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Abstract: Structural breaks are often encountered in empirical studies with large panels. This paper
considers the estimation of multiple breaks in the mean of panel data model based on a modified
screening and ranking algorithm. This algorithm satisfies symmetry and is suitable for both cases where
the jump size of break points is positive and negative. The break points are first initially screened based
on the adaptive Fisher’s statistic, followed by further screening of the break points using the threshold
criterion, and finally the final break points are screened using the information criterion. Furthermore,
the consistency of the break point estimators is proved. The Monte Carlo simulation results show that
the proposed method performs well even if the error terms are serially correlated or cross-sectionally
correlated. Finally, two empirical examples illustrate the use of this method.

Keywords: multiple breaks; panel data model; screening and ranking algorithm; adaptive Fisher’s
statistic; information criterion

1. Introduction

Structural breaks are a common feature in many fields of economics. For example, in
macroeconomics, the process of GDP, inflation and the interest rate are often vulnerable to
political, technological and supply shocks, resulting in structural breaks. Ignoring structural
breaks could lead to completely different or, more seriously, misleading conclusions in
policy evaluations. Estimating the point at which a structural break occurs in time series
models has been extensively researched. We refer the reader to Csörgö and Horváth [1],
Bai and Perron [2], Perron [3], Gombay [4], Chen et al. [5], Chen [6], Zou et al. [7,8], Wang
et al. [9], Tveten et al. [10] for comprehensive surveys.

In recent years, there has been a growing amount of literature on estimating structural
breaks in panel data models. Bai [11] estimated the break points in the mean and variance
of the panel data model using the least squares method and the quasi-maximum likelihood
method. Kim [12] investigated the estimation of the common deterministic time trend
break in large panels by minimizing the sum of squared residuals for all possible break
points. Kim [13], continued from [12], considered the joint estimation of the common
break point and the common factors for large panels. Peštová and Pešta [14] considered
a ratio type test statistic to detect a possible common break in means of the panels, and
introduced a common break point estimation. Baltagi et al. [15] studied the estimation
of a common structural break in large heterogeneous panels with a general multifactor
error structure using the least squares method. Xu et al. [16] proposed a class of weighed
difference of average statistics to estimate the variance breaks in dependent panel data.
When the correlation between cross-sectional individuals exists in the form of a common
factor, Horvath et al. [17] proposed a CUSUM type statistic to estimate the breaks in the
mean of panel data. For estimating structural breaks in linear panel data models with a
grouped pattern of heterogeneity, Lumsdaine et al. [18] simultaneously estimated the break
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point, the group membership structure, and the coefficients based on the least squares
method.

A common feature of the above work is the assumption of a single break in the
estimation methodology. While assuming a single break simplifies estimation and inference,
inference based on a single break can be misleading if the model has an unknown number
of breaks. Therefore, many researchers have also studied multiple break point estimation in
panel data. Supposing that the number of breaks in panel data models is given, Bai [11] and
Feng [19] estimated multiple break points one by one based on the least squares method.
Li et al. [20] proposed a penalized principal component estimation procedure that uses
adaptive group fused Lasso to detect multiple structural breaks in panel data models with
unobservable interaction fixed effects. Qian and Su [21] considered the estimation and
inference of multiple breaks in the panel data model through the adaptive group fused
Lasso. Okui and Wang [22] developed a method for estimating heterogeneous structural
breaks in panel data models by grouped fixed effects and adaptive group fused Lasso.
Kaddoura and Westerlund [23] investigated the estimation of multiple structural breaks for
panel data models with random interactive effects using the Lasso method.

The above literature studied the estimation of multiple structural breaks in panel data
regression models, and the research on the estimation of multiple breaks in the mean of
panel data models is as follows. Bai [11] studied the estimation of multiple breaks in panel
data models by the least squares method, but the number of breaks needs to be known in
advance. Cho [24] provided a double CUSUM binary segmentation algorithm for detecting
multiple breakpoints in panel data models. Based on the idea of the screening and ranking
algorithm, Song et al. [25] studied the estimation of multiple break points in multiple
samples based on the adaptive Fisher method. The screening and ranking algorithm (SaRa)
originated from the estimation of multiple break points in time series models. To reduce the
computational complexity, Niu and Zhang [26] proposed a fast and local algorithm based
on a local diagnostic statistic to estimate multiple break points in a time series model. It
has a computational complexity of as low as O(T). Hao et al. [27] discussed the theoretical
properties of SaRa and showed its advantages over other algorithms. Xiao et al. [28]
adopted a multiple-bandwidth strategy and a mixture model-based clustering to improve
the performance of SaRa.

When the error terms of a panel data model follow a normal distribution, the double
CUSUM binary segmentation algorithm [24] and multiple sample SaRa [25] are effective
in estimating multiple break points in the panel data model, but when there is serial
correlation or cross-sectional correlation in the error terms, the estimation of multiple break
points in the panel data model is poor. In this paper, we propose a modified SaRa that
adds an information criterion to the multiple sample SaRa to further screen multiple break
points in the mean of a panel data model. Simulation results indicate that the method in
this paper is effective in estimating the break points even if the error terms are serially
correlated or cross-sectionally correlated.

