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Abstract: The main purpose of this paper is to derive a new perturbation theory (PT) that has
converging series. Such series arise in the nonlocal scalar quantum field theory (QFT) with fractional
power potential. We construct a PT for the generating functional (GF) of complete Green functions
(including disconnected parts of functions) Z [j] as well as for the GF of connected Green functions
G[j] = lnZ [j] in powers of coupling constant g. It has infrared (IR)-finite terms. We prove that the
obtained series, which has the form of a grand canonical partition function (GCPF), is dominated
by a convergent series—in other words, has majorant, which allows for expansion beyond the weak
coupling g limit. Vacuum energy density in second order in g is calculated and researched for different
types of Gaussian part S0[φ] of the action S[φ]. Further in the paper, using the polynomial expansion,
the general calculable series for G[j] is derived. We provide, compare and research simplifications
in cases of second-degree polynomial and hard-sphere gas (HSG) approximations. The developed
formalism allows us to research the physical properties of the considered system across the entire
range of coupling constant g, in particular, the vacuum energy density.

Keywords: quantum field theory (QFT); nonlocal QFT; scalar QFT; nonpolynomial QFT; Euclidean
QFT; generating functional (GF); green functions; functional (path) integral; Gaussian measure; grand
canonical partition function (GCPF); perturbation theory (PT); converging perturbation series
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1. Introduction

Why do we need a nonlocal quantum field theory (QFT for short) in physics? Nonlocal
QFT is a perturbatively, in each order of the perturbation theory (PT for short) with respect
to the small coupling constant g, nonrenormalizable theory. The set of such theories is
much wider than the set of perturbatively renormalizable ones. In particular, a nonlocal
QFT can be formulated in a spacetime of arbitrary dimension d. Hence, this research is in
some sense “orthogonal” to two-dimensional d = 2 conformal and integrable QFTs. Thus,
nonlocal QFT was created precisely in order to consider the spacetime dimension d as an
arbitrary parameter [1–25].

Further, nonlocal QFT makes it possible to describe the high-energy physics of scalar
particles (scalar nonlocal QFT) and in quantum electrodynamics (QED for short), as well
as low-energy physics in quantum chromodynamics (QCD for short). For example, to
describe the low-energy physics of light hadrons in QCD and quark confinement, the so-
called Virton-Quark Model and the Quark Confinement Model of Hadrons are qualitatively
successful [3,6–8]. Nowadays, research in the field of nonlocal quantum theory of gravity
and nonlocal QFT in curved spacetime is also gaining popularity [14,16,23–25].
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Another reason to research nonlocal QFT in Euclidean spacetime (the metric signature
is all pluses) comes from the so-called grand canonical partition function/nonlocal, non-
polynomial Euclidean QFT scattering matrix (S-matrix for short) duality [1–5,19–22,26–32].
This duality is well known, for example, in statistical physics and plasma physics, and
its essence is as follows: S-matrix of nonlocal nonpolynomial Euclidean QFT, originally
formulated in terms of the functional (path) integral, can be rewritten in terms of the grand
canonical partition function (GCPF for short) of some “gas with interaction”. This duality
is used in both directions. On the one hand, this makes it possible to apply the methods
of statistical physics in QFT, in particular, to use the cluster expansion when calculating
the S-matrix. On the other hand, this makes it possible to apply QFT methods in statistical
physics, in particular, to use the saddle-point method to calculate the functional (path)
integral equal to the GCPF. Here, let us note that this duality is used in the research of
sin-Gordon and sinh-Gordon models, more precisely, their nonlocal versions.

Finally, within the framework of nonlocal QFT, it is possible to research the strong
coupling limit in interaction constant g [3,19–22]. The method used to research the strong
coupling limit in nonlocal QFT originated in the theory of polarons (in polaronics). This
method is based on finding the minorant (lower estimate) and majorant (upper estimate)
for the quantity of interest to us, as functions of the coupling constant g. The Jensen and
Hölder inequalities are often used to find these estimates. If both estimates tend to each
other in the limit g→ +∞, then each of them coincides with the quantity of interest to us
(in this limit). In fact, this is the squeeze theorem. For example, the vacuum energy E(g)
was obtained in the strong coupling limit in [3,19,20].

Why do we need a nonlocal quantum field theory in mathematics? The rigorous
definition of the functional integral in a nonlocal QFT, the proof of the definition correctness
(the existence and uniqueness of such an object), as well as the calculation of the latter,
is a complicated but interesting mathematical problem [33–47]. Let us note that even the
calculation of such an object needs some definition. In what terms is the functional integral
considered calculated? As quoted above, there is extensive mathematical literature devoted
to the theory of integration in separable Hilbert and Banach spaces (HS and BS for short)
with respect to Gaussian measures. At the same time, the “list of integrals” given in such
literature is hardly sufficient for practical applications: results are usually given in cases
where the integrand is a polynomial or again a Gaussian exponent, which corresponds to a
Gaussian (free, without interaction) QFT. Our paper aims to narrow this gap slightly by
adding another result to the “list of integrals”.

Another complicated but interesting mathematical problem is the rigorous definition
of the Dyson–Schwinger, Schwinger–Tomonaga and functional (nonperturbative, exact)
renormalization group flow (FRG flow for short) equations in nonlocal QFT [42,44,45,48–53].
These equations are formulated in terms of variational derivatives, therefore, they are
differential. Again, as quoted above, there is extensive mathematical literature devoted to
differential equations in infinite-dimensional spaces (separable HS and BS). However, as
in the case of integrals, the “list of solutions” given in such literature is hardly sufficient
for practical applications. Obtaining solutions to such equations in terms of functional
Taylor series is associated with solving infinite hierarchies (systems) of integro-differential
equations for various families of Green functions. Such hierarchies are usually solved
approximately. Let us note that FRG flow equations formulated as nonlocal QFT appear in
many physical sciences: QFT itself, condensed matter physics, critical behaviour theory,
stochastic theory of turbulence, etc.

Finally, in the framework of nonlocal QFT research in mathematics, let us note one
possible generalization to the case of locally convex topological vector space (LCTVS
for short) [54]. Such a seemingly mathematical generalization can lead to far-reaching
consequences in physics. The topology of LCTVS is given by a family (set of arbitrary
cardinality) of seminorms, generalizing separable HS and BS. In fact, instead of one scalar
product or norm, a family of such arises. Such a family, hypothetically, can be associated
with an infinite set of different ultraviolet (UV for short) scales, which makes it possible
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to deselect one of them. It turns out, a theory in which there is no distinguished UV scale.
Additionally, since the selected UV scale is the main problem of nonlocal QFT, such a
hypothetical theory may already be a fundamental theory of nature. At the time of writing
this paper, such a study seems to be the subject of the future.

There are still a few questions left to answer in the Introduction section. Why a scalar
field? On the one hand, from the theory of groups and Lie algebras’ point of view, the
quantum theory of a scalar field has the smallest number of symmetries. For this reason,
in such a theory there are no Ward–Takahashi identities that can simplify the S-matrix
calculation. In this sense, the scalar theory is the most complicated. On the other hand,
to construct such a theory, it is the measure theory in infinite-dimensional spaces that is
needed. In this sense, the scalar theory is the simplest, no additional symmetry relations
need to be taken into account.

Why nonpolynomial self-interaction? In nonpolynomial theories that satisfy some
general principles, the S-matrix in terms of the GCPF is a convergent series in the interaction
constant g. Let us note that for polynomial theories, for example, for the theories φ4 and φ6,
such a series, being a PT series in the interaction constant g, is asymptotic. An asymptotic
series arises as a consequence of the incorrectness of the mathematical transformations
performed in the process of its derivation. In particular, the corollary of the monotone
convergence theorem (MCT for short) for alternating series is violated. In addition, although
the latter is only a sufficient condition, but not necessary and sufficient, nevertheless, the
emergence of an asymptotic series means that the permutation of summation and functional
integration does not really take place. In nonpolynomial theories of a certain class, this
problem does not arise.

Why fractional power self-interaction |φ|α, where α ∈ (1, 2)? The research of such a
theory seems natural for a number of reasons. The first reason is that such α is greater than
the power in the source term and less than the power in the Gaussian theory. Therefore, in
such a theory, it is possible to apply the corollary of the MCT for alternating series. The
second (less obvious) reason is that such a theory is implicitly related to all the polynomial
theories at once. This will be demonstrated in our paper. Finally, it can be expected that the
method of calculating the S-matrix in such a theory can be applied in the future to a wider
class of theories. In this sense, in addition to the research of the theory itself, the result of
the paper is a new method.

Finally, why S-matrix and vacuum energy E? The problem of QFT is considered
solved if an explicit expression for the S-matrix is obtained. Here, again, it is important
to note that the very notion of an “explicit” expression needs to be defined. It is generally
assumed that the corresponding functional integral must be calculated. The S-matrix
contains complete information about scattering: the variational derivatives of the S-matrix
determine the Green functions due to the interaction of particles. The Green functions
make it possible to reconstruct the corresponding scattering cross-sections, which are
experimentally observable quantities. For this reason, the research of the S-matrix is the
most important. Further, the simplest quantity contained in the S-matrix is the vacuum
energy E of the theory. It is this value that is most easily calculated. Let us note that the
calculation of the functional integral leads to results that depend on the UV scale of the
theory. In some cases, this dependency may be undesirably “strong”. In this case, one
has to invent some kind of subtraction scheme or change the original formulation of the
theory. In this paper, we aim to calculate the functional integral in nonlocal QFT for given
values of the theory parameters and to research how the results obtained depend on the
corresponding parameters.

This paper has the following structure. In Section 2 we present a summary of the
problem and obtained results. This section can be read independently of the rest of the
paper. All the necessary definitions and notations are given within the section. Section 3 is
devoted to physical background and motivation. Section 4 is devoted to:

1. an explanation of the Gaussian measure concept;
2. the derivation of PT series and proof of its convergence;
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3. the exponentiation of the obtained series.

Section 5 is devoted to the calculation of PT series terms using polynomial approxima-
tion. Sections 6 and 7 are devoted to the calculation and research of vacuum energy density,
namely:

1. the exact computation of first and second order in coupling constant g;
2. the computation with hard-sphere gas (HSG for short) approximation;
3. the expression for the second-degree polynomial approximation.

In the Section 8, we give a final discussion of all the results obtained in the paper. In
the Section 9, we highlight further possible areas of research.

2. Summary of Problem and Obtained Results

In this paper, Euclidean quantum theory of scalar field φ in Rd with action S[φ]:

S[φ] = S0[φ] + SI [φ] =
1
2

∫
Rd

∫
Rd

dx dy L(x, y)φ(x)φ(y)

+
∫
Rd

dx g(x)|φ(x)|α, α ∈ (1, 2),
(1)

is considered. Here, φ : Rd → R—real-valued function (scalar field), g : Rd → R—
real-valued function (IR coupling constant), j : Rd → R—real-valued function (source,
appearing in the expression below), L = G−1—inverse propagator, defined on the space
of scalar fields Φ. We do not specify this space in the present section, but in the following
sections we will assume that Φ is a separable HS. Convention: hereafter we use the same
letter for an operator and its integral kernel, for example, L and L(x, y), and we also use
the same physical term for an operator and its integral kernel, for example, the term
“propagator” for G and G(x, y). It is always clear from the context what exactly we are
talking about. Additionally, in the paper we will assume that L(x, y) = L(y, x), hence
G(x, y) = G(y, x). Finally, the propagator G is a trace class operator and in all the final
calculations, where possible, we will assume the translational invariance of the Gaussian
theory, which implies G(x, y) = G(x− y).

Complete (including disconnected parts) Green functions GF Z in terms of functional
integral over primary (opposite to composite) field φ in such a theory:

Z [j] =
∫

Φ
D[φ] exp

(
−1

2

∫
Rd

∫
Rd

dx dy L(x, y)φ(x)φ(y)

−
∫
Rd

dx g(x)|φ(x)|α +
∫
Rd

dx j(x)φ(x)
)

,
(2)

are derived in terms of convergent perturbation series in powers of coupling constant g,
which is a function of x in the general case:

Sε[ϕ] =
∞

∑
n=0

(−1)n

n!

{
n

∏
a=1

∫
Rd

dxa g(xa)
∫
R

dφa|φa|α
}

1√
(2π)n det(Gn + ε1n)

× exp

{
−1

2

n

∑
a,b=1

(Gn + ε1n)
−1
ab [φa − ϕ(xa)][φb − ϕ(xb)]

}
.

(3)

In Expression (2) we use the notation “big differential” under the integral sign only
formally: it is well known that there is no Lebesgue measure on infinite-dimensional
separable HS and BS. However, together with the part of the integrand, the Gaussian
exponent, this notation (up to a constant) means an integral over the Gaussian measure γG
with zero mean and covariance operator (propagator) G in the corresponding space. This is
how Expression (2) should be understood in the framework of a rigorous mathematical
theory. Details are provided in the following sections.
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In Expression (3) the following notations are introduced:

1. Sε[ϕ] = Z [j]/Z0[j] is the interaction scattering matrix (hereafter—Sε-matrix) and Z0[j]
is the Gaussian GF;

2. Gn is n× n matrix with elements (Gn)ab = G(xa, xb) is the discretization of the propa-
gator with values in the finite-dimensional space Rn2

;
3. ϕ(x) = Gj(x) =

∫
Rd dy G(x, y)j(y) is the classical field (Sε-matrix argument) corre-

sponding to the source j;
4. ε > 0 is the parameter for defining integrands on null sets (in final results ε→ +0) and

1n is n× n identity matrix with elements δab (Kronecker delta).

Further in the paper we have proved the existence of the connected Green functions
GF GI,ε[ϕ] = ln (Z [j]/Z0[j]) (index I means “interaction part”). At the same time, it is
convenient to consider this functional depending on ϕ, but not on j. Let us note that
another definition of the connected Green functions GF is also introduced in the literature
G[j] = ln (Z [j]/Z0[j = 0]) [44,48]. At the same time, such a functional is considered
depending on j. Convention: hereafter we choose a normalization of functional integration
such that the value Z0[j = 0] = 1. This choice corresponds to the normalization of the
Gaussian measure γG in Φ.

Further, PT series for GI,ε[ϕ] =
∞
∑

n=0
GI,ε,n[ϕ], and the nth term of the series has the

following form:

GI,ε,n[ϕ] =
(−1)n

n! ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa g(xa)
∫
R

dφa|φa|α
}

× 1√
(2π)n det(Gn,Γ)

exp

{
−1

2

n

∑
a,b=1

(Gn,Γ)
−1
ab [φa − ϕ(xa)][φb − ϕ(xb)]

}
.

(4)

In Expression (4) the following notations are introduced:

1. GC,n is the set of all connected undirected graphs with no loops and multiple edges on
n vertices;

2. νab(Γ) is an adjacency matrix of a graph Γ (the differential operator ∂sab is raised to the
power of this quantity);

3. (Gn,Γ)ab = sabνab(Γ)(Gn)ab + (G(0) + ε)δab, where G(0) is the G(x, x) in the translation
invariant case;

4. sab are auxiliary variables, using for extracting connected contributions to GI,ε,n[ϕ].

