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Abstract: Medical imaging plays an indispensable role in evaluating, predicting, and monitoring a
range of medical conditions. Radiomics, a specialized branch of medical imaging, utilizes quantitative
features extracted from medical images to describe underlying pathologies, genetic information, and
prognostic indicators. The integration of radiomics with artificial intelligence presents innovative
avenues for cancer diagnosis, prognosis evaluation, and therapeutic choices. In the context of
oncology, radiomics offers significant potential. Feature selection emerges as a pivotal step, enhancing
the clinical utility and precision of radiomics. It achieves this by purging superfluous and unrelated
features, thereby augmenting model performance and generalizability. The goal of this review is to
assess the fundamental radiomics process and the progress of feature selection methods, explore their
applications and challenges in cancer research, and provide theoretical and methodological support
for future investigations. Through an extensive literature survey, articles pertinent to radiomics
and feature selection were garnered, synthesized, and appraised. The paper provides detailed
descriptions of how radiomics is applied and challenged in different cancer types and their various
stages. The review also offers comparative insights into various feature selection strategies, including
filtering, packing, and embedding methodologies. Conclusively, the paper broaches the limitations
and prospective trajectories of radiomics.
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1. Introduction

Cancer is the second leading cause of death worldwide. The burden of cancer contin-
ues to grow, exerting significant physical, emotional, and economic pressure on individuals,
families, communities, and health systems [1]. Due to the high degree of tumor heterogene-
ity and recurrence rate, there is an urgent need for more effective strategies with which to
detect and treat cancer. Medical imaging serves as a valuable tool in aiding the diagnosis,
management, and monitoring of tumors. Techniques such as X-ray computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultra-
sound (US) are pivotal in advancing personalized cancer diagnosis and treatment. These
imaging modalities offer essential complementary information to genomic, proteomic, and
metabolomic technologies, facilitating non-invasive assessments of human tissue proper-
ties [2]. Moreover, medical imaging can help identify biomarkers that predict treatment
response and clinical outcomes [3]. However, the interpretation of images manually re-
mains subjective, relying heavily on individual experience and qualitative evaluation. To
enhance accuracy and reliability, identifying quantitative and reliable image biomarkers
to support clinical diagnosis is essential. Radiomics, a methodology that integrates image
segmentation, feature extraction, feature analysis, and data mining, has emerged as a
promising approach in this domain.

Since its introduction in 2012 [4], the field of radiomics has experienced exponential
growth. Although the term “radiomics” was formally coined in that year, its roots can
be traced back to earlier methods in medical image texture analysis. These early tech-
niques gradually evolved and became more sophisticated, leading to the formalization of
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radiomics. This evolution encompasses the integration of more complex algorithms and
machine learning models, as well as broader applications in clinical decision-making and
patient management. Understanding this technological progression not only showcases the
maturity of the field but also sets the stage for future research directions. A keyword search
for “radiomics” on PubMed (www.ncbi.nlm.nih.gov/pubmed accessed on 28 August 2023)
revealed a rising number of annual publications, as depicted in Figure 1, indicating a
growing interest in radiomics. These publications primarily concentrate on the field of
radiomics, encompassing the extraction and quantitative analysis of features from medical
images. They cover a wide range of scientific studies, including original research, reviews,
conference proceedings, and related scholarly works related to radiomics. Collectively,
these publications enhance the understanding and advancement of radiomics techniques,
particularly in the context of medical imaging and diagnosis.

Figure 1. Number of publications related to radiation medicine in the PubMed database from 2012 to
the present.

Radiomics is a fundamental medical technique used in clinical practice to aid in
screening, diagnosis [5], treatment decision-making [6], and follow-up. It is a rapidly
developing artificial intelligence (AI) technique in medical imaging, capable of extracting a
large number of quantitative features from medical images in an objective, reproducible,
and high-throughput manner. Using these extracted features, radiomics models, also
known as signatures, are developed to interpret diverse clinical phenotypes, encompassing
patient genotyping, treatment effectiveness, and clinical outcomes [7,8]. The core principle
of radiomics is that medical images contain information relevant to the pathophysiology of
certain diseases, which can be quantitatively analyzed to aid in diagnosis and treatment [9].
In oncology, the potential of radiomics lies in its capability to quantitatively evaluate intra-
tumor heterogeneity, thereby unveiling phenotypes and microenvironments that might not
be evident upon visual inspection [10,11]. Radiomics features, such as tumor shape, size,
volume, intensity, and texture, provide information different from or complementary to
clinical reports, laboratory tests, genomic, or proteomic analyses [12]. Radiomics features
extracted from medical images can be categorized into two types: hand-crafted features
obtained through traditional algorithms (such as intensity, shape, texture, and wavelets)
and features generated through deep learning (DL) algorithms. Hand-crafted features

www.ncbi.nlm.nih.gov/pubmed
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offer specific information about the regions of interest (ROIs) within medical images,
such as tumors or organs, and can be correlated with additional data sources, including
clinical, treatment, or genomic data [13]. Meanwhile, DL features are acquired through
the training of DL networks. In recent years, DL has gained popularity, primarily due to
the exceptional performance of convolutional neural networks (CNNs) in tasks such as
image classification and recognition in the field of medical imaging [14,15]. This trend has
opened up new opportunities for research in radiomics. CNNs enable the extraction of DL
features that capture intra-tumor heterogeneity, facilitating direct information extraction
from medical images and providing a more accurate description of tumor characteristics
compared to manually designed radiomics features [16,17]. The rationale behind this trend
is well-founded, as CNNs have consistently demonstrated remarkable performance in
medical imaging, offering strong support for their application in radiomics research. The
advantage of DL is its ability to bypass the need for extensive data processing, making it
more efficient. However, a notable limitation of DL is its “black box” nature; the resulting
models and features often lack interpretability, which can impede their direct applicability
in clinical scenarios. Additionally, DL methods are efficient when applied to large datasets.
However, the sample size, especially in rare diseases, is not always sufficient to fully
utilize these architectures [18]. Therefore, transfer learning is proposed to bridge this gap.
Transfer learning involves using pre-trained models from images in other domains and
fine-tuning the parameters of the model on the target dataset to make it applicable to the
target task [19,20]. This process is widely used in the field of medical image analysis [21].
By combining both hand-crafted features and DL features with other patient data, such as
pathology results, clinical records, and genomic data, more precise and robust predictive
models of clinical outcomes can be developed.