The rest of the paper is organized as follows. The model and assumptions are described
in Section 2. Section 3 illustrates the SaRa method and proves the consistency of the break
point estimators. In Section 4, we discuss the finite sample performance of SaRa through
Monte Carlo simulations. Section 5 offers a real example to illustrate the effectiveness of
SaRa. Section 6 concludes the paper.

2. The Model and Assumption

In this section, we focus on the problem of estimating multiple break points in the
mean of panel data

Yit = µit + eit, i = 1, 2, . . . , N, t = 1, 2, . . . , T,



Symmetry 2023, 15, 1890 3 of 16

where {µit}T
t=1, i = 1, . . . , N are piecewise constant which share an unknown number of

break points at unknown locations, eit is the error process. We suppose there exist J break
points in the mean of the panel data,

Yit =


µi1 + eit,
µi2 + eit,

...
µi,J+1 + eit,

t = 1, 2, . . . , τ1,
t = τ1 + 1, . . . , τ2,

...
t = τJ + 1, . . . , T,

i = 1, . . . , N, where J=
{

τ1, τ2, . . . , τJ
}

are unknown break points, 1 < τ1 < τ2 < . . . <

τJ < T. µij is the mean of
{

Yi,τj−1 , . . . , Yi,τj

}
, j = 1, 2, . . . , J + 1, Yi,τ0 = 1, Yi,τJ+1 = T.

δij = µij − µi,j−1, j = 2, . . . , J + 1 denotes the jump size of the break, which is assumed to

be independent of error process eit, and E
(
µij − µi,j−1

)2 is bounded for all i.
First, we assume that the error process eit is stationary in the time dimension.

Assumption 1. eit =
∞
∑

j=0
aijεi,t−j, εit

i.i.d.∼ N
(
0, σ2

iε
)
,

∞
∑

j=0
j
∣∣aij
∣∣ ≤ M for all i, M is a positive

number. In addition, eit are independent over i.

Assumption 1 means eit are cross-sectionally independent. Furthermore, we let σ2
i =

E
(
e2

it
)
= σ2

iε

(
∞
∑

j=0
a2

ij

)
; we also assume that there are no break points in the variance.

Second, we assume that the sequence length T and the set of break pointsJ=
{

τ1, τ2, . . . , τJ
}

are fixed. Regarding the jump size of the break points, the following assumption is made.

Assumption 2. For each j, δ1j, . . . , δNj are independent and

δij =

{
0 with probability

(
1− πj

)
,

∆j, with probability πj,

where 1 ≤ j ≤ J, πj > 0, ∆j are fixed and assumed unknown.

Assumption 2 implies that for each break point τj, only a certain percentage of the
panels undergo structural breaks, i.e., δij 6= 0 is satisfied. Therefore, this assumption does
not require that every series has a break point.

3. Method
3.1. SaRa for a Time Series Model

The SaRa was first proposed by Niu and Zhang [26] to detect break points in the mean
of normal models.

yt = θt + εt, εt
i.i.d.∼ N

(
0, σ2

)
, t = 1, . . . , T

and assume that

θ1 = θ2 = · · · = θτ1 6= θτ1+1 = · · · = θτ2 6= θτ2+1

= · · · = θτJ 6= θτJ+1 = · · · = θT .

For a position t, we consider the locally defined statistic

D(t, h) =

(
t+h

∑
k=t+1

yk −
j

∑
k=t−h+1

yt

)
h−1, h ≤ t ≤ T − h,
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where h is the bandwidth [27]. Next, we estimate the break points based on D(t, h) in two
steps. The first step is to calculate D(t, h) at all positions and find all h−local maximizers
of |D(t, h)|. t is a h−local maximizer if

|D(t, h)| ≥
∣∣D(t′, h

)∣∣, for all t′ ∈ (t− h, t + h).

The second step is to apply the threshold criterion

|D(t, h)| > λ

on all local maximizers to filter the corresponding break points. Thus,

Jh,λ =
{

τ̂j : τ̂j is a local maximizer of |D(t, h)| and |D(t, h)| > λ
}

is a set of break point estimators.
For any t, D(t, h) ∼ N

(
0, 2

h σ2) if there are no break points in window (t− h, t + h).
Based on this, a standardized scan statistic can be defined as follows:

D̃(t, h) =

√
h

2σ̂
D(t, h), h ≤ t ≤ T − h,

where σ̂ is an estimator of σ. In this paper, we assume that the number of break points
J � T; the sample standard deviation of yt can be used as σ̂.

