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Abstract: This investigation is related to this study of entropy generation during Carreau nanofluid
flow under variable thermal conductivity conditions. The heat and mass transfer phenomena are
observed in the presence of thermal radiation and activation energy. The flow is induced by a
porous stretching surface. Appropriate variables are used in order to simplify the problem into
dimensionless form. The numerical simulations are performed by using the shooting technique. The
physical aspects of the problem in view of different flow parameters are reported. It is observed
that consideration of variable fluid thermal conductivity enhances heat transfer. An enhancement in
heat and mass transfer phenomena is observed with increasing the Weissenberg number. Moreover,
entropy generation increases with Weissenberg and Brinkman numbers. Current results present
applications in thermal processes, heat exchangers, energy systems, combustion and engine design,
chemical processes, refrigeration systems, etc.

Keywords: Carreau nanofluid; entropy generation; activation energy; variable thermal conductivity;
porous surface

1. Introduction

During the last few decades, many technological and industrial applications were
improved and restructured with the aid of nanotechnology, which is widely used in
medicine, information technology, nuclear science, environmental science, and many others.
Because of the unique properties of nanofluids, which make them certainly useful in
many implementations and utilizations of heat transfer processes, including biomedicine,
microchannel flow, heating and cooling processes, chillers, boilers, and many others, the
thermal conductivity and heat transfer rate are highly enhanced by using nanofluids
in comparison with base fluids. Presently, scientists and engineers are augmenting the
future entanglement of nanotechnology. Many new materials and devices could be created
and invented with the help of nanotechnology, which has a wide scope of usefulness
and utilization, e.g., in nanoweapons, nanometrology, biomaterials, etc. Irfan et al. [1]
analyzed Carreau nanofluid theoretically with MHD and Arrhenius activation energy.
The consequences of mass flux theory are also discussed. Hisao [2] focused on Carreau
nanofluid with thermal radiation, MHD, and activation energy. Khan et al. [3] examined
the flow of the Carreau nanofluid and estimated the irreversibility analysis. Waqas et al. [4]
deduced the thermal reflection associated with Carreau nanofluid from the contribution
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of radiative phenomena. Ullah et al. [5] depicted the rotating behavior of nanofluid flow
containing ternary tiny particles regarding the thin film phenomenon. Muhammad et al. [6]
observed the carbon nanotubes flow with squeezing flow constraints subjecting to boost the
water base properties. Rasool and Wakif [7] identified the EMHD flow regarding the second-
grade nanofluid over Riga space. Alqarni et al. [8] observed the bioconvection concept
for nanofluids with melting heating transfer features. Borbora et al. [9] presented detailed
review contributions for nanofluid associated with the cavity geometry. Acharya [10]
discussed the copper-water-decomposed nanomaterial thermal activities with optimized
impact. Shamshuddin et al. [11] utilized the observations to assess the heat transfer
determination due to ferro-oxide nanoparticles. Negi et al. [12] deduced the observations
for nanofluids subjected to zero-mass conditions. The hybrid nanofluid flowing in a channel
with suction phenomenon was conducted by Maiti et al. [13]. Mabood et al. [14] used Wu’s
slip impact for Williamson nanofluid flow with microorganisms.

The phenomenon of entropy generation is associated with the control of energy loss in
various thermal phenomena and cooling systems. The appearance of entropy generation
is commonly observed in thermodynamic processes where there is a transfer of heat and
energy in an irreversible process due to temperature differences. According to the second
theory of thermodynamics, an enhancement in the entropy of isolated systems is boosted
over time or remains constant in ideal reversible systems. The concept of entropy generation
is an exhibition of this theory and refers to the irreversibility of various processes. In real-
world applications, the entropy generation phenomenon is linked to the loss of thermal
processes in heat transfer systems. In the case of heat engines, the conversion of energy
from one system to another yields a loss of water and increases entropy. This waste heat
represents an increase in the disorder of the system and its surroundings. Understanding
and managing entropy generation is crucial in engineering, as it allows for the optimization
of processes to minimize losses and increase overall system efficiency. By identifying the
sources of entropy generation, engineers can design more efficient systems, develop better
insulation, improve heat exchangers, and implement strategies to reduce energy waste.
Makhdoum et al. [15] investigated the Lorentz force and entropy generation assessed for
an inclined surface with nanoparticles. Li et al. [16] explored the slip onset for optimized
nanofluid Jeffrey nanofluid flow numerically. Shah et al. [17] reported the optimized
production of NiZnFe2O4 and MnZnFe2O4 nanoparticles on curved surfaces. Micropolar
nanofluid following pulsating motion in view of entropy generation applications was
predicted by Rajkumar et al. [18]. Derikv et al. [19] reported the entropy production
assessment for MWCNTs-Fe3O4 decompositions.

