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Abstract: In this paper, we investigate the behavior of dust ion acoustic solitary waves (DIASWs) with
arbitrary amplitudes in a magnetized anisotropic dusty plasma that includes inertial hot ion fluid,
electrons following a Kappa distribution, and negatively charged dust particles in the background.
An ambient magnetic field aligns with the x-direction, while the wave propagation occurs obliquely to
the ambient magnetic field. In the linear regime, two distinct modes, namely fast and slow modes, are
observed. We employ the Sagdeev pseudo-potential method to analyze the fundamental properties of
arbitrary amplitude DIASWs. Additionally, we examine how various physical parameters influence
the existence and characteristics of symmetric planar dust ion acoustic solitary structures (DIASs).
The characteristics of the solitary structures are greatly influenced by the dust concentration, the
electrons superthermality (spectral) index, the obliquity parameter, the magnetic field, the parallel ion
pressure and the perpendicular ion pressure. The results show that the amplitude and width of both
compressive and rarefactive DIASWs are sensitive to the degree of electron superthermality and dust
concentration. Additionally, it is shown that the propagation features of DIASWs are highly affected
by the parallel component of ion pressure as compared to perpendicular component of ion pressure.

Keywords: solitary waves; Kappa distribution; superthermal electrons; Sagdeev pseudo-potential
technique; pressure anisotropy

1. Introduction

Dusty plasmas are very abundant and present in space and astrophysical surround-
ings. These space environments include cometary tails, planetary rings, the magnetosphere,
the lower part of the earth’s ionosphere, and the interstellar medium [1–4]. The occurrence
and importance of the dust in laboratory plasmas like flames, plasma in fusion devices,
and plasma used in industrial laboratories cannot be avoided [5–8]. Dust particles, which
make the conventional electron–ion (e–i) plasma dusty plasma, are often of micron to
submicron size [4]. Dust particles are not neutral; depending on the charging mechanism
in the plasma environment, they may be negatively or positively charged. Dust grains
have the capability to accumulate negative charges by gathering electrons from the sur-
rounding plasma, a process facilitated by field emission, exposure to ultraviolet rays, and
plasma currents [9,10]. Certain mechanisms, including thermionic emission induced by
radiative heating, the secondary emission of electrons from the dust grain’s surface, and
photo-emission in the presence of ultraviolet photon flux, can also result in the positive
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charging of dust particles [1,11]. Linear and nonlinear wave propagation have been studied
in dusty plasma. The presence of numerous dust particles in plasma introduced several new
types of wave modes. These new modes include dust acoustic waves (DAWs) [12], dust
lattice waves (DLWs) [13,14], dust drift waves (DDWs), and dust ion acoustic waves (DI-
AWs) [15]. Out of these, DIAWs are one of the most explored dust-associated low frequency
waves, which are essential for understanding various types of collective processes in dusty
plasmas. Theoretically, Shukla and Silin anticipated these waves in 1992 [15]. Later on,
experimentally, Barkan et al. [16] confirmed these waves in the laboratory. Apart from the
linear study of DIAWs, the planar solitary waves, i.e., the nonlinear DIAWs, which exhibit
a high degree of symmetry due to the delicate balance between the dispersion and non
linearity, have also been studied; see, for example [17–19]. The symmetry of planar solitary
waves has important applications in various fields, including optics, fluid dynamics, and
plasma physics. In optics, for example, planar solitary waves can be generated in fiber
optic systems and used for long-distance data transmission without regenerating a signal.
In [17,18], the Reductive Perturbation technique or similar expansions were used to explore
various features of small amplitude solitary waves and/or double layers [15,19,20].

Although, While the Maxwell-Boltzmann distribution function is typically employed
to describe plasma particles, there are situations where particle distribution functions
deviate from the Maxwellian distribution. Excess superthermal electrons are frequent in
space and laboratory plasma. The space plasmas include the regions like the ionosphere,
magneto-sheet, mesosphere, magnetosphere, lower atmosphere, radiation belts, and auroral
zones [21–23]. In general, the Kappa (κ) distribution can be used to model superthermal
plasma [24]. The κ-distribution converts to the Maxwellian distribution with large value
of κ. On the other side, a low value of κ indicates a distribution with a high concentration
of superthermal particles. Electrostatic excitation in plasma with electron superthermality
effect has been investigated by several authors [21,25,26]. In an unmagnetized dusty plasma
with κ-distributed electrons, Baluku et al. [27] explored dust ion acoustic (DIA) solitons.

In space plasma, pressure anisotropy plays a vital role. The plasmas in space is usually
collisionless and displays anisotropic behavior. This indicates that the pressures of the
plasma particles vary depending on their orientation. The general dynamics and behaviour
of the plasma are impacted by the pressure anisotropy. In specific space environments, the
plasma flow induces magnetic compression and expansion. This mechanism is responsible
for plasma pressure anisotropy [28]. The magnetic (compression) expansion causes an
(increase) decrease in the perpendicular temperature T⊥ and parallel temperature T‖ of
plasma particles. The temperature anisotropy, represented by T⊥ 6= T‖, results from
this mechanism. It is possible to assume that the medium fulfil the double adiabatic or
Chew-Goldberger-Low (CGL) model in order to include anisotropy in a space plasma
model [29]. In the case of pressure anisotropy, the plasma particle will have different
pressures in the relevant direction to the magnetic field. Therefore, one needs to solve
two equations of states, one for the parallel pressure p‖ and another for the perpendicular
pressure p⊥ for plasma particles, in contrast to the case in which pressure isotropy is
considered. Numerous spacecraft measurements demonstrate the occurrence of non-
Maxwellian particle distribution in the major astrophysical plasmas regions. These regions
includes, the magnetosphere, interstellar medium, solar wind and auroral zone [1,30,31],
where plasma anisotropy exists. Our work is motivated by magneto sheath observations
conducted during the AMPET/CCF and AMPET/IRM spacecraft missions, as described in
Denton et al. [28].