Further, we have calculated the first two orders in g(x) = gχQ(x), where χQ is the
indicator function of d-dimensional cube centered at the origin with Vol Q = V, for the
vacuum energy density wvac = E/V, namely (italic Γ is the Gamma function, 2F1 is the
Gauss hypergeometric function and E = −GI,ε[0] is the vacuum energy):

wvac =
gG(0)

α
2 2

1+α
2 Γ
(

α+1
2

)
(2π)1/2 −

g2G(0)α2α−1Γ
(

α+1
2

)2

π

×
∫

Q
dx


(

1− G(x)2

G(0)2

)α+ 1
2

2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(x)
G(0)

)2
)
− 1

+ O(g3),

(5)

and applied these formulas for the cases of virton propagator [3,8] (exponential form factor,
which is a smooth UV-cutoff function in momentum space with UV parameter µ) and
Euclidean Klein–Gordon propagator with mass m.

For the Klein–Gordon propagator with mass m and sharp UV-cutoff function in
momentum space with UV parameter µ when the modes are frozen at |k| > µ and the
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propagator in momentum representation G(|k| > µ) = 0, we have obtained for the vacuum
energy density wvac the following expression:

wvac m−d = a1
gG(0)α/2

md + a2

(
gG(0)α/2

md

)2(
md−2

G(0)

)2

+ O(g3),

a1 = 2
α+1

2 Γ

(
α + 1

2

)
, a2 =

2α−1

π
Γ

(
α + 1

2

)2
{

1
4 , d = 2;
1
8 , d = 3.

(6)

Additionally, we have provided the following polynomial formula for GI,ε,n[ϕ], de-
rived by Legendre polynomial Pn expansion (with an arbitrary coupling constant g):

Pn(t) = 2n
n

∑
k=0

(
n
k

)( n+k−1
2
n

)
tk, t ∈ [−1, 1], (7)

GI,ε,n[ϕ] =
(−1)n

n! ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa g(xa)

}
e−Qn,Γ(x,ϕ)

×
∞

∑
k=0

2nα/2G(0)2k+nα/2

4kk!

(
n(α+1)

2

)
2k

(1/2)2k
∑

ν1+...+νn=2k

(
2k

ν1 . . . νn

)
χν1

1 . . . χνn
n

∞

∑
q=0

q

∑
i=0

(
2q +

1
2

)

×
24q−ni+1Γ

(
n(α+1)

2

)
Γ
( n

2 + ni + k
) q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
1

2p + α + 1

(
2q
2i

)(
q + i− 1

2
2q

)

× ∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a=1
(2i + νa)!

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!
∏
a<b

(
(Gn,Γ)ab

G(0)

)lab

.

(8)

In Expression (8) the following notations are introduced:

1. Qn,Γ(x, ϕ) = 1
2

n
∑

a,b=1
(Gn,Γ)

−1
ab ϕ(xa)ϕ(xb) is the n-particle quantum entangler—the main

difficulty in calculating any GF;

2. χa =
n
∑

b=1
(Gn,Γ)

−1
ab ϕ(xb) is the auxiliary vector quantity, introduced for the compactness

of formulas;
3. (x)k := x(x + 1)(x + 2) . . . (x + k− 1), and (x)0 := 1 is the rising factorial;
4. ( 2k

ν1 ...νn
) is the multinomial coefficient, in particular, (q

p) is the binomial coefficient;

5. Convention: summation in the last line of Expression (8) is carried out over all lab ≥ 0

satisfying the conditions
n
∑

b=1
lab = 2i + νa (where lab = lba) and laa is even. This

expression is non-zero for even
n
∑

a=1
νa and zero for odd.

This yields the simple approximation formula for wvac if one chooses the degree of
approximation polynomial is equal to 2 and again g(x) = gχQ(x):

wvac ≈
3(2α + 1)Γ

(
α+1

2

)
√

π(α + 1)(α + 3)
(2gG(0))α/2 +

15α

(α + 1)(α + 3)

×
∞

∑
n=2

(−1)n−12nα/2

4n

[
gG(0)α/2

]n Γ(αn)

Γ(3n/2)

{
n−1

∏
a=1

∫
Q

dya
G(ya)

G(0)

}G
(

n−1
∑

k=1
yk

)
G(0)

.

(9)
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Beyond that, we derived another approximation formula for wvac, based on HSG
approximation of the matrix Gn. This approximation is quite often used in statistical
physics. Supposing for Gn the ansatz:

(Gn)ab ≈ (γ(Jn)ab + (1− γ)δab)G(0)θ(δ− |xa − xb|), (10)

with n× n matrix Jn of ones, Heaviside step function θ and parameters δ and γ, we arrive
at the following expression for wvac:

wvac =−
∞

∑
n=1

(−g)nG(0)nα/2

n!
2nα/2vn−1 ∑

Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab
sab

}
∞

∑
q=0

q

∑
i=0

(
2q +

1
2

)

×
24q−ni+1Γ

(
n(α+1)

2

)
Γ
( n

2 + ni
) (

2q
2i

)(
q + i− 1

2
2q

) q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
1

2p + α + 1

× ∑
{lab}

2
−

n
∑

a=1

laa
2 (2i)!n

∏
a<b

(lab!)
n
∏

a=1

(
laa
2

)
!
∏
a<b

(νabsabγ)lab ,

(11)

where v = πd/2

Γ(d/2+1) δd is the “volume of one hard-sphere particle” and parameters δ and γ

are determined by the equations:

G(0)γv =
∫
Rd

dx G(x), G(0)2γ2v =
∫
Rd

dx G(x)2. (12)

Let us make one remark about Equation (12). The HSG approximation is used in
the statistical physics for potentials that decay rapidly at infinity in x. This is reflected in
Equation (12) when integrating over Rd. This usually also means that the product of a
power function and the power of the propagator is again integrable. All the propagators
considered in the paper satisfy the conditions of HSG approximation applicability.

The other reasonable equations for parameters δ and γ are also possible, and these are
chosen to make formulas of HSG approximation simpler for substituting the particular cases
of propagators. All the obtained formulas were checked for the limiting case α = 2 and
applied to the virton propagator (exponential form factor, smooth UV-cutoff function) as
well as to Euclidean Klein–Gordon propagator with mass m and sharp UV-cutoff function.
Finally, we present approximate plots of vacuum energy density wvac for all values of g for
both described approximations and provide corresponding approximate formulas. These
formulas are valid for strong coupling g as well as for weak, which is quite a rare case for
quantum field models.

Using the Weierstrass M-test, we proved the convergence of such a series for j = 0
and we have obtained the majorizing series explicitly. As for j 6= 0, we found the majorant
depending on the regulator ε. There is still an open question about finding a more accurate
majorant whose dependence on epsilon is negligible (for the case of the non-zero source j).
Therefore, we will remove ε in the quantities calculated for j = 0, such as vacuum energy
and its density. In addition, in the quantities depending on j we will not remove ε, which
will be reflected in their indices, such as GI,ε, etc.

Performed considerations and research will help in the understanding of interacting
quantum fields’ general properties. Moreover, they can potentially be applied for the strong
coupling limit of nonlocal φ4 and φ6 theories, which will be the subject of further research
and publication of the authors.
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3. Physical Background and Motivation
3.1. Definitions and Notations

The starting point of our research is the complete (including disconnected parts) Green
functions GF Z in terms of functional integral over primary field φ. Traveling back, the
explicit expression for Z is:

Z [j] =
∫

Φ
D[φ] e−

1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y)−

∫
Rd dx g(x)|φ(x)|α+

∫
Rd dx j(x)φ(x). (13)

We will also call this functional the GCPF. Let us note that hereafter we follow the
normalizing convention Z0[j = 0] = 1, which makes this definition of GF coherent with
those via Gaussian measure in the next section.

The function (distribution) L(x, y) is the integral kernel of the operator L, which
defines the quadratic part of a nonlocal QFT (Gaussian theory) action. Nonlocal QFT can
be considered as a regularization of the Euclidean Klein–Gordon theory, but it is also of
independent interest. Let us note that the integral kernel G(x, y) of the inverse operator
G = L−1 is the UV finite propagator of a nonlocal QFT in any space dimension d. G(x, y)
is also called the Green function of Gaussian theory. In all the final calculations, where
possible, we will assume the translational invariance of the Gaussian theory, which implies
G(x, y) = G(x− y), but at the same time, we will consider coordinate dependent coupling
constant g. We will often choose g(x) = gχQ(x), where χQ is the indicator function of
d-dimensional cube centered at the origin with Vol Q = V. We will also suppose that
G(x) ≥ 0 and G(x) ≤ G(0) for all x. The functional integration is understood in the sense
of Gaussian measure with covariance operator (propagator) G. In this paper, we assume
that h̄ = c = 1.

Generating functional Z is a regular functional, so it could be expanded in a functional
Taylor series at j = 0 [44,48,52]:

Z [j] =
∞

∑
n=0

1
n!
D(n)

1,...,n j1 . . . jn , D(n)
1,...,n =

δnZ [j]
δj1 . . . δjn

∣∣∣∣
j=0

, (14)

where the repeated index i means integration over some spacetime variable xi. This means
the following:

D(n)
1,...,n j1 . . . jn :=

∫
Rd

. . .
∫
Rd

dx1 . . . dxnD(n)(x1, . . . , xn) j(x1) . . . j(xn). (15)

Coefficients D(n)
1,...,n = D(n)(x1, . . . , xn) are called n-particle or n-point correlation

functions of a functional Z since they represent n-point correlators of the theory:

1
n!
D(n)(x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉

=
∫

Φ
D[φ] φ(x1) . . . φ(xn) e−

1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y)−

∫
Rd dx g(x)|φ(x)|α .

(16)

Correlators are the object of interest since they are the quantities which determine the
cross-section of scattering of particles and therefore can be directly measured in particle
physics as well as in statistical physics. In Gaussian theory one has a usual Gaussian
integral, and we will denote the corresponding GF as Z0. In addition, recall the convention
we follow: Z0[j = 0] = 1. In this case, for GF Z0 we have a simple expression:

Z0[j] = e
1
2
∫
Rd
∫
Rd dx dy G(x,y)j(x)j(y). (17)
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It is also known that Z can be represented as an exponent of the other regular func-
tional G, which is called the connected Green functions GF:

Z [j] = eG[j], (18)

and from statistical physics point of view Z is a GCPF, as well as G, is a grand thermody-
namic potential (up to a temperature factor).

The functional G can also be expanded in a functional Taylor series, and its coefficients
are called connected n-particle or n-point Green functions:

G[j] = lnZ [0] +
∞

∑
n=1

1
n!
G(n)1,...,n j1 . . . jn , G(n)1,...,n =

δnG[j]
δj1 . . . δjn

∣∣∣∣
j=0

. (19)

The terminology goes from Feynman diagrams and will be clarified in the following
while considering the Meyer cluster expansion. Of course, all D(n)(x1, . . . , xn) can be
expressed via G(n)(x1, . . . , xn) by expanding the exponent. Throughout this paper, we
denote connected n-particle Green functions with the mathcal font G(n)1,...,n rather than the
Green function of Gaussian theory G(x− y).

In statistical physics, a finite limit G/V at V → ∞ exists. Therefore, we can write G
as follows:

G[j] = V f [j], (20)

where f is a volume density of G. For a homogeneous thermodynamic system this limit
is equal to pressure divided by temperature. It can be shown that G[0] = lnZ [0] = −E ,
where E is a vacuum energy of the considering QFT. It is also convenient to define its
volume density:

wvac :=
E
V

. (21)

The quantity wvac is a very useful quantity which in particular can tell whether the
system has phase transition or not. This relation is literal.

From the Lehmann–Symanzik–Zimmermann reduction formula, one can obtain that
the expression for the S-matrix n-particle correlation functions in momentum representa-
tion reads (the repeated variable means integration):

S (n)1′ ,...,n′ = D
(n)
1,...,n

n

∏
k=1

(Gkk′)
−1, (22)

where Gkk′ is the two-particle Green function of Gaussian theory in momentum representa-
tion. Of course, G−1 = L, but it is accepted to denote the corresponding operator as G−1.
For deriving the S-matrix, that is exactly the functional which functional Taylor coefficients
are S (n)1′ ,...,n′ , one should simply change variables from sources to so-called “classical fields”
(ϕ instead of φ), namely:

ϕ(x) = Gj(x) =
∫
Rd

dy G(x, y)j(y), (23)

so the S-matrix satisfies the following relation (up to a certain point, it is not necessary to
introduce the regulator ε, mentioned in the Section 2):

S [ϕ] = 1
Z [0]Z [G

−1 ϕ], (24)

as well as “normalized” GF ZI :

ZI [j] =
Z [j]
Z0[j]

, (25)
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and normalized GF GI of connected Green functions (this functional can be considered both
depending on the source and depending on the classical field, which was also mentioned
in the Section 2):

GI [j] = lnZI [j] = G[j]− G0[j], (26)

where G0[j] is the Gaussian theory connected Green functions GF. Such a functional is equal
to the quadratic:

G0[j] =
1
2

∫
Rd

∫
Rd

dx dy G(x, y)j(x)j(y). (27)

Next, we are going to describe two approaches to the perturbative calculation of
n-particle functions D(n) and G(n). Let us consider the expansions of GFs Z and G in series:

Z [j] =
∞

∑
n=0
Zn[j], G[j] =

∞

∑
n=0
Gn[j], (28)

which could be power series in some parameters of the system such as coupling constant g.
Then they induce the corresponding expansions of n-particle functions in powers of the
same parameter:

D(k)
1,...,k =

∞

∑
n=0
D(k)

1,...,k; n , G(k)1,...,k =
∞

∑
n=0
G(k)1,...,k; n , (29)

as well as for the S-matrix. In the next subsection we are going to introduce the conventional
method for obtaining of such expansions.

3.2. Standard PT and Its Inapplicability

Usually, when considering QFT with GF Z :

Z [j] =
∫

Φ
D[φ] e−

1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y)−

∫
Rd dx V(φ(x))+

∫
Rd dx j(x)φ(x), (30)

with analytic interaction potential V(φ), one can obtain PT series via transformation:

Z [j] = exp
[
−
∫
Rd

dx V
(

δ

δj(x)

)] ∫
Φ
D[φ] e−

1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y)+

∫
Rd dx j(x)φ(x), (31)

where the operator exp
[
−
∫
Rd dx V

(
δ

δj(x)

)]
is understood in the sense of power series in

operator δ
δj . Consequently, one has to demand the analyticity of the potential V(φ) in φ for

this method to work. Let us note that it is this operator that leads to asymptotic series in
QFT. Then, after introducing classical field ϕ, the final formula reads:

Z [j] = exp
{

1
2

∫
Rd

∫
Rd

dx dy G(x, y)j(x)j(y)
}

= exp
{

1
2

∫
Rd

∫
Rd

dx dy G(x, y)
δ

δϕ(x)
δ

δϕ(y)

}
exp

{
−
∫
Rd

dx V(ϕ(x))
}∣∣∣∣∣

ϕ=Gj

.
(32)

The operator exp
[
−
∫
Rd dx V

(
δ

δj(x)

)]
should be properly defined since it contains

multiple variational derivatives in the same point, but in the final answer all the regular-
izations of this expression could be removed. Then, expanding both exponents, one can
obtain a series in coupling constant g. As already mentioned above, these series are usually
asymptotic. As one can see, this way relies significantly on the analyticity of the potential
V(φ). It is invalid for the case of fractional power self-interaction potential.
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3.3. Motivation of Study

At first glance, it can appear to be nonphysical to consider models with interaction
potential of the form V(φ) = g(x)|φ|α (explicit dependence on x through g is not indicated
in the potential). Though, there are several reasons to study it.