Radiomics has gained significant attention in recent years for its ability to identify tu-
mor genotypes and pathological imaging biomarkers, which have clinical potential [22,23].
Studies have indicated that radiomics has the potential to improve or surpass existing
tumor diagnosis methods, as it can effectively evaluate genomic features [24,25], tumor sub-
types [26–28], and lymph node metastasis [29–32] in various cancers. Radiomics has demon-
strated the ability to predict the prognosis of various malignancies, including colorectal
cancer [33–38], gastric cancer [39–44], cervical cancer [31,45–48], pancreatic cancer [49–51],
nasopharyngeal cancer [52–57], breast cancer [58–62], and lung cancer [63–68]. To conduct
a comprehensive literature review, we employed the PubMed search engine in combination
with an online literature tracking tool named Stork (https://www.storkapp.me/ accessed
on 8 March 2023). Stork serves as a researcher’s personalized scientific information assis-
tant, designed to seamlessly provide the most recently published scientific literature based
on the researcher’s preferences. This enables real-time engagement with the latest advance-
ments. Additionally, Stork provides a wide range of advanced features. It dynamically
acquires and analyzes a significant amount of scientific literature, then presents statistical
insights using informative charts and graphs, significantly enhancing user productivity. In
our study, we utilized this invaluable tool in conjunction with the PubMed search engine to
curate relevant articles in the field of radiomics. Our search included relevant articles up to
8 March 2023, covering a broad spectrum of radiomics research, with a notable focus on
lung and breast cancers (Figure 2).

https://www.storkapp.me/
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Figure 2. Radiomics techniques have been applied to variety of diseases.

The radiomics workflow comprises five distinct stages, each presenting specific chal-
lenges that researchers aim to overcome. Thee are as follows. Image acquisition and
pre-processing: Ensuring the quality and consistency of the images before analysis. Image
segmentation: Defining the boundaries of the ROIs using various methods, including
manual, semi-automatic, and automatic methods. Feature extraction and selection: Ex-
tracting quantitative characteristics from the tumor area using specialized open-source or
internally created software, followed by selecting a relevant subset of features. This step
aims to reduce the number of predictors while retaining essential data for the study results.
Model creation and evaluation: Building models involves various techniques, ranging from
simple linear regression to complex machine learning methods such as random forests
(RF), support vector machines, and neural networks. The evaluation of predictive models
typically considers identification, calibration, and potential clinical value. Clinical appli-
cation: Radiomics assists clinicians in making supplementary diagnoses and in guiding
subsequent treatment decisions. In this review, we begin with an overview of each step in
the radiomics workflow (Section 2). Subsequently, we comprehensively examine feature
selection, which is one of the vital steps in radiomics studies, in Section 3. This section
aims to aid researchers in constructing more effective radiomics models by offering insights
into various feature selection methods. Section 4 discusses conventional and DL-based
radiomics, highlighting the pros and cons of three feature selection methods commonly
used in radiomics studies. In addition, it discusses the challenges facing radiomics and
introduces the development of radiomics in a new perspective. Lastly, Section 5 presents
the conclusions.

2. Radiomics Workflow

The radiomics workflow is divided into five key stages, each with its own specific
challenges. Radiomics employs various feature extraction algorithms to transform imaging
data from the ROIs into either first-order or higher-order features. This process aims to
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enhance clinical diagnostic accuracy and prognostic/predictive value by exploring and
evaluating data relationships. Figure 3 depicts the fundamental radiomics process.

Figure 3. Radiomics Workflow.

2.1. Image Acquisition and Pre-Processing

In radiomics, the workflow consists of five critical stages, each presenting unique
challenges. The initial stage involves image acquisition using various modalities such as CT,
MRI, PET, and US. One of the primary obstacles at this stage is the high variability in image
acquisition procedures across different medical centers. This variability can compromise the
reproducibility of quantitative features and, by extension, the external validity of radiomics
models [69,70]. Given the complexities involved in image normalization, radiomics models
must undergo internal and external testing in multiple validation cohorts to ensure accuracy.
Therefore, one of the major challenges in radiomics is to reduce the influence of the imaging
protocol on radiomics features. Many studies use multicenter data to assess the robustness
of radiomics models under different image parameters [71–73].

Additionally, post-image acquisition pre-processing can mitigate the impact of certain
image acquisition parameters on the model. The future of pre-processing depends on es-
tablishing standardized imaging protocols and image preprocessing procedures, including
pixel spacing, gray intensity, and gray-level histogram bins. Nevertheless, the substantial
variations among different imaging techniques necessitate additional quality control mea-
sures to ensure study reproducibility. Various initiatives have been proposed to establish
acquisition and reconstruction criteria, aiming to advance quantitative imaging and ensure
reliability. For instance, the Radiological Society of North America and the National Insti-
tute for Biomedical Imaging and Bioengineering have supported the Quantitative Imaging
Biomarkers Alliance (QIBA) [74], and the European Society of Radiology has established
the European Imaging Biomarkers Alliance subcommittee (EIBALL) [75].

2.2. Image Segmentation

After collecting a robust image dataset from the target patient cohort, the next crucial
step is to accurately segment ROIs or Volumes of Interest (VOIs). Radiomics features
are notably influenced not only by image acquisition but also by the variability in ROIs
delineation. Precise ROIs segmentation is a pivotal step in radiomics investigations as it
significantly affects the derived radiomics features. Segmentation methods include manual,
semi-automatic, and fully automatic approaches. Typically, expert clinicians or researchers
perform manual ROIs delineation, which serves as the benchmark. However, manual seg-
mentation is resource-intensive and relies on trained practitioners to reduce inter-operator
inconsistencies. In cases where lesion boundaries are unclear or multiple focal lesions
are present, multiple manual segmentations may be needed in order to ensure accuracy
and reproducibility. Despite being time-intensive and susceptible to bias, evaluating the
reproducibility of reported features among different observers is essential. Radiomics
attributes that lack repeatability should be discarded [76]. Feature consistency within and
among observers can be quantified using the Intraclass Correlation Coefficient (ICC) [77].
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In summary, following dataset collection, precise segmentation becomes the focal point, as
it plays a significant role in the consistency and reproducibility of radiomics features.