3.2. SaRa for a Panel Data Model

Compared to the estimation of break points in time series models, estimating common
break points by combining information from all individuals in the panel data is better. We
let D̃i(t, h) be the scan statistic on the ith cross-section unit at time t, and

pi(t, h) = 2
{

1−Φ
[∣∣D̃i(t, h)

∣∣]},

i = 1, . . . , N, t = 1, . . . , T. As discussed in Song et al. [25], we combine the p values of the
scan statistics D̃i(t, h) instead of combining D̃i(t, h) directly, which improves the robustness
of the break point estimators.

For given t and h, we let

Xi(t, h) = − log pi(t, h)

and
X(i)(t, h) = − log p(i)(t, h),

where p(i)(t, h) are the order statistics of pi(t, h) in an ascending order. Under the null

hypothesis of no change, Xi(t, h)
i.i.d.∼ Exp(1).

We define

Vi(t, h) =
i

∑
j=1

X(j)(t, h)

and standardize Vi(t, h) as

Ṽi(t, h) =
Vi(t, h)−

N
∑

k=1
w(k, i)√

N
∑

k=1
w2(k, i)

,

where w(k, i) = min
(
1, i
/

k
)
.
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Similar to Song et al. [25], the adaptive Fisher statistic for the panel data model takes
the following form:

W(t, h) = max
1≤i≤N

∣∣Ṽi(t, h)
∣∣, h ≤ t ≤ T − h.

Then, the two steps of the SaRa for the panel data model are as follows. First, for
a given bandwidth h, we calculate the summary scan statistic W(t, h) to find the local
maximizers, t = h + 1, . . . , T − h. t is a local maximizer if

|W(t, h)| ≥
∣∣W(t′, h

)∣∣ for all t′ ∈ (t− h, t + h).

Second, we apply the threshold criterion

|W(t, h)| > λ

on the set consisting of local maximizers to screen out the final break points.
For the selection of the threshold λ, we can simply simulate the null distribution

of W(t, h) through the assumption that Yi
i.i.d.∼ MVN(0, I) for 1 ≤ i ≤ N, where Yi =

(Yi1, Yi2, · · · , YiT)
T. Then, for significance level α, we can calculate the inverse function

of the empirical distribution function of W(t, h) to obtain the threshold λ = F̂−1(1− α),
where F̂(·) is the simulated empirical distribution function of W(t, h), t is a local maximizer.
Alternatively, we can also use the (1− α) quantile of W(t, h) as a threshold.

The choice of bandwidth h can affect the estimation of multiple break points. The
bandwidth is less important if the break points are far apart and the mean is significantly
shifted at each break point. Otherwise, we need to be careful in choosing the bandwidth.
As discussed by Niu and Zhang [26], we tend to use longer bandwidths for breakpoints
where there are only small jumps in the mean, but when long bandwidths are used, there
may be other break points in the interval (t− h, t + h). In practical applications, we can
use multiple bandwidths to alleviate this difficulty.

The multiple-bandwidth SaRa is described as follows. First, we choose a few band-
widths, h1, . . . , hK, and run SaRa for each of them. The break point estimators obtained
for each bandwidth are then collected in to a candidate pool. To avoid duplication, if
the distance between two different break points detected by different bandwidths is less
than the smaller bandwidth, we keep the break points estimated by the longer bandwidth
and delete the break points estimated by the shorter bandwidth. Second, similar to a
single-bandwidth SaRa, a threshold criterion is applied to the candidate pool to screen out
the final break points.

The simulation results show that for the panel data model, the multiple-bandwidth
SaRa, while estimating various types of break points, results in spurious break points. Based
on this, we propose a modified screening ranking algorithm, i.e., adding an information
criterion (IC) to the multiple-bandwidth SaRa for further screening, which also incorporates
the best subset selection method into the screening process.

IC
(
J̃ , J̃

)
= σ̂2

J̃ + c
ln(NT)

NT
(

J̃ + 1
)
,

where σ̂2
J̃ is the variance assuming J̃ =

{
τ̃1, τ̃2, · · · , τ̃J̃

}
are break points, J̃ is the number

of break points, c is a tuning parameter.
The detailed algorithm is described below.

1. Given a set of bandwidths h1, . . . , hK, h1 < h2 < · · · < hK. For each bandwidth hj, we
compute the scan statistic W

(
t, hj

)
for t = h + 1, . . . , T − h, j = 1, . . . , K.

2. We find the local maximizers for each bandwidth hj and form a set called LMj.

LMj =
{

t :
∣∣W(t, hj

)∣∣ > ∣∣W(t′, hj
)∣∣, ∀t′ ∈

(
t− hj, t + hj

)}
=

{
τ̃
(j)
1 , τ̃

(j)
2 , . . . , τ̃

(j)
J̃j

}
,
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j = 1, . . . , K, where J̃j is an estimator of the number of break points under the band-
width hj.