Based on the above-described references, it can be concluded that several scientists
have studied the effect of the thermal properties of nanofluids on flow and temperature
fields. In most of the available investigations, the thermal conductivity of nanomaterials
is assumed to be constant. However, it is observed that in many thermal processes, the
thermal conductivity of nanomaterials fluctuates. Therefore, the aim of current research
is to examine heat and mass transfer, fluid flow, and entropy generation during Carreau
nanofluid flow with variable thermal conductivity. The assessment of heat and mass trans-
fer phenomena is considered in the presence of thermal radiation and activation energy
effects. The porous moving surface with magnetic force interaction induces a uniform,
steady flow. The motivations for considering the Carreau fluid model are due to its inter-
esting rheology and viscoelastic properties and to its diverse applications in engineering
and industrial sectors. It allows engineers and scientists to predict and analyze the flow
characteristics of non-Newtonian fluids, which is essential for the design and optimization
of processes involving such fluids, including polymer processing, food processing, and
various other industrial applications.

2. Model Development

The bidirectional flow of the Carreau nanofluid is assumed to be due to the porous,
stretched surface. The stretching phenomenon is occurring along the x and y, directions
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and an external magnetic field is applied along the z direction. The velocity components
u are assigned along the x direction, v is assumed along the y axis, and w is taken in the
z direction, as shown in Figure 1. Fluid thermal conductivity is considered temperature-
dependent. In addition, the effects of radiative heat transfer and activation energy are
considered in the energy and concentration equations, respectively. The stress tensor for
incompressible Carreau nanofluid is given by [20,21]:

σij =

[
ε∞ + (ε0 − ε∞)

(
1 + (Πβ◦)2

) n−1
2
]

A1 (1)
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Here ε∞ and ε0 denote the viscosities at infinite shear rate and zero shear rate, respec-
tively. Π denotes the rate for material flexibility. A1 is the first Rivlin-Ericksen tensor. n
represents the behavior index.

β◦ =

√
1
2
(trace A1)

2. (2)

The governing equations are modeled as [20,21]:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (3)

∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z

= υ ∂2u
∂z2

[
1 + Π2

(
∂u
∂z

)2
] n−1

2
+ υ(n− 1)Π2

(
∂u
∂z

)2
∂2u
∂z2

[
1 + Π2

(
∂u
∂z

)2
] n−3

2

−
(∼

σB2
0

ρ u + υ
K1

u
)

,

(4)

∂v
∂t + u ∂v

∂x + v ∂v
∂y + w ∂v

∂z

= υ ∂2v
∂z2

[
1 + Π2

(
∂v
∂z

)2
] n−1

2
+ υ(n− 1)Π2

(
∂v
∂z

)2
∂2v
∂z2

[
1 + Π2

(
∂v
∂z

)2
] n−3

2

−
(∼

σB2
0

ρ v + υ
K1

v
) (5)

∂T
∂t + u ∂T

∂x + v ∂T
∂y + w ∂T

∂z

= 1
(ρc) f

∂
∂z

(
Kn f (T) ∂T

∂z

)
+ τ

[
DB

(
∂C
∂z

∂T
∂z

)
+ DT

T∞

(
∂T
∂z

)2
]
− 1

(ρc) f

∂qr
∂z ,

(6)
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∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

+w
∂C
∂z

= DB
∂2C
∂z2 +

DT
T∞

∂2T
∂z2 −K2

r

 ∼
T
∼
T∞

n

exp

 −Ea

Kn f
∼
T

(∼C− ∼C∞

)
, (7)

