The experimental outcomes of the suggested scheme are encouraging and better than the
existing schemes due to the availability of sufficient statistical evidence.

Keywords: image forensics; deep neural network; image manipulation detection; image forgery detection

1. Introduction

Due to the accessibility of high-accuracy yet simple-to-use image-altering tools, digital
photographs are frequently the target of modification. Image forensics is required to deter-
mine the image’s origin, processing history, and veracity. There are numerous ways [1–3]
to identify the image source device. Since a fake image is typically constructed using two
or more photographs, the mismatch of sources aids in identifying image forgery. The
majority of fake images use several processes to appear genuine. Finding fake images is
made simple by the identification of actions like median filtering [4,5], sharpening [6,7],
and resizing [8–10]. It is also possible to concurrently identify the image forgery processes
using various universal methods [11–17]. Some schemes [18–20] are discussed to detect
image forgery rather than for detecting an operator. Schemes [18,19] also trace the exter-
nal objects in the fake image. Method [20] is suitable both for splicing and copy-move
forgery detection.

Nonetheless, general techniques identify one operator processing accurately on the
image. The image is subjected to multiple operations in a practical scenario. In this paper, a
series of procedures may be precisely identified to provide the image processing timeline.
There are not many methods [21–26] that can identify the operations and their series.
Although performance varies depending on the operation, JPEG compression—the most
popular format—plays a crucial role in forensic investigation. When JPEG compression is
considered, the performance of recent approaches is degraded.

Convolutional neural networks have shown favorable outcomes in many applications
in the current period of a deep learning network. The identification of resizing, brightness
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changes, median filtering, general image alteration, manifold JPEG compression, image
forgery, etc., uses a deep network. For the first time, a deep network was introduced [11]
to detect additive white noise, scaling, median, and Gaussian filtering. In particular, the
starting layer of the deep network uses a constraint. Outcomes from the experiment are
provided for 227 × 227 size pictures. However, no results were offered for images of
JPEG-compressed and small sizes. With the aid of a better CNN model [12], the proposed
concept of constraint is further expanded. A constraint convolutional layer is trailed by
four groups of layers in the enhanced deep network, each of which has a convolutional
layer, batch normalization layer, rectified linear unit layer, and pooling layer. Additionally,
multiple SoftMax classification layers are employed. A randomized tree classifier is utilized
to categorize the results. By deducting the outcome value from the filter window’s center
value, constrained convolutional layer filters to guess mistakes. Each iteration’s training
phase involves enforcing the constraint. When two operations are operated on an image in
succession, even on a high-resolution image, the performance of the CNN model generally
suffers. Boroumand and Fridrich [13] proposed a deep network and multilayer perceptron
exemplary to identify four operations— denoising, tone modification, low-pass, and high-
pass filtering. In the proposed CNN, eight convolutional layers are employed. Moments are
calculated in the end stage of the deep network and are used by the multilayer perceptron
to classify the images. The manual feature extraction method is contrasted with the
previously discussed technique. Only 512 × 512 size images are covered in the experiments.
The calculation of the out-of-bag error by Li et al. [14] allowed them to choose a few
sub-models from the SRM. The selection procedure may significantly lower the feature
dimension. Eleven image processes, including spatial filtering, image enhancement, and
JPEG compression, are examined in the results. The proposed method also promises
the successful identification of four anti-forensic procedures, including median filtering,
resampling, contrast enhancement, and JPEG compression. However, for small-size images,
the performance suffers. A deep network with two convolutional layers was introduced
by Singhal et al. [15] to detect seven different sorts of operations. The deep network uses
the discrete cosine transform factors of the median kernel residual as the input array. The
convolutional layer employs large dimension kernels. The Siamese network was used by
Xue et al. [16] to identify activities such as adding text, an emblem, and a black chunk to
an image and operators like Gamma correction, Gaussian noise, and image resampling.
The Siamese network used ResNet-18 and AlexNet. Uncompressed images are taken
into account in experiments. Image procedures like median filtering, image scaling, and
histogram equalization were discovered by Barni et al. [17]. Two neural networks are used
to extract the features [11,27]. The robust characteristics are chosen from the CNN network
using a random feature selection strategy, and a support vector machine classifier is then
used to determine the kind of attack.

Detecting the order of image operations is a crucial concern when comprehensively
analyzing the history of image processing. Various efforts have been made to determine
the correct sequence of operations applied to an image [21–26] to address this challenge.
These research endeavors aim to develop methodologies and techniques to accurately and
automatically identify the specific order in which image processing operations were ap-
plied. Researchers and practitioners can gain valuable insights into the image’s processing
history by successfully determining the operation order. This information is essential for
understanding the transformations and manipulations that an image has undergone, which
is particularly important in fields like forensics, image analysis, and restoration.