Many studies indicate that employing automatic or semi-automatic segmentation
techniques can mitigate human errors, enhancing efficiency. There are numerous soft-
ware programs and segmentation algorithms available for performing semi-automatic and
fully automatic segmentation of radiomics images. Examples of segmentation software
widely used in medical research include 3D Slicer [78], ITK-SNAP [79], ImageJ [80], and
MITK/3DMed [81,82]. Semi-automatic or fully automatic segmentation is appealing be-
cause it provides a more reproducible and efficient approach to observing robust features
within a given ROIs [83]. While automated methods for medical image segmentation
are becoming more accurate, they still depend on manual outlining as the gold standard.
There is a growing belief that optimal and reliable segmentation can be achieved through a
combination of computer-aided edge detection and manual refinement [84].

Computer-aided inspection systems commonly employ a variety of segmentation tech-
niques, including active contour, level-set, area-based, and graph-based methods [85,86].
Parametric techniques, such as active contour and level-set models, require appropriate
initialization and may have limitations when handling uncertain shapes or unknown
ROIs locations. Region-based methods, which rely on pixel intensity homogeneity, may
encounter challenges in scenarios involving complex anatomical structures or undefined
ROIs. In contrast, graph-based methods effectively capture pixel interactions [87], making
them suitable for handling complex anatomical structures, albeit with a potential increase
in computational load.

Conversely, DL has emerged as a powerful paradigm for medical image segmen-
tation, consistently achieving remarkable results across various applications in medical
imaging [88]. Unlike traditional approaches that depend on hand-crafted features and
algorithms, DL techniques learn directly from data, capturing intricate patterns and rep-
resentations that are challenging to express through explicit rules. One key advantage of
DL-based segmentation is its adaptability to a wide range of medical imaging tasks.

Prominent DL architectures for medical image segmentation include Unet [89], ST-
Unet [90], Unet++ [91], Eres-UNet++ [92], CE-Net [93], and PIPO-FAN [94]. These founda-
tional frameworks excel in segmenting structures and anomalies within medical images.
Nevertheless, DL models are specific to particular tasks and necessitate customized train-
ing. Similar to the selection of different methods for different contexts, DL networks are
specialized and may not perform effectively beyond their trained domain. In the field
of medical imaging, misapplication of models can have serious consequences. Therefore,
DL-based medical image segmentation systems require a well-considered combination of
methodologies capable of adapting to diverse conditions. By understanding the strengths
and limitations of models and incorporating them intelligently, medical professionals and
researchers can effectively utilize DL for precise image segmentation in scenarios with
intricate anatomies or undefined ROIs.

2.3. Feature Extraction and Feature Selection

Following tumor area segmentation, the subsequent critical step involves extracting
features from the image. Automated radiomics feature extraction can be accomplished
using various open-source software tools, including LIFEx (https://www.lifexsoft.org/
index.php accessed on 8 August 2023), MITK (http://www.mitk.org/wiki/MITK accessed
on 8 August 2023), CERR (https://github.com/cerr/CERR accessed on 8 August 2023),
and others. Alternatively, open-source software packages such as pyRadiomics [95] can
be used for feature extraction. In the realm of radiomics, data-driven methodologies
eliminate prior assumptions concerning the clinical significance of particular features.
Utilizing advanced open-source software tools, these algorithms autonomously identify,
compute, and extract features, thereby revealing novel patterns pivotal for both diagnosis
and prognosis. Importantly, the choice of software for feature extraction can introduce
variability, potentially affecting the consistency and reliability of the resulting data.

https://www.lifexsoft.org/index.php
https://www.lifexsoft.org/index.php
http://www.mitk.org/wiki/MITK
https://github.com/cerr/CERR
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In response to this challenge, Zwanenburg et al. introduced the Image Biomarker
Standardization Initiative (IBSI) [96], which consists of a standardized set of 169 features.
This initiative facilitates the validation and calibration of various radiomics software tools
and addresses the variations and inconsistencies in radiological feature extraction methods
employed across different studies and clinical settings. Consequently, it enhances the
reliability and comparability of radiological image features and provides guidance for
future research.

To ensure the reproducibility of radiomics-based models, it is crucial to extract ra-
diomics features from pre-processed imaging data that have been optimized to reduce
inconsistencies. Image normalization is a vital technique that ensures consistent distri-
bution of different images within a similar value range. It is necessary for facilitating
image comparisons and consistent analysis. Resampling images to the same size facili-
tates easier comparison and analysis. These strategies mitigate discrepancies caused by
different acquisition devices, parameters, and factors. Radiomics features fall into three
primary categories:–first-order statistical, shape-based, and texture features—as depicted
in Table 1. First-order statistical features analyze the distribution of individual voxel values
without considering spatial relationships. They reflect the symmetry, homogeneity, and
local intensity distribution variations of the measured voxels.

Table 1. Commonly extracted first-order, shape-based, and texture features.

First-order
features

Shape-based
features

Texture features
Gray Level

Co-occurrence
Matrix(GLCM)

Gray Level
Size Zone

Matrix(GLSZM)

Gray Level
Dependence

Matrix(GLDM)

Gray Level
Run Length

Matrix(GLRLM)

Neighboring Gray
Tone Difference

Matrix(NGTDM)

Energy Mesh Volume Autocorrelation Small Area Emphasis Small Dependence
Emphasis

Short Run
Emphasis Coarseness

Total Energy Voxel Volume Joint Average Large Area Emphasis Large Dependence
Emphasis

Long Run
Emphasis Contrast

Entropy Surface Area Cluster Prominence Gray Level
Non-Uniformity

Gray Level
Non-Uniformity

Gray Level
Non-Uniformity Busyness

Minimum Surface Area
to Volume ratio Cluster Shade Gray Level

Non-Uniformity Normalized
Dependence

Non-Uniformity

Gray Level
Non-Uniformity

Normalized
Complexity

10th percentile Sphericity Cluster Tendency Size-Zone
Non-Uniformity

Dependence
Non-Uniformity Normalized

Run Length
Non-Uniformity Strength

90th percentile Maximum 3D
diameter Correlation Size-Zone

Non-Uniformity Normalized Gray Level Variance
Run Length

Non-Uniformity
Normalized

Maximum Maximum 2D
diameter (Slice) Difference Average Zone Percentage Dependence Variance Run Percentage

Mean Maximum 2D
diameter (Column) Difference Entropy Zone Variance Dependence Entropy Gray Level Variance