3. Under the bandwidth hj, we utilize the threshold criterion to filter out the break points
on the collection of local maximizers,∣∣∣W(τ̃

(j)
l , hj

)
> λ

∣∣∣, 1 ≤ l ≤ J̃j,

and then we collect together the break points obtained under each bandwidth and
denote them asM.

4. We remove duplicate break points in the set M, i.e., if the distance between two
break points obtained from different bandwidths is less than the shorter bandwidth,
we remove the break points obtained from the shorter bandwidth and keep the
breakpoints obtained from the longer bandwidth, and denote the set of break points

finally obtained as
^

J =

{
^
τ1, ^τ2, · · · , ^τ^

J

}
.

5. We obtain the final break point estimation Ĵ by the best subset selection on the set
^

J
using the minimization information criterion

(
Ĵ , Ĵ

)
= arg min

_
J⊆

^
J ,1≤

_
J ≤

^
J

IC
(_

J ,
_

J
)
= arg min

_
J⊆

^
J ,1≤

_
J ≤

^
J

σ̂2
_
J
+ c

ln(NT)√
NT

(_

J + 1
)

,

where
_

J =

{
_
τ1, _τ2, . . . , _τ_

J

}
⊆

^

J =

{
^
τ1, ^τ2, · · · , ^τ^

J

}
.

3.3. Statistical Properties

In this section, we show that our proposed method can detect common break points
in panel data models with high probability when the sample size N is large.

Theorem 1. If Assumptions 1 and 2 hold, there exists suitable h and λ such that Ĵ =
{

τ̂1, τ̂2, . . . , τ̂Ĵ

}
satisfies

lim
N→∞

P
({

Ĵ = J
}
∩
{
J ⊂ Ĵ ± h

})
= 1,

where Ĵ ± h ≡ ∪ Ĵ
j=1

(
τ̂j − h, τ̂j + h

)
.

Similar to the proof of Theorem 1 in Niu and Zhang [26], to prove that the conclusion
holds, it needs to be shown that for a given bandwidth h, there exists λ such that

P(W(t, h) < λ)→ 1 for any h flat point t,

P
(
W
(
τj, h

)
< λ

)
→ for any j ∈ {1, 2, . . . , J}

as N → ∞.
We suppose Z0 ∼ N(0, 1) and Zj has the same distribution as D̃i

(
τj, h

)
, j = 1, 2, . . . , J.

We define f = − log{2[1−Φ(|·|)]}; then, we have

E| f (Z0)|3 and E
∣∣ f (Zj

)∣∣3, j = 1, 2, . . . , J exist,

v0 = E f (z0) < vj = E f
(
zj
)

for any j.

We let ξ = min
1≤j≤J

(
vj − v0

)/
2; by the definition of statistic Ṽi(t, h), for a flat point t,

Ṽi(t, h) is the standardization of the sum of independent exponential random variables. We
set λ =

√
Nξ;
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P
(
−
√

Nξ < Ṽi(t, h) <
√

Nξ
)

≥ 1−
√

2
Nπξ3 exp

(
−1

2
Nξ2

)
− 2C(

1 +
√

Nξ
)3 ;

then,

P
(

W(t, h) <
√

Nξ
)
= P

(
max

1≤i≤N

∣∣Ṽi(t, h)
∣∣ < √Nξ

)
= P

(
N⋂

i=1

{
−
√

Nξ < Ṽi(t, h) <
√

Nξ
})

.

Thus,

P
(

W(t, h) <
√

Nξ
)

≥ 1−
√

2
Nπξ3 exp

(
−1

2
Nξ2

)
− 2NC(

1 +
√

Nξ
)3 → 1, as N → ∞.

For each j ∈ {1, 2, . . . , J},

P
(

W
(
τj, h

)
>
√

Nξ
)

≥ P
(∣∣ṼN

(
τj, h

)∣∣ > √Nξ
)

= 1− P
(
−
√

Nξ < ṼN
(
τj, h

)
<
√

Nξ
)

= 1− P

(
−ξ <

1
N

N

∑
i=1

f
(

D̃i
(
τj, h

))
− v0 < ξ

)
→ 1, as N → ∞.

Therefore, the theorem is proved.

4. Numerical Result

Assuming that there are break points in the mean of the panel data model, but the
number of break points is unknown, we study the finite sample performance of the modified
screening and ranking algorithm (SaRa-M) using Monte Carlo simulations and compare it
to the double CUSUM statistic [24] and the multiple sample SaRa [25].

With respect to the SaRa, in order to filter as many break points as possible, we find
the threshold λ as the minimum value of W(t, h) on the local maximizers by assuming that

Yi
i.i.d.∼ MVN(0, I), where Yi = (Yi1, Yi2, · · · , YiT)

T, i = 1, 2, . . . , N. Since the number of break
points is unknown, we use multiple-bandwidth SaRa to estimate the break points, and the
bandwidth h is set to 5 and 10. In addition to the bandwidth, the tuning parameter c also
has a significant effect on the estimation results. Through a large number of simulations, it
is found that c = 0.3 is appropriate when the estimator of the serial correlation coefficient
is less than 0.3; otherwise, a c that equals the estimator of the serial correlation coefficient is
appropriate. Therefore, the selection of c depends on the estimator of the serial correlation
coefficient.