The temperature dependent thermal conductivity Kn f (T), is expressed via the follow-
ing relation [14]:

Kn f (T) = Kn f

(
1 + ε1

T − T∞

Tw − T∞

)
(8)

with a small parameter (ε 1). The radiative flux qr is defined as [14]:

qr = −
4σ∗

3k∗
∂T4

∂z
, (9)

with σ∗ is the Stephen Boltzmann constant.
The boundary conditions are:

u = Uw(x, t) =
ax

1− γt
, v = Vw(x, t) =

by
1− γt

, w = 0, T = Tw, C = Cw at z = 0, (10)

u→ 0, v→ 0, T → T∞, C → C∞ as z→ ∞. (11)

Introducing new transformations [20,21]:

u =
ax

1− γt
f′(η), v =

ay
1− γt

g′(η), w = −
√

υa
1− γt

(f(η) + g(η)),η =

√
a

υ(1− γt)
z,

θ(η) =
T − T∞

Tw − T∞
, ϕ(η) =

C− C∞

Cw − C∞
(12)

New system is:

f ′′′
[
1 + We2

1 f ′′2
] n−3

2
[
1 + nWe2

1 f ′′2
]
+ ( f + g) f ′′ − f ′2 − S

(
f ′ + η/2 f ′′

)
−
(

M2 + K
)

f ′ = 0, (13)

g′′′
[
1 + We2

2g′′2
] n−3

2
[
1 + nWe2

2g′′2
]
+ ( f + g)g′′ − g′2 − S

(
g′ + η/2g′′

)
−
(

M2 + K
)

g′ = 0, (14)

(1 + (4/3)Rd + θ)θ′′ + εθ′
2
+ Pr

[
( f + g)θ′ − S

{
θ′ + η/2θ′′

}
+ Ntθ′2 + Nbθ′ϕ′

]
= 0, (15)

ϕ′′ + (Nt/Nb)θ
′′ + PrLe

[
( f + g)ϕ′ − (1/2)ηSϕ′

]
− σSc(1 + γθ)nexp

(
− E

1 + γθ

)
ϕ = 0, (16)

with:
f (0) = 0 = g(0), ϕ(0) = 1, θ(0) = 1, f ′(0) = 1, g′(0) = α1, (17)

f ′(∞)→ 0, g′(∞)→ 0, ϕ(∞)→ 0, θ(∞)→ 0. (18)

where We1 =

√
a(ΓUw)

2

υ and We2 =

√
a(ΓVw)

2

υ are Weissenberg numbers, S = γ
a is un-

steadiness parameter. K = υ
aK1

is the porosity parameter, M =
σB2

0
aρ represents magnetic

number, Rd = 4σ∗
∼
T

3

∞
k∗Kn f

specifies the radiation parameter, Pr = υ
αm

denotes Prandtl number,

Nt = τDT(Tw−T∞)
υ represents thermophoresis, Nb = τDb(Cw−C∞)

υ indicates Brownian move-

ment and E = Ea

Kn f
∼
T∞

is the activation energy, γ = (Tw−T∞)
Tw

is the temperature difference
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parameter and σ =
K2

n f x
ν is the chemical reaction parameter whereas the ratio of stretching

rates is represented by α1 = b
a . Defining important engineering quantities:

C fx =
τxz

1
2 ρ(Uw)

2 , C f y =
τyz

1
2 ρ(Vw)

2 , Nux = − x
K(Tw − T∞)

(
∂T
∂z

)
z=0

+
xqr

λ(Tw − T∞)
,

Shx = − x
DC(Cw − C∞)

(
∂C
∂z

)
z=0

. (19)

Here τxz and τyz specify stress along x and directions,y respectively, qr represents the
radiative flux on a stretched surface. The above-stated quantities are reformed through
similarity transformation into dimensionless form as follows:

1
2

√
RexC fx = f ′′ (0)

[
1 + We2

1 f ′′2(0)
] n−1

2 , (20)

1
2

Uw

Vw

√
ReyC fy = g′′ (0)

[
1 + We2

2g′′2(0)
] n−1

2 , (21)

Nux√
Rex

= −
(

1 +
4
3

Rd
)

θ′(0), (22)

Shx√
Rex

= −ϕ′(0). (23)

where
(

Rex = xUw
υ

)
.