Median Maximum 2D
diameter(Row) Difference Variance Zone Entropy Low Gray Level

Emphasis Run Variance

Interquartile
Range

Major Axis
Length Joint Energy Low Gray

Level Zone Emphasis
High Gray

Level Emphasis Run Entropy

Range Minor Axis
Length Joint Entropy High Gray

Level Zone Emphasis
Small Dependence Low

Gray Level Emphasis
Low Gray Level
Run Emphasis

Mean Absolute
Deviation

Least Axis

Length

Informational Measure
of Correlation

Small Area Low Gray
Level Emphasis

Small Dependence High
Gray Level Emphasis

High Gray Level
Run Emphasis

Robust Mean
Absolute Deviation Elongation Inverse Difference

Moment
Small Area High

Gray Level Emphasis
Large Dependence Low

Gray Level Emphasis
Short Run Low

Gray Level Emphasis

Root Mean Squared Flatness Maximal Correlation
Coefficient

Large Area Low
Gray Level Emphasis

Large Dependence High
Gray Level Emphasis

Short Run High
Gray Level Emphasis

Skewness Inverse Difference
Moment Normalized

Large Area High
Gray Level Emphasis

Long Run Low
Gray Level Emphasis

Kurtosis Inverse Difference Long Run High
Gray Level Emphasis

Variance Inverse Difference
Normalized

Uniformity Invers
Variance

Maximum
Probability

Sum
Average

Sum
Entropy
Sum of
Squares
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These include median, mean, minimum, maximum, standard deviation, skewness,
kurtosis, and more. Shape features describe the shape of the traced ROI and its geometric
properties, including volume, maximum diameter along different orthogonal directions,
maximum surface, tumor compactness, and sphericity. For instance, the surface-to-volume
ratio of a spiculated tumor will exhibit higher values compared to that of a round tumor
with similar volume [97]. Second-order and higher-order texture features can discern
or gauge spatial variations in voxel intensity levels by evaluating the spatial dispersion
among voxels [98]. Textural features can be categorized into several groups, as depicted in
Figure 4.

1. The Gray Level Co-occurrence Matrix (GLCM) represents the probability of a voxel
value occurring at a specific direction and distance [99,100];

2. The Gray Level Run Length Matrix (GLRLM) describes the length of consecutive
voxels with the same gray level in a specified direction [101,102];

3. The Gray Level Size Zone Matrix (GLSZM) segments an image into regions with
contiguous voxel values [103];

4. The Neighboring Gray Tone Difference Matrix (NGTDM) quantifies the gray value
of a voxel by considering the difference between its average gray value and the gray
value within a certain distance of the neighborhood [104];

5. The Gray Level Dependence Matrix (GLDM) calculates the difference between adja-
cent voxels based on their values [105].

Figure 4. Examples of specific matrices that allocate information about the spatial distribution of
pixel values in the image.

Additionally, DL offers a meaningful approach to extract deep features. DL models
consist of trainable nonlinear operations, referred to as layers, that transform input data into
representations for effective pattern recognition. The addition of more layers to the model
progressively abstracts the input data, resulting in a deep-feature representation [106]. An
illustration of utilizing a DL network to extract features of occult peritoneal metastases from
gastric cancer [107] is presented in Figure 5. DL algorithms possess the ability to automati-
cally learn phenotypic features, exhibiting powerful characterization capabilities without
requiring predefined characteristics or human intervention [108,109]. It is important to
acknowledge that not all extracted features are beneficial for modeling. Therefore, data
cleaning plays a crucial role in the process, encompassing error identification and correction
in data files, validation of data consistency, and handling invalid and missing values.



Symmetry 2023, 15, 1834 9 of 26

Figure 5. DL network to extract radiomics features.

Following feature extraction, it becomes essential to choose a subset of these features
tailored to a specific disease process or research question. Radiomics features can be
categorized based on their relevance to machine learning and their potential to enhance
the performance of learning algorithms. The first category comprises relevant features that
significantly benefit machine learning and enhance the efficiency of learning algorithms.
The second category refers to irrelevant features that do not aid the algorithm and do
not contribute to its learning process. Lastly, the third category consists of “redundant
features”, which can be inferred from other available information and do not offer new
insights to the learning algorithm.

Feature selection is a crucial step in the radiomics workflow, aimed at eliminating
irrelevant or redundant features while retaining those that are relevant and useful. This
process helps reduce the dimensionality of features, enabling machine learning models to
learn more efficiently and reducing the risk of overfitting. The goal of feature selection
is to identify a smaller subset of features that are most relevant and predictive for the
specific task at hand. Additionally, feature dimensionality reduction involves reducing the
dimensionality of the correlation feature matrix, which further enhances the efficiency and
effectiveness of the radiomics analysis.

2.4. Model Creation and Evaluation

After selecting the radiomics features, they can be used in various models, such as
diagnostic, prognostic, or predictive models [76]. Machine learning has become a prevalent
method for radiomics-based predictions, owing to the rapid growth in high-dimensional
data availability in recent years. The core concept of machine learning involves training
models on input-output examples, allowing the system to learn desired relationships au-
tonomously, without extensive human programming. To achieve this, numerous machine
learning classifiers have been developed, employing a diverse range of candidate algo-
rithms [110–114]. These classifiers aim to achieve optimal performance through repeated
iterations of training and testing. Several popular classifiers include Extreme Gradient
Boosting, RF, Naive Bayes, and Support Vector Machine (SVM). In radiomics studies, eval-
uating the predictive accuracy of multiple classifiers, feature selection methods, and their
combinations is crucial for selecting the most suitable machine learning classifier for a
given research problem or dataset [115]. Overfitting and underfitting can impact both
statistical learning and machine learning models, resulting in unstable models that lack
generalization ability. Employing strategies such as cross-validation, external validation,
and multicenter validation during model training can lead to more stable models.

The receiver operating characteristic curve (ROC curve) is a common method used
to evaluate the predictive accuracy of radiomics-based models. Moreover, other metrics,
such as the area under the ROC curve (AUC), accuracy, precision, recall, and F1 score, are
commonly used to assess the performance of the model. Independent validation, including
external validation using datasets from different institutions, is a critical step in radiomics
studies. Most existing radiomics studies are constrained by small sample sizes from a
single institution, limiting the conclusions that can be drawn from them. To overcome this
limitation, future radiomics studies should undergo validation and refinement through
multiple large-scale, randomized controlled clinical trials. This approach will enhance the
accuracy, reliability, and effectiveness of radiomics-based models.
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2.5. Clinical Application

Radiomics has broad applications in medical research involving imaging techniques. It
aids clinicians in reducing image analysis subjectivity, supporting supplementary diagnosis,
and guiding appropriate follow-up treatment. Park et al. performed a meta-analysis to
assess the scientific quality of radiomics studies using the Radiomics Quality Score (RQS)
and Transparent Reporting of a multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD). The analysis showed that 91% of radiomics studies are focused on
oncology, and 81% of these studies are utilized for diagnostic purposes [116].