As discussed in Song et al. [25], for the multiple-sample SaRa, the threshold λ is chosen

as the 95% quantile of the statistics on the local maximizers by assuming Yi
i.i.d.∼ MVN(0, I)

for 1 ≤ i ≤ N; h is also set to 5 and 10. Regarding the double CUSUM statistic, the
break point detection is performed with T 1/2 (ϕ = 1

2 ). All simulations are based on
1000 replications.

This section discusses two types of panel data models with break points: one with a
single break point and the other with three break points.
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Model I: Single break point

Yit=

{
µi1 + eit, t = 1, 2, . . . , τ1,
µi2 + eit, t = τ1 + 1, . . . , T

,

i = 1, . . . , N, where τ1 = bT/2c, bxc denotes the integer part of x.
Model II: Three break points

Yit=


µi1 + eit,
µi2 + eit,
µi3 + eit,
µi4 + eit,

t = 1, 2, . . . , τ1,
t = τ1 + 1, . . . , τ2,
t = τ2 + 1, . . . , τ3,
t = τ3 + 1, . . . , T,

i = 1, . . . , N, where τ1 = bT/4c, τ2 = bT/2c, τ3 = b3T/4c.
The sample size is set to N = 50, 100, T = 50, 100. For Model I, the proportion of the

number of panels that are assumed to change is 30%. When t = 1, . . . , τ1, we set

µi1 = 0, i = 1, . . . , N;

t = τ1 + 1, . . . , T, we set

µi2 =

{
1, if the ith panel undergoes a structural break,
0, otherwise.

For Model II, it is assumed that the proportion of the number of panels that change is
50%. When t = 1, . . . , bT/4c, we set

µi1 = 0, i = 1, . . . , N;

t = bT/4c+ 1, . . . , bT/2c, we set

µi2 =

{
1, if the ith panel undergoes a structural break,
0, otherwise;

t = bT/2c+ 1, . . . , b3T/4c, we set

µi3 = 0, i = 1, . . . , N;

t = b3T/4c+ 1, . . . , T, we set

µi4 =

{
1, if the ith panel undergoes a structural break,
0, otherwise.

The panels that change are drawn randomly from {1, . . . , N}. eit are generated from
the following four models:

(i) eit
i.i.d.∼ N(0, 1), i = 1, . . . , N, t = 1, . . . , T;

(ii) eit = vitεit, where v2
it = 0.2+ 0.3e2

it + 0.3v2
i,t−1, εit

i.i.d.∼ N(0, 1), i = 1, . . . , N, t = 1, . . . , T;

(iii) eit = 0.5ei,t−1 + εit, εit
i.i.d.∼ N(0, 1), i = 1, . . . , N, t = 1, . . . , T;

(iv) eit = γi ft + vit, where γi
i.i.d.∼ N(1, 0.5), ft

i.i.d.∼ N(0, 0.2), vit
i.i.d.∼ N(0, 1), i = 1, . . . , N,

t = 1, . . . , T.

(i) means that the error terms are independent and identically distributed; (ii) implies
the error terms follow a GARCH(1, 1) model; (iii) and (iv) indicate that there is serial and
cross-sectional correlation in the error terms, respectively.

The above panel data with common break points are very common in real life. For
example, a credit crunch or a debt crisis may affect every company’s stock income, and
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fluctuations in the price of crude oil may affect every country’s exports. A change in tax
policy could change every company’s investment strategy. Similarly, the emergence of a
new technology, the introduction of a new drug, or the introduction of a new government
program can have an impact on people’s lives and other economic entities. Estimating
common break points using panel data makes the estimation more precise.

Tables 1–4 show the simulation results of SaRa-M, DCUSUM and MSSaRa when eit
are generated as (i), (ii), (iii) and (iv), respectively. These include the percentage of correctly
estimating the number of break points (single break point, Ĵ = 1; three break points, Ĵ = 3,
in %), the percentage of falsely estimating the number of break points (single break point,
Ĵ < 1, Ĵ > 1; three break points, Ĵ < 3, Ĵ > 3, in %), the mean Hausdorff distance (MHD)
between the estimated break points and the true break points (Qian an Su [21]), and the
location accuracy of break points (single break point, |τ̂1 − τ1| < log(T); three break points,
|τ̂1 − τ1| < log(T), |τ̂2 − τ2| < log(T), |τ̂3 − τ3| < log(T), in %, Cho [24]).