Various non linear theories/methods are employed by researchers to investigate the
excitations and characteristics of nonlinear waves in plasma. Researchers commonly em-
ploy two well-established methods, namely the Reductive Perturbation theory and the
Sagdeev pseudo-potential technique, to investigate nonlinear waves of arbitrary amplitude
in plasma. The Reductive Perturbation theory assumes weak non-linearity and is suitable
for analyzing weakly nonlinear systems. This theory is primarily used for studying and
analyzing weakly nonlinear or small amplitude waves. This theory/method often relies
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on approximate solutions to simplify the analysis of nonlinear wave phenomena. These
approximate solutions are obtained by assuming certain simplifying assumptions or by
using perturbation methods to approximate the behavior of the system. On other hand
Sagdeev pseudo-potential theory is the widely used nonperturbative theory implemented
by Sagdeev [32] in order to inspect the nonlinear excitations in plasma. This technique is
applicable to a wide range of plasma wave phenomena, including both weakly and strongly
nonlinear regimes. It overcomes the limitation of other non-linear techniques specifically
used by researchers to investigate the waves with small amplitude in plasma [33]. Fur-
thermore, this theory provides the exact solution of differential equations, which describe
nonlinear waves.

In magnetized plasma, researchers have explored ion acoustic solitary waves (IASWs)
using the Sagdeev pseudo-potential method, as evidenced by Chatterjee et al.’s work [34].
Another study by Anowar et al. [35] employed the Sagdeev pseudo-potential method to
investigate the oblique propagation of low-amplitude Dust Ion Acoustic Solitary Waves
(DIASWs) in a magnetized dusty plasma. Similarly, Shalaby et al. [36] delved into the
oblique propagation of DIASWs in hot adiabatic magnetized dusty plasmas, utilizing a
similar technique.

When considering pressure anisotropy, its effects on solitary wave properties become
significant. Researchers, such as Choi et al. [37], utilized Sagdeev’s potential approach to
study the impact of ion pressure anisotropy on DIASWs and Shock waves in plasma with a
Maxwellian distribution of electrons. In their model, they extended the Sagdeev potential
by considering the low-amplitude limit to derive numerical results. This extension of ion
pressure anisotropy in strongly magnetized plasma resulted in modifications to both the
width and amplitude of electrostatic solitary waves, as discussed by Mahmood et al. [38].
DIASWs of double polarity, in the presence of Cairns-distributed electrons with anisotropic
pressure were analyzed in Adnan et al.’s work [39], employing the Reductive Perturbation
technique.

Furthermore, Adnan et al. [40] investigated how ion pressure anisotropy affects the
propagation characteristics of obliquely propagating solitary waves in a plasma consist-
ing of superthermal electrons and ions, employing the Sagdeev potential technique as
a framework. In another study by Khalid et al. [41], IASWs in magnetized electron-ion
plasma with pressure anisotropy, modeled with a Tsallis distribution, were discussed using
a similar nonlinear technique. More recently, researchers explored oblique IASWs in mag-
netized anisotropic (e-p-i) electron-positron-ion plasma with a Maxwellian distribution
for plasma species, as detailed in Khalid et al.’s work [42]. It’s important to note that the
models described in these studies primarily focus on positive potential nonlinear structures,
specifically compressive solitary waves.

However, in a magnetized non- Maxwellian (superthermal) anisotropic plasma,
obliquely propagating large amplitude DIASWs have not yet been inquired. This work is
motivated by [37,40]. The article offers a thorough examination of the characteristics of
nonlinear DIAWs, with a particular focus on the influence of electron superthermality as
well as ion pressure anisotropy. The study employs the Sagdeev pseudo-potential method-
ology to investigate how various plasma parameters, including the presence of dust grains,
the superthermal nature of electrons described by a Kappa distribution, the angle of prop-
agation (obliqueness), magnetic field strength, as well as parallel and perpendicular ion
pressure, impact the nonlinear characteristics of oblique DIAWs in anisotropic magnetized
dusty plasma.

2. The Governing Equations

We consider a collisionless magnetized three component dusty plasma composed of
stationary negatively charged dust particles of constant charge, warm ions and inertialess
Kappa distributed superthermal electrons. The charge neutrality at equilibrium requires
ni0 = ne0 + Zdnd0 , where Zd denotes the amount of charge residing on the dust particle. The
ions with pressure anisotropy provide inertia. Along the x-axis, the ambient magnetic field
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of constant magnitude is considered i.e., B = Bo x̂. The presence of ion pressure anisotropy
modify the ion fluid equations and are given as

∂tni +∇ · (niui) = 0, (1)

∂tui + (ui · ∇)ui = −
Zie
mi
∇φ +

Zie
mic

(ui × B0 x̂)− 1
mini
∇ · P̃i. (2)

Here ni, Zi, ui, and P̃i represent the ions’ density, charge state, velocity, and ion
pressure tensor, respectively. φ stands for the electrostatic potential, and e and mi stand
for the ionic charge and mass, respectively. The pressure tensor P̃i is divided into two
components related to the external magnetic field B0 and can be written as