The cited references [21–26] likely represent a collection of previous works in image
processing and forensics that have contributed to the ongoing efforts to solve this challeng-
ing problem. Exploring these prior studies helps build on existing knowledge and lays
the foundation for further image operation order detection advancements. As researchers
continue to investigate and refine these techniques, they move closer to achieving more
accurate and reliable solutions for unraveling the history of image processing operations. A
framework based on mutual knowledge is proposed in [21,22] to analyze the causes of the
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operator series order’s non-detection. Some operator series are impossible for the algorithm
to recognize. The prior approach fails to identify JPEG-compressed images. Comesaa [23]
has discussed operator order detection’s theoretical potential. In order to estimate the order
of operations, Bayar and Stamm [24] deliberated on a deep network that contains a con-
strained convolution layer. Liao et al. [25] discussed a dual-stream deep network to identify
the operators and their corresponding sequences. The approach claimed the detection
of an operator with unknown parameters exhausting transfer learning, though tailored
preprocessing is necessary to employ for a particular operator. Cho et al. [26] proposed
detecting operators and their respective orders. In this scheme, tailored preprocessing is
not required, although the detection performance can be improved by considering some
modifications in the deep network.

In this paper, a scheme that can guarantee improved performance on two-operator
chain series detection is proposed. The following are key points of the proposed network’s
specific contributions:

• The proposed scheme can detect an operated image of two-operator and the operation
series. The successful detection of many operations include Gaussian blurring, median
filtering, unsharp masking, and image upscaling;

• The transposed convolutional layer is considered instead of the convolutional layer
to reduce the classification error. As the proposed scheme is suitable for challenging
scenarios like the usage of small-size images;

• The bottleneck strategy helps to lower the training parameters. Therefore, the pro-
posed method using a bottleneck strategy can insert more transposed convolutional
layers into the convolutional neural network;

• The pooling layer is avoided among the convolutional layers to save the most statistical
data possible. Subsequently, it might reduce the computing expense at the overhead
of pertinent inherited operation impressions;

• Information fusion is applied to the features of trained networks using multiple
optimizers. Information fusion enhances performance drastically;

• Without specific preprocessing requirements, the proposed method can guarantee
improved performance in demanding situations with low-resolution compressed
images and two-operator series manipulation.

The rest of the paper is organized as follows. A problem for two-operator manipulation
detection in various contexts is formulated in Section 2. Section 3 explains the proposed
scheme. In Section 4, a comprehensive experimental analysis is carried out along with a
comparative analysis. In Section 5, the benefits and limitations of the proposed scheme are
emphasized as conclusions.

2. Formulation of Two-Operator Series Problem

In this section, two topics are covered to discuss the significance of detecting operator
series. First, the issue of operator series detection is examined for uncompressed images.
Moreover, the history of compressed image processing will be uncovered in the second.

2.1. Uncompressed Image Operator Series

The uncovering of two-operator series can be considered a numerous class categoriza-
tion issue. The following are the five categories that are based on processing history and
two operators, u & v:

C1: Non-processed image;
C2: An image is processed using the operator u;
C3: An image is processed using the operator v;
C4: An image is first processed using operator u and then processed using operator v;
C5: An image is first processed using operator v and then processed using operator u.

Image quality analysis is performed to recognize the complexity of the two-operator
series detection. The image quality provides an overview of the image statistics. Any form
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of the operator will cause changes in the statistics. One image is considered to comprehend
how an image evolves after being subjected to several operators. An unprocessed image of
the BOSSBase 1.01 [28] dataset is displayed as the first image in Figure 1. The remaining
images are GAB_1.0, MDF_5 × 5, GAB_1.0, MDF_5 × 5, MDF_5 × 5, and GAB_1.0 operated
images. The five images can also be defined as C1, C2, C3, C4, and C5 class images
for u = GAB_1.0 and v = MDF_5 × 5. GAB_1.0 represents Gaussian blurring (standard
deviation = 1.0), and MDF_5 × 5 represents a median filter of size 5 × 5 correspondingly.
The images displayed in the figure cannot easily be distinguished because of their small size.
Therefore, the Perception-based Image Quality Evaluator (PIQE) [29] quality parameter is
taken to show the effect of operators. PIQE assesses distortion without requiring training
data because it is a no-reference and opinion-aware quality indicator. For quality prediction,
PIQE uses local feature extraction. Only relevant spatial areas are used perceptually in the
quality calculation to mirror human behavior. PIQE is the best for the UNF image (a small
quantity represents a good-quality image).

Figure 1. UNF and filtered images.

One more quality indicator is also considered. Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [30] is a no-reference quality indicator that captures the
point-wise statistical of localized standardized luminance impulses and assesses the degree
of picture naturalness based on observed variances from a natural image’s statistical
model. Detailed qualitative analysis is performed on ten thousand images of dimension
64 × 64 pixels using BRISQUE and PIQE (Figure 2). These images are created by taking the
central pixels of the BOSSBase dataset. The BRISQUE shows that there is little difference in
the five class images. PIQE displays a significant difference between unfiltered and other
processed images, although the difference between filtered images is less when compared
with filtered images.

Figure 2. Image quality analysis.
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The pair of image scaling and Gaussian blurring processes are detected in one trial [22].
The frequency domain is used to visualize the image features. However, the outcomes
could be better for the operator series. The C4 and C5 classes cannot be detected. The
artifacts of one operator in a two-operator series can be muted by another, even though
each operator’s strength differs.