The simulation results show that for Model I and Model II, as the sample size
increases, the percentage of the number of break points correctly estimated by SaRa-
M, DCUSUM, and MSSaRa increases, the mean Hausdorff distance decreases, and the
location accuracy increases. Compared to when the error terms are generated as (ii) or
(iii) or (iv), the three methods have the best estimation results when the error terms are
generated as (i), i.e., the percentage of correctly estimating the number of break points
( Ĵ = 1 or Ĵ = 3) is almost 100%, the mean Hausdorff distance (MHD) is the samllest, and
the location accuracy is the highest.

In terms of the percentage of correct estimation of the number of break points and
the mean Hausdorff distance, the SaRa-M proposed in this paper performs the best.
Regardless of one or three break points, the percentage of Ĵ = 1 or Ĵ = 3 obtained
by SaRa-M is almost 100%, and the mean Hausdorff distance is almost 0 when eit are
generated as (i) or (ii); when eit are generated as (iii) and (iv), the percentage of Ĵ = 1 or
Ĵ = 3 obtained by SaRa-M decreases, the mean Hausdorff distance increases, but it is
still better than DCUSUM and MSSaRa.

The second is DCUSUM, which performs well in the case of a single break point.
The percentage of Ĵ = 1 is almost 100%, and the mean Hausdorff distance is almost 0,
especially when eit are generated as (i) or (ii). Compared to the single break point, the
percentage of Ĵ = 3 decreases and the mean Hausdorff distance increases in the case of
three break points.

Finally, in MSSaRa, when eit are generated as (i), the percentage of Ĵ = 1 or Ĵ = 3 is
high and the mean Hausdorff distance is small. However, when eit are generated as (ii)
or (iii) or (iv), the percentage of Ĵ = 3 is mostly small and the mean Hausdorff distance is
also large.

In terms of the location accuracy of the break points, when eit are generated as (i) or (ii),
the location accuracy of SaRa-M, DCUSUM and MSSaRa is all close to 100%; when eit are
generated as (iii) or (iv), the location accuracy of the three methods decreases. Because the
estimated break points obtained by MSSaRa are generally more than real break points, the
location accuracy of MSSaRa is the highest, followed by SaRa-M, and finally the DCUSUM.
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Table 1. The estimation results of SaRa-M, DCUSUM and MSSaRa when eit are generated as (i) in case of a single break point and three break points.

Single Break Point Three Break Points

N/T Ĵ < 1 Ĵ = 1 Ĵ > 1 MHD Location Accuracy Ĵ < 3 Ĵ = 3 Ĵ > 3 MHD Location Accuracy
τ1 τ1 τ2 τ3

SaRa-M

50/50 0 100 0 0.416 99 6.2 93.8 0 1.752 94 94 99.8
50/100 0 100 0 0.446 99.6 0 100 0 0.336 100 100 100
100/50 0 100 0 0.122 100 0 100 0 0.062 100 100 100
100/100 0 100 0 0.122 100 0 100 0 0.056 100 100 100

DCUSUM

50/50 0 99.5 0.5 0.315 99 65.5 34.5 0 16.291 36.5 35 98.5
50/100 0 99.5 0.5 0.21 100 0 100 0 0.5 99.5 99.5 100
100/50 0 100 0 0.07 100 31.5 68.5 0 8.055 68.5 68.5 100
100/100 0 100 0 0.035 100 0 100 0 0.16 100 100 100

MSSaRa

50/50 0.8 97 2.2 0.744 97.8 3 92.8 4.2 0.966 100 97.6 98.8
50/100 1.8 81 17.2 4.798 96.8 0 77.6 22.4 2.812 100 100 100
100/50 0 98.4 1.6 0.344 99.8 0 97.6 2.4 0.212 100 100 100
100/100 0 83 17 4.968 100 0 74.4 25.6 2.974 100 100 100

Table 2. The estimation results of SaRa-M, DCUSUM and MSSaRa when eit are generated as (ii) in case of a single break point and three break points.

Single Break Point Three Break Points

N/T Ĵ < 1 Ĵ = 1 Ĵ > 1 MHD Location Accuracy Ĵ < 3 Ĵ = 3 Ĵ > 3 MHD Location Accuracy
τ1 τ1 τ2 τ3

SaRa-M

50/50 0 100 0 0.074 99.8 0.2 99.8 0 0.06 100 100 99.6
50/100 0 100 0 0.092 99.8 0 100 0 0.042 100 100 100
100/50 0 100 0 0.024 99.8 0 100 0 0.002 100 100 100
100/100 0 100 0 0.01 100 0 100 0 0.01 100 100 100

DCUSUM

50/50 0 99 1 0.135 100 15 85 0 3.9 85 85 100
50/100 0 99 1 0.15 100 0 100 0 0.04 100 100 100
100/50 0 100 0 0 100 0 100 0 0.01 100 100 100
100/100 0 100 0 0 100 0 100 0 0.02 100 100 100

MSSaRa

50/50 0.2 94.6 5.2 0.822 99.2 0 56.4 43.6 2.93 99.9 100 100
50/100 0.6 81 18.4 4.99 98.8 0 24.5 75.5 9.381 99.9 100 100
100/50 0 70.8 29.2 4.098 100 0 34.2 65.8 4.501 99.9 99.9 100
100/100 0 15.3 84.7 25.637 99.8 0 0 100 17.058 100 100 100
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Table 3. The estimation results of SaRa-M, DCUSUM and MSSaRa when eit are generated as (iii) in case of a single break point and three break points.