3. Feature Selection Method

Radiomics entails the development of dependable predictive biomarkers, often re-
ferred to as features in the context of machine learning. This section offers a comprehensive
introduction to the process of feature selection in radiomics and the associated methodol-
ogy. In the realm of radiomics, we meticulously extract numerous features from medical
images. Nonetheless, it is essential to recognize that certain features may not be relevant to
the specific outcome of interest. It is worth noting, however, that an excessive number of
features can potentially result in overfitting, which may compromise the model’s ability
to make accurate predictions. Importantly, the presence of highly correlated or collinear
features can have a detrimental impact on machine learning models. This stems from
the foundational assumption of most models, which assumes the independence of input
features. Faced with substantial correlation or collinearity, models may overly depend on
these interconnected features, thereby sidelining other relevant information. This situation
inevitably results in a reduction in the model’s ability to effectively generalize to new
data. The correlations between features that the model learns from the training data may
not apply to new datasets. To enhance the model’s resilience and generalization capabil-
ities, it is often necessary to prune or consolidate closely correlated features during the
training phase. This careful curation aims to reduce the model’s tendency to overfit to a
specific dataset, ultimately improving its performance when confronted with previously
unobserved data [117–119].

Feature selection is a vital component of radiomics, as it reduces data complexity
by eliminating redundant and irrelevant features, thus enhancing model performance.
Various feature selection methods have been proposed, and attempts have been made
to compare their performance using data from different sources. However, there is no
clear consensus on the best feature selection method for radiomics [120]. A wide range of
feature selection methods exists; however, the absence of a uniform reference standard for
removing redundant and irrelevant features may introduce a certain level of “arbitrariness”
in the feature selection process. A strong understanding of feature selection techniques
is essential when developing machine learning models; without it, creating effective and
useful models can be challenging.

3.1. The Feature Selection Framework

The feature subset obtained through feature selection should be as small as possible
while effectively identifying the target. Additionally, it should ideally improve the accuracy
of the prediction model and not reduce it. Furthermore, the class distribution of the resulting
subset should closely resemble that of the original data. Dash et al. [121] proposed a search-
based framework, as depicted in Figure 6A, for achieving this goal of feature selection. The
framework outlines four basic steps of feature selection: candidate feature subset generation
(search strategy), subset evaluation, stopping criterion, and result validation. The search
strategy involves searching for feature subsets and evaluating them for further analysis.
Subset evaluation involves assessing the quality of a subset of features. The stopping
criterion is met when the evaluation function reaches a specific benchmark. Finally, result
validation involves assessing the accuracy of the selected feature subset on the validation
dataset. The search strategy and subset evaluation are vital components of any feature
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selection method. The process of generating and evaluating subsets is iterated until the
desired results are achieved.

Figure 6. Image (A) indicates search-based framework; image (B) indicates relevance-based
framework.

Subset search in a search-based framework can be time-consuming, especially with
large datasets. Yu et al. [122] proposed an efficient feature selection framework based
on correlation and redundancy analysis (Figure 6B). It avoids subset search and quickly
identifies the optimal subset. The original feature set can be divided into four subsets:
uncorrelated, redundant, weakly correlated but non-redundant, and strongly correlated
features [123]. The relevance-based framework identifies the most pertinent features by
calculating their redundancy and relevance based on a specific metric. Feature selection
algorithms under this framework include Minimum Redundancy Maximum Relevance
(mRMR) [124], Correlation-based Feature Selection (CFS) [125], and Fast Correlation-Based
Filter solution (FCBF) [122,126].

3.2. Classification of Feature Selection

Classification of feature selection methods can be based on their relationship with
the learning algorithm, determining whether they are independent or dependent. Feature
selection can be categorized into three distinct categories: filter (Figure 7A), wrapper
(Figure 7B), and embedded (Figure 7C) [127,128].

Figure 7. Subfigure (A) depicts the filter method, while Subfigure (B) illustrates the wrapper method,
and Subfigure (C) shows the embedded method.



Symmetry 2023, 15, 1834 12 of 26

The filter method relies on the intrinsic characteristics of the analyzed data and evalu-
ates features independently of any learning algorithms. The method utilizes metric matrices
obtained directly from the data, eliminating the need for feedback from learning algorithms
to adjust feature selection. Feature selection is determined by the features’ dispersion
or relevance, and unimportant ones are filtered out using a threshold or predetermined
number. The growing availability of high-dimensional big data has led to increased interest
in filter models, which are not biased towards a specific learner model, so its structure is
always simple. Some common filter methods are listed in Table 2.

Table 2. Frequently used filtered feature selection methods.

Filter Methods Selection Rules

Missing Percentage Features with a disproportionate share of missing samples
and difficult to fill were removed.

Variance Features with variance close to or equal to 0 were excluded.

Frequency Features that are excessively concentrated in one category of
values are removed.

Pearson Correlation Coefficient [129,130] Features with correlation coefficients close to or equal to 0
were excluded.

Spearman’s Rank Correlation Coefficient [131,132] Features with correlation coefficients close to or equal to 0
were excluded.

Kendall’s tau Rank Correlation Coefficient Features with correlation coefficients close to or equal to 0
were excluded.

Analysis of variance (ANOVA) [133,134] Exclude features with too low an F-value, or exclude features
with a p-value < 0.05.

Chi-squared Test [135,136] Features with too low a chi-squared value were excluded, or
features with a p-value < 0.05 were excluded.

Mutual Information [137,138] Features with mutual information close to or equal to 0 were
removed.

mRMR [124] The features with the minimum correlation and maximum
redundancy were removed.

Fisher Score [139] Features with large intraclass distances and small interclass
distances were excluded.

The wrapper method distinguishes itself from the filter method by utilizing a pre-
determined learning algorithm to evaluate and identify a subset of features. Instead
of relying on independent metrics, the wrapper method considers the feature selection
algorithm as part of the learning process and utilizes the classification performance as an
evaluation criterion for feature importance. Evaluating a subset of features with a machine
learning algorithm enables the detection of interactions between features, leading to the
selection of an optimal feature subset for the model. The wrapper method involves both
feature subset search and evaluation metrics. The former generates candidate feature
subsets, while the latter trains and evaluates a model with each feature subset using a
validation set to identify the optimal one. Subset search is a vital step in wrapper methods,
and it employs three types of search methods as depicted in Table 3. Common examples of
wrapper methods are Recursive Feature Elimination (RFE) [140] and RF.
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Table 3. Feature subset search algorithms.