2.2. JPEG Compressed Image Operator Series

JPEG is a popular image format. JPEG format is typically used as the default of images
for digital devices. A forged image is typically produced using JPEG files. The creation
of the forged image involves several processes. The forged image contains double JPEG
compression artifacts since it needs to be stored again. The process of creating the forged
image involves double JPEG compression. As a result, the following five categories can be
created using JPEG compression of quality factors, QF1 & QF2, and two operators, u & v:

C1: An image is compressed with QF1, though not treated by any operator;
C2: An image is compressed with QF1 and treated by the operator u, and then compressed

with QF2;
C3: An image is compressed with QF1 and treated by operator v, and then compressed

with QF2;
C4: An image is treated by u, compressed with QF1, and the image is treated again by v,

and then compressed with QF2;
C5: An image is treated by v, compressed with QF1, and the image is treated again by u,

and then compressed with QF2.

The operator artifacts are reduced via JPEG compression. The intricacy of the issue
can increase with two operators and double JPEG compression.

In this paper, a general operator identifier is put forth for different parameters, which
is a more realistic case. The proposed deep model can handle a single operator and a series
of two operators. The unlike parameters are taken into account within a specific range. By
the proposed CNN, the proposed technique can automatically train features to recognize
operator series. Traditional machine learning requires handcrafted feature extraction and
selection, which is unnecessary for the proposed scheme. According to earlier research, the
detection of different operators requires different preprocessing. The proposed method
does not call for a preprocessing of the images. However, some earlier studies [15,25]
claimed that preprocessing was necessary. The proposed CNN can successfully classify the
five categories mentioned above and draw attention to the statistical anomaly.

3. The Proposed Scheme

Deep networks have established their value in solving various problems, including
image categorization, fake face identification, and image forgery detection. The detection of
one and two operators in operated images is discussed in this paper, along with a resilient
deep architecture and information fusion. In a compressed and uncompressed scenario,
the proposed scheme performs well. As with some earlier methods [15,25], the proposed
CNN design can eliminate the requirement of any preprocessing layer. According to the
operator, an exclusive preprocessing was necessary for the earlier methodologies, but
this needed to be practicable and limited the network performance for specific operators.
When two processes are performed simultaneously, the second operator may reduce the
artifacts of the first operator. Various pairs of operators are considered to examine how
operations on the BOSSBase [28] image database behave as in Figure 3. Five operators
are taken into account: Gaussian blurring (GAB_1.0), median filtering of filter size 5 × 5
(MDF_5 × 5), unsharp masking (USM_3.0), and upscaling (USL_1.5). The covariance plot
of the entropy is considered for uncompressed and compressed images for two scenarios
to visualize the behavior of five categories of images. The covariance plot estimates the
power spectral density (power/frequency) of a discrete-time signal (entropy values for our
problem) discovered by the covariance approach. Each column’s power spectral density
is calculated separately. The estimate for the power spectral density is calculated using
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an autoregressive model. Uncompressed images are considered in the first row as per
the discussion of Section 2.1. JPEG compressed images are taken with QF1 = 75 and
QF2 = 85 in the second row as per the discussion of Section 2.2. The gap between some
lines is less, and overlapping is more in compressed images (first image of the second row)
than in uncompressed images (first image of the first row) for operators u = GAB_1.0 and
v = MDF_5 × 5. This fact is also reflected in the experimental analysis, i.e., the classification
error is more in compressed images compared to uncompressed images. A similar behavior
is also followed by operators u = USM_3.0 and v = USL_1.5. Therefore, a common solution
can be proposed to deal with this issue.

Figure 3. Effect of operators on images while considering entropy.
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The proposed architecture is better able to withstand the operator series issue. CNN
uses a number of layers and kernels to divide the different types of images into categories.
Figure 4 displays the framework of the proposed CNN. The resulting feature map from
the transposed convolution has a higher spatial dimensionality than the feature map from
the input image. The standard convolution reduces the input dimension by employing
sliding convolutional kernels. By flattening the input and output, we can represent the
convolution operation as Z = M*X + S, where Z is the output, M is the convolution matrix,
and S is the bias vector. These parameters are obtained from the layer’s weights and biases.

Figure 4. Framework of the proposed deep network.

On the other hand, the transposed convolution is employed to expand the input using
sliding convolutional kernels. The process involves adding padding to all the edges of the
input, where the padding size is determined by subtracting one from the kernel’s edge
size. This is performed to achieve upsampling instead of downsampling. When both the
input and output are flattened, the transposed convolution can be equivalently expressed
as Z = MT*X + S. A conventional convolution layer’s backward function can be compared
to this process.

The transposed convolutional (TConv) layer overrode the results of a typical convo-
lutional layer by retaining the connection pattern. Thus, the original input is returned,
in contrast to how a typical convolutional layer functions. The padding is applied to the
result rather than the input image in the transposed convolutional layer. Padding is applied
to the output in the transposed convolution rather than the input in regular convolution.
Transposed convolution is the regular convolution reversed, but only by dimension, not
by value. The proposed CNN has twelve transposed convolutional layers. The bottleneck
approach is followed. In some applications, such as image steganalysis [31], the bottleneck
technique produces superior results compared to the standard approach. Figure 5 shows
an abstract representation of the bottleneck technique. The batch normalization (Batch
Norm) and the rectified linear unit (ReLU) layers trail two consecutive TConv layers. Point-
wise convolution is carried out in the first TConv layer, and depth-wise convolutions are
performed by the second TConv layer in two successive TConv layers. When used with a
depth-wise convolution in steganalysis [32], 1 × 1 point-wise convolution enhances the
outcomes. Using a 1 × 1 filter and a 3 × 3 filter in that order helps lessen the computational
complexity for TConv layers. Experiments also reveal a performance improvement. The
percentage detection error using TConv 1 × 1 is less than (approximately 2%) TConv 3 × 3
while considering a 1 × 1 filter and a 3 × 3 filter order compared to a 3 × 3 filter and a
1 × 1 filter order. TConv 1 × 1 training takes less time than TConv 3 × 3 training, and the
percentage detection error also decreases. Therefore, using the bottleneck technique has
two substantial advantages.