Single Break Point Three Break Points

N/T Ĵ < 1 Ĵ = 1 Ĵ > 1 MHD Location Accuracy Ĵ < 3 Ĵ = 3 Ĵ > 3 MHD Location Accuracy
τ1 τ1 τ2 τ3

SaRa-M

50/50 0 82 18 3.718 79.2 25 75 0 5.436 83 81.4 91.8
50/100 0 100 0 1.606 89.2 61 39 0 29.35 43.2 43.6 93.2
100/50 0 81 19 2.864 91.8 0.4 93.4 6.2 0.78 99.6 98.2 99.6
100/100 0 98.2 1.8 1.238 95.8 0.2 99.6 0.2 0.586 99.6 99.2 99.6

DCUSUM

50/50 19 81 0 1.253 85 100 0 0 22.485 12.5 17.5 65.5
50/100 0 97 3 1.66 92.5 63 37 0 31.673 35.5 34.5 93
100/50 1 99 0 0.576 94.5 99 1 0 23.052 11.5 11.5 83.5
100/100 0 95.5 4.5 1.39 98.5 20.5 79.5 0 10.78 78 77 99

MSSaRa

50/50 0 59.2 40.8 6.916 72.4 1.2 45.4 53.4 4.328 98.8 95.8 97.8
50/100 0 0 100 35.628 81.2 0 0 100 17.568 97.2 98 97.6
100/50 0 67.6 32.4 5.254 89 0.4 58.2 41.4 3.222 99.4 98.8 99.6
100/100 0 0 100 35.61 90 0 0 100 17.678 100 99.8 99.8

Table 4. The estimation results of SaRa-M, DCUSUM and MSSaRa when eit are generated as (iv) in case of a single break point and three break points.

Single Break Point Three Break Points

N/T Ĵ < 1 Ĵ = 1 Ĵ > 1 MHD Location Accuracy Ĵ < 3 Ĵ = 3 Ĵ > 3 MHD Location Accuracy
τ1 τ1 τ2 τ3

SaRa-M

50/50 0 85.4 14.6 3.574 82.6 33.8 65.2 1 8.29 70.4 70.4 91.2
50/100 0 98.2 1.8 2.266 90 15.6 83.2 1.2 9.832 79.4 80 93.8
100/50 0 61.8 38.2 5.96 86.6 6.8 84.4 8.8 3.062 93.8 90.4 97.2
100/100 0 89 11 4.256 91.4 0.4 91.8 7.8 3.15 95.4 96.4 96.6

DCUSUM

50/50 53 47 0 2.319 83 100 0 0 23.846 48 13 49
50/100 9 90 1 2.527 86 98 2 0 43.383 13 22 75
100/50 49 51 0 2.157 75 100 0 0 20.304 19 31 45
100/100 0 95 5 2.22 95 87 13 0 39.892 20 21 85

MSSaRa

50/50 2.3 82.5 15.2 3.953 76.2 0.2 75.9 23.9 1.489 99.4 99.7 99.3
50/100 1.1 23.8 75.1 23.481 79.5 0.1 7.1 92.8 12.941 95 94.4 95.1
100/50 0.1 80 19.9 4.352 80.5 3.6 70 26.4 3.292 96.7 93.7 96.5
100/100 0 9 91 28.908 93.4 0 2.5 97.5 14.155 97.3 97 96.2
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Figures 1–4 describe the kernel density estimation of the break points obtained by
SaRa-M, DCUSUM and MSSaRa when eit are generated as (i), (ii), (iii) and (iv), respectively.
From these figures, it can be seen that SaRa-M has the most distinctive aggregation feature
near the true break points.

In general, based on the percentage of correct estimations of the number of break
points, the mean Hausdorff distance and the location accuracy, the SaRa-M proposed in
this paper performs best among the three methods, followed by the DCUSUM, and finally
the mMSSaRa.
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Figure 1. When eit are generated as (i), the kernel density estimation of the three break points (τ1 = 25,
τ2 = 50, τ3 = 75) obtained by SaRa-M (a1), DCUSUM (b1) and MSSaRa (c1), respectively, is shown.
The sample size N = T = 100.
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Figure 2. When eit are generated as (ii), the kernel density estimation of the three break points
(τ1 = 25, τ2 = 50, τ3 = 75) obtained by SaRa-M (a2), DCUSUM (b2) and MSSaRa (c2) respectively, is
shown. The sample size N = T = 100.
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Figure 3. When eit are generated as (iii), the kernel density estimation of the three break points
(τ1 = 25, τ2 = 50, τ3 = 75) obtained by SaRa-M (a3), DCUSUM (b3) and MSSaRa (c3) respectively, is
shown. The sample size N = T = 100.
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Figure 4. When eit are generated as (iv), the kernel density estimation of the three break points
(τ1 = 25, τ2 = 50, τ3 = 75) obtained by SaRa-M (a4), DCUSUM (b4) and MSSaRa (c4) respectively, is
shown. The sample size N = T = 100.