P̃i =
(

p‖i − p⊥i

)
x̂ x̂ + p⊥i Ĵ, (3)

where, x̂ represents the unit vector along the ambient magnetic field and Ĵ is the unit tensor.
The CGL theory [29] defines p‖i and p⊥i as

p‖i = p‖i0

(
ni
ni0

)3
and p⊥i = p⊥i0

(
ni
ni0

)
. (4)

In Equation (4), p⊥i0 = ni0Ti⊥ and p‖i0 = ni0Ti‖ show the unperturbed values of
the perpendicular and parallel pressure, respectively. When p‖i = p⊥i in the case of ion
pressure isotropy, then ∇ · P̃i = ∇pi. We make use of the non Maxwellian distribution
(Kappa distribution) function in three dimensions to model the superthermal electrons
proposed by [24] as

f κ(v) = ne0

(
πκθ2

)−3/2
(

Γ(κ + 1)
Γ(κ − 1/2)

)(
1 +

v2

κθ2

)−(κ+1)

, (5)

where ne0 is the unperturbed density of electrons, and θ = [(2κ − 3)/κ]1/2
(

2Te
me

) 1
2 is the

modified thermal speed of an electron. Te and me are the temperature of Maxwellian
electron and the mass of an electron, respectively, and Γ is the usual gamma function. The
integration of the Kappa distribution function given in Equation (5) over the velocity space
gives rise to ne, i.e., the density of Kappa-distributed electrons, which can be expressed as

ne = ne0 exp

(
1− eφ

(κ − 3
2 )Te

)−κ+ 1
2

. (6)

The deviation from the Maxwellian distribution is measured by the spectral index κ.
Poisson’s Equation will be applied to complete the system of evolution equations for the
electrostatic disturbance.

∇2φ = 4πe(ne − ni + Zdnd). (7)

In equilibrium, the neutrality condition yields

ne0

ni0
= 1− µ, (8)

where µ = Zdnd0
ni0

is the ratio of the equilibrium densities of plasma species also often
referred to as the dust concentration.
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2.1. Fluid Evolution Equations

In two-dimensional perturbations, the equations describing the ion dynamic are

∂tni + ∂x(niuix) + ∂y
(
niuiy

)
= 0, (9)

∂tuix +
(
uix∂x + uiy∂y

)
uix = − e

mi
∂xφ−

3p‖i0
min3

io
ni∂xni, (10)

∂tuiy +
(
uix∂ + uiy∂y

)
uiy = − e

mi
∂yφ + Ωiuiz −

p⊥i0
min0ni

∂yni, (11)

∂tuiz +
(
uix∂x + uiy∂y

)
uiz = −Ωiuiy, (12)

∂2
xφ + ∂2

yφ = 4πe(ne − ni + Zdnd), (13)

where Ωi =
eB0
mic

is defined to be the ion gyro-frequency, and uix, uiy, and uiz represent the
ion fluid velocity components. The ionic charge state Zi = 1 is assumed.

2.2. Scaling

The ions normalized fluid equations for dynamics of the DIAWs are given by ,

∂tni + ∂x(niuix) + ∂y(niuiy) = 0, (14)

∂tuix +
(
uix∂x + uiy∂y

)
uix = −∂x ϕ− p‖ni∂xni, (15)

∂tuiy +
(
uix∂x + uiy∂y

)
uiy = −∂y ϕ + Ωuiz −

p⊥
ni

∂yni, (16)

∂tuiz +
(
uix∂x + uiy∂y

)
uiz = −Ωuiy. (17)

The normalized density equation of the Kappa-distributed electrons is

ne =

(
1− ϕ

(κ − 3/2)

)−κ+ 1
2
. (18)

The Poisson’s equation in normalized form can be written as

∂2
x ϕ + ∂2

y ϕ = ((1− µ)ne − ni − µ), (19)

where, space, time, ion fluid velocity, and electrostatic potential are scaled as
(x, y) = (x, y)/λDe, t = t ωpi, (uix, uiy, uiz) = (uix, uiy, uiz)/Cs, and ϕ = eφ/Te. Here,

[Cs =
(

Te
mi

) 1
2 ] is the sound speed of an ion, [λDe =

(
Te/4πni0e2) 1

2 ] is the Debye length, and

[ωpi =
(
4πni0e2/mi

) 1
2 ] is the plasma ion frequency. The plasma species densities ns (where

s = e, d, i) are normalized by the equilibrium ion density ni0. Moreover, p‖ =
3p‖i0
nioTe

and

p⊥ = p⊥i0
nioTe

are the normalized parallel and perpendicular ion pressures also Ω = Ωi
ωpi

(dimensionless parameter).

3. Linear Wave Analysis

In this section, we use Poisson’s Equation (19) instead of plasma approximation to obtain
the dispersion relation for low frequency DIAWs. Considering the small amplitude harmonic
perturbation in the form of ∼ exp i(kxx + kyy− ωt), we linearize Equations (14)–(19); one
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may obtain the dispersion relation of the coupled DIAWs and dust ion acoustic cyclotron
waves (DIACWs) in superthermal magnetized anisotropic dusty plasma as given below

ω4 −

 k2(
k2 + (1− µ)

(
κ−1/2
κ−3/2

)) + k2
x p‖ + k2

y p⊥ + Ω2

ω2+p‖ +
1(

k2 + (1− µ)
(

κ−1/2
κ−3/2

))
Ω2k2

x = 0,

(20)

here, k2
x + k2

y = k2 where kx = k cos θ and ky = k sin θ are the wave vectors along and across
the ambient magnetic field, respectively. By solving Equation (20), we obtain

ω2
± =

1
2

 k2(
k2 + (1− µ)

(
κ−1/2
κ−3/2

)) + k2
x p‖ + k2

y p⊥ + Ω2

±
√√√√√
 k2(

k2 + (1− µ)
(

κ−1/2
κ−3/2

)) + k2
x p‖ + k2

y p⊥ + Ω2

2

− 4

p‖ +
1(

k2 + (1− µ)
(

κ−1/2
κ−3/2

))
Ω2k2

x

.