Symmetry 2023, 15, 1898 8 of 17

Figure 5. Bottleneck approach.

The network architecture consists of transposed convolution layers, specifically the
first and second, with eighty filters each. These filters have sizes of 1 × 1 and 3 × 3,
respectively. The number of filters in each block matches the 1 × 1 filter size in the 3 × 3
transposed convolutional layers. The transposed convolutional layers have a stride of one.

To enhance the training process, several techniques are employed. First, the network
initialization sensitivity is reduced, which helps stabilize the training. Additionally, a Batch
Norm layer is utilized, which accelerates the training rate and reduces the inner covariant
shift [33]. The Batch Norm layer updates the learning parameters based on the mean and
variance of each mini-batch during training. Once the training is complete, the Batch Norm
layer’s final mean and variance values predict unseen data.

A ReLU layer [34] is applied after the Batch Norm layer to improve the network’s per-
formance. This layer substitutes negative values with zeros, which enhances the network’s
ability to learn and generalize.

The proposed network uses one global average pooling (GAP) layer because the
internal statistical information details are vital, and the image size is small. The GAP
layer increases accuracy in steganalysis [35,36]. One element is obtained using GAP from
each feature map. The activation function follows the GAP layer. The activation function
extracts features from the trained deep network while considering different optimizers.
The information fusion process combines the feature vectors obtained from the activation
function, as illustrated in Figure 6.

Figure 6. Information fusion.

In the feature vector extraction phase, three different optimizers are employed: Opti-
mizer 1 (Adam), Optimizer 2 (RMSprop), and Optimizer 3 (SGDM). The training process
runs for 50 epochs to prevent any unfair bias towards unseen data, and the data are shuffled
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before each epoch. A learning rate of 0.01 is considered. These optimizers are used to train
the network and extract essential features from the data.

The Global Average Pooling (GAP) layer is utilized to process the feature vectors,
proceeded by SoftMax and classification layers. The experimental paper demonstrates that
including the GAP layer reduces the percentage classification error by up to 2.7%. Addi-
tionally, the GAP layer preserves the operation fingerprints and mitigates the overfitting
problem [37]. Although multiple pooling layer experiments were conducted, only one
GAP layer is considered in the final experimental analysis. Given that the last transposed
convolutional layer in the proposed CNN has 24 filters, the GAP layer generates 24 features
as a result.

The fully connected layer is critical in consolidating all the knowledge acquired from
the preceding layers. It combines the extracted features to make a comprehensive decision.
The SoftMax function is applied to handle the output of the fully connected layer, assigning
probabilities to each class. The crucial characteristic of the SoftMax function is that the total
likelihood across all categories must equal 1, ensuring that it represents a valid probability
distribution. Consequently, the classification layer employs a cross-entropy loss function to
determine the exclusive class for classification.

The importance of CNN’s weight initialization cannot be overstated, as it significantly
impacts the network’s overall performance. In the prior stage, random values are collected
for network initialization. However, this method is impractical, leading to inconsistent
performance across different runs due to varying weight initializations. Glorot and Ben-
gio [38] introduced a weight initialization strategy that improves performance and speeds
up convergence to address this issue. This strategy works particularly well with less
dense networks like the proposed CNN. The weights are initialized based on the number
of inputs and hidden nodes, promoting more stable training and better generalization.
For classification purposes, an SVM (Support Vector Machine) classifier is employed, as
illustrated in Figure 7. This classifier takes the features extracted by CNN and uses them to
classify the input data into specific classes.

Figure 7. Training and testing process.

4. Experimental Analysis

In this paper, a robust scheme is proposed to detect processed images of single and
two operators with their sequence. Numerous experiments are run to verify the resilience
and adaptability of the proposed network. A total of twenty-six thousand images are taken
in equal proportion from BOSSBase [28], UCID [39], LIRMM [40], and never-compressed
(NC) [41] image databases, which contain 10,000, 1338, 10,000, and 5150 uncompressed color
images, respectively, to build the experimental dataset. First, the 256 × 256 pixel middle
block of each image is used, and then sixteen non-overlapping blocks with a dimension of
64 × 64 pixels are produced. In the end, 416,000 patches with a dimension of 64 × 64 pixel
images are created. Each class uses twenty-four thousand images for training and six
thousand images for validation. Tests are conducted on fifteen thousand image patches.
The image patches that are used in training are never reused in testing. In the experimental
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paper, five operators are taken into account: Gaussian blurring (GAB_X), median filtering
of filter sizes 3 × 3 and 5 × 5 (MDF_3 × 3, MDF_5 × 5), unsharp masking (USM_X), and
upscaling (USL_X) with various X parameters. The operator is applied to the image while
taking into account symmetric padding. It is crucial to note that thirty thousand image
patches of size 64 × 64 pixels are chosen randomly to obtain unbiased findings for each
operator. Using an NVIDIA GTX2070 GPU and 32 GB RAM, the experiments are conducted.
As discussed in Section 2.1, the C1 class stands refers to the original picture, the C2 class
refers to images processed by operator u, the C3 class refers to images processed by operator
v, the C4 class refers to images processed by operator u followed by operator v, and the C5
class refers to images processed by operator v followed by operator u. Likewise, the classes
are defined for compressed images, as described in Section 2.2. The proposed scheme
can categorize two-operator processed images in their order. The proposed scheme’s
classification error is less than the existing schemes. T1, T2, and T3 signify when the
proposed CNN is trained using Adam, RMSprop, and SGDM optimizers. The SoftMax
classifier is utilized for T1, T2, and T3. TF represents the features of T1, T2, and T3 when
they are concatenated. The SVM classifier with a linear kernel is considered for TF.