5. Empirical Example
5.1. The GDP Data

To demonstrate the suitability of the results, we used data from the World Bank Open
Data (https://data.worldbank.org.cn/indicator/NY.GDP.MKTP.CD?view=chart, accessed
on 21 September 2023). The original data set includes GDP data for 197 countries. However,
there are some countries for which data are missing. We chose 47 countries from 1970
to 2021, including Asian countries (China, Japan, India and so on), European countries

https://data.worldbank.org.cn/indicator/NY.GDP.MKTP.CD?view=chart
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(Germany, France, Italy and so on), African countries (Nigeria, Egypt, South Africa and
so on), American countries (United States, Canada, Brazil and so on), Australia and New
Zealand. Missing observations were substituted by linear interpolation. Thus, the sample
sizes of our analyzed data were N = 46 and T = 52. The CUSUM statistic proposed by
Horvath et al. [29] was first used to test for the presence of break points, and the results
showed that the null hypothesis of no break point was rejected at a 5% significance level.
Using the SaRa-M proposed in this paper for break point estimation, it was found that the
mean break point occurs at t = 27 (1997). The pre-break mean is

µ[1,27] =
1

46× 27

46

∑
i=1

27

∑
t=1

Yit = 0.281× 1012,

and the post-break mean is

µ[28,52] =
1

46× 25

46

∑
i=1

52

∑
t=28

Yit = 1.165× 1012.

In fact, the outbreak of a financial crisis in Asia in 1997, which subsequently spread
worldwide and caused enormous damage to the world economy at the time, may have
contributed to the occurrence of the mean break point of the panel data.

5.2. The Real Effective Exchange Rate Index Data

In this example, we applied the modified screening sorting algorithm to investigate
whether there are structural changes in the real effective exchange rate (REER) index
for selected countries published by the Bank for International Settlements (BIS) (https:
//www.ceicdata.com.cn, accessed on 22 September 2023). We selected monthly data from
the dataset for 27 countries from 2000 to 2010, including Asian countries (Japan, Korea,
Singapore, Hong Kong SAR and so on), European countries (Germany, France, Italy and so
on), North American countries (United States and Canada), Oceanian countries (Australia
and New Zealand). The sample size of the analyzed data was N = 27 and T = 126. The
CUSUM type statistic proposed by Horvath et al. [29] was first utilized to test for the
presence of mean breaks, and the results showed that the original hypothesis of no breaks
was rejected at the 5% significance level, i.e., there were mean breaks. The number and
location of break points were then estimated using the method proposed in this paper,
and the results showed that the mean break point occurs at t = 50 (February 2004). The
pre-break mean is µ[1,50] = 97.27, and the post-break mean is µ[51,126] = 100.78.

Looking back at the world economic situation in 2004, the growth of the world econ-
omy accelerated markedly, while the sharp rise in international oil prices and the continued
depreciation of the exchange rate of the United States dollar also posed a great threat to the
smooth operation of the world economy. In 2004, the dollar against the euro, the yen and
other major currencies experienced frequent ups and downs, an elusive trend. For example,
the dollar rose against the yen from the beginning of the year’s low of 106.63 yen all the
way up to the middle of May 114.88 yen in mid-May, and fell back to the end of the year
101.81 yen, a new low in 5 years, the annual decline of 4.73%. The euro, from the beginning
of the year low of 1.2521 dollars, rose all the way to the end of the year of 1.3554 dollars,
which was historical high, an annual increase of 7.62%.

6. Conclusions

In this paper, a modified SaRa is used to study the estimation of multiple breaks in the
mean of the panel data model. Traditional multiple-sample SaRa consists of only two steps,
an initial screening of possible break points by local statistics, and then a final screening of
break points based on a threshold criterion. In this paper, we add an information criterion
based on the above to conduct further screening. Furthermore, we prove the consistency of
the break point estimators. Monte Carlo simulations show that in the case of three break

https://www.ceicdata.com.cn
https://www.ceicdata.com.cn
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points, the error term either follows a normal distribution, a GARCH process, or there is
serial or cross-sectional correlation, and the modified SaRa proposed in this paper performs
best compared to the double CUSUM and multiple-sample SaRa. Finally, we study the
annual GDP data and the real effective exchange rate index data using the modified SaRa,
and find that there exists a break point in the mean of panel data.

The method proposed in this paper is applicable to the case with breakpoints (single
or multiple breakpoints), but not to the case without breakpoints. In the next step, we will
propose an improved method to include the case without breakpoints.
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