3. Entropy Generation

The S′′′g is denoting the entropy generation, combining the viscous dissipation, heat,
and mass transfer, and the Joule effect irreversibility is given by [3]:

S′′′g =
Kn f

T2
w

[(
∂T
∂z

)2
+

16σ∗T3
∞

3k∗Kn f

(
∂T
∂z

)2
]
+

µ

Tw

2
(

∂u
∂x

)2
+ 2
(

∂u
∂y

)2
+
(

∂u
∂x + ∂u

∂y

)2

+
∼
σB2

0
Tw

(
u2 + v2)+ RgKc

Cw

(
∂C
∂z

)2

, (24)

The first term corresponds to thermal irreversibility caused by the temperature gradi-
ent. The second term corresponds to frictional entropy generation. The third term denotes
irreversibility caused by magnetic effects (the Joule effect). The fourth term is irreversibility
caused by mass diffusion. The characteristic entropy generation is given by [3]:

S′′′0 =
Kn f (Tw − T∞)2

L2T2
w

, (25)

The entropy number (NG) is nondimensionalized form obtained by taking the ratio of
the rate of actual

(
S′′′g

)
to characteristic entropy generation (S′′′0 ).

NG =
Ǩ∧

1

(∧
1

(
1 +

4
3

Rd

)
θ′2 + Γ1

(
θ′ +

∧
2∧
1

φ′
)

φ′ + Γ2

(
Br1 f ′2 + Br2g′2

))
+ 2
(

Br1 f ′′2 + Br2g′′2
)

(26)

4. Numerical Computations

The dimensionless form of the governing equations is presented in Equations (13)–
(16), satisfying the boundary conditions (17–18). Due to its extremely complicated nature,
this system cannot be treated via an exact solution approach. To solve this problem, the
fourth-order Runge-Kutta method (RK-4) is used to obtain an approximate solution. This
numerical scheme is quite accurate and can be implemented easily to solve complicated
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problems [18–21]. The rK4 scheme is an explicit numerical tool that can compute the
solution to a problem at distinct time steps. In order to implement this scheme on a defined
problem, the boundary conditions are converted into an initial value system as follows:

(X, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10) =
(
η, f , f ′, f ′′ , g, g′, g′′ , θ, θ′, ϕ, ϕ′

)
(27)

Y′3 =
1[

1 + We2
1Y2

3
] n−3

2
[
1 + nWe2

1Y2
3
] [Y2

2 − (Y1 + Y4)Y3 + S(Y2 + Y3X/2) +
(

M2 + K
)

Y2 + FY2
2

]
, (28)

Y′4 = Y5, Y′5 = Y6, (29)

Y′6 =
1[

1 + We2
2Y2

6
] n−3

2
[
1 + nWe2

2Y2
6
] [Y2

5 − (Y1 + Y4)Y6 + S
(

Y5 +
X
2

Y6

)
+
(

M2 + K
)

Y5 + FY2
5

]
, (30)

Y′7 = Y8, (31)

Y′8 =
1[

1 + 4
3 Rd

]Pr
{
(Y1 + Y4 + S∗)Y8 − Nt Y2

8 − NbY8Y10

}
, (32)

Y′9 = Y10, (33)

Y′10 = − Nt
Nb

Y′8 − PrLe(Y1 + Y4 − SX/2)Y10, (34)

Y′11 = Y12, (35)

Associated boundary conditions are:

Y1(0) = 0, Y2(0) = 1, Y4(0) = 0, Y5(0) = α1, Y7(0) = 1, Y9(0) = 1, (36)

Y2(∞) = 0, Y5(∞) = 0, Y9(∞) = 0 (37)

In order to solve the above-presented system (initial value problem), we shot for
appropriate guesses to Y3(0), Y6(0), Y8(0), Y10(0) and Y12(0). The MATLAB software is
used to perform the simulations. The simulations are performed with an accuracy of 10−6.