Firstly, it is a kind of exactly solvable model in QFT, where one can produce converging
series in g. So it is an object of common interest because it is useful to learn the behavior of
different QFT systems to:

1. understand what kind of properties they can own and, consequently, what one can
look up in other models;

2. develop new methods and approaches, which can be subsequently extended and
applied to other systems to gain new results;

3. since we have the converging series for such a theory, we can hope to construct their
analytic continuations to points α > 2, in particular in the vicinity of α = 4, which is an
object of common interest.

Secondly, there are reasonable expectations, that in theory with the potential V(φ) = g(x)|φ|α
it is possible to complete explicit transition in obtained formulas from weak to strong coupling
regimes. Moreover, there is the conjecture on the following duality between scalar field theories:

L↔ G, g(x)↔ 1
g(x)

, |φ(x)|α ↔ |φ(x)|
α

α−1 . (33)

This duality can be very useful for the research of nonlocal φ4 theory in a strong
coupling regime as well as a nonperturbative description of phase transitions.

This duality can be obtained with the use of the Parseval–Plancherel identity for the
functional integral with the following substitution of the functional Fourier transform
asymptotic, which turns out to be valid in any d, since d is the dimension of the “index”
of vector while the argument of Fourier operator is the vector itself. Though, for careful
checking of this duality one should obtain PT series of asymptotic expansions of φ4 theory
from the strong coupling regime of |φ| 43 , which demands the general studying of |φ|α
theories for α ∈ (1, 2). Describing, checking and using of this duality is a subject of current
studies of the authors, and will be the topic of the nearest publications.

On the one hand, it should be noted that the first of three substitutions in Expression (33)
poses a danger: if the original Gaussian measure γG was given by a trace class covariance
operator G, the dual Gaussian measure γL is determined by an operator L with an infinite trace
value. Therefore, the integral over γL is ill-defined. This is consistent with the conventional
point of view that φ4 is quantum trivial in d ≥ 4.

On the other hand, from the Gaussian measure in separable HS point of view, there
are no evident reasons for GF to be in any sense “trivial” for any d since x is the index of a
vector and the field φ is a vector in the corresponding HS Φ. The integration theory in Φ is
insensitive to the dimension of the index and is constructed uniformly for any Φ. For the
exponential of a polynomial, the integral over a “good” Gaussian measure is defined in
rigorous mathematical sense [46,47]. For this reason, quantum triviality may turn out to be
a consequence of the incorrectness of mathematical transformations in the calculation.

Be that as it may, the authors would like to find rigorous mathematical proof of
the quantum triviality or to draw the conclusion that this triviality is a PT artifact only.
Moreover, the present paper is the first step to ascertain the truth in this complicated
question.
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4. Derivation of PT
4.1. Mathematical Buildup and Definitions
4.1.1. Gaussian Measure

Let us rewrite the expression for the complete Green functions GF Z as an integral
over a Gaussian measure γG with functions g and j in L2(Rd) (vector space of Lebesgue
square-integrable functions):

Z [j] =
∫

Φ
γG(dφ) e−

∫
Rd dx g(x)|φ(x)|α+

∫
Rd dx j(x)φ(x), (34)

where we understand the functional integral as the integral over HS Φ = L2(Rd)—linear
space of equivalence classes of functions from L2(Rd).

By definition, Gaussian measure γG is a measure in HS Φ defined by some covariance
operator (propagator) G : Φ→ Φ, which is demanded to be trace-class. Let us introduce
{en}∞

n=1—a family of eigenvectors of G with corresponding eigenvalues {λn}∞
n=1, so that

Gen = λnen, ∀n ∈ N. We also denote as ΦN := 〈ei〉Ni=1 the linear span of first N eigenvectors,
and as PN : Φ → Φ a projection operator on this linear span. Then, by definition, the
integral of any function f depending only on PNφ over Gaussian measure γG reads:

∫
Φ

γG(dφ) f [PNφ] =
∫

ΦN

N

∏
k=1

dφk√
2πλk

e
− 1

2

N
∑

k=1

φ2
k

λk f [PNφ]. (35)

Then, under certain conditions, the integral of the generic function f : Φ→ C can be
computed using the Dominated Convergence Theorem (DCT for short) and convergence of
the sequence f [PNφ]→ f [φ] as N → ∞ almost everywhere:

∫
Φ

γG(dφ) f [φ] = lim
N→∞

∫
ΦN

N

∏
k=1

dφk√
2πλk

e
− 1

2

N
∑

k=1

φ2
k

λk f [PNφ]. (36)

All the described results on Gaussian measure can be found with derivation in [46,47].

4.1.2. Physical and Mathematical Approaches to Measure Theory in Infinite-Dimensional
Spaces of Functions

It is useful to compare the mathematical view on functional integration with the
physical one. In physics, we write Expression (30). However, there is no translation
invariant countably-additive Lebesgue measure on infinite-dimensional separable BS or
HS. So if one wants to develop a measure theory in separable HS, one must reject either
countable additivity or translational invariance. So in mathematics, there are several
approaches to integration in functional spaces, which are:

1. Gaussian countably-additive measure (the method we use in the present paper) [46];
2. Translational invariant finitely-additive measure [55–57];
3. Ito integral (Wiener measure, which corresponds to significant restriction or sigma-

algebra to the one generated by cylindrical sets only) [46].

In this paper, as has been previously explained, we use Gaussian measures language.
In the way the physicists understand the functional measure, one can write informally:

γG(dφ) = D[φ] e−
1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y), G = L−1. (37)

It means that informally, the Gaussian measure determined by some propagator G is a
“physical” measure multiplied by an exponential of minus quadratic part of the action with
“kinetic operator” G = L−1.
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4.1.3. About Continuity of Functionals

Let us make one important remark that will further ensure the correctness of all
subsequent transformations. Consider the following functional (a function defined on a
function):

f [φ] = e−
∫
Rd dx g(x)|φ(x)|α+

∫
Rd dx j(x)φ(x), (38)

so it is positive, measurable and f [φ] ≤ e
∫

j(x)φ(x)dx ≤ e‖j‖2‖φ‖2 which is clearly integrable
with a finite value of the integral. Moreover, for proving that the sequence f [PNφ]→ f [φ]
as N → ∞ almost everywhere it is necessary and sufficient to show that

∫
Rd dx g(x)|φ(x)|α

is a continuous functional on Φ, since exponent and
∫
Rd dx j(x)φ(x) are continuous.

Let the coupling constant (non-negative function) g be bounded and Lebesgue inte-
grable. Since α ∈ (1, 2), the following is true (we denote the measure for which the coupling
constant is the measure density by the same letter g):∫

Rd
dx g(x)|φ(x)|α = ‖φ‖α

g,α ,
∫
Rd

dx g(x) = g(Rd), sup
x∈Rd

g(x) = gs,∣∣∣‖PNφ‖g,α − ‖φ‖g,α

∣∣∣ ≤ ‖PNφ− φ‖g,α ≤ g(Rd)(
1
α−

1
2 )g

1
2
s ‖PNφ− φ‖2.

(39)

Thus the functional
∫
Rd dx g(x)|φ(x)|α is continuous for all φ ∈ Φ. Here, we have used

a well-known consequence of Hölder inequality for the set Rd with finite measure g(Rd).
We would like to underline that this functional is not continuous when α > 2 because in
this case ‖φ‖g,α is not finite if ‖φ‖2 is finite (which is equivalent to φ ∈ Φ).

As a result, one can apply DCT and find that:

Z [j] = lim
N→∞

∫
ΦN

N

∏
k=1

dφk√
2πλk

e
− 1

2

N
∑

k=1

φ2
k

λk
−
∫
Rd dx g(x)|(PN φ)(x)|α+

∫
Rd dx j(x)(PN φ)(x)

. (40)

That is quite a good outlook that if one considers a functional integral from a Gaussian
measure point of view, one cannot compute a functional integral with α > 2 (e.g., α = 4,
which is currently the most interesting in the physical case) by simply substituting PNφ
instead of φ and taking a limit N → ∞. At least DCT is not applicable in this case. However,
it should be remembered that DCT gives only sufficient conditions. Perhaps some other
theorem may be useful in the case α > 2.

4.2. Reduction of Functional Integral to the Series from Finite-Dimensional Ones
(GCPF Expansion)

In this section, we are going to derive PT type series, which will converge. Since
the power of potential is not a natural number, the traditional method of carrying out an
interaction action from integral in the form of a differential operator is not suitable. So, we
follow the other way and in some sense obtain all Feynman diagrams summed into one
integral, which appears to be exactly the coefficient of g(x1) . . . g(xn) in the obtained series.

The described approach of constructing PT repeats and develops methods described
in [1–3,21]. Let us proceed to the computation itself. Since the potential U(φ) = |φ|α is an
even function, the following is true:∫

Rd
dx g(x)|φ(x)|α =

1
2π

∫
Rd

dx g(x)F
[
F
[
|φ(x)|α

]]
, (41)

where two points are important:

1. we understand Fourier transform F (internal transform is performed over the variable
φ, but not x) in the sense of distributions from S ′(R)—the space of linear continuous
functionals on the Schwartz space S(R);
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2. this distributional Fourier transform is consistent with the following formula for the
integrable function f (φ):

F [ f (φ)](t) :=
∫
R

dφ f (φ) eitφ. (42)

Unfortunately, the potential U(φ) = |φ|α have Fourier transform only in the general-
ized sense in S ′(R). As usual, careful computations with generalized Fourier transform
are quite subtle, so we would like to avoid them. For that purpose, we approximate
U(φ) with some smooth and integrable function UΛ(φ) from the Schwartz space S(R), so
that UΛ(φ) → |φ|α pointwise, when Λ → ∞. Then both UΛ(φ) and F [UΛ(φ)] are usual
functions in S(R) rather than distributions, and we are entitled to calculate their Fourier
transform via the usual integral Formula (42). We will make all the transitions for smooth
and integrable function UΛ(φ). Additionally, we will assume that 0 ≤ UΛ(φ) ≤ |φ|α for all
φ and that all the functions UΛ(φ) are even in φ, which will be useful in calculation of PT
series majorant. Namely, we can write:∫

Rd
dx g(x)|φ(x)|α = lim

Λ→∞

∫
Rd

dx g(x)UΛ[φ(x)], (43)

since 0 ≤ UΛ[φ] ≤ |φ|α and the left-hand side integral converges absolutely, so DCT
justifies this transition. After that, we are able to write:∫

Rd
dx g(x)|φ(x)|α = lim

Λ→∞

1
2π

∫
Rd

dx g(x)F [F [UΛ[φ(x)]]], (44)

and this formula is much more convenient for the calculations. In the following calculations,
we will extract this limit from functional integral also due to DCT and will consider
regularized functional ZΛ[j]. At the end of our computation, we will calculate the limit
Λ→ ∞. So we start by considering the “regularized” functional:

ZΛ[j] =
∫

Φ
γG(dφ) e−

∫
Rd dx g(x)UΛ[φ(x)]+

∫
Rd dx j(x)φ(x), (45)

and due to DCT described in previous section ZΛ[j]→ Z [j], when Λ→ ∞.
Further, we write Expression (45) in terms of the Fourier transform of potential and

use that F [UΛ(φ)] is in S(R):

ZΛ[j] =
∫

Φ
γG(dφ) exp

{
−
∫
Rd

dx g(x)
∫
R

dt
2π

eitφ(x)F [UΛ(φ)](t) +
∫
Rd

dx j(x)φ(x)
}

. (46)

Now let us expand the external exponent in a Taylor series in powers of the coupling
constant g:

ZΛ[j] =
∫

Φ
γG(dφ)

∞

∑
n=0

(−1)n

n!(2π)n

{
n

∏
a=1

∫
Rd

∫
R

dxa dta g(xa)F [UΛ(φ)](ta)

}

× exp

{
i

n

∑
a=1

taφ(xa) +
∫
Rd

dx j(x)φ(x)

}
.

(47)

Exchanging summation and integration, we arrive at the following expression:

ZΛ[j] =
∞

∑
n=0

(−1)n

n!(2π)n

{
n

∏
a=1

∫
Rd

∫
R

dxa dta g(xa)F [UΛ(φ)](ta)

}

×
∫

Φ
γG(dφ) exp

{
i

n

∑
a=1

taφ(xa) +
∫
Rd

dx j(x)φ(x)

}
.

(48)
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The correctness of this permutation will be proven independently in the next section.
Finally, we have to integrate over φ. After introducing the “modified” source j̃ (the

second term in the right-hand side contains the Dirac delta function δ):

j̃(x) = j(x) + i
n

∑
a=1

taδ(x− xa),

we obtain a usual Gaussian integral with linear exponent:∫
Φ

γG(dφ) e
∫
Rd j̃(x)φ(x) = e

1
2 〈 j̃ |G| j̃ 〉 = e

1
2
∫
Rd
∫
Rd dx dy G(x,y) j̃(x) j̃(y). (49)

Using Expression (49), we arrive at the following equality:

ZΛ[j] = Z0[j]
∞

∑
n=0

(−1)n

n!(2π)n/2

{
n

∏
a=1

∫
Rd

∫
R

dxa dta g(xa)F [UΛ(φ)](ta)

}

× exp

{
−1

2

n

∑
a,b=1

(Gn)abtatb − i
n

∑
a=1

ta ϕ(xa)

}
.

(50)

Now we are going to use Parseval–Plancherel identity, but disappointingly the ma-
trix (Gn)ab = G(xa, xb) (the discretization of the propagator with values in the finite-
dimensional space Rn2

) is only semi-positive, which will be proved in Section 4.2. However,
det(Gn)ab = 0 only on null sets (sets of zero measure), which made it possible not to take
care of it up to this moment. However, in the following, we are going to approximate
integrand with polynomials so we would like it to be bounded. So we introduce the ZΛ,ε

instead of ZΛ, adding −ε
n
∑

a=1
t2
a term into the series nth term exponent for all n. Then,

we will calculate the limit ε → +0 in a final result, using the obtained majorant and its
(in)dependence of ε. Hence, we have:

ZΛ,ε[j] = Z0[j]
∞

∑
n=0

(−1)n

n!(2π)n/2

{
n

∏
a=1

∫
Rd

∫
R

dxa dta g(xa)F [UΛ(φ)](ta)

}

× exp

{
−1

2

n

∑
a,b=1

((Gn)ab + εδab)tatb − i
n

∑
a=1

ta ϕ(xa)

}
.

(51)

At this point, it is evident that every term in the above series converges to the term
with the same number in the series for ZΛ when ε→ +0.

At present, we can use Parseval–Plancherel identity:

ZΛ,ε[j] = Z0[j]
∞

∑
n=0

(−1)n

n!(2π)n/2

 n

∏
a=1

∫
Rd

dxa g(xa) e
− 1

2

n
∑

a,b=1
(Rn)ab ϕ(xa)ϕ(xb)

×
∫
R

dφa UΛ(φa)

}
e
− 1

2

n
∑

a,b=1
(Rn)abφaφb+

n
∑

a=1
φaχ(xa)√

det(Gn + ε1n)
.

(52)

In Expression (52), the following notations are introduced:

1. (Rn)ab = ((Gn)ab + εδab)
−1 is the inverse of ((Gn)ab + εδab) in finite-dimensional space

R2n and (1n)ab = δab is the identity matrix in R2n;

2. χ(xa) =
n
∑

b=1
(Rn)ab ϕ(xb) is “effective” discrete source, since it was obtained from j

firstly by acting the “continuous” operator G, and then by its “discrete” inverse.