(21)

Equation (21) explicitly depends on the ion pressure anisotropy, via p‖ and p⊥, the dust
concentration µ, and the superthermality of electrons κ, and the magnetic field effect can be
seen through Ω. Equation (17) in [40] is recovered for µ = 0. Furthermore, for κ → +∞,
the Maxwellian limit is obtained. Equation (21) gives the slow and fast electrostatic modes
with frequencies ω− and ω+, respectively. An acoustic mode is obtained by setting ky → 0,
kx = k, and considering k << 1. The phase speed in the direction parallel to the magnetic
field is thus obtained as

ω−
k

= cos θ

√
(κ − 3/2)

(1− µ)(κ − 1/2)
+ p‖. (22)

Equation (21) shows that the dispersion relation of acoustic modes does not depend on
the ion perpendicular pressure p⊥ and magnetic field Ω. Ignoring the dust concentration,
i.e., µ = 0, Equation (22) yields to the earlier result given in [40]. In Figure 1, the linear
dispersion relation obtained for the acoustic mode ω− given by Equation (22) is plotted for
different values of α, where α = cos θ. Here, θ show the obliqueness and α is also called
obliquity parameter. The range of the value of α is 0 < α < 1. It is noted that with increased
obliqueness (i.e., a lower α), the frequency and, hence, the phase speed of the magnetized
DIAWs decrease.

Α = 0.9
Α = 0.8
Α = 0.7

0 1 2 3 4
0

1

2

3

4

5

k

Ω

Figure 1. Plot of the linear dispersion relation of obliquely propagating DIAWs for α = 0.7 (curve in
blue), 0.8 (curve in pink) and 0.9 (curve in red). The fixed parameters are p‖ = 0.2, µ = 0.7 and
κ = 3.
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4. Large Amplitude Solitary Wave Analysis

In the current section, we employ the Sagdeev potential formalism to examine the
existence of DIASWs of large amplitude in plasmas composed of electrons following Kappa
distribution and ions having anisotropic pressure. The fluid variables in the evolution
equations are presumed to be built on a single travelling coordinate, namely

ξ = αx + βy−Mt, (23)

where M is the normalized soliton speed called the Mach number. The parameter
α = kx

k = cos θ, while β =
ky
k = sin θ, which implies the directional cosine of the wave

vector along the x-axis and y-axis satisfying the condition α2 + β2 = 1. A non-dimensional
set of nonlinear differential equations in the co-moving coordinate (ξ) is obtained, when
Equation (23) is utilized in Equations (14)–(17). Equations (14)–(17) in their transformed
forms are,

−Mdξ ni + αdξ(niuix) + βdξ(niuiy) = 0, (24)

(
−M + αuix + βuiy

)
dξuix + αdξ φ + αp‖nidξ ni = 0, (25)

(
−M + αuix + βuiy

)
dξuiy + βdξ φ−Ωuiz + βp⊥

1
ni

dξni = 0, (26)

(
−M + αuix + βuiy

)
dξ uiz + Ωuiy = 0. (27)

When integrating Equations (24)–(27) we use the appropriate initial conditions [ni → 1,
ϕ→ 0, and uix,iy → 0 at ξ → ±∞], and we arrive to

αuix + βuiy =
M(ni − 1)

ni
, (28)

uix =
α

M

{
−(1− µ) +

∫
nidϕ +

1
3

p‖
(

n3
i − 1

)}
, (29)

uiy =
M
β

(ni − 1)
ni

− α2

Mβ

{
−µ +

∫
nidϕ +

1
3

p‖
(

n3
i − 1

)}
. (30)

The use of Equation (28) with Equations (26) and (27) leads to

−M
ni

dξuiy + βdξ ϕ−Ωuiz + βp⊥
1
ni

dξ ni = 0, (31)

−M
ni

dξuiz + Ωuiy = 0. (32)

Inserting uiy from Equation (30) into Equation (32), one obtains

dξ uiz = Ω
[

ni
β

(
1− 1

ni

)
− α2

M2β

{
−ni(1− µ) + ni

∫
nidϕ +

1
3

p‖ni

(
n3

i − 1
)}]

. (33)

Differentiating Equation (31) with respect to ξ and using Equations (30) and (33), after
some cumbersome calculations, we have
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dξ

[
dξ

(
M2

2
n−2

i +
α2 p‖

2
n2

i + β2 p⊥ log[ni] + ϕ

)]
= Ω2

[
ni

(
1 +

α2

M2 (1− µ)

)
− 1− α2

M2 ni

∫
nidϕ

− α2

3M2 p‖ni

(
n3

i − 1
)]

.