Table 1 displays specific data for the percentage detection error for various operator
pairings. In Table 1, the following operators are taken into consideration: Gaussian blurring
with standard deviation 0.7 (GAB_0.7), 1.0 (GAB_1.0), median filtering of filter size 3 × 3
(MDF_3 × 3), and 5 × 5 (MDF_5 × 5). The mean percentage detection error (MPDE) and
standard deviation of percentage (STD) detection error are also defined for T1, T2, T3, and
TF. In the case of GAB_1.0, the classification errors are lesser, though GAB_0.7 is high. Due
to the low blurring of images, misclassification between different classes increased. The TF
provides the least MPDE, and the standard deviation is the lowest for TF.

Table 1. Operator series analysis of Gaussian blurring and median filtering.

U GAB_1.0 GAB_1.0 GAB_0.7

v MDF_3 × 3 MDF_5 × 5 MDF_5 × 5

T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF

C1 0.24 0.16 0.37 0.09 0.35 0.24 0.41 0.13 0.97 0.80 0.69 0.39
C2 3.72 2.96 2.81 1.75 1.19 1.07 0.69 0.51 0.53 0.53 0.55 0.33
C3 0.47 0.52 1.52 0.43 8.83 3.35 3.06 2.67 15.07 15.95 12.73 11.06
C4 2.58 1.17 1.18 0.55 1.07 3.05 3.02 1.33 6.81 5.33 9.11 6.61
C5 1.53 1.62 1.87 0.83 0.46 0.60 0.59 0.29 0.14 0.26 0.27 0.19

MPDE 1.71 1.29 1.55 0.73 2.38 1.66 1.56 0.99 4.70 4.58 4.67 3.72
STD 1.46 1.09 0.89 0.63 3.63 1.44 1.36 1.05 6.41 6.69 5.85 4.93

Table 2 considers several operators, including GAB_0.7, GAB_1.0, and unsharp mask-
ing with a 2.0 radius (USM_2.0) and 3.0 radius (USM_3.0). Among all the scenarios, the
classification error is the highest in class C5, which corresponds to the combined application
of USM and GAB (USM GAB). This observation is supported by the confusion matrix of
GAB_1.0 and USM_3.0 for the TF (transfer function), as shown in Figure 8. The confusion
matrix reveals that a significant number of 1290 images belonging to class C5 are misclassi-
fied as class C1 (GAB_1.0). Similarly, 579 images from class C1 (GAB_1.0) are misclassified
as class C5. However, despite these classification errors, the information fusion technique
(TF) still yields the best overall results.

Table 3 shows the analyses of various operators, including GAB_0.7, GAB_1.0, and up-
scaling with factors 1.2 and 1.5. Among these scenarios, TF (transfer function) consistently
outperforms other operators and demonstrates superior stability in delivering the results.
The Mean Percentage Difference Errors (MPDEs) associated with TF are significantly lower
than the other operator series presented in Table 2. Specifically, when considering GAB_1.0
in conjunction with upscaling, the results show that using USL_1.5 as the upscaling factor
yields better outcomes than USL_1.2. The upscaling process introduces interpolation, which
affects the intrinsic statistical evidence of the data, making the classification process easier.
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However, it is noteworthy to mention that the classification error is lower when using
GAB_1.0 and USL_1.5 together than when using GAB_1.0 and USL_1.2. This is because,
as seen in USL_1.5, high-factor upscaling disturbs the intrinsic statistical evidence to a
lesser extent than low-factor upscaling, as observed in USL_1.2. The interference caused by
high-factor upscaling is comparatively less, leading to improved classification accuracy for
the combination of GAB_1.0 and USL_1.5.

Table 2. Operator series analysis of Gaussian blurring and unsharp masking.

U GAB_1.0 GAB_1.0 GAB_0.7

v USM_2.0 USM_3.0 USM_3.0

T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF

C1 2.39 1.83 4.75 1.90 6.37 1.81 2.71 1.74 4.17 2.92 4.65 2.56
C2 3.34 3.88 9.20 5.40 8.87 5.49 4.79 3.89 3.71 3.18 1.53 2.89
C3 6.63 5.01 2.14 2.59 1.79 6.03 3.04 2.22 4.41 5.31 6.22 2.75
C4 0.09 0.19 0.14 0.05 0.05 0.09 0.23 0.06 1.09 0.55 1.11 0.42
C5 18.00 14.12 9.35 9.01 10.66 13.13 11.11 8.61 9.04 9.55 11.31 5.98

MPDE 6.09 5.01 5.12 3.79 5.34 6.19 4.79 3.70 4.49 4.30 4.96 2.92
STD 7.06 5.42 4.13 3.49 4.53 5.03 4.10 3.27 2.87 3.38 4.14 1.99

Figure 8. Confusion matrix of u = GAB_1.0 and v = USM_3.0.