Symmetry 2023, 15, 1823 16 of 64

Let us note that both Rn and Gn are symmetric, hence diagonalizable in an orthonormal
basis by orthogonal transformation. Moreover, all Gn are semi-positive, so Gn + ε1n is
positive and hence invertible. This proves that all written integrals converge absolutely, so
we can interchange the order of integration in ta and xa variables.

In the Section 4.3, we will show that the obtained series converges uniformly in Λ for
generic j and also in ε for j = 0. The idea of the proof is that we can choose UΛ(φ) such,
that 0 ≤ UΛ[φ] ≤ |φ|α. After that, we can apply the Weierstrass M-test to the series for ZΛ,ε
if we prove that the series above with UΛ(φ), replaced by |φ|α, converges. We will do it
later in the paper.

Up to this moment, we finish on the expression for the “normalized” GFZI,ε, removing
the regulator Λ:

ZI,ε[j] =
∞

∑
n=0

(−1)n

n!(2π)n/2

 n

∏
a=1

∫
Rd

dxa g(xa) e
− 1

2

n
∑

a,b=1
(Rn)ab ϕ(xa)ϕ(xb)

×
∫
R

dφa |φa|α
}

e
− 1

2

n
∑

a,b=1
(Rn)abφaφb+

n
∑

a=1
φaχ(xa)√

det(Gn + ε1n)
,

(53)

where we denoted ZI,ε[j] = ZΛ→∞,ε[j]/Z0[j], in accordance with the notations, introduced
in the Section 3. In particular, we can write the value ZI [0] for the case of j = 0, also
removing the regulator ε:

ZI [0] =
∞

∑
n=0

(−1)n

n!(2π)n/2

{
n

∏
a=1

∫
Rd

dxa g(xa)
∫
R

dφa |φa|α
}

e
− 1

2

n
∑

a,b=1
(Gn)

−1
ab φaφb

√
det Gn

. (54)

Here, the matrix Gn is degenerate on null sets, but it does not affect the integral because
of the existence of majorant not depending on ε.

This expansion of GF in perturbation series looks similar to the expansion of the
GCPF of non-ideal gas with potential G(xa, xb), but with additional inner integrals over φa.
Keeping this in mind, we will refer to ZI,ε,n as the n-particle canonical partition function.
These inner integrals are in fact the key difference between statistical physics and QFT,
warranting the complication of the last one.

Properties of GN-Matrices

It is useful to visualize the typical structure of matrix Gn. We will do this for the
translation invariant case (the general case is performed in a similar way), since this is the
case that will be considered in all the final results. The desired expression is:

Gn =


G(0) G(x1 − x2) . . . G(x1 − xn)

G(x1 − x2) G(0) . . . . . .
. . . . . . G(0) G(xn − xn−1)

G(x1 − xn) . . . G(xn − xn−1) G(0)

. (55)

There are two limiting cases for this matrix:

1. When all xa are equal, then:

Gn =


G(0) G(0) . . . G(0)
G(0) G(0) . . . . . .
. . . . . . G(0) G(0)

G(0) . . . G(0)) G(0)

.
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2. When all xa are infinitely faraway, then:

Gn =


G(0) 0 . . . 0

0 G(0) . . . . . .
. . . . . . G(0) 0
0 . . . 0 G(0)

.

Let us prove the semi-positivity of Gn. Since the operator G : Φ→ Φ is positive, the
equality 〈 j |G| j 〉 ≥ 0 holds ∀j ∈ Φ. For distributions, this inequality also holds from the
reasons of continuity. Namely, choosing a smooth sequence of functions approximating
some distribution of the form:

j(x) =
n

∑
a=1

ca δ(x− xa),

we obtain exactly:
〈~c |Gn|~c 〉 ≥ 0, ∀~c = (c1, . . . , cn) ∈ Rn,

which completes the proof of semi-positivity of Gn for all values of xa. For this reason,
Gn + ε1n is a positive definite matrix for all n as well as its inverse, for any ε > 0.

The other way to prove this fact (in the translation invariant case) is to use Bochner’s
theorem, which claims the semi-positivity of Gn from the fact that propagator G(x− y) is
from Schwartz space and its Fourier transform F [G](k) ≥ 0 is non-negative. Though, this
proof needs one more additional assumption that G(x− y) ∈ S(Rd).

By construction, the matrix Gn is symmetric, therefore, diagonalizable. Let us denote

its eigenvalues as 0 ≤ λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n . Since

n
∑

a=1
λ
(n)
a = tr Gn = nG(0), then

the matrix sup-norm ‖Gn + ε1n‖ ≤ λ
(n)
n + nε ≤ n(G(0) + ε). In particular, we found the

bound for maximum eigenvalue of Gn (and, simultaneously, the minimal eigenvalue of
G−1

n , when Gn is invertible):

λ
(n)
max = λ

(n)
n ≤ nG(0). (56)

This bound will be used in the future computation of majorizing series.

4.3. Majorizing Series (Majorant)
4.3.1. Coordinate-Free Part

We always can exchange summation and integration when the series terms are positive
due to MCT. In addition, we have to check the absolute convergence of the obtained series
to use DCT. So, it is sufficient to take the absolute value of every term, exchange sum and
integral and prove that this series converges. At this moment, we have to find the upper
bound of the series terms:

Jn(α) =
1√

det(Gn + ε1n)

∫
Rn

dφ1 . . . dφn |φ1|α . . . |φn|αe
− 1

2

n
∑

a,b=1
(Rn)abφaφb+

n
∑

a=1
φaχ(xa)

, (57)

where the notation of Jn(α) is introducing for the convenience. Now we are going to
estimate |φ1|α . . . |φn|α with restriction ‖φ‖2 = r2. Our aim is to bound the integrand on
every sphere in Rn centered at the origin, and then use spherical coordinates. We start with
the Lagrangian function (λ is the Lagrange multiplier):

f (φ) = α
n

∑
a=1

ln φa − λ
(
‖φ‖2 − r2

)
,
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and find its unconditional extremum:

∂a f (φ) =
α

φa
− 2λφa = 0,

hence:
φ2

a =
α

2λ
.

Taking the sum over a to obtain λ we receive:

r2 =
αn
2λ

.

So, finally, the maximum is reached at:

φa =
r√
n

.

So, one can estimate (and these bounds are strict):

0 ≤ |φ1|α . . . |φn|α ≤
rnα

n
nα
2

. (58)

In addition to the previous bound, we can change variables by the orthogonal transfor-

mation and diagonalize the exponent in Jn(α) putting φa =
n
∑

b=1
(Rn)

−1/2
ab ζb, plus estimate

‖φ‖ ≤ ‖Gn + ε1n‖
1
2 ‖ζ‖:

Jn(α)

n!
≤ 1

n
nα
2
‖Gn + ε1n‖

nα
2

1
n!

∫
Rn

dζ1 . . . dζn‖ζ‖nαe
− ‖ζ‖

2
2 +

n
∑

a,b=1
(Rn)

−1/2
ab ζa ϕ(xb)

,

where the factor
√

det(Gn + ε1n) cancels out with the Jacobian after changing of variables
in the integral. Here, we also use the fact that Gn is almost everywhere invertible. Hereafter
we use the notation (An)

β
ab for the matrix element of a power of matrix, namely:

(An)
β
ab =

(
Aβ

n

)
ab

, (59)

for n× n matrix An and rational number β.
Now we have to transform the part with source:∣∣∣∣∣ n

∑
a,b=1

(Rn)
1/2
ab ζa ϕ(xb)

∣∣∣∣∣ ≤ ‖ζ‖ ·
∥∥∥∥∥ n

∑
b=1

(Rn)
1/2
ab ϕ(xb)

∥∥∥∥∥.

We denote for simplicity (which will not be confused with the source due to index 0):

j0 :=

∥∥∥∥∥ n

∑
b=1

(Rn)
1/2
ab ϕ(xb)

∥∥∥∥∥ =

√√√√ n

∑
a,b=1

(Rn)ab ϕ(xa)ϕ(xb) ≥ 0,

where the last transition follows from the Euclidean norm definition. We underline that
this quantity depends on x.

In this paper we will mainly consider the calculation of vacuum energy, which corre-
sponds to the case j = 0. Hence, we will not think about careful estimations for the case of
the non-zero source, and write the most rough estimation. Namely:

j0 ≤
√
‖Rn‖‖φ(xa)‖ ≤

n√
ε

sup
x∈Rd
|φ(x)|,
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where we used the fact that Gn ≥ 0, and hence maximal eigenvalue of Rn is no more than
1/ε. Here, ‖φ(xa)‖ is a Euclidean norm of the vector (φ(xa))

n
a=1, which is bounded with

n sup
x∈Rd
|φ(x)|. Then we have:

Jn(α)

n!
≤ 1

n
nα
2
‖Gn + ε1n‖

nα
2

1
n!

∫
Rn

dζ1 . . . dζn‖ζ‖nαe−
‖ζ‖2

2 +‖ζ‖j0 . (60)

Next, we recall the inequality ‖Gn + ε1n‖ ≤ n(G(0) + ε). The integral in the right
hand side of Expression (60) can be easily calculated via series expansion in j0:

Jn(α)

n!
≤ (G(0) + ε)

nα
2

1
n!

nπ
n
2 2

1
2 (nα+n−2)

Γ
( n

2 + 1
) ∞

∑
m=0

2
m
2 Γ
(

1
2 (m + n + nα)

)
Γ(m + 1)

jm
0 .

As a first step for bounding the obtained series, we use log-convexity of Gamma
function Γ for m ≥ 1:

Γ

(
n(α + 1)

2
+

m
2

)
≤ Γ

(
n(α + 1)

2
+

m + 1
2

)
≤ Γ(n(α + 1))1/2Γ(m + 1)1/2,

and rewrite:

∞

∑
m=1

2
m
2 Γ
(

1
2 (m + n + nα)

)
Γ(m + 1)

jm0 ≤ Γ(n(α + 1))1/2
∞

∑
m=1

2m

Γ(m + 1)1/2 jm0 .

Moreover, for m→ ∞ the equivalence relation holds:

Γ(m + 1)1/2

2m/2Γ
(

m+1
2

) ∼ √
12m + 1

2
√

3 4
√

2π 4
√

m
→ ∞,

and it could be numerically checked, that for m ≥ 0:

Γ(m + 1)1/2

2m/2Γ
(

m+1
2

) ≥ 1
2

,

so the following upper bound holds:

∞

∑
m=0

2
m
2 Γ
(

1
2 (m + n + nα)

)
Γ(m + 1)

jm
0 ≤ 2Γ(n(α + 1))1/2

1 +
∞

∑
m=1

1

Γ
(

m+1
2

) jm0

.

The last series can be calculated exactly in terms of the error function erf:

∞

∑
m=1

1

Γ
(

m+1
2

) jm
0 = ej20 j0(erf(j0) + 1) ≤ 2ej20 j0,

so we finish at:

∞

∑
m=0

2
m
2 Γ
(

1
2 (m + n + nα)

)
Γ(m + 1)

jm0 ≤ 2Γ(n(α + 1))1/2ej20 (1 + j0)

Let us write the result:

Jn(α)

n!
≤ G(0)

nα
2

1
n!

nπ
n
2 2

1
2 (nα+n)Γ(n(α + 1))1/2

Γ
( n

2 + 1
) ej20 (j0 + 1), (61)
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Finding the asymptotic of Expression (61) right hand side, we obtain:

Jn(α)

n!
≤ 1

n3/2 n
nα
2 −nG(0)

nα
2 π

n−3
2 2

1
2 (nα+3n−1)(α + 1)n(α+1)−1/2e(2−α)nej20 (j0 + 1)

= Cnn
nα
2 −nG(0)

nα
2 ej20 (j0 + 1),

where Cn > 0 is a dimensionless constant which grows no faster than exponentially.
As a result, we see that our series converges for α < 2. For α = 2 it also converges, but

it could be proven in a much more simple way. Namely, it is easy to calculate GFZ for α = 2
exactly, which will be performed further in the paper, and the corresponding expansion
will converge. For α = 2 we will consider only the case g(x) = gχQ(x). As for the result,
we have some at least asymptotic expansion in powers of g. So, since even asymptotic
expansions in the predetermined system of functions (power functions of the coupling
constant {gn}∞

n=0 in our case) are unique, then these two expansions must coincide. This
proves that for α = 2 our perturbation series expansion also converges. So we have to deal
with the coordinate integrals to finish the proof.

4.3.2. Coordinate Part

The next aim is to bound the result of coordinate integration. Namely, remembering
the notation g(Rd) =

∫
Rd dx g(x), we have:

|ZI,ε,n[j]| ≤
n

∏
a=1

∫
Rd

dxa g(xa) e
− 1

2

n
∑

a,b=1
(Rn)ab ϕ(xa)ϕ(xb) Jn(α)

n!
≤ Cnn

nα
2 −nG(0)

nα
2

×
n

∏
a=1

∫
Rd

dxa g(xa) ej20/2(j0 + 1).

Recalling the upper bound for j0, we obtain finally:

|ZI,ε,n[j]| ≤ Cnn
nα
2 −nG(0)

nα
2 g(Rd)n exp

n2

2ε

(
sup
x∈Rd
|φ(x)|

)2

(

n√
ε

sup
x∈Rd
|φ(x)|+ 1

)
, (62)

so the obtained series for the GF ZI,ε converges for j = 0. As for j 6= 0, the convergence of
series requires additional research and calculation of a more accurate majorant, since the
obtained one increases infinitely, when ε→ +0, therefore, it can be argued that the series
converges only for ε 6= 0. Though, as it was mentioned above, we mainly restrict ourselves
to the case j = 0.

4.4. Exponentiation of Series Using Meyer Cluster Expansion

We have just obtained the converging PT series for the GF ZI,ε. In terms of asymptotic
series, “the exponentiation of connected diagrams” is often proven, which means roughly
that the GF ZI,ε is an exponent of other regular (in the source j) functional. We are going
to establish the same result in our case. It will be useful since after such exponentiation
(for the coupling constant g(x) = gχQ(x)) we will obtain only the first power of a volume
V = Vol Q rather than all natural powers (in general, the first power of g(Rd)). This fact
will simplify significantly the extraction of physically measurable quantities, which will be
performed in the following sections of the paper.

4.4.1. Formulation and Applicability

We start with the following definition. Let (X, Σ, µ) be a measure space, that is a triple:
X is a set, for example, RN with some natural number N, Σ is a σ-algebra on X and µ is
a complex-valued measure (which should not be confused with the UV-cutoff parameter
µ) on a measurable space (X, Σ). Complex-valued measures are also called charges. We
denote as |µ| the variation of µ (which should not be confused with the total variation—the
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value of |µ| on X). In the case, where µ(dy) = g(y)ν(dy) and ν is a non-negative measure,
|µ|(dy) = |g(y)|ν(dy). Given a complex-valued measurable symmetric function ζ on
X× X, we introduce an abstract GCPF as follows:

Z [µ, ζ] =
∞

∑
n=0

1
n!

∫
X

µ(dy1) . . .
∫

X
µ(dyn) ∏

1≤i<j≤n

(
1 + ζ

(
yi, yj

))
. (63)

The term n = 0 in the sum is defined by 1. In the case of classical gas with interaction,
n is the number of particles.