(34)

Equation (34) is multiplied by dξ

(
M2

2 n−2
i +

α2 p‖
2 n2

i + β2 p⊥ log[ni] + ϕ

)
. Integrating

the resulting equation with the use of initial conditions [ϕ→ 0 and dξ ϕ→ 0 at ξ → ±∞] ,
we obtain the quadrature

1
2

(
dϕ

dξ

)2
+ ψ(ϕ) = 0, (35)

In our proposed Model the Sagdeev potential ψ(ϕ) given in Equation (35) is

ψ(ϕ) = Ω2

[(
1− α2

)
ϕ−

(
1 +

α2

M2 (1− µ) +
α2 p‖
3M2

)
ψ1(ϕ)

+
α2

2M2 ψ2(ϕ)−
(

α4 p‖
3M2 −

α2 p‖
3M2

)
ψ3(ϕ)

−
(

M2 + α2(1− µ) +
α2 p‖

3

)
ψ4(ϕ) +

M2

2
ψ5(ϕ) + α2ψ6(ϕ)

+
α2 p‖

3
ψ7(ϕ)−

(
α2 p‖

3
+

α4 p‖
3M2 (1− µ) +

α4 p2
‖

9M2

)
ψ8(ϕ) +

α4 p‖
3M2 ψ9(ϕ)

+
α4 p2
‖

18M2 ψ10(ϕ)−
(

β2 p⊥ +
α2β2 p⊥

M2 (1− µ) +
α2β2 p⊥p‖

3M2

)
ψ11(ϕ)

(36)

+ β2 p⊥ψ12(ϕ) +
α2β2 p⊥

M2 ψ13(ϕ)− α2β2 p⊥
M2 ψ14(ϕ)+

α2β2 p⊥p‖
12M2 ψ15(ϕ)

]

×
[
1−M2ψ16(ϕ) + β2 p⊥ ψ17(ϕ) + α2 p‖ψ18(ϕ)

]−2
.

Equation (35) is an energy balance equation. This equation describes the dynamics of a
particle of unit mass, with velocity (dξ ϕ), located in a position (ϕ) in a potential well ψ(ϕ).
The expression of the Sagdeev potential given in Equation (36) in our proposed model
can be compared with the Sagdeev potential derived for IASWs in superthermal plasma
given by Equation (30) in [40]. Therefore, in the absence of dust concentration (µ = 0) (the
electron–ion plasma case), Equation (36) reverts to Equation (30) in [40]. In Equation (36)
the potential functions ψ(ϕ) are given in Appendix A.

5. Solitary Waves: Existence Domain

The behaviour of the Sagdeev potential given in Equation (36) could be used to detect
the presence of solitary wave structures. A localized solution is possible only in the case
when ψ(ϕ) |ϕ=0= ψ′(ϕ) |ϕ=0= 0 and ψ′′(ϕ) |ϕ=0< 0. Also, ψ(ϕ) should be less than zero
i.e., negative for ϕ having value between 0 and ϕm, where ϕm is define to be the root of
the Sagdeev potential, which represents compressive soliton (positive potential structure)
existence when it is positive. Whereas the negative ϕm corresponds to the occurrence
of rarefactive soliton (negative potential structure). The Sagdeev potential and its first
derivative are zero at ϕ = 0. The condition ψ′′(ϕ) |ϕ=0< 0, fulfilled by (36), defines
the solitary waves’ existence domain. Therefore using the same method adopted in [43],
ψ′′(ϕ) |ϕ=0< 0 gives rise to
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ψ′′(ϕ) |ϕ=0= Ω2 M2 −M2
1

M2
(

M2 −M2
2
) < 0, (37)

where

M1 =| α |

√
1

(1− µ)

(κ − 3/2)
(κ − 1/2)

+ p‖, (38)

and

M2 =

√
1

(1− µ)

(κ − 3/2)
(κ − 1/2)

+ α2 p‖ + (1− α2)p⊥. (39)

Here, M1 and M2 are the upper and lower bounds of the Mach number also called the
Mach number limits. Above M1 and below M2, compressive and rarefactive solitary waves
may be excited. It is evident from Equation (38) that M1 is independent of p⊥, while M2
depends on both p⊥ and p‖. For µ = 0 (i.e., considering the two component electron–ion
plasma case), Equations (38) and (39) reduce to the earlier result given in [40]. Substituting
κ → +∞ in the same two equations, the Mach numbers given in Equation (23) for DIASWs
in Maxwellian anisotropic magnetized plasma in [37] are recovered. For α = 1 and p⊥ = 0,
Equations (38) and (39) become equal to Equation (22), which is the true acoustic phase
speed of DIAWs. For M1 < M < M2, Equation (37) is satisfied. Also

α <
M
M2

< 1. (40)