Table 3. Operator series analysis of Gaussian blurring and upscaling.

U GAB_1.0 GAB_1.0 GAB_0.7

V USL_1.2 USL_1.5 USL_1.5

T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF

C1 0.09 0.11 0.15 0.07 0.13 0.07 0.15 0.05 1.04 0.41 0.53 0.31
C2 6.18 6.50 15.89 7.67 3.58 3.73 4.34 2.47 0.67 0.64 0.25 0.22
C3 0.24 0.47 0.31 0.15 0.23 0.14 0.17 0.12 3.85 3.49 2.25 1.45
C4 0.17 0.13 0.17 0.11 0.08 0.55 0.44 0.08 0.69 0.43 0.63 0.70
C5 7.75 7.98 2.08 4.09 1.29 1.08 0.94 1.27 0.03 0.08 0.07 0.03

MPDE 2.88 3.04 3.72 2.42 1.06 1.11 1.21 0.80 1.26 1.01 0.75 0.54
STD 3.77 3.87 6.85 3.41 1.49 1.52 1.78 1.07 1.50 1.40 0.87 0.56

Table 4 evaluates three operators: MDF, USM, and USL. As with the findings in
Tables 1–3, the transfer function (TF) consistently outperforms all other operators across
different scenarios, providing more stable and reliable results. In particular, when the
combination of u = MDF_3 × 3 and v = USM_2.0 is used, TF achieves an impressive
MPDE of 3.36%. Despite a slightly larger MDF kernel (u = MDF_5 × 5) while maintaining
v = USM_2.0, TF still performs well, resulting in a 5.03% MPDE. However, it is worth noting
that the outcomes are less favorable when using the combination of u = MDF_5 × 5 and
v = USL_1.2, which leads to inferior results compared to other manipulation types. Addi-
tionally, the classification errors are exceptionally high for the C2 and C5 classes, indicating
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that these classes pose significant challenges for the evaluated operators and manipulation
combinations. Overall, Table 4 reaffirms the superiority of the transfer function in achieving
superior performance and stability across diverse scenarios. Furthermore, it underscores
the importance of selecting appropriate operator combinations to optimize classification
results effectively.

Table 4. Operator series analysis of median filtering, unsharp masking, and upscaling.

U MDF_3 × 3 MDF_5 × 5 MDF_5 × 5 USM_2.0

V USM_2.0 USM_2.0 USL_1.2 USL_1.5

Class T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF

C1 2.83 1.77 1.77 2.31 3.29 1.69 4.11 1.92 0.11 0.16 0.19 0.05 1.75 1.51 1.13 2.13
C2 7.07 4.82 4.82 5.19 9.00 6.75 12.53 8.49 24.83 38.22 14.05 19.13 5.33 5.52 8.05 2.47
C3 4.75 6.17 6.17 2.34 4.15 5.66 2.93 2.56 0.26 0.37 0.17 0.06 21.13 9.79 9.99 5.17
C4 1.10 1.08 1.08 0.20 0.19 0.47 0.17 0.11 0.09 0.14 0.31 0.09 1.25 6.83 10.95 7.72
C5 9.01 11.13 11.13 6.73 14.66 19.24 11.80 12.07 13.25 6.71 39.11 14.26 0.38 0.15 0.12 0.01

MPDE 4.95 4.99 4.99 3.36 6.26 6.76 6.31 5.03 7.71 9.12 10.77 6.72 5.97 4.76 6.05 3.50
STD 3.18 4.02 4.02 2.59 5.66 7.45 5.54 5.04 11.12 16.51 16.94 9.27 8.68 3.94 5.07 2.99

The JPEG format is frequently used as the default format in a real-world camera
setting, as the graphic quality is still decent afterward compression. As a result, three
stages are taken into account while detecting the operator series in JEPG images. The
image is compressed with the QF1 factor in the first step. In step 2, the operator series is
applied to the compressed images. Step 3 involves using JPEG compression with the QF2
quality factor. In Section 2.2, a comprehensive description of JPEG compression is provided.
Compared to uncompressed images, the proposed CNN’s performance can suffer from
compressed images. However, performance is acceptable considering the modest image
size (64 × 64) and low compression quality aspects.

The outcomes of compressed images are presented in Table 5. Numerous compres-
sion quality variables are considered in the actual scenario, QF1 = QF2, QF1 < QF2, and
QF1 > QF2. The difference between quality factors QF1 and QF2 is variable ranging from
5 to 20. The operator’s artifacts are diminished during compression. However, the average
percentage of detection error is less than 9% in most cases. In the first case, QF1 = 75 and
QF2 = 85, and in the second case, QF1 = 85 and QF2 = 75; the two cases with u = GAB_1.0
and v = MDF_5 × 5 are taken into consideration. The percentage of detection error in the
first case is 2.32%, as shown in Table 5, while it is 3.89% in the second. The percentage of
detection error of TF is less than 5%, even when QF1 = 90 and QF2 = 70, and u = GAB_1.0
and v = MDF_5 × 5. Several other results are also considered in Table 6, where the results
of only TF are considered.