Classification of Search Strategies
(Subset Generation Process)

Algorithm Features Subset Search Algorithm

Complete search
Iterate through all possible combinations
of feature subsets, then select the feature
subset with the best model score.

Breadth First Search [141]
Best First Search [142]

Heuristic search

The search is evaluated for each location
searched, the best position is obtained,
and the search is carried out from this
position until the target is reached.

Sequential Forward Selection (SFS) [143,144]
Sequential Backward Selection (SBS) [145]
Bidirectional Search (BDS) [146]
Plus-L Minus-R Selection (LRS) [147]
Sequential Floating Selection (SFS) [148]
Decision Tree Method (DTM) [149]

Random search
A random subset of features is generated
and then these feature subsets are given
an evaluation.

Random Generation plus Sequential Se-
lection (RGSS) [146]
Simulated Annealing (SA) [150]
Genetic Algorithms (GA) [151]

Filter methods exhibit computational efficiency, but they do not account for the bias
of the learning algorithm. Conversely, wrapper methods offer a more accurate prediction
estimate by considering the learning algorithm’s bias, yet they may incur computational
expenses. Embedded methods merge the benefits of filter and wrapper methods by integrat-
ing feature selection into the model construction process. Embedded methods effectively
utilize both filter and wrapper methods: (1) they are significantly less computationally
intensive than wrapper methods as they do not necessitate multiple runs of the learning
model to evaluate features; and (2) they interact with the learning model. The key distinc-
tion between the wrapper and embedded methods lies in the process of utilizing candidate
features. The wrapper method initially trains the learning model using candidate features
and then evaluates the features through feature selection using the learning model. In
contrast, the embedded method selects features during feature model construction without
the need for further evaluation through feature selection. Examples of embedded methods
are Least Absolute Shrinkage and Selection Operator (LASSO) [152] and Gradient Boosted
Decision Trees (GBDT) [153]. A summary of the advantages and disadvantages of the filter,
wrapper, and embedded models is presented in Table 4.

Table 4. Advantages and disadvantages of filters, wrappers and embedded methods.

Category Advantage Disadvantages

Filter
More efficient calculation Ignores interaction with the learning algorithms
Effectively avoid over-fitting Weakeed learer fitting abilityIndependent of the learning algorithms

Wrapper
Simple Risk of overfitting
Interacts with the learning algorithms Learning algorithms-dependent selection
Models feature dependencies A large number of calculations

Embedded
Interacts with the learning algorithms Learning algorithms-dependent selection
Less complexity than Wrapper Increases the model training burdenMore efficient calculation

Radiomics studies often employ five primary feature selection methods. These are
as follows:
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1. Distribution Analysis: The Mann–Whitney U-test measures the difference in the
distribution of each feature within the positive and negative sample groups. The
formula for Ui is as follows:

Ui = Ri −
ni(ni + 1)

2
, (1)

where i represents the positive or negative group, ni is the data size of group i, and Ri
is the sum of the ranks in group i. Smaller values of Ui are consulted in significant
tables to derive a p-value. A smaller p-value indicates that the corresponding feature
can effectively distinguish positive and negative samples. Anderson–Darling (AD)
test is also a widely used method. The AD test is primarily used for testing whether
data conform to a specific distribution, such as the normal or exponential distribution.
However, it can also be employed for feature selection in machine learning. When
used for feature selection, the goal of the AD test is to assess how effectively the
distribution of a given feature distinguishes different categories or outcomes within a
dataset. A feature that produces significantly different distributions may be a good
candidate for inclusion in a machine learning model. The mathematical formula for
the Anderson–Darling test is as follows:

A2 = −n− 1
n

n

∑
i=1

(2i− 1)[ln(F(xi)) + ln(1− F(xn+1−i))], (2)

where n is the sample size, xi represents the i-th ordered observation, and F(xi) is
the theoretical cumulative distribution function value for xi . Higher values of A2

indicate a worse fit between the sample data and the chosen distribution. Critical
values of A2 and corresponding p-values are commonly looked up in a distribution
table or calculated using software. A smaller p-value, typically below a significance
level of 0.05 or 0.01, indicates the rejection of the null hypothesis, suggesting that the
data do not come from the specified distribution. A small p-value suggests that the
feature can effectively differentiate between different categories.

2. Decorrelation: The Pearson linear correlation coefficient calculates the correlation
between each pair of features:

r =
∑N

n=1

(
xi

n − xi
)(

xj
n − xj

)
√

∑N
n=1

(
xi

n − xi
)2
√

∑N
n=1

(
xj

n − xj
)2

, (3)

where xi and xj represent two different features of the patients in the training cohort,
and N is the data size of the training cohort.

3. Minimum Redundancy Maximum Relevance (mRMR): The mRMR method selects
features that are distant from each other while still being highly correlated with the
predicted labels. The method is based on mutual information, defined as follows:

I(x; y) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
p(x, y). (4)

Assuming a total of X features, m− 1 of them are selected to create the feature set
S(m−1). The m-th feature can be selected through a stepwise optimization process
using the objective function.

max
xj∈X−Sm−1

I
(

xj; y
)
− 1

m− 1 ∑
xi∈X−Sm−1

I
(

xj; xi
) (5)
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In the equation, y represents the classification variables of the samples in the train-
ing cohort, while xi and xj represent distinct features of the patients in the same
training cohort.

4. The Least Absolute Shrinkage and Selection Operator (LASSO) is a linear model that
incorporates an L1-norm regularization to encourage sparse variable coefficients. It
selects features with non-zero coefficients to form the final potential descriptor group
for each specific task. The optimization objective for LASSO is represented as follows:

min
ω

N

∑
n=1

(
yn −ωTxn

)2
+ λ|ω|1. (6)

Here, xn represents the feature vector of the n-th patient, yn is the classification vari-
able, ω denotes the weight vector of the linear model, and λ > 0 is the normalization
parameter [154].

It is important to note that once feature selection is completed, the model is trained.
However, if the feature matrix becomes too large after the selection process, it can lead to
prolonged computation times and extended training durations, potentially requiring more
powerful hardware. Therefore, it becomes essential to reduce the dimensionality of the
feature matrix, a process known as feature dimensionality reduction.