Furthermore, Equation (37) is justified only if α = cos θ ≤ 1. In case of parallel
propagation α = 1, both limits M1 and M2 coincide with each other; therefore, solitary waves
do not exist. Also, in the proposed model, the results hold up in the long wavelength limit,
as we have used the neutrality hypothesis. In the proposed model, to assess the effect of
the related plasma parameters, i.e., superthermality κ, dust concentration µ, perpendicular
ion p⊥, parallel ion pressure p‖, and the obliqueness of propagation, using α = cos θ on
the soliton existence domain, the propagation characteristics of DIASWs are chosen as
given in [37,40]. Figure 2 shows the variation in the upper and lower Mach numbers.
The behavior of the Mach numbers relative to the dust grain concentration µ has been
investigated for varying superthermality parameter κ while taking p‖ > p⊥ (see Figure 2a).
The graph shows that M1 and M2 increase with an increase in µ. The higher value of µ,
i.e., the dust grain concentration, corresponds to a decrease in the electron density, which
means that solitary waves in an electron-depleted dusty plasma can appear with a higher
M value. It is worth mentioning that an enhancement in the boundary values of Mach
numbers is seen when κ gets increase. Figure 2b depicts the Mach number variations with
the superthermality of electrons κ. We can observe that both M1 and M2 increase with the
increase in κ. This suggests that when an electron deviates from Maxwellian behavior, it
results in the formation of solitary waves with a reduced speed. In other words, when an
electron’s behavior does not conform to the Maxwellian distribution, which describes the
equilibrium state of particles in a system, it leads to the emergence of solitary waves that
propagate at a slower pace. It is also clear from the graph that with a particular value of κ
and varying the obliquity angle θ (via α = cos θ) M1 increases while in M2, no prominent
variation occurs . Less obliqueness corresponds to higher value of α, which shows that the
soliton existence regions shrink.
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Figure 2. The plots (a,b) show the variation in the lower Mach limit M1 (lower curves) and the upper
Mach limit M2 (upper curves) with plasma parameters. For dust concentration µ, κ = 3 (curve
in blue), 4 (curve in pink) and 5 (curve in red), with fixed parameters p‖ = 0.2, p⊥ = 0.1 and
α = 0.7, are shown in plot (a), while for the superthermality index κ, α = 0.7 (curve in blue),
0.8 (curve in pink) and 0.9 (curve in red), with fixed parameters p‖ = 0.2, p⊥ = 0.1 and µ = 0.7
are presented in plot (b).

6. Parametric Analysis

Our focus now is to investigate the dynamical characteristics of obliquely propagating
DIASWs by analyzing the effects of different plasma parameters. To achieve this, we will
utilize the Sagdeev potential ψ(ϕ) described in Equation (36). By studying the variations in
plasma parameters, we aim to gain insights into how these factors influence the behavior
and properties of obliquely propagating DIASWs. The relevant plasma parameters involve
the dust concentration, the electron superthermality, the obliqueness of propagation, the
magnetic field via Ω, the perpendicular ions, and the parallel ions pressure, which play a
significant role in altering the characteristics of solitary structures. It is important to note
that ψ(ϕ) truly predicts the shape of solitary pulses; the amplitude of a solitary pulse is
determined by the value of its root (the point where the Sagdeev potential curve crosses the
axis), while the depth of the Sagdeev potential, as expressed by Equation (36), predicts the
width of the solitary pulse. Therefore, it is required to assess how these parameters affect
the dynamical behavior of DIASWs.

To observe the effect of the dust concentration µ, the Sagdeev potential ψ(ϕ) variation
is plotted in Figure 3a. Considering three different values of µ with fixed plasma parameters
Ω = 0.3, κ = 3, M = 1.2, α = 0.7, p‖ = 0.2 and p⊥ = 0.1. One can infer from Figure 3a
that the Sagdeev potential has two wells, one on the positive ϕ-axis and the other on the
negative ϕ-axis showing the coexistence of double polarity dust ion acoustic (DIA) solitary
structures (solitons). As µ increases, the depth and root of the negative potential well
decrease, while the depth of the positive counterpart decreases, and the root increases.
The electrostatic potential obtained by the numerical integration of Equation (36), and the
electric field perturbation are plotted in Figure 3b and Figure 3c respectively. Figure 3b
shows the resulting solitons. It is seen that when the value of µ rises, the compressive
soliton’s amplitude rises, and its width decreases. Therefore, compressive solitons of larger
amplitude are found, while the smaller amplitude rarefactive solitons are noted. It can be
concluded that the effect of the increase in µ is prominent on the amplitude of the negative
potential DIA solitary structure as compared to the positive potential DIA solitary structure
in a magnetized anisotropic dusty plasma. Thus, the dust concentration has a significant
effect on the modification of solitary structures. The same effect is shown in [44], where
only negative potential DIA solitary structures were studied in magnetized superthermal
dusty plasma without ion pressure anisotropy.
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Figure 3. Effect of the increase in the dust concentration (via µ) on (a) the Sagdeev potential ψ(ϕ)
versus ϕ for Ω = 0.3, κ = 3, M = 1.2, p⊥ = 0.1, α = 0.7 and p‖ = 0.2. curve in blue: µ = 0.70, curve
in pink: µ = 0.72 and curve in red: µ = 0.74, (b) The electrostatic potential obtained by the numerical
integration of Equation (36) and (c) the obtained electric field

Sultana et al. [43] have investigated the impact of superthermal electrons on the
characteristics of nonlinear ion acoustic wave propagation in magnetized plasma. It has
been shown by their research, that solitary waves are enhanced when κ has its lowest
value. Adnan et al. verified the same conclusions qualitatively. Based on those prior
studies, we have looked into how dust and pressure anisotropy affect DIASWs’ propagation
when superthermality is present. Our findings align with all the previously published
research in the relevant limiting conditions [40,43,44]. Keeping other plasma parameters
constant, while considering κ = 3.0, 3.3 and 3.6 the plots of the Sagdeev potential and the
electrostatic potential are depicted in Figure 4. Figure 4a shows that the depth and root of
the Sagdeev potential well with positive polarity are amplified, while these same features
are simultaneously decreases of the Sagdeev potential well with negative polarity. This
leads to amplified compressive solitons along with rarefactive solitons having diminishing
amplitude, as shown in Figure 4b. The relevant electric field perturbation is also shown in
Figure 4c.