Table 5. Operator series detection on compressed images.

u GAB_1.0 GAB_1.0 GAB_1.0

v MDF_5 × 5 MDF_5 × 5 MDF_5 × 5

QF1 = 75, QF2 = 85 QF1 = 85, QF2 = 75 QF1 = 90, QF2 = 70

T1 T2 T3 TF T1 T2 T3 TF T1 T2 T3 TF

C1 2.94 2.36 1.46 0.96 3.43 2.65 2.34 2.25 5.95 5.01 2.93 3.37
C2 7.76 5.77 4.70 4.02 9.60 6.94 4.95 5.72 5.41 4.55 8.81 6.31
C3 5.75 8.18 6.87 5.51 8.10 11.36 11.57 8.65 15.35 14.97 13.53 9.98
C4 1.54 1.43 1.34 0.96 2.23 3.89 4.01 2.27 3.42 6.02 4.63 3.00
C5 0.39 0.71 0.29 0.13 1.16 1.59 1.60 0.57 0.19 0.37 0.26 0.07

MPDE 3.67 3.69 2.93 2.32 4.90 5.28 4.89 3.89 6.07 6.18 6.03 4.55
STD 3.04 3.17 2.75 2.32 3.73 3.94 3.96 3.26 5.66 5.36 5.22 3.75
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Table 6. Results of TF for operator series detection on compressed images.

u v Compression C1 C2 C3 C4 C5 MPDE

GAB_1.0 USL_1.5 QF1 = 75, QF2 = 85 0.28 7.99 0.31 3.15 10.38 4.42
GAB_1.0 USL_1.5 QF1 = 85, QF2 = 85 0.91 12.02 0.71 3.49 12.74 5.97
GAB_0.8 MDF_3 × 3 QF1 = 70, QF2 = 90 0.06 1.51 1.15 3.71 1.95 1.68

MDF_5 × 5 USL_1.5 QF1 = 75, QF2 = 85 0.49 16.85 0.25 0.69 14.05 6.47
MDF_5 × 5 USL_1.5 QF1 = 85, QF2 = 75 0.27 20.83 1.04 1.84 16.96 8.19

USM_3.0 USL_1.5 QF1 = 80, QF2 = 90 0.35 0.24 2.14 4.57 2.91 2.04
USM_3.0 USL_1.5 QF1 = 75, QF2 = 85 0.50 0.20 1.93 6.10 6.46 3.04

In both the training and testing phases of the aforementioned experimental analysis,
the same parameter settings are used for the operators. The operators might be the same
but have different parameters in the real world. Experiments are conducted to evaluate
the proposed method’s robustness to the different operator specification requirements.
Gaussian blurring standard deviations 0.7, 0.8, 0.9, and 1.0 are considered for training. The
training set consists of sixty thousand images, of which fifteen thousand are processed
with the Gaussian blurring parameters on sixty thousand images. The forty thousand pho-
tographs are utilized for testing with 300 Gaussian blurring parameters, with a parameter
variety of 0.701 to 0.900, for a total of forty thousand images. In order to detect difficulty
with the five-class classification of the two-operator series, 300,000 pictures are utilized
for training and 200,000 for testing. In different specifications, the proposed CNN model
likewise performs quite well. For operators u = GAU and v = UP in Table 7, two scenarios
of uncompressed and compressed images with QF1 = 80 and QF2 = 90 are shown.

Table 7. Operator series detection for different training and testing specifications.

Uncompressed QF1 = 80, QF2 = 90

Class T1 T2 T3 TF T1 T2 T3 TF

C1 0.51 0.55 0.32 0.16 0.58 0.31 0.62 0.09
C2 4.14 7.55 2.33 1.27 5.35 5.80 6.23 2.43
C3 0.60 0.54 4.16 1.63 2.25 8.35 3.05 1.84
C4 2.26 1.38 0.23 0.34 5.52 3.26 4.49 3.73
C5 5.68 3.45 0.94 1.08 5.38 6.98 5.16 4.88

MPDE 2.64 2.69 1.60 0.90 3.81 4.94 3.91 2.59
STD 2.25 2.96 1.66 0.62 2.27 3.19 2.17 1.83

The tests focused on detecting two-operator series, excluding single-operator detection,
as shown in Table 8. The images underwent various operations, including Gaussian
blurring, median filtering, unsharp masking, and upscaling, and unaltered images were
categorized separately. The Mean Percentage Detection Error (MPDE) for uncompressed
images of TF was found to be 1.35%, whereas for JPEG images with a QF of 85 of TF,
the MPDE was 3.19%. These results indicate that the proposed scheme is effective in
detecting two-operator series and well-suited for accurately identifying single-operator
processed images.

Table 8. Detection error of single operator.