5. Verification of the Numerical Model

Table 1 presents the verification of the proposed numerical model by comparing
the obtained results for f ′′(0) with those of Sharidan et al. [22] and Chamkha et al. [23].
The comparison shows the agreement between the results and ensures the validity of the
numerical model.

Table 1. Comparison of f ′′(0) with the results of Sharidan et al. [22] and Chamkha et al. [23] for
We1 = We2 = α = 0.

S Sharidan et al. [22] Chamkha et al. [23] Present Results

0.8 −1.261042 −1.261512 −1.26105
1.2 −1.377722 −1.378052 −1.37773
2.0 −1.587362 - −1.58735

6. Results and Discussion

The physical insight into the problem is discussed in this section. The observations are
predicted for Weissenberg number (We 1), unsteadiness parameter (S), magnetic parameter
(M), porosity constraint (K), Prandtl number (Pr), variable thermal conductivity parameter
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(ε) radiation constant (Rd), Brownian motion constraint (Nb), thermophoretic constraint
(Nt), Lewis number (Le). Figure 2a reflects the change in velocity along x directions ( f ′)
and velocity along y− direction (g′) due to variation of unsteady parameter S. Upon
enhancing the impact of S, a decrement behavior is observed in both velocities. Such effects
are associated with the nonlinear motion of a moving surface, which endorses the flow.
The simulations performed for predicting the dynamic of f ′ and g′ subject to Weissenberg
number (We 1) have been reported in Figure 2b. The decrement resulted in f ′ and g′ due
to the uprising We1. Physically, the Weissenberg number reflects the role of inertial and
viscous forces. Upon increasing the Weissenberg number, inertial forces become more
dominant, which controls the velocity increment. The role of the Weissenberg number
is important in assessing the rheology of a nonlinear fluid model. Further, in contrast to
Figure 2a, the fluctuation in g′ is more dominant. Figure 2c discloses the characteristics
of the porosity parameter K on the distribution of f ′ and g′. The decreasing features of K
are examined against f ′ and g′. Physically, such observational assessments are due to the
permeability of tiny pores and the permeability of porous space. Figure 2d reports that f ′

and g′ also decrease upon raising behavior index n. Moreover, the declining change in g′

for increasing n are not prominent.
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Figure 2. (a–d): Effects of S (a), We1 (b), K (c) and n (d) on the vertical f ′(η) and horizontal g′(η)
velocity profiles.

Figure 3a suggests the significance of temperature profile θ for Weissenberg number
We1. The maximum change in θ is associated with the peak values of We1. Physically, such
outcomes are due to rheological forces. Figure 3b identifies the aspects of the unsteady
parameter S on θ. The lower outcomes in the profile of θ due to S have been identified. The
current fluid model is based on consideration of variable fluid viscosity, for which the role
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of the variable thermal conductivity parameter is ε visualized in Figure 3c. The increasing
applications of ε on θ are utilized. Therefore, it is clearly stated that thermal phenomena can
be boosted when the fluid viscosity of materials is assumed to be temperature-dependent.
Figure 3d encounters the consequences of the radiation parameter Rd on θ. The increasing
assessment of the temperature profile is exhibited for the radiation constant. The radiative
phenomenon is important in various thermal processes and engineering systems. The
results explore the change in θ due to the Brownian motion constant Nb (Figure 3e). The
Brownian parameter is a key factor in the nanofluid model, which discloses the random
movement of nanoparticles. Due to such random motion, an increasing thermal profile is
exhibited.
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Figure 4a concentrates on the change in concertation profile ϕ due to the deviation of
the activation energy parameter E. An increase in ϕ is predicted with increasing the impact
of E. Basically, the activation energy plays a vital role in initiating the chemical process.
Figure 4b distributes the aspects of the thermophoresis parameter Nt on ϕ. An increasing
outcome in ϕ against leading variation of Nt is encountered. The role of Schmidt number
Sc on ϕ is illustrated in Figure 4c. The Schmidt number is subject to a reverse relation
to mass diffusivity. The declining impact of ϕ with enhancing Sc slows down the mass
diffusivity. The low fluctuation in mass diffusivity reduces the chemical process.
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Figure 4. (a–c): Effects of E (a), Nt (b), and Sc (c), on the concentration profile ϕ.