We denote by Gn the set of all (undirected, no loops) graphs with n vertices, and
GC,n ⊂ Gn the set of all connected graphs with n vertices. Next, let us introduce the
following combinatorial function on finite sequences (x1, . . . , xn):

ϕ(x1, . . . , xn) =

1, if n = 1;
1
n! ∑

Γ∈GC,n

∏
(i,j)∈Γ

ζ
(

xi, xj
)
, if n > 2. (64)

The product is taken over edges of Γ. A sequence (x1, . . . , xn) is a cluster if the graph
with n vertices and two vertices i and j whenever ζ

(
xi, xj

)
6= 0 are connected. The cluster

expansion allows one to express the logarithm of an abstract partition function as a sum
over clusters. Namely, the following theorem holds [58].

Theorem 1 (Cluster expansion). Assume that |1 + ζ(u, y)| ≤ 1 for all u, y ∈ X, and that there
exists a non-negative function a on X such that for all u ∈ X,∫

X
|ζ(u, y)|ea(y)|µ|(dy) ≤ a(u), (65)

and
∫

X ea(x)|µ|(dx) < ∞. Then the following is true:

Z [µ, ζ] = exp

{
∞

∑
n=1

∫
X

µ(dy1) . . .
∫

X
µ(dyn)ϕ(y1, . . . , yn)

}
. (66)

Combined sum and integrals converge absolutely. Furthermore, we have for all y1 ∈ X:

1 +
∞

∑
n=2

n
∫

X
|µ|(dy2) . . .

∫
X
|µ|(dyn)|ϕ(y1, . . . , yn)| ≤ ea(y1). (67)

Unfortunately, we cannot apply this theorem to the terms ZI,ε,n of the PT series for GF
ZI,ε, since there appears det Gn, spoiling the form of the terms in the GCPF expansion. So,
we apply it to the terms ZI,Λ,ε,n of the PT series for GF ZI,Λ,ε[j] = ZΛ,ε[j]/Z0[j] in the form
before using Parseval–Plancherel identity. Hence, we start from (Gε = G(0) + ε for short):

ZI,Λ,ε[j]=
∞

∑
n=0

1
n!


n

∏
a=1

∫
Rd

dxa (−1)g(xa)
∫
R

dta

2π
F [UΛ(φ)](ta) exp

(
−ita ϕ(xa)−

1
2

Gεt2
a

)
︸ ︷︷ ︸∫

Rd+1 µ(dxa dta)


×

n

∏
a<b

exp(−G(xa − xb)tatb).

Let us note that, for clarity from statistical physics point of view, we consider the case
of translation invariant propagator G(xa − xb), but all the formulas presented below can be
easily transferred to the general case of propagator G(xa, xb).
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In our case, the point y = (x, t), the function 1 + ζ(ya, yb) = e−
1
2 G(xa−xb)tatb , and the

measure µ, appearing in the general theory, has the form:

µ(dxa dta) = −
dxa dta

2π
g(xa)F [UΛ(φ)](ta) exp

(
ita ϕ(xa)−

1
2

Gεt2
a

)
. (68)

To use the theorem, one must find the function a from its formulation. However, in
the following we will perform all the manipulations directly and see that in our case all the
transitions are valid without explicitly presenting such a function.

4.4.2. Rewriting Series in Terms of Exponent

Henceforth, we will keep in mind the measure Definition (68). Hereby, we start from
the expansion of GF ZI,Λ,ε:

ZI,Λ,ε[j] =
∞

∑
n=0

1
n!

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
n

∏
a<b

exp(−G(xa − xb)tatb). (69)

Using the definition of the function ζ, we rewrite Expression (69) as follows:

ZI,Λ,ε[j] =
∞

∑
n=0

1
n!

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
∑

Γ∈Gn

∏
(a,b)∈Γ

ζ(xa, ta, xb, tb). (70)

Further, the sum over all possible graphs Γ in the right hand side of Expression (70)
can be represented in the following way:

∑
Γ∈Gn

∏
(a,b)∈Γ

ζ(xa, ta, xb, tb) =
n

∑
k=1

1
k! ∑

V1,...,Vk

∑
Γ1,...,Γk

k

∏
l=1

∏
(a,b)∈Γl

ζ(xa, ta, xb, tb). (71)

In Expression (71) we have decomposed the graph Γ into the connected parts (graphs)
(Γ1, . . . , Γk). Each Γi ∈ GC,n is a connected graph with a set of vertices Vi with the cardinality
ni. All the sets Vi form a partition of the set {1, . . . , n} : V1 ∪ . . . ∪ Vk = {1, . . . , n}, and
Vi ∩Vj = ∅ if i 6= j. There are k! such sequences for each Γ, since the order of the sets Γi
does not matter. The sum over Γ can thus be realized by first summing over k, then over
the partitions V1, . . . , Vk, and then over connected graphs on the sets Vi. After substituting
this decomposition into the GF ZI,Λ,ε we can sum over the cardinalities n1, . . . , nk ≥ 1 with
condition n1 + · · · + nk = n. Additionally, the number of partitions of n elements into
k subsets with n1, . . . , nk elements is given by the multinomial coefficient n!

n1!...nk ! , which
therefore should be inserted. As a result, the following chain of equalities for GF ZI,Λ,ε is
valid:

ZI,Λ,ε[j] = 1 +
∞

∑
n=1

1
n!

n

∑
k=1

1
k! ∑

n1,...,nk
n1+...+nk=n

n!
n1! . . . nk!

×
k

∏
l=1

 ∑
Γl∈GC,nl

∫
Rd+1

dµ(dx1 dt1) . . .
∫
Rd+1

dµ
(
dxnl dtnl

)
∏

(a,b)∈Γl

ζ(xa, ta, xb, tb)


= 1 +

∞

∑
k=1

1
k!

 ∞

∑
n=1

1
n! ∑

Γ∈GC,n

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
∏

(a,b)∈Γ
ζ(xa, ta, xb, tb)


k

= exp

 ∞

∑
n=1

1
n! ∑

Γ∈GC,n

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
∏

(a,b)∈Γ
ζ(xa, ta, xb, tb)

.

(72)
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In accordance with the notations, introduced in the Section 3, let us denote by
GI,Λ,ε = lnZI,Λ,ε the “normalized” GF of connected Green functions with regulations Λ
and ε. Applying the cluster expansion we made above, we have the following formula
for it:

GI,Λ,ε[j] =
∞

∑
n=1

1
n! ∑

Γ∈GC,n

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
∏

(a,b)∈Γ
ζ(xa, ta, xb, tb). (73)

To go further, recall the definition of the adjacency matrix νab(Γ) for a given graph Γ:

νab(Γ) =

{
1, (a, b) ∈ Γ;
0, (a, b) /∈ Γ.

(74)

We note that νaa = 0, which is equivalent to our already existing requisition for the
graph to have no loops. Using this definition, as well as the definition of the function ζ, we
can write and transform the following product:

∏
(a,b)∈Γ

ζ(xa, ta, xb, tb) = ∏
(a,b)∈Γ

(exp(−G(xa − xb)tatb)− 1)

= ∏
(a,b)∈Γ

∫ 1

0
dsab ∂sab exp(−sabG(xa − xb)tatb)

=

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}
exp

{
−

n

∑
a<b

sabνab(Γ)G(xa − xb)tatb

} (75)

We simply have presented the differences as integrals of derivatives (sab are the
auxiliary variables), using the Fundamental Theorem of Calculus. We have also expanded
the sum in the exponent to all graph edges and added νab(Γ) multipliers that do not affect
the terms for presenting edges and annihilate the contributions of the terms corresponding
to the absent ones. Further, we understand the powers of differential operators ∂sab as
follows:

∂
νab(Γ)
sab =

{
∂sab , (a, b) ∈ Γ;
1, (a, b) /∈ Γ.

(76)

This means exactly that the edges (a, b), that are absent in the graph Γ, contribute
only by 1, since for them νab(Γ) = 0. In addition, as for the presenting edges, they give
the desired difference after the action of the integral of the derivative. Such rewriting of
the products provides an unification of the expressions and will be extremely useful for
obtaining compact forms of the results that follow in the paper. Finally, in accordance with
Section 2, we recall the convenient notation:

(Gn,Γ)ab = sabνab(Γ)G(xa − xb) + Gεδab. (77)

This quantity depends on ε and sab, but we will not specify it in the notations for
shortness.

Traveling back to the GF GI,Λ,ε in terms of the PT series GI,Λ,ε =
∞
∑

n=1
GI,Λ,ε,n, we find

for the n-particle contribution, which is the contribution of all connected graphs with n
vertexes, the following expression:

GI,Λ,ε,n[j]=
1
n! ∑

Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
exp

{
−

n

∑
a<b

(Gn,Γ)abtatb

}
.

We underline that in the PT series for the connected Green functions GF GI,Λ,ε the
index n starts from one rather than zero, as in the PT series for the complete Green functions
GF ZI,Λ,ε in (69). It is not a mistake, and it arrives from the very Statement (66) of the cluster
expansion theorem.
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After substituting the measure µ(dxa dta) into Definition (68), we arrive at the follow-
ing expression for the n-particle contribution:

GI,Λ,ε,n[j] =
1
n! ∑

Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa (−1)g(xa)

}

×
{

n

∏
a=1

∫
R

dta

2π
F [UΛ(φ)](ta) exp

(
ita ϕ(xa)−

1
2

Gεt2
a

)}
exp

{
−

n

∑
a<b

(Gn,Γ)abtatb

}
,

(78)

and, after applying Parseval–Plancherel identity to integrals over ta, the expression for the
n-particle contribution becomes:

GI,Λ,ε,n[j] =
(−1)n

n!(2π)n/2 ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa g(xa)

}
1√

det(Gn,Γ)

×
{

n

∏
a=1

∫
R

dφa UΛ(φa)

}
exp

{
−1

2

n

∑
a,b=1

(
(Gn,Γ)

−1
)

ab
(φa − ϕ(xa))(φb − ϕ(xb))

}
.

(79)

This formula is not a very convenient one, since sab variables are included in a very
complicated way because of det(Gn,Γ) and G−1

n,Γ. Though, this expression is a very important
one. Indeed, it explains that it is sufficient to consider the terms ZI,Λ,ε,n in the initial
(unexponentiated) GF ZI,Λ,ε, and then, in order to obtain GI,Λ,ε,n, it is enough to apply the
operator O (everything that the operator depends on is omitted in the notation):

O = ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}
, (80)

and we will use this notation in the following.
Summarising, we can obtain the results for the connected Green functions GF GI,Λ,ε

from the ones for ZI,Λ,ε with the following steps:

1. changing (Gn)ab → (Gn,Γ)ab in the quadratic part of the action;
2. posterior applying the operator O.

Equivalently, on the language of formulas:

GI,Λ,ε,n[ j, (Gn)ab] = OZI,Λ,ε,n[ϕ, (Gn,Γ)ab]. (81)

We additionally declared in the arguments of GFs the matrices Gn and Gn,Γ we use in
the obtained perturbative expansions to avoid confusions. The notation ZI,Λ,ε,n[ϕ, (Gn,Γ)ab]
means that this functional must be expressed in terms of φ, which is fixed, and the replace-
ment of (Gn,Γ)ab is made only in explicit dependence.

Let us also notice the form of GI,Λ,ε,n without introducing new variables sab:

GI,Λ,ε,n[j] =
1
n! ∑

Γ∈GC,n

{
n

∏
a=1

∫
Rd+1

µ(dxa dta)

}
n

∏
a<b

(exp(−νab(Γ)G(xa − xb)tatb)− 1). (82)

Expression (82) will be useful for the following HSG approximation.

4.4.3. Final Form of the Connected Green Functions GF

For the convenience, in accordance with Section 2, we recall the notation Qn,Γ for the
n-particle quantum entangler:

Qn,Γ(x, φ) =
1
2

n

∑
a,b=1

(Gn,Γ)
−1
ab φaφb, (83)



Symmetry 2023, 15, 1823 25 of 64

and also we introduce the notation for the linear functional in vector φa:

l(x, φ) =
n

∑
a,b=1

(Gn,Γ)
−1
ab φa ϕ(xb) =

n

∑
a=1

φaχa, χa =
n

∑
b=1

(Gn,Γ)
−1
ab ϕ(xb). (84)

Basically, χa are the sources in the coordinate representation, which are acted by the
operator G, after which we “pull them back” by the discretization of the propagator G
“modulated” as in Expression (77) inverse.

Now we are going to substitute the introduced notations in Expression (79) as well as
remove regulator Λ from it. We are eligible for the last action since the majorant for ZI,Λ,ε
does not depend on Λ for generic j as well as on ε for j = 0. Hence, we have:

GI,ε,n[j] =
(−1)n

n!(2π)n/2 O
{{

n

∏
a=1

∫
Rd

dxa g(xa)

}
1√

det(Gn,Γ)

× exp(−Qn,Γ(x, ϕ))

{
n

∏
a=1

∫
R

dφa |φa|α
}

exp(−Qn,Γ(x, φ) + l(x, φ))

}
,

(85)

for an arbitrary source j. Here, exactly as in the (53), we introduced the notation:

GI,ε[j] = GΛ→∞,ε[j]− G0[j].

Additionally, for j = 0 we can remove all the regulators and write:

GI,n[0]=
(−1)n

n!(2π)n/2 O
{{

n

∏
a=1

∫
Rd

dxa g(xa)

}{
n

∏
a=1

∫
R

dφa |φa|α
}

exp(−Qn,Γ(x, φ))√
det(Gn,Γ)

}
. (86)

These formulas will be used intensively in the Section 5.

4.4.4. A Short Way to Obtain Coefficients of Exponentiation

At the end of the section, consider again the coupling constant g(x) = gχQ(x). If the
expression Z(V, G, g) = eV· f (G,g) is proved, then the following equality is true:

Z(V, G, g) = 1 + V f (G, g) +
1
2

V2 f (G, g)2 + . . . (87)

So, we can extract f (G, g) as the coefficient in V if we obtain some expansion of
Z(V, G, g) in powers of V. This follows from the uniqueness of (asymptotic) expansion in
a prescribed system of functions (power functions of the volume {Vk}∞

k=0 in our case).

5. Calculation of PT Series Terms

Let us start by noting that the integrals of the form:

∫
Rn

dφ1 . . . dφn |φ1|α . . . |φn|αe
− 1

2

n
∑

a,b=1
R(n)

ab φaφb+
n
∑

a=1
φaχ(xa)

, (88)

are the particular cases of so-called Gelfand hypergeometric functions [59]. Unfortunately,
they are too generic and their properties are excessively complicated. However, if we
are going to obtain some practical results it is pointless to express anything via them.
Moreover, these integrals are sophisticated enough to be expressed simply in terms of even
generalized Gauss and Lauricella hypergeometric functions.

5.1. Off-Diagonal Terms Expansion

The first and most evident way is to expand the quadratic exponent in its off-diagonal
terms, and then compute the obtained integrals directly. However, this approach also fails
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because of the excessive complexity of the obtained terms. Let us demonstrate it. We start
with the expansion for the zero source:

ZI [0] =
∞

∑
n=0

(−1)n

n!(2π)n/2

{
n

∏
a=1

∫
Rd

dxa g(xa)
∫
R

dφa |φa|α
}
× e
− 1

2

n
∑

a,b=1
(Gn)

−1
ab φaφb√

det(Gn)
. (89)

Here, we have already removed the regulators Λ and ε in accordance with (54).
Then, substituting the series:

e
−

n
∑

a<b
(Gn)

−1
ab φaφb

=

{
n

∏
a<b

∞

∑
lab=1

}
(−1)

n
∑

a<b
lab n

∏
a<b

(
(Gn)

−1
ab

)lab

lab!

n

∏
a=1

φ

n
∑

b|b 6=a
lab

a , (90)

and calculating integrals over φa, we arrive at the following expression:

ZI [0] =
∞

∑
n=0

(−1)n

n!(2π)n/2

{
n

∏
a<b

∞

∑
lab=1

}(
−
√

2
G(0)

)n+1+
n
∑

a<b
lab

×
{

n

∏
a=1

∫
Rd

dxa g(xa)

}
1√

det(Gn)

n

∏
a<b

(
(Gn)

−1
ab

)lab

lab!
.