Uncompressed QF1 = 80, QF2 = 90

Class T1 T2 T3 TF T1 T2 T3 TF

UNF 3.70 2.41 6.66 2.23 9.11 14.45 12.44 9.02
GAB_0.7 0.23 0.17 0.20 0.13 6.17 5.57 11.17 5.26

MDF_5 × 5 0.11 0.08 0.05 0.06 0.67 0.43 0.54 0.56
USM_2.0 4.15 5.37 3.39 2.78 11.17 9.69 7.77 7.03
USL_1.2 1.96 0.03 0.07 0.03 9.46 13.08 11.72 6.82
MPDE 2.03 1.61 2.07 1.05 7.32 8.64 8.73 5.74

STD 1.89 2.33 2.93 1.35 4.12 5.73 4.92 3.19
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The proposed CNN is capable of classifying two operators and their series for un-
compressed and JPEG small-size images. The in-depth investigation is covered. Now,
the outcomes of the proposed method are contrasted with a few different cutting-edge
methods. Unlike other conventional models, the CNN model [12] introduces a confined
convolutional layer. Different size filters, including 7 × 7, 5 × 5, and 3 × 3, are employed
in the convolutional layer. According to our experimental results, small-dimension kernels
are better suited. Bayar and Stamm [24] introduced a constrained convolution layer to
picture residuals for better outcomes. After improvement, the results are better, but there is
still a performance gap because there are fewer convolutional layers and larger filters. In
the Bayar and Stamm methods [12,24], method [24] has better performance, which is the
reason why method [24] is used for comparison purposes. CNN model with two streams
was proposed by Liao et al. [25]. The two-stream model’s findings were excellent. Another
significant development in the research is the notion of operator series detection. The
two-stream model is capable of identifying operators with unidentified requirements. Due
to the numerous layers and specialized prior processing that must be used to identify, the
computational cost is high. Cho et al. [26] improved the performance using the bottleneck
approach. The scheme by Cho et al. did not need customized preprocessing. Due to the
transposed convolution and bottleneck method, our proposed scheme is more trustworthy.
The two benefits of the bottleneck technique are reducing the learning parameters and
allowing for an increase in the network depth. Also, information fusion is performed
to reduce the detection errors. The outcomes of several scenarios for uncompressed and
compressed images are displayed in Figures 9 and 10, respectively.

Figure 9. Comparative analysis with [24–26] schemes for uncompressed images.

Figure 10. Comparative analysis with [24–26] schemes of compressed images.
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In a comparative analysis, it has been found that the scheme proposed by Liao et al. [25]
exhibits inferior performance compared to our proposed CNN architecture. Liao’s CNN
model includes multiple pooling layers, which, unfortunately, results in the loss of critical
statistical data during the downsampling process. Additionally, their approach’s usage of
large kernel sizes has negatively impacted the overall performance. In contrast, the scheme
introduced by Cho et al. [26] outperforms Liao et al.’s approach. In Cho et al.’s scheme, the
use of pooling layers is omitted, which prevents the loss of crucial statistical information.
This absence of pooling layers contributes to better data preservation, ultimately improving
the results.

Our proposed CNN architecture considers these observations, aiming to address
the limitations of previous approaches. Instead of employing pooling layers, we utilize
a transposed convolution, which allows us to retain as many hereditary fingerprints as
possible during the upsampling process. This feature is vital for maintaining essential
information and ensuring the accuracy of the classification. Furthermore, the information
fusion techniques are incorporated into our proposed CNN model to enhance detection
performance further. Combining information from multiple layers improves the accuracy
and reliability of operator sequence detection.

As a result of these enhancements and adaptations in our proposed CNN architecture,
the method’s performance has shown significant improvement when compared to both Liao
et al.’s and Cho et al.’s schemes. Using transposed convolution, coupled with information
fusion, is crucial in achieving more precise and reliable operator sequence detection. These
advancements make our proposed CNN model a promising solution for addressing the
challenges of image processing history analysis and hold potential for various real-world
applications in the field.

In all other respects, the proposed CNN also performs well. The proposed technique
has a lower average classification error, exclusive of particular preprocessing.

5. Conclusions

The widespread type of information representation is digital images. Recent techno-
logical advancements have made it simple for ignorant users to produce deceiving photos.
However, several processes were carried out to create a deceptive image that appeared
authentic. The misleading image’s detection has been made easier by discovering the
manipulation operations. In this paper, a new scheme has been proposed to maintain
an image’s authenticity. So far, most approaches have been proposed for single-operator
detection. The order of operators and two operators have been identified using a few
schemes. The image’s consecutive two operators and matching order could be precisely
detected using the proposed information fusion-based deep learning model. The bottleneck
strategy was used to add more layers while maintaining the number of training parameters
and reducing the detection error.

In contrast to earlier networks, the information loss and overfitting issues have been
addressed using a global average pooling layer in the proposed scheme. Information fusion
and transposed convolution have been performed to decrease classification errors. The
proposed model successfully handled various conditions in the experimental investigation,
including low-resolution images and JPEG compression.

The proposed method currently focuses on handling two operator sequences. How-
ever, it is essential to acknowledge that real-world scenarios may involve more than two
sequences. Therefore, it is crucial to thoroughly verify the effectiveness and performance
of the proposed method under such circumstances where there are multiple operator se-
quences. Additionally, while the proposed method shows promising results in detecting
compressed images, there is still room for improvement in handling highly compressed
images. Highly compressed photos can pose a challenge due to the significant loss of data
and details, making them more difficult to detect accurately. Thus, further research and
development are needed to enhance the method’s capabilities in detecting and effectively
handling such highly compressed images.
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