Feature dimensionality reduction can enhance the performance of radiomics mod-
els [155]. Feature selection and dimensionality reduction serve a common purpose: ad-
dressing high dimensionality in data processing, where the number of features in a sample
tends to increase linearly with the amount of data to be processed. Feature selection and
dimensionality reduction involve substituting high-dimensional features with more suit-
able and representative ones through specific algorithms. Nevertheless, these two methods
differ in their approaches. Dimensionality reduction is mainly accomplished by analyzing
the relationships between features, for example, by combining different features to create
new ones, thereby altering the original feature space. In contrast, feature selection involves
choosing a subset of the original feature dataset without altering the original feature space,
and it operates based on an inclusion relationship. Common dimensionality reduction
techniques comprise the L1 -based penalty model (e.g., LASSO), as well as principal com-
ponent analysis (PCA) [156,157] and linear discriminant analysis (LDA) [158,159], all of
which map the original data to a lower-dimensional sample space.

Feature selection serves the purpose of assisting in the construction of radiomics
models for disease diagnosis and prediction. The study conducted by Huang et al. [160]
stands as an exemplary demonstration of effective feature selection in radiomics research,
offering valuable insights into the selection and application of radiomics features in specific
cancer cases. In this study, radiomics was applied to early-stage non-small-cell lung cancer
(NSCLC) cases, aiming to construct a robust model for predicting disease-free survival
(DFS). Feature selection was a vital step, meticulously executed to identify the most infor-
mative radiomics features associated with DFS. The study assembled a cohort consisting of
early-stage NSCLC patients and created an extensive dataset encompassing CT and PET
images. Using specialized image analysis software, a diverse range of radiomics features,
encompassing shape, texture, and intensity attributes, were extracted from the images of
each patient. The research employed the following strategies for feature selection: Initially,
an exploration phase involved calculating Pearson correlation coefficients to assess the
relationship between individual radiomic features and DFS. This analysis offered insights
into the extent of correlation between features and DFS. Subsequently, further refinement of
the feature set was accomplished through LASSO regression, which, owing to its capacity
to induce sparsity in coefficients, identified the most predictive radiomics features. After
feature selection, a predictive model for estimating early-stage NSCLC patient DFS was
constructed. Rigorous validation procedures, including cross-validation, were employed
to assess the performance of the model. The thorough application of the feature selection
process ultimately defined a distinctive set of radiomics features known as the “radiomics
signature”. This signature succinctly summarized radiomic features strongly correlated
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with the prediction of DFS in early-stage NSCLC patients. Significantly, during model
validation, the “radiomics signature” exhibited strong predictive performance. Through
the integration of correlation analysis and LASSO regression, researchers successfully
identified a subset of radiomics features possessing significant prognostic value. The es-
tablished radiomics signature has substantial potential for improving prognostic accuracy,
consequently enhancing clinical decision-making and patient management capabilities in
early-stage NSCLC cases.

4. Discussion

Traditional radiomics involves extracting numerous hand-crafted features from ROIs
and then performing feature selection to identify those relevant to a specific task. This
method, while somewhat effective in various applications, is criticized for introducing
human bias into the feature computation process. In contrast, DL-based radiomics directly
extracts features from images, eliminating the need for intermediate operations in feature
computation and reducing the risk of information loss or additional errors. Various deep
network architectures can be designed to meet specific requirements. The hierarchical
structure of deep neural networks facilitates the discovery of deeper and higher-level
features, in contrast to the shallow features typically identified in traditional machine
learning algorithms [161]. Previous studies have shown that DL methods demonstrate high
accuracy and offer promising clinical prospects [41,162,163]. However, Zhang et al. [164]
have highlighted that black-box algorithms may potentially hinder the reliability of their
clinical applicability.

Radiomics data are unique compared to other high-dimensional datasets since they
arise from imaging data and frequently exhibit strong correlations [165]. Therefore, reduc-
ing the number of features in radiomics analysis is crucial. Feature selection methods can
be categorized into three groups, each having its specific advantages and disadvantages.
Features selected by wrapper-based and embedded techniques may not generalize well
to other classifiers because they rely on specific learning algorithms for feature selection.
Filter-based techniques have lower computational complexity compared to embedded
and wrapper-based techniques. The filter method directly selects features and has lower
computational complexity than the embedded and wrapper methods, leading to a more
stable feature set selection. However, as it does not interact with the learning algorithm, its
accuracy may not be as high as the other two methods [166,167]. Various feature selection
methods are available, and selecting the appropriate algorithm depends on various con-
siderations. Researchers must have a comprehensive understanding of feature selection
methods. However, the runtime feasibility of these methods can be a concern when dealing
with high-dimensional datasets, as highlighted by Guyon et al. [168]. To achieve high
performance while avoiding excessive complexity, researchers are advised to consider
feature selection methods such as ANOVA, LASSO, and mRMR. If these three methods fail
to produce the desired results, researchers should explore additional approaches.

Radiomics has shown its versatility across various medical conditions, with a particular
focus on tumor diseases, but its application varies between tumor diseases and other
medical conditions. In the context of tumor diseases, radiomics plays a crucial role in
characterizing tumors, aiding in diagnosis, and assessing treatment response. For example,
in lung cancer, radiomic features extracted from CT or PET images can determine tumor
characteristics, differentiation, and even predict treatment outcomes and patient prognosis.
In contrast, when applied to non-tumor conditions such as tuberculosis, radiomics assists in
identifying pulmonary abnormalities and supporting diagnostics. Similarly, in pancreatitis,
radiomics contributes to evaluating pancreatic morphology and density, aiding precise
disease classification. Additionally, in stroke cases, radiomics reveals the extent and
severity of brain lesions, providing valuable insights for tailored treatment strategies and
predicting potential recovery paths. While radiomics holds significance in both contexts,
its focus shifts from comprehensive characterization and prediction in tumor diseases to
enhancing diagnostic accuracy and providing insights into disease manifestation in non-
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tumor conditions. By addressing these differences, radiomics demonstrates its adaptability
and potential to transform medical decision-making in diverse clinical scenarios.

The integration of imaging data with radiomics offers promise in advancing cancer re-
search by enhancing screening, diagnosis, treatment decision-making, and follow-up [169].
However, despite the potential benefits of radiomics-based methods in cancer imaging,
challenges related to their reproducibility and scalability persist. This paper aims to review
the challenges associated with radiomics and provides an outlook to serve as a reference
for future radiomics studies.