Figure 5a identifies the change in entropy generation NG for a larger Hartmann
number M. The phenomenon of entropy generation is boosted when there is a meaningful
change in M. Such features are due to the presence of Lorentz forces. Figure 5b utilized the
contribution of Weissenberg number We1 on NG. It is noticed that the maximum entropy
generation is referred to as larger We1. Since Weissenberg number displays the rheological
impact of non-Newtonian fluid models, it is concluded that optimized phenomena can
be controlled for non-Newtonian fluid models compared to viscous liquids. Figure 5c
reported the change in NG due to Brinkman number Br. The leading entropy generation is
noted due to enhancing Br. Physically, the Brinkman number presents the ratio between
fluctuations in heat transfer due to viscous dissipation and molecular conduction, and it
plays a key role in polymer processing [24].
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The numerical change in skin friction for a bidirectional stretching surface in view of
the variation of flow parameters is observed in Table 2. Shear stress increases due to the
MHD effect. Physically, such effects are related to the Lorentz force generated. Furthermore,
an enhancement in skin friction coefficient is observed with material parameters. Such
consequences are associated with the complex rheology of Carreau nanofluid.

Table 3 describes the change in Nusselt number and Sherwood number with Prandtl
number Pr, unsteadiness parameter S, radiation constant, Hartmann number M, ther-
mophoresis constant Nt and Brownian parameter Nb. The lowest value for both quantities
occurs at higher values of the thermophoresis parameter and Hartmann number. The
enhancement in Nusselt number and Sherwood number is noticed with the increase in the
radiation parameter.
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Table 2. Numerical values of 1
2
√

Rex and 1
2

(
Uw
Vw

)√
Rex, C fy .

S M We1 We2 1
2

√
RexCfx

1
2

√
RexCfy

0.3 0.2 0.3 0.3 1.52872 0.665291

0.4 1.55401 0.678817

0.6 1.60411 0.705454

0.5 0.5 1.54352 0.701708

1.0 1.82499 0.841934

1.5 2.16581 1.001912

0.2 2.18081 1.02175

0.4 1.50639 1.02206

0.6 1.53092 1.02391

0.2 2.23525 1.01810

0.4 2.23542 1.02798

0.5 2.23553 1.03688

Table 3. Numerical values of Nux√
Rex

and Shx√
Rex

.

Pr S Rd M Nt Nb Nux√
Rex

Shx√
Rex

1.0 0.5 0.4 0.2 0.4 0.6 0.304177 0.041371

0.7 0.677376 0.101602

1.2 0.85375 0.293637

2.0 0.3 0.354678 0.0826865

0.4 0.387242 0.0606775

0.6 0.445082 0.0246227

1.0 0.515614 0.0698414

1.5 0.591333 0.0828224

2.0 0.664225 0.091394

0.5 0.426524 0.0380633

1.0 0.406532 0.0289907

1.5 0.397715 0.0192433

0.2 0.419368 0.0984527

0.3 0.418316 0.0697986

0.5 0.41622 0.0131722

0.7 0.41595 0.0581801

0.8 0.414637 0.0707656

0.9 0.41333 0.0805359

7. Concluding Remarks

The optimized model for Carreau nanofluid flow has been predicted by considering
the contribution of thermal radiation, external magnetic field, and activation energy. The
numerical simulations are performed via shooting technique, and the main findings can be
summarized as follows:

v A reduction in both horizontal and vertical velocity components is noticed when the
Weissenberg number and unsteady parameter are increased.
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v With increasing the behavior index and porosity parameter, the flow intensity becomes
less important.

v The temperature profile increases with the Weissenberg number and radiation param-
eters.

v Heat transfer is highly affected by the consideration of variable thermal conductivity.
v Higher concentrations are encountered with an increase in the activation energy and

thermophoresis parameters.
v Entropy generation is more convenient when the Weissenberg number, Brinkman

number, and magnetic parameter are increased.
v The heat and mass transfers are boosted by the increase in the Weissenberg number.
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