(91)

There are two main obstacles for applying this formula:

1. it is necessary to calculate the inverse of n× n matrix, depending on xa;
2. it is necessary to integrate the elements of the inverse matrix over xa.

These are the main reasons we will develop other computational techniques for the
practical calculation of some concrete quantities.

5.2. Approximation of Generic Term via Polynomials

In this section we will approximate prefactor |φ1 . . . φn|α as a function f (ζ) := |ζ|α
for ζ = φ1 . . . φn with polynomials. There are a couple of constructive methods, and we
compare several of them. We will consider three types of polynomial approximations:

1. Legendre polynomial approximation,
2. Chebyshev polynomial approximation,
3. Bernstein polynomial approximation.

However, we will present the explicit formulas only for the Legendre polynomials,
since they will be the most suitable for solving the problems formulated in our paper.
To show this, we will consider other families of polynomials. However, they will not be
required to display our final results, so they will not be explicitly given. The complete
guide about all the mentioned families of polynomials can be found in [60,61].

5.2.1. Background on Constructive Approximation with Legendre Polynomials

Legendre polynomials are defined as an orthogonal system with respect to the integral
scalar product generated with the Lebesgue measure on the closed interval [−1, 1]. That is,
Pn is a polynomial of degree n, such that (we denoted the independent variable as t, since
the domains of t and ζ do not coincide):∫ 1

−1
dt Pm(t)Pn(t) = 0 if n 6= m. (92)
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The standardization Pn(1) = 1 fixes the normalization of the Legendre polynomials
with respect to the L2-norm on the closed interval [−1, 1]. There is an explicit formula for
the Legendre polynomial of degree n:

Pn(t) = 2n
n

∑
k=0

(
n
k

)( n+k−1
2
n

)
tk, t ∈ [−1, 1], (93)

where (n
k) is the binomial coefficient, and they obey:

∫ 1

−1
dt Pm(t)Pn(t) =

2
2n + 1

δmn. (94)

The feature of Formula (93) is that due to the second binomial coefficient, all the terms
for k with the different residue modulo 2 are zero. So, for even n polynomial Pn consists of
even monomials, and for odd n—of odd monomials. So, about a half of the terms in the
sum in (93) are zero, and one should bear this in mind during practical calculations. The
first few even Legendre polynomials according to this definition are:

P0(t) = 1, P2(t) =
1
2
(3t2 − 1), P4(t) =

1
8
(35t4 − 30t2 + 3). (95)

Further, for the absolutely continuous function f with derivative f ′ of bounded varia-
tion on [−1, 1], the expansion in Legendre polynomials converges uniformly and absolutely:

∞

∑
n=0

cnPn(t) ⇒
[−1,1]

f (t), (96)

due to Jackson’s theorem [60]. Here, the coefficients cn are determined by the formulas:

c0 =
1
2

∫ 1

−1
dt f (t), cn>0 =

2n + 1
2

∫ 1

−1
dt f (t)Pn(t). (97)

There also exists a bound for the residue of the series truncated on Nth term, but it is
not very useful for our case. It is so because it is an estimate for the absolute value of error,
so the consequent estimation of GF will be excessively rough, since we have to take the
sign into account.

As it will be explained in the next subsection, we will approximate a function f (t) = |t|α,
for α ∈ (1, 2) and t ∈ [−1, 1], choosing some “normalized” variable t. For the consideration
of the case, the conditions of Jackson’s theorem are satisfied for α ∈ (1, 2), so we have the
uniform and absolute convergence of Legendre series to f (t). We write for the finite-terms
approximation, using that f is even (for the convenience of writing some further formulas,
we denote the coefficients of the Legendre polynomial as ui), the following expression:

hN(t) =
N

∑
q=0

cq( f )P2q(t), P2q(t) =
q

∑
i=0

uit2i. (98)

Let us note that because of the absence of the odd Legendre polynomials in the
approximation, we will use the numeration for the approximation coefficients as in (98)
rather than in (97). Ultimately, to avoid any misconceptions, we will write the coefficients
with the “new” numeration cq( f ) rather than cq. Let us also note that the total degree of
polynomial approximation hN is deg hN = 2N.

The coefficients cq( f ) for f (t) = |t|α have the form:

cq>0( f ) = 2
(

2q +
1
2

) ∫ 1

0
dt tαP2q(t)=

(
2q +

1
2

) q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
22q+1

2p + α + 1
, (99)
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and this formula is fair also for q = 0, as a computation shows. So for hN we obtain:

hN(t) =
N

∑
q=0

(
2q +

1
2

) q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
24q+1

2p + α + 1

q

∑
i=0

(
2q
2i

)(
q + i− 1

2
2q

)
t2i. (100)

In the following subsections we will use only Legendre polynomials. Therefore we
can expand f in a series, putting N → ∞. However, for the comparison of the Legendre
approximation with the Bernstein one (which is only approximation rather than expansion),
we will keep N finite until the end of the different polynomial approximations analysis.

5.2.2. Construction of Approximation for the Terms

According to theorems on polynomial approximation, e.g., the Stone–Weierstrass
theorem, it is possible to approximate the function by polynomials on compacts only. More-
over, if we try to approximate (even pointwise) a function |ζ|α for all ζ ∈ R via any kind
of polynomials, e.g., Hermite or Laguerre polynomials (multiplied by the corresponding
weight functions so that such expansions converge), we obtain a diverging series after
term-by-term integration. Moreover, there is a problem in the radial (in terms of spherical
coordinates in the Rn) direction. As a possible solution, before approximating by polyno-
mials, one should evaluate the integral (88) in the radial direction, introducing spherical
coordinates in Rn (hyperspherical coordinates, if n > 3, but for brevity we will use this
term for n > 1). In the remaining integral over hypersphere we can approximate |t|α, where
t—some convenient function on the hypersphere with values in [−1, 1], by polynomials in
t. There will be no such a problem since on a hypersphere t ∈ [−1, 1], so all the approxima-
tions and expansions will converge. After such an approximation one can go back to Rn

where it is easier to calculate the integrals using the source trick. It is a brief summary of
the material in the current subsection.

Let us denote the integral, which we are going to work with, as (n > 1):

In =

{
n

∏
a=1

∫
R

dφa |φa|α
}

exp(−Qn,Γ(x, φ) + l(x, φ)). (101)

The integrand has the symmetry under φ → −φ, since Qn,Γ and |φa|α are even
functions, hence (in terms of the hyperbolic cosine):

In =

{
n

∏
a=1

∫
R

dφa |φa|α
}

exp(−Qn,Γ(x, φ)) cosh(l(x, φ)). (102)

In this integral we can introduce hyperspherical coordinates and proceed as:

In =
∫ ∞

0
dr
∫

Sn−1
dΩ rn−1+nα|ξ1 . . . ξn|α exp

(
−r2Qn,Γ(x, ξ)

)
cosh(rl(x, ξ)), (103)

where we choose φa = rξa and ~ξ ∈ Sn−1 is the unit normal vector. Integration over r gives:

In =
1
2

∫
Sn−1

dΩ |ξ1 . . . ξn|α
Γ
(

n(α+1)
2

)
Qn,Γ(x, ξ)

1
2 (α+1)n 1F1

(
n(α + 1)

2
;

1
2

;
l(x, ξ)2

4Qn,Γ(x, ξ)

)
. (104)

In Expression (104) we follow the commonly accepted notation of 1F1 for the confluent
hypergeometric function. This function is defined in terms of the following series (and this
series converges for any finite value of z and thus defines an entire function of z):

1F1(a; b; z) =
∞

∑
n=0

(a)nzn

(b)nn!
, (105)
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where (a)n is a rising factorial. Then we expand 1F1 and obtain the following expression:

In =
1
2

∞

∑
k=0

1
4kk!

(
n(α+1)

2

)
2k

(1/2)2k
Γ

(
n(α + 1)

2

) ∫
Sn−1

dΩ
Qn,Γ(x, ξ)

n
2

|ξ1 . . . ξn|α

Qn,Γ(x, ξ)
αn
2

l(x, ξ)2k

Qn,Γ(x, ξ)k . (106)

One can easily notice that this expansion can be obtained by expanding cosh in
Formula (103). As in the Section 4.3 on majorant calculation, we can bound the following
relation, using (56) and (58):

0 ≤ |ξ1 . . . ξn|
Qn,Γ(x, ξ)

n
2
≤ 2n/2G(0)n/2,

for all xa. Now we can specify the function t:

t =
1

2n/2G(0)n/2
|ξ1 . . . ξn|
Qn,Γ(x, ξ)

n
2

. (107)

Having defined an appropriate function t, consider finite-degree even polynomial
approximation (98) of the function f . Let us note the following: Expression (98) describes a
general polynomial approximation such that the polynomials hN are defined for all integer
N > 0 and deg hN = 2N. We will often use the same notations, as for Legendre polynomials,
but for generality and simplification of formulas, we will not specify the concrete form of
(real) coefficients ui and cq. Here, {P2q(t)}∞

q=0 is some general set of polynomials suitable for
pointwise approximation of the function f , in other words, hN(t)→ f (t) for all t ∈ [−1, 1].
We will also suppose for generality, that the coefficients cq( f ) can also depend on N, which
is actual for approximation with Bernstein polynomials.

In the following we will denote as In,N the integrals obtained from In by substitution
polynomial approximation hN(t) instead of f (t) in the integrand. Let us note that In,N →
In due to the DCT, when N → ∞. This fact follows from the uniform convergence of
Legendre series to the considered function (as discussed in Section 5.2), which means the
uniform boundedness of partial sums. This convergence will also be checked numerically
in Section 5.2.4.

Thus we arrive at the following expression:

In,N =
1
2

∞

∑
k=0

(2G(0))nα/2

4kk!

(
n(α+1)

2

)
2k

(1/2)2k
Γ

(
n(α + 1)

2

) N

∑
q=0

cq( f )

×
∫

Sn−1

dΩ
Qn,Γ(x, ξ)

n
2

P2q

(
|ξ1 . . . ξn|

2n/2G(0)n/2Qn,Γ(x, ξ)
n
2

)
l(x, ξ)2k

Qn,Γ(x, ξ)k .

Recalling the identity for n, s > 0:∫ ∞

0
dr e−r2

rn+2s−1 =
1
2

Γ
(n

2
+ s
)

,

we can return to Rn due to homogeneity:

In,N =
∞

∑
k=0

(2G(0))nα/2

4kk!

(
n(α+1)

2

)
2k

(1/2)2k

N

∑
q=0

q

∑
i=0

uicq( f )Γ
(

n(α+1)
2

)
2niG(0)niΓ

( n
2 + ni + k

)
×
∫
Rn

dφ1 . . . dφn (φ1 . . . φn)
2il(x, φ)2ke−Qn,Γ(x,φ).

It is worth noting that without the ratio Γ
(

n(α+1)
2

)
/Γ
( n

2 + ni + k
)

we would receive
cosh after summation instead of confluent hypergeometric function 1F1. At the same time,
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we do not write out the last one, since it is convenient to continue the transformations of
the series itself.

We can rewrite the integrand, using the multinomial formula (all the βa ≥ 0):

l(x, φ)2k = ∑
β1+...+βn=2k

(
2k

β1 . . . βn

)
χ

β1
1 . . . χ

βn
n φ

β1
1 . . . φ

βn
n ,

and proceed with the integrals of the form (which are no more than the moments of
multidimensional Gaussian distribution with covariance matrix Gn,Γ):∫

Rn
dφ1 . . . dφn φm1

1 . . . φmn
n e−Qn,Γ(x,φ), (108)

for some integer constants ma ≥ 0. There is a common method for their calculation
consisting in introducing auxiliary variables ηa, called “sources”, in similar fashion to path
integrals, and further differentiation over them. Namely, we use the identity, following
from DCT:

∫
Rn

dφ1 . . . dφn φm1
1 . . . φmn

n e
−Qn,Γ(x,φ)+

n
∑

a=1
ηaφa

= ∂m1
1 . . . ∂mn

n e
1
2

n
∑

a,b=1
(Gn,Γ)abηaηb

, (109)

where the partial derivatives ∂a := ∂
∂ηa

. If all ηa = 0, we obtain the desired equality.
Keeping the previous expression in mind, we obtain:

In,N =
∞

∑
k=0

(2G(0))nα/2

4kk!

(
n(α+1)
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2niG(0)niΓ
( n

2 + ni + k
) χ

β1
1 . . . χ

βn
n ∂

β1+2i
1 . . . ∂
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Finally, for the connected Green functions GF nth term approximation GI,n[j]N we
obtain the following expression:

GI,ε,n[j]N =
(−1)n

n! ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
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Rd
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e−Qn,Γ(x,ϕ)

×
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∑
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(Gn,Γ)abηaηb

.

(111)

Starting from this formula and below, we found its useful to introduce the notation
GI,ε,n[j]N . We specify the value N to the right of j, so as not to clutter up the number of
indices to the left of j. By definition, GI,ε,n[j]N is obtained from GI,ε,n[j] by substituting the
approximation In,N instead of In. Owing to the convergence In,N → In, when N → ∞, it
is also true that GI,ε,n[j]N → GI,ε,n[j]. Recall that in Expression (111) sabνab and ε enter in
three ways:

1. Qn,Γ(x, ϕ) in the exponent;
2. χa in the prefactor;
3. (Gn,Γ)ab in the exponent.

It is interesting that in fact Formula (111) provides the expansion of the connected
Green functions GF for fractional-power interaction theory in terms of contributions of
power-interaction theories with some “weights”. However, it is not the same if one would
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like to expand |φ|α in the action (1) itself. In such an approach there would be no “damping
factor” of the form Γ

(
n(α+1)

2

)
/Γ
( n

2 + ni + k
)
, and the series would be divergent due to its

absence. The reason for this factor to appear is that before the approximation we reduced
the integral from non-compact Rn to a compact Sn−1. As a result, we will not lose the
convergence on any step and therefore obtain the convergent series rather than asymptotic.
This achievement was the primary aim of the present paper.

5.2.3. Combinatorial Expansion

We want to derive analytical formulas for the quantities:

∂m1
1 . . . ∂mn

n

∣∣∣∣
ηa=0

e
1
2

n
∑

a,b=1
(Gn,Γ)abηaηb

, (112)

for any integer ma ≥ 0, for a = 1, . . . , n. The authors are sure that such formulas were
derived a long time ago, but we could not find them in the literature in a suitable form. So
let us derive them from the basics for our own usage. In fact, the formulas we will obtain
are nothing else but the general formulas for the symmetry coefficients (up to some factor)
of Feynman diagrams.