Radiomics faces various challenges, including data acquisition, repeatability, and
reproducibility of radiomic features. Retrospective datasets are more accessible, making
retrospective radiomics studies common [170]. However, utilizing retrospective data
presents challenges regarding data accuracy for model training and validation. Pre-defined
inclusion and exclusion criteria could introduce implicit biases in AI algorithms [171].
Furthermore, retrospective data are susceptible to non-harmonization issues due to the
use of instruments from different providers, resulting in varying acquisition parameters,
especially in multi-center studies. These differences in images may yield features influenced
solely by technical discrepancies [172]. Sharing data and standardizing acquisition and
reconstruction protocols can contribute to more reliable radiomics signatures, testable on
external datasets, thereby addressing this concern [173]. To ensure result reproducibility,
the IBSI was introduced to standardize the extraction of image biomarkers from acquired
imaging. Nonetheless, conducting prospective studies is more demanding and time-
consuming than retrospective studies, requiring long-term approval from pharmaceutical
companies or cancer-collaborating organizations. Overall, combining data sharing with
standardization of acquisition and reconstruction protocols may offer a potential solution
to this issue and aid in identifying more robust radiomics features.

To achieve widespread acceptance, image biomarkers must address the challenge of
interpretability, which poses an additional obstacle for radiomics. Radiomics models based
on DL are often perceived as “black boxes” by clinicians, accurately predicting specific
clinical outcomes but lacking interpretable explanations. To tackle this challenge, ongoing
developments in radiomics techniques aim to merge the strengths of DL with the inter-
pretability provided by hand-crafted methods. Interpretability is critical, particularly when
evaluating image biomarkers for optimal therapy, as decisions guided by these biomarkers
demand an interpretation rooted in pathophysiology [170]. Therefore, enhancing the inter-
pretability of these models remains an ongoing area of research, with researchers exploring
various tools [174].

The radiomics protocol, commonly used in cancer diagnosis, follows a signal-to-
image-to-diagnosis approach. Accurately reconstructing visible images from the signal
(raw data) obtained from medical devices is crucial for physicians to make accurate diag-
noses. However, current image-based diagnostics often fail to fully utilize the abundant
data in the signal, resulting in inadequate performance [175]. For instance, in CT imaging,
the CT system collects raw data from the patient, which is then used to reconstruct images
(signal-to-image). As a result, both AI-based and human-based diagnostic processes adopt
a signal-to-image-to-knowledge approach. Medical images are prone to information distor-
tion during both the acquisition and reconstruction processes [176]. Consequently, a novel
approach to medical image analysis has emerged, emphasizing direct analysis of the raw
data. Dong et al. [175] introduced an AI-based diagnostic scheme for pulmonary nodules
that bypasses the reconstruction step and directly diagnoses from the signal. This ground-
breaking research challenges conventional image-based diagnostics and may pave the way
for a new era of AI-based diagnostics, offering a fresh direction for radiomics exploration.
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5. Conclusions

Radiomics has showcased its diverse applications across various medical conditions,
with a particular emphasis on tumor diseases. However, the application of radiomics signifi-
cantly differs between tumor diseases and other medical conditions. In the context of tumor
diseases, radiomics serves a pivotal role in characterizing tumors, aiding in diagnosis, and
evaluating treatment response. For instance, in lung cancer, radiomics features extracted
from CT or PET images facilitate the determination of tumor characteristics, differentiation,
and even the prediction of treatment outcomes and patient prognosis. Conversely, the
application of radiomics in non-tumor conditions diverges, primarily functioning as an
assistive diagnostic tool. In diseases such as tuberculosis, radiomics aids in identifying
pulmonary abnormalities and supporting diagnostic efforts. Similarly, in pancreatitis,
radiomics contributes to assessing pancreatic morphology and density, aiding clinicians in
precise disease classification. Moreover, in stroke cases, radiomics reveals the extent and
severity of brain lesions, offering valuable insights for tailored treatment strategies and pre-
dicting potential recovery trajectories. While radiomics holds a profound influence in both
contexts, its divergence lies in the specific clinical objectives. In tumor diseases, it serves as
a comprehensive tool for characterization and prediction, whereas in non-tumor conditions,
its emphasis shifts toward enhancing diagnostic accuracy and offering insights into disease
manifestation. By bridging these differences, radiomics demonstrates its adaptability and
potential to revolutionize medical decision-making in diverse clinical scenarios.

Radiomics, which encompasses intricate manual techniques and cutting-edge DL
methods, represents a promising realm for the non-invasive identification of precise disease-
related features. Its potential to support clinicians across tasks spanning from screening
and diagnosis to treatment decision-making and post-treatment monitoring is indisputable.
However, the truly groundbreaking facet of our study lies in the exhaustive exploration
of the radiomics process. Commencing with the framework and categorization of feature
selection methods, we unveil an array of techniques commonly employed in radiomics
research. This panoramic perspective serves as a pivotal cornerstone for future advance-
ments in the field. The central focus of this paper revolves around a pivotal aspect of
radiomics: feature selection. This critical phase significantly enhances the performance
and adaptability of radiomics models, thereby augmenting their clinical utility. Our study
meticulously delves into diverse feature selection strategies, ranging from meticulous noise
filtration to the strategic amalgamation of relevant features and even the introduction
of features through embedding techniques. This comprehensive elucidation provides
essential insights to guide researchers in making informed decisions amidst the intricate
landscape of radiomics research. However, certain limitations within this study warrant
consideration. First, despite our in-depth scrutiny of the radiomics process, there is room
for further refinement and optimization of the application and effectiveness of feature
selection methods. Second, while we discuss various feature selection strategies, the op-
timal selections across diverse disease types and clinical contexts require reinforcement
through more empirical studies. Future endeavors should address these concerns to further
amplify the applicability and advantages of radiomics within clinical practice. Notwith-
standing the promising prospects of radiomics, researchers should remain attentive to
potential obstacles lying ahead. Challenges pertaining to data quality, sample size, and the
robustness of generalization capabilities demand attention. Furthermore, the urgency of
developing standardized and validated radiomics studies cannot be underestimated. To
surmount these challenges, a clear trajectory emerges: forthcoming studies must adhere
to rigorous methodologies. This encompasses not only standardizing data acquisition
and analysis procedures but also validating across diverse datasets. These collaborative
efforts will assuredly fortify the position of radiomics within clinical practice and pave
the way for enhanced patient care. In summation, situated at the crossroads of medical
imaging and artificial intelligence, radiomics presents unprecedented opportunities within
oncology research and clinical applications. As we overcome challenges, we are poised to
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propel radiomics to the forefront, ushering in a new chapter in patient well-being and the
advancement of medical science.
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