The properties of DIASWs are examined and studied in relation to the impact of the
propagation direction’s, i.e., the obliqueness expressed as α = cos θ is explored. In order to
ensure the electrostatic approximation remains valid, it is essential to keep the obliqueness
minimal, as stated in [45]. Figure 5 illustrates the variations of the Sagdeev potential well,
electrostatic potential and electric field perturbation as α is varied. We noticed that raising
the value of α resulted in a decrease in the root and depth of both polarity potential pulses.
Additionally, it is observed that both polarity DIASWs structures diminished in amplitude.
The greater the obliqueness of the propagation, the more enhanced the amplitude of the
solitary structures, and a decline in its steepness can be noted. As a result, we obtain the
solitary excitation with an enhancement in the amplitude with obliqueness. This qualitative
result is expected because increasing obliqueness, allows the Mach number M1 to decrease
(see Figure 2b); as a result, a given M value transcends M1 even more, creating a pulse with
a larger amplitude.
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Figure 4. Effect of the increase superthermality (via κ) on (a) the Sagdeev potential ψ(ϕ) versus ϕ for
Ω = 0.3, M = 1.2, µ = 0.7, p⊥ = 0.1, α = 0.70, and p‖ = 0.2. curve in blue: κ = 3.0, curve in
pink: κ = 3.3 and curve in red: κ = 3.6. (b) The corresponding electrostatic potential and (c) the
resulting electric field are plotted for the same parametric values.
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Figure 5. Effect of the increase in the obliquity parameter (via α) on (a) the Sagdeev potential ψ(ϕ)
versus ϕ for Ω = 0.3, M = 1.2, µ = 0.7, κ = 3, p⊥ = 0.1, and p‖ = 0.2. curve in blue: α = 0.70,
curve in pink: α = 0.72 and curve in red: α = 0.74, (b) The corresponding electrostatic potential
and (c) the electric field.

Figure 6 illustrates the investigation of the magnetic field effect using the different
value of frequency ratio Ω. In this analysis, we plotted the Sagdeev potential ψ(ϕ), the
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electrostatic potential, and the perturbation of the electric field, keeping the remaining
dusty plasma parameters fixed. It is obvious from Figure 6a that both the roots of Sagdeev
potential are fixed if we increase the strength of the magnetic field (larger Ω). However,
the depth of the polarity Sagdeev potential well increases. Hence, steeper and sharper
compressive and rarefactive solitons are found (see Figure 6b). Figure 6c depicts the
corresponding electric field perturbation. These results aligns with the earlier result of [40],
where the plasma model supported only compressive solitary waves.
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Figure 6. Effect of the increase in the magnetic field (via Ω) on (a) the Sagdeev potential ψ(ϕ) versus
ϕ for p⊥ = 0.1, α = 0.7, p‖ = 0.2, M = 1.2, κ = 3 and µ = 0.7. curve in blue: Ω = 0.3, curve in
pink: Ω = 0.4 and curve in red: Ω = 0.5. (b) The corresponding electrostatic potential and (c) the
resulting electric field.

Figure 7 illustrates how the properties of DIASWs are affected by ion pressure
anisotropy. We have demonstrated the fluctuation in the Sagdeev potential using the
fixed plasma parameters Ω = 0.3, M = 1.2, µ = 0.7, κ = 3, α = 0.7, p⊥ = 0.1 and
considering ion parallel pressure p‖ = 0.2, 0.4 and 0.6. It is seen that the variation in p‖ is
very effective. The depth and root of both polarity wells diminish with rising values of p‖,
and as a result, the corresponding DIASWs’ amplitude is suppressed. We think that the ion
parallel pressure gives rise to dispersive effects, which tends to suppress the effects due to
the non-linearity, thus leading to smaller amplitude DIA solitons as shown in Figure 7b.
However, only the width of compressive DIASWs rises under increase ion perpendicular
pressure , as shown in Figure 8, while the amplitude of both polarity DIASWs is not sig-
nificantly affected. The same pressure effects are also shown in [37,40]. In Figure 9, we
show the curves for three different cases. In the first case, we chose Ω = 0.3, M = 1.2,
κ = 3, µ = 0.7, α = 0.7, p⊥ = 0.1 and p‖ = 0.2. In the second and third cases, respectively,
p‖ = 0.1, p⊥ = 0.2 and p‖ = p⊥ = 0 are taken into account. In the case of p‖ > p⊥ (curve
in blue), a compressive DIA soliton with smaller amplitude results, while for the same case,
a large amplitude rarefactive DIA soliton develop. When p‖ = p⊥ = 0 (curve in black),
the plasma does not support any compressive DIA soliton; however, a rarefactive DIA
soliton does develop. The amplitude of the counterpart of the compressive DIA soliton
is less for p‖ > p⊥. Whereas for p⊥ > p‖ (curve in pink) and p‖ = p⊥ = 0 (curve in
black) a rarefactive DIA soliton of larger amplitude is achieved. These plots shown in
Figure 9 indicate that change in p‖ have a significant impact on the dynamical features of
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both positive and negative potential DIASWs in contrast to p⊥ variations. This analysis
of the ion pressure effect agrees with the results provided in [40] in the case when dust
concentration is considered to be negligible.
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Figure 7. Effect of the increase in the ion pressure parallel component (via p‖) on (a) the Sagdeev
potential ψ(ϕ) versus ϕ for Ω = 0.3, M = 1.2, µ = 0.7, κ = 3, α = 0.7, and p⊥ = 0.1. curve in blue:
p‖ = 0.2, curve in pink: p‖ = 0.4 and curve in red: p‖ = 0.6 (b) The corresponding electrostatic
potential and (c) the resulting electric field.
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Figure 8. Effect of the increase in the perpendicular ion pressure (via p⊥) on (a) the Sagdeev potential
ψ(ϕ) versus ϕ, for Ω = 0.3, M = 1.2, µ = 0.7, κ = 3, α = 0.7 and p‖ = 0.2. curve in blue:
p⊥ = 0.1, curve in pink: p⊥ = 0.3 and curve in red: p⊥ = 0.5. (b) The corresponding electrostatic
potential and (c) the resulting electric field.
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Figure 9. The variation in (a) the Sagdeev potential ψ(ϕ) versus ϕ for Ω = 0.3, M = 1.2, µ = 0.7,
κ = 3 and α = 0.7. curve in blue: p‖ > p⊥, curve in pink: p⊥ > p‖ and curve in black: p‖ = p⊥ = 0.
The plots of electrostatic potential and electric field are also shown in Figure (b) and (c) .