As already mentioned about Expression (109), in this expression it is not hard to
recognize the moments of n-dimensional Gaussian distribution with the covariance matrix
Gn,Γ, which we will denote by brackets of “averaging”:

〈
φm1

1 . . . φmn
n
〉

Gn,Γ
:=


∫
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dφ1 . . . dφn√
(2π)n det (Gn,Γ)
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1 . . . φmn

n e
−Qn,Γ(x,φ)+

n
∑
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ηaφa


∣∣∣∣
ηa=0

= ∂m1
1 . . . ∂mn

n

∣∣∣∣
ηa=0

e
1
2

n
∑

a,b=1
(Gn,Γ)abηaηb

.

(113)

The index of the angle brackets indicates the covariance matrix we use for the compu-
tation of this quantity. We will refer to the quantity (113) as a correlator or multidimensional
Gaussian moment with integer powers. We have already introduced another notion of
a correlator in the Section 3 (referring to the path integral), but it will be clear from the
context what notion we mean in every particular case. We will also refer to the variables φa
in correlators as fields.

For now, we will consider covariance matrix Gn rather than Gn,Γ for the simplification
of notations (in this subsection we will also omit the index n for the same reason). Though,
we will not suppose any of its special properties except it is symmetric and has equal terms
on the diagonal which we will denote as Gaa = G(0) (a generalization without this property
is straightforward). Then the result for Gn,Γ can be obtained with the simple substitution
Gab 7→ (Gn,Γ)ab.

There is the Isserlis–Wick theorem which claims that the multidimensional Gaussian
moment with integer powers can be expressed in terms of the covariance matrix elements
as the sum over all possible pairings:

∂i1 . . . ∂im

∣∣∣∣
ηa=0

e
1
2

n
∑

a,b=1
Gabηaηb

= ∑
all pairings of {ia}

Gia1 ia2
. . . Giam−1 iam

, (114)

for even m and are equal to zero for odd m. Let us note that the notations in (113) and (114)

differ by rearranging of derivations and m =
n
∑

a=1
ma is a total their number.

Now we are going to explain what do we mean under this summation. Informally,
we sum over all pairings of the indices set, with account of possible repetitions of ia. More



Symmetry 2023, 15, 1823 32 of 64

formally, consider even m and denote the set of all possible pairings of {1, . . . , m} as Pm.
For example, for m = 4 the set of all possible pairings reads as follows:

P4 = { {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}} }.

We will denote the general element of Pm as { {a1, a2}, . . . {am−1, am} }. These indices
are exactly ones from Formula (114). So one can determine the set of pairings with the
array {ak}m

k=1, and we will use this array to determine the indices of ia.
Now we are going to calculate the number of all equal terms in the sum over all

pairings in Expression (114) assuming, that i1, . . . , im1 = 1; im1+1, . . . , im2 = 2; . . . and
imn−1+1, . . . , imn = n, which corresponds to our object of interest (113).

We start from the case of n = 2, so the index a takes only values 1 and 2. Then there
are only two different types of terms Gij:

1. when i = j, then Gij = G(0);
2. when i 6= j, then Gij = G12.

As a result, every term in (114) has the form G(0)q(G12)
p for some integers p, q ≥ 0.

So we have to count the number of pairings {ak}m
k=1, corresponding to every possible p

and q. Suppose we consider
〈
φm1

1 φm2
2
〉

G for m1 > 0 and m2 > 0. From the conservation of
the total points number one can deduce that m = m1 + m2 = 2q + 2p. So, for given m1 and
m2 the number q is uniquely determined with p.

We receive the combinatorial factor from the following considerations: there are m1
fields with index 1 and m2 fields with index 2. It is possible to visualize them with Figure 1.
We will denote all the enterings of the fields with the points, and for every pairing we
will draw the segment ending in the points constituting a pair. We will also refer to these
segments as edges, being inspired by the graph theory. In the following we will mean
under the notion “configuration of pairings” the set of all pairings which give the equal
contributions in the sum (114). In fact, this is a set of pairings (subset of Pm), consisting
of { {a1, a2}, . . . {am−1, am} } for some ak which possess the same number of pairings
between different clusters of points and inside every cluster. For n = 2 it is equivalent that
they have the same p, but the number of “degrees of freedom” n(n− 1)/2 rises for greater
n. One can draw an analogy with statistical physics: we identify the microstate with the
particular set { {a1, a2}, . . . {am−1, am} } and macrostate is what we call the configuration
of pairs.

Then we have m1 + m2 points in total, and they all have to be connected by such
segments in pairs. These points can be naturally distributed between two clusters, corre-
sponding to the indices of the fields. For the convenience, we also introduce the notations
la := ma − p for the number of points which will be paired with the points from the
same cluster. From the Isserlis–Wick theorem (114) it follows, in particular, that for odd
m1 + m2 the considering correlator is zero, so we will consider only even case. So, the term
G(0)q(G12)

p corresponds to p segments with the ends in different clusters, and q segments,
which have ends in the same cluster. To draw all the segments which such conditions,
one must:

1. choose p points from every cluster which will give rise to the segments with ends in
the different clusters;

2. choose the way the lines are drawn between the chosen p points in every cluster;
3. choose the way the remaining m1 − p and m2 − p points in first and second clusters

correspondingly will be connected with the segments inside their clusters.

The first number is (m1
p )(

m2
p ) by combinatorial definition, according to the combinato-

rial rule of product, where (n
k) =

n!
k!(n−k)! is a number of combinations of k elements from a

subset of cardinality n. The second one is p!, since for the first point (for any fixed enumer-
ation) in the first cluster we have p variants of choosing a pair, for the second one—(p− 1),
and so on. The third number equals to la !

2la/2(la/2)!
for each of two clusters, so in total these

two contributions should be multiplied. The explanation for the last formula is that we
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have to choose firstly one pair, which is possible in la(la − 1)/2 ways, then the another
one, for which we have (la − 2)(la − 3)/2 ways, and so on. Finally, we have to divide
the product of such ways’ numbers by the permutation number of points’ pairs, which is
(la/2)!. We also note that the numbers la have to be even for any possible configuration,
and the number of pairs inside the cluster is la/2.

In total for the number Mp of pairings with contribution G(0)q(G12)
p, using the same

combinatorial rule of product, we have the following expression:

Mp =

(
m1

p

)(
m2

p

)
· p! · l1!

2l1/2(l1/2)!
l2!

2l2/2(l2/2)!
=

m1!m2!
2l1/2+l2/2 p!(l1/2)!(l2/2)!

. (115)

We have written this formula in such notations to make its generalisation for n > 2
more clear.

At this moment, for the two-dimensional Gaussian moment with integer powers m1
and m2, the expression reads:

〈
φm1

1 φm2
2
〉

G =
min{m1,m2}

∑
p=0

m1!m2!

2
m1+m2

2 −p p!
(

m1−p
2

)
!
(

m2−p
2

)
!
(G12)

pG(0)
m1+m2

2 −p, (116)

where the summation is carried out over all p, such that la = ma − p are even, since only
these configurations of pairings are possible. For the considering case, when m1 + m2 is
even, the two cases are realisable: m1 and m2 are both even or both odd. In the first case the
summation condition means that the summation is carried out over only even p, and in the
second—over only odd p. The sense of these facts becomes clear from Figure 1.

Figure 1. Illustration of combinatorial formula for the two-dimensional Gaussian moment with integer
powers m1 and m2.

Let us generalize the resulting formulas to the n-dimensional case. Acting in the same
spirit, one can verify the validity of the following expression:

〈
φm1

1 . . . φmn
n
〉

G = ∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a=1
(ma)!

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!

n

∏
a<b

(Gab)
lab G(0)

1
2

n
∑

a=1
laa

. (117)

In accordance with the notations, introduced in the Section 2, the summation in the

Expression (117) is carried out over all lab ≥ 0, satisfying the conditions
n
∑

b=1
lab = ma (where

lab = lba) and laa is even. This expression is non-zero for even
n
∑

a=1
ma and zero for odd. The

Formula (117) generalises (116) and we will use it in our further calculations.
Let us derive Expression (117). It can be performed in the same manner as for n = 2, us-

ing the same graphical interpretation. We start from introducing slightly different notations.
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In the general case we have n clusters, consisting of m1, . . . , mn points, correspondingly. At
present, the contribution to the sum in (114) of a given pairings configuration is prescribed
with the numbers lab (indices a, b ∈ {1, . . . , n}):
1. the numbers lab (a 6= b) of edges connecting ath and bth clusters;
2. the numbers laa of edges connecting the vertices inside the ath cluster.

We will suppose that in the notation lab always a ≤ b, but for the clarity of formulas
(summation conditions in (117)) we will imply lab = lba each time we use both orders of in-
dices, remembering that there are only n(n− 1)/2 such numbers in fact. Each configuration

of pairings gives the contribution
n
∏

a<b
(Gab)

lab G(0)
1
2

n
∑

a=1
laa

. The numbers lab are visualised in

Figure 2.

Figure 2. Illustration of combinatorial formula for the three-dimensional Gaussian moment with
integer powers m1, m2 and m3.

Further, it is necessary to count how many pairings configurations are described with
the set of numbers lab for a < b and laa. The logic is similar to the case n = 2. We have to
multiply:

1. the number of ways to choose from every ath cluster lab points going to bth cluster for
all b. This is a typical problem of multiple choices from ma objects firstly la1, then la2
and so on until lan objects (including laa objects). As a result, this number equals the
multinomial coefficient ( ma

la1 ... lan
);

2. for every ath cluster, the number of ways to form pairs inside of it from the remaining
laa points, which is laa !

2laa/2(laa/2)!
, with the same explanation as for n = 2;

3. for every pair of clusters, ath and bth, the number of ways to draw the edges from lab
chosen points in ath cluster to lab chosen points in bth cluster. As a result, this number
equals to lab!.
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Multiplying all the described factors due to combinatorial rule of product, for the total
number of ways M{lab} to realise the configuration of pairings with numbers lab for a < b
and laa, we obtain the following result:

M{lab} =
n

∏
a=1

(
ma

la1 . . . lan

) n

∏
a=1

laa!
2laa/2(laa/2)!

n

∏
a<b

(lab)! . (118)

Recalling the formula for multinomial coefficients through the factorials, we arrive at
the following expression for M{lab}:

M{lab} = 2
−

n
∑

a=1

laa
2

n
∏

a=1
(ma)!

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!
. (119)

Now let us write the expression for the n-dimensional Gaussian moment in terms of
M{lab}: 〈

φm1
1 . . . φmn

n
〉

G = ∑
{lab}

n

∏
a<b

(Gab)
lab G(0)

1
2

n
∑

a=1
laa

M{lab}. (120)

Expression (120) gives us exactly the result (117) after substituting the explicit form of
M{lab}. Let us note again, that all laa have to be divisible by 2, otherwise such a configuration
is impossible. This condition is reflected in the summation condition in (117).

5.2.4. Numerical Analysis of the Polynomial Approximations

In this subsection, we are going to use different families of polynomials for the ap-
proximation and compare the results. Let us compare pointwise approximations of |t|α by
Bernstein, Chebyshev and Legendre polynomials with each other. The results are repre-
sented in Figure 3 for α = 4/3. For other α ∈ (1, 2) there is no significant difference. From
Figure 3 one can draw a conclusion that Legendre and Chebyshev polynomials are better
for the approximation of integrands than Bernstein ones, since for the same degree 2N
in the “majority of points” they give a smaller error. Moreover, errors of Legendre and
Chebyshev polynomial approximations oscillate and change sign, rather than Bernstein
polynomial approximation, so one should expect that there will be some “cancellation of
errors” in integrals, which will additionally raise the precision of the approximation.

Figure 3. Comparative plots of approximations hN (98) by polynomials of the tenth degree (N = 5).

Now we are going to compare Bernstein, Chebyshev and Legendre polynomial ap-
proximations for integrals. We would like to simplify the general Formula (111), since we
do not want to waste too many resources for choosing the best variant of the listed three.
Namely, we will:

1. assume that the source j = 0 to escape additional parameter, as well as ε = 0, since it is
possible to remove this regulator for the zero source;
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2. replace all the graphs Γ in the sum inside the operator O (80) with the complete graph
Kn, which is the graph without loops, where every two vertices are connected with an
edge. This means that νab(Kn) = (Jn)ab − δab (the matrix Jn is the matrix of ones) for
all a, b ∈ {1, . . . , n}, and the sum over graphs transforms into the contribution of the
Kn, multiplied by the total number of connected graphs on n vertices, which we will
denote by |GC,n| (the explicit value of this number in terms of n is not needed);

3. assume that G(x) ≡ G(0) = const for all x. From this follows that Gn becomes
proportional to a matrix of ones, i.e., Gn = G(0)Jn. Moreover, (Gn,Kn)aa = G(0) and
(Gn,Kn)ab = sabG(0) for a 6= b.

This gives us the following rough approximation of connected Green functions GF,
keeping in mind the definition (113):

GI,n[0]N ≈
(−1)n(2G(0))nα/2

n!
|GC,n|

{
n

∏
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∫ 1

0
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}{
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∏
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dxa g(xa)
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×
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∑
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q
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uicq( f )
2niG(0)ni

Γ
(
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2

)
Γ
( n

2 + ni
) 〈φ2i

1 . . . φ2i
n

〉
Gn,Kn

.

(121)

Now we can calculate coordinate integrals, since all the dependence of xa is left only
in coupling constants g(xa) as well as the result of the integro-differential operator over the
variables sab action. To that end, we should substitute the combinatorial Formula (117). We
arrive at the following expression:

{
n

∏
a<b

∫ 1

0
dsab ∂sab

}〈
φ2i

1 . . . φ2i
n

〉
Gn,Kn
G(0)

= ∑
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(2i)!n 2
−

n
∑
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2
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∏

a<b
(lab!)

n
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(
laa
2

)
!

{
n
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a<b

∫ 1

0
dsab ∂sab slab

ab

}
, (122)

and the last factor gives nothing else but the additional restriction of the summation
condition lab > 0 for a < b. However, we ignore this condition, despite the fact that this
will lead to a worse approximation, since this will also lead to a decrease in the resources
expended. Folding combinatorial sum back into correlator for the dimensionless covariance
matrix (which is exactly the matrix of ones Jn), we obtain the approximation:

GI,n[0]N≈
(−1)n(2G(0))nα/2

n!
|GC,n|g

(
Rd
)n N

∑
q=0

q

∑
i=0

uicq( f )
2ni+1

Γ
(

n(α+1)
2

)
Γ
( n

2 + ni
) 〈φ2i

1 . . . φ2i
n

〉
Jn

. (123)

From Formula (123), it is clear that for the comparison of different approximations it is
useful to consider the following quantities H(n, N):

H(n, N) =
(−1)n

(2G(0))nα/2|GC,n|g
(
Rd
)n GI,n[0]N , (124)

where we have removed the common (depending on n only) factors for all polynomial
approximations from (123), but left the factor 1/n! to avoid factorial growth. Recall that
the degree of polynomial approximation in all the cases is equal to 2N. So in fact all
the parameters of connected Green functions GF polynomial approximations are roughly
encoded in function H, the explicit formula for which is:

H(n, N) =
N

∑
q=0

q

∑
i=0

uicq( f )
2ni

Γ
(

n(α+1)
2

)
Γ
( n

2 + ni
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1 . . . φ2i
n

〉
Jn

. (125)
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Further, for different kinds of polynomial approximations there will be different
coefficients ui and cq( f ). In the following, we will mark the family of polynomials we use
for the approximation in the index of H. Thus, we have:

HL(n, N) :=
N

∑
q=0

q

∑
i=0

(
2q +

1
2

) q

∑
p=0

(
2q
2p

)(
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2
2q

)
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×
(

2q
2i
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2
2q

) Γ
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n(α+1)
2
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( n
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〉
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,

for Legendre polynomial approximation, and:
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for Bernstein polynomial approximation, as well as:
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,

for Chebyshev polynomial approximation. The plots of HL,B,Ch(n, N) for n = 2, . . . , 5 and
N = 1, 2, 4 and α = 4/3 are presented in Figure 4. The picture for other values of α ∈ (1, 2)
is qualitatively the same.