7. Conclusions

The characteristics of oblique arbitrary amplitude DIASWs propagating in a non-
Maxwellian (superthermal) anisotropic magnetized plasma is investigated in the proposed
model. In the linear regime, we have examined magnetized DIAWs and (DIACWs that
propagate obliquely. The properties of these waves are influenced by factors such as
the concentration of dust particles, the distribution of superthermal electrons, and the
anisotropy of ion pressure. It is shown that the presence of electron superthermality, dust
concentration and ion pressure anisotropy specifically modify the existence domain and
propagation characteristics of DIASWs. A parametric analysis concluded the coexistence of
double polarity potential DIASWs structures. The dust concentration affects the amplitude
of DIASWs, in fact higher dust concentration leads to smaller amplitude negative polarity
solitary pulses while the larger value of dust concentration has a minute impact on the
positive polarity DIASWs amplitude. The increased value of electron superthermality leads
to an amplified compressive soliton with coexistence of small amplitude rarefactive soliton.
Obliqueness has a notable effect on the amplitude of both polarity DIASs. It amplifies
the amplitude of these structures, making them more pronounced and prominent. The
increase also has a simultaneous effect on their steepness. It considerably reduces the
steepness of these structure . The amplitude of solitary structures, regardless of polarity,
remains unaffected by the strength of the magnetic field. Instead, an increase in magnetic
field strength alters the depth of the Sagdeev potential wells, resulting in the formation of
more pronounced compressive and rarefactive solitons. Notably, the parallel component of
ion pressure has a more significant impact on the propagation characteristics of DIASWs
compared to the perpendicular component of ion pressure.
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Appendix A. The Potential Functions in the Sagdeev Potential

The following are the potential functions in the Sagdeev potential derived for the
proposed model given in Equation (36).

ψ1(ϕ) =

[(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+3/2
+ µϕ

)
− (1− µ)

]

ψ2(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+3/2
+ µϕ

)2

− (1− µ)2


ψ3(ϕ) =

[(
(1− µ)4

(
κ − 3/2
4κ − 3

)(
1− ϕ

(κ − 3/2)

)−4κ+3

+4µ(1− µ)3
(

κ − 3/2
3κ − 5/2

)(
1− ϕ

(κ − 3/2)

)−3κ+5/2

+6µ2(1− µ)2
(

κ − 3/2
2κ − 2

)(
1− ϕ

(κ − 3/2)

)−2κ+2

+ 4µ3(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+3/2
+µ4 ϕ

)
−
(
(1− µ)4

(
κ − 3/2
4κ − 3

)
+ 4µ(1− µ)3

(
κ − 3/2

3κ − 5/2

)
+ 6µ2(1− µ)2

(
κ − 3/2
2κ − 2

)
+ 4µ3(1− µ)

)]

ψ4(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)−1

− 1


ψ5(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)−2

− 1


ψ6(ϕ) =

[(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+3/2
+ µϕ

)
(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)−1

− (1− µ)


ψ7(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)2

− 1


ψ8(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)3

− 1
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ψ9(ϕ) =

[(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+3/2
+ µϕ

)
(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)3

− (1− µ)


ψ10(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)6

− 1


ψ11(ϕ) =

[(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)
− 1

]

ψ12(ϕ) = log

[
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

]

ψ13(ϕ) =

[(
(1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)
− (1− µ)

]

ψ14(ϕ) =

[(
(1− µ)2

(
κ − 3/2
2κ − 2

)(
1− ϕ

(κ − 3/2)

)−2κ+2
+ µ2 ϕ + 2(1− µ)µ

(
1− ϕ

(κ − 3/2)

)−κ+3/2
)
−
(
(1− µ)2

(
κ − 3/2
2κ − 2

)
+ 2(1− µ)µ

)]

ψ15(ϕ) =

((1− µ)

(
1− ϕ

(κ − 3/2)

)−κ+1/2
+ µ

)4

− 1


ψ16(ϕ) =

(
(1− µ)

(
1− ϕ

(κ−3/2)

)−κ+1/2
+ µ

)−3(
(1− µ)

(
κ−1/2
κ−3/2

)(
1− ϕ

(κ−3/2)

)−κ−1/2
)

ψ17(ϕ) =

(
(1− µ)

(
1− ϕ

(κ−3/2)

)−κ+1/2
+ µ

)−1(
(1− µ)

(
κ−1/2
κ−3/2

)(
1− ϕ

(κ−3/2)

)−κ−1/2
)

ψ18(ϕ) =

(
(1− µ)

(
1− ϕ

(κ−3/2)

)−κ+1/2
+ µ

)(
(1− µ)

(
κ−1/2
κ−3/2

)(
1− ϕ

(κ−3/2)

)−κ−1/2
)
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