Figure 4. Comparative plots of approximations by polynomials of integrals HL,B,Ch(n, N).

From the plots one can see that Legendre and Chebyshev approximations for integrals
also converge much better than Bernstein approximation. At the same time, formulas for
approximation by Legendre polynomials are simpler than for approximation by Chebyshev
polynomials. This, in particular, explains our choice of the Legendre polynomials. Let us
also note that using the second-degree approximation gives an error which is about 20%
and the error of fourth-degree is about 10%. However, it is important to note that this error
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occurs in the model system considered in this subsection. As the results of the following
subsections show, in a more realistic case, the errors can be larger.

5.2.5. Final Results of Polynomial Approximations for Connected Green Functions GF

According to all points described above, we will focus on Legendre polynomial
approximation. Exactly this kind of approximation we will mean in the following under the
term “polynomial approximation”. We will write these expressions in compact forms using
the already introduced notations as well as few new ones. Namely, we will additionally
introduce the notations for the arguments of Gamma functions and a new operator Og:

αn :=
n(α + 1)

2
, ni :=

n
2
+ i, Og = O

{
n

∏
a=1

∫
Rd

dxa g(xa)

}
. (126)

Then Expression (111) will take a form:

GI,ε,n[j]N =
(−1)n

n!
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,
(127)

where we have rewritten correlators, using dimensionless covariance matrix Gn,Γ/G(0) for
the convenience. For the zero source j, similarly:

GI,n[0]N =
(−1)n(2G(0))nα/2

n!
Og

N

∑
q=0

q

∑
i=0

uicq( f )
2ni+1

Γ(αn)

Γ(ni)

〈
φ2i

1 . . . φ2i
n

〉
Gn,Γ
G(0)

. (128)

In this form the structure of expressions is much more clear, so in the following we
will use these formulas for representing connected Green functions GF.

For the reference we also write down the extended form of the Expressions (127) and (128).
Substituting all the introduced notation, we receive very large formulas:

GI,ε,n[j]N =
(−1)n

n! ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa g(xa)

}
e−Qn,Γ(x,ϕ)

×
∞

∑
k=0

(2G(0))nα/2

4kk!

(
n(α+1)

2

)
2k

(1/2)2k
∑

β1+...+βn=2k

(
2k

β1 . . . βn

)
χ

β1
1 . . . χ

βn
n

×
N

∑
q=0

q

∑
i=0

(
2q +

1
2

)
24q−ni+1G(0)2k

Γ
(

n(α+1)
2

)
Γ
( n

2 + ni + k
)

×
q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
1

2p + α + 1

(
2q
2i

)(
q + i− 1

2
2q

)

× ∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a=1
(2i + βa)!

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!

n

∏
a<b

(
sabνab(Γ)G(xa − xb)

G(0)

)lab

.

(129)

In accordance with the notations, introduced in the Section 2, the summation in
the last line of Expression (129) is carried out over all lab ≥ 0, satisfying the conditions

n
∑

b=1
lab = 2i + βa (where lab = lba) and laa is even. Expression (129) is the main polynomial
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approximation formula for the following computations. For j = 0 we can also remove the
regulator ε and write:

GI,n[0]N =
(−1)n(2G(0))nα/2

n! ∑
Γ∈GC,n

{
n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}{
n

∏
a=1

∫
Rd

dxa g(xa)

}

×
N

∑
q=0

q

∑
i=0

(
2q +

1
2

) q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
24q−ni+1

2p + α + 1

Γ
(

n(α+1)
2

)
Γ
( n

2 + ni
) (2q

2i

)(
q + i− 1

2
2q

)

× ∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a=1
(2i)!

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!

n

∏
a<b

(
sabνab(Γ)G(xa − xb)

G(0)

)lab

.

(130)

As it follows from the discussion in the Section 3, vacuum energy E = −G[0]. So in the
following computations of vacuum energy density this formula will be our starting point.

Finally, let us note that due to the convergence of Legendre series we have ob-
tained in fact the expression for GI,ε,n[j] in terms of repeated series. In other words, in
Formulas (127)–(130) one can proceed to the limit N → ∞:

GI,ε,n[j] = lim
N→∞

GI,ε,n[j]N . (131)

Moreover, at least for j = 0 the sums over n and q can be permuted because of the
absolute convergence of Legendre series. Hence, at least for GI [0] we have obtained the
expression in terms of double series which is very convenient for calculations. Therefore:

GI [0] =
∞

∑
n=1

∞

∑
q=0

q

∑
i=0

(−1)n(2G(0))nα/2

n!
uicq( f )
2ni+1

Γ(αn)

Γ(ni)
Og

〈
φ2i

1 . . . φ2i
n

〉
Gn,Γ
G(0)

, (132)

and the same for GI,ε[j]. These formulas are the main result of the presented paper. In the
next subsections we will rewrite the result of applying the operator Og to the correlator to
make this formula more similar to usual formulas from the Feynman diagram approach.

5.2.6. Two Types of Graphs in the Formulas for Connected Green Functions GF

To go further, let us provide an improvement of the graphical interpretation of the
terms from the Isserlis–Wick theorem (114), developed in the Section 5.2.3. Our new
graphical interpretation will be more convenient for our purposes as long as we deal with
all the combinatorics.

We are going to consider the clusters (in terms of Section 5.2.3) as vertices, and to
draw the edges (corresponding to pairings) between the clusters themselves (in particular,
starting and ending clusters can coincide). Therefore, we are going to describe the particular
pairings’ configuration in terms of the unoriented graph with possible loops and multiple
edges, possibly disconnected. It is illustrated in Figure 5, from which one can recognise
the ordinary Feynman diagrammatics. Informally, we took the graphical interpretation
from the Section 5.2.3 and “constricted” every cluster to a point. The pairings inside every
cluster became loops on the corresponding vertices.

Considering a correlator
〈
φm1

1 . . . φmn
n
〉

(where we will not specify the covariance matrix
in the notation for the brevity) we will enumerate vertices with the indices of corresponding
fields φa or with the coordinates xa (which come from the covariance matrix with the same
indices). In such notations, the degree of a vertex (the number of edges that a given vertex
belongs to) with the number a equals to ma and lab is the number of edges between the
vertices a and b. Let us note that the adjacency matrix of the described graph is (lab)

n
a,b=1.

In the following we will call these graphs as Isserlis–Wick graphs. In the literature they are
also known as Feynman graphs.
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Figure 5. Illustration of typical Isserlis–Wick (black) and Meyer (red) graphs. The presented Isserlis–
Wick graph refers to the correlator

〈
φ6

1φ5
2φ3

3φ10
4 φ3

5φ1
6φ4

7
〉
.

Therefore, in this paper we have two types of graphs:

1. Isserlis–Wick graphs, that are the subject of discussion in this subsection. We will
denote them as ΓIW ;

2. Meyer graphs, which came from the Meyer cluster expansion in the Section 4.4, and
still remain in the operator O. We will denote them as ΓM;

They are essentially different. While the Isserlis–Wick graphs can have loops, multiple
edges or be disconnected, the Meyer graphs are the opposite; they have no loops, multiple
edges and have to be connected. However, there is a link between these two types of
graphs, explaining also why physicists have only one notion of Feynman diagrams, serving
simultaneously for all the purposes. Namely, for the Meyer graphs that give a non-zero
contribution to Expression (130) the following inclusion holds:

ΓM ⊂ ΓIW . (133)

This inclusion is non-trivial for the sets of edges, since the sets of vertices are the
same by definition. Let us prove this inclusion. Consider Formula (130). Next, consider
concrete ΓM. Let it contain an edge between vertices a and b. In this case νab(ΓM) = 1.
Then differentiation with respect to sab is non-trivial if and only if the corresponding value
lab > 0. However, this means that there is such an edge in ΓIW defined by the given set lab.
Repeating this argument for all the edges in ΓM, we obtain the required inclusion.

In the same manner, if νab(ΓM) = 0 for distinct a and b, then every non-zero contribu-
tion has to be lab = 0 for the same a and b. This means that if there is at least one edge in
ΓIW , then there is an edge in ΓM.

The following useful statement is also true: the summation over Meyer and Isserlis–
Wick graphs reduces to the summation over connected Isserlis–Wick graphs, at least for
the zero source. Let us prove this statement. With the direct considering of cases, it can be
shown that:

∫ 1

0
ds ∂ν

s (sν)l = ν(1− δl,0) + (1− ν)δl,0 =

{
δl,0 , ν = 0;
1− δl,0 , ν = 1;

, (134)
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for ν ∈ {0, 1} and l ≥ 0. From Formula (134) it follows that we have the following product
in Expression (130):{

n

∏
a<b

∫ 1

0
dsab ∂

νab(Γ)
sab

}
n

∏
a<b

(sabνab(Γ))
lab =

n

∏
a<b

{
νab(Γ)(1− δlab ,0) + (1− νab(Γ))δlab ,0

}
. (135)

However, for this product to be non-zero each of its terms have to be non-zero. For
every set {lab} as follows from (134) there is only one possible adjacency matrix νab(Γ),
satisfying this condition, and it has the following form:

νab(Γ) =

{
0, lab = 0 ;
1, lab > 0 ;

, (136)

for all nonequal a and b. This expression can also be interpreted as the condition for Meyer
graph to have the edge if and only if there exists at least one edge between these vertices in
the Isserlis–Wick graph.

Therefore, for every {lab} (every Isserlis–Wick graph) in the sum over connected
(Meyer) graphs ∑

Γ∈GC,n

, no more than one term stays alive, and it is completely determined

with Condition (136). Though in the sum over the Meyer graphs there could be no such a
graph, since Meyer graphs are always connected, but Condition (136) can be satisfied for
disconnected graphs also. So the connectivity of the Isserlis–Wick graph is the necessary
and sufficient condition for the term to give the non-zero contribution.

Summarising, the operator O leaves only connected Isserlis–Wick graphs, and we
finish at the expression:

GI,n[0]N =
(−1)n(2G(0))nα/2

n!

N

∑
q=0

q

∑
i=0

uicq( f )
2ni+1

Γ(αn)

Γ(ni)

×
{

n

∏
a=1

∫
Rd

dxa g(xa)

}〈
φ2i

1 . . . φ2i
n

〉C
Gn,Γ
G(0)

,

(137)

where the index “C” means that the summation in the correlator is carried out only over the
connected Isserlis–Wick graphs. Equivalently, in the combinatorial sum (117) only those
{lab} should be taken into account, that correspond to the connected graphs. In calculations
using computer algebra systems, one can check the connectivity of an Isserlis–Wick graph
using built-in functions, recalling that (lab)

n
a,b=1 gives the adjacency matrix.

In conclusion, Expression (137) is an explicit representation of (connected Green func-
tions) GF for fractional power interaction as a weighted sum of integer-power interactions
contributions. However, all our efforts were for deriving the explicit formulas for weights
and obtaining the expression in terms of the converging series rather than asymptotic,
which turned out to be quite a complicated task.

5.2.7. Simple Approximate Formula for General Term

In this subsection we will not use the general results on Meyer and Isserlis–Wick
graphs, derived in Section 5.2.6 since in the particular case that we are going to consider in
this subsection, it is more convenient to carry out all the calculations in a different, simpler
and more intuitive way. However, for the higher degrees of polynomials, their use is
unavoidable because of the complexity of the calculation.

As one can see from the model system, considered in Section 5.2.4, approximation
with the Legendre polynomial of the second degree gives an error which is about 20%, and
this is quite an accurate result. Remarkably, in this case one can finish up with a not very
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complicated formula for the vacuum energy. To obtain such a formula we will start from
Expression (128) and assume g(x) = gχQ(x):

GI,n[0]N =
(−g)n(2G(0))nα/2

n!
O
{

n

∏
a=1

∫
Q

dxa

}
N

∑
q=0

q

∑
i=0

uicq( f )
2ni+1

Γ(αn)

Γ(ni)

〈
φ2i

1 . . . φ2i
n

〉
Gn,Γ
G(0)

.

If one writes down this formula in more detail, there will appear the following coeffi-
cients:

An,q,α,i =

(
2q +

1
2

)
Γ(αn)

Γ(ni)

q

∑
p=0

(
2q
2p

)(
q + p− 1

2
2q

)
24q−ni+1

2p + α + 1

(
2q
2i

)(
q + i− 1

2
2q

)
, (138)

which we denote for the further use.
So, we want to calculate GI,n[0]N analytically for N = 1, which corresponds to the

second-degree polynomial approximation. We consider the terms with n = 1, 2 and n > 2
separately. For the first two orders the calculation is straightforward:

GI,1[0]1 = −
3(2α + 1)Γ

(
α+1

2

)
√

π(α + 1)(α + 3)
(2gG(0))α/2V, (139)

for n = 1 and:

GI,2[0]1 =
15αΓ(α + 1)

16(α + 1)(α + 3)
(2gG(0))αV

∫
Q

dy
(

G(y)
G(0)

)2

, (140)

for n = 2. Further it will turn out that this expression will occasionally satisfy the formula
for n > 2, so we will put this term into the sum over n in the following. One important
remark: in the calculation of such coordinate integrals, one has to change variables and the
integration domain will deform. Though, we are interested mainly in finding results in the
thermodynamic limit (finding the leading contribution in V, when V → ∞). In this limit
the integration domain deformation is not important. We will describe the thermodynamic
limit in Section 6.1, and it will be more convenient to discuss such integrals there.

Let us proceed to the case n > 2. Because of the operator O, the constant terms in all
sab will not contribute due to the differentiation. In more detail: it is so, since the sum in
(80) is carried out over the connected graphs, so they have at least one edge for n > 1. As
a result, in O at least exists one derivative, which will annihilate the constant term. This
means, due to (117), we can consider only i 6= 0, so there will remain only a single term in a

sum
N
∑

q=0

q
∑

i=0
, namely i = q = N = 1:

GI,n[0]1 =
(−g)n(2G(0)nα/2

n!
An,1,α,1O

{
n

∏
a=1

∫
Q

dxa

}〈
φ2

1 . . . φ2
n

〉
Gn,Γ
G(0)

. (141)

At present, for the evaluation of the Isserlis–Wick correlators for the second degrees of
fields, it is useful to directly sort all the pairings rather than use the obtained combinatorial
formulas. Namely, one can sort all the configurations of pairings for

〈
φ2

1 . . . φ2
n
〉

Gn,Γ
G(0)

by

the number r of vertices, pairing with themselves. Other n− r vertices have to constitute
some number of closed chains, i.e., graphs whose vertex degrees are equal to 2, in terms
of recently proposed graphical interpretation. This is the case since the degree of every
vertex in any Isserlis–Wick graph is two, and all such graphs are disjoint unions of loops
and chains. Then we can write:〈

φ2
1 . . . φ2

n

〉
Gn,Γ
G(0)

=
n

∑
r=0

G(0)r−n

{
∑

i1,...,in−r

(Gn,Γ)i1,i2(Gn,Γ)i2,i3
. . . (Gn,Γ)in−r ,i1

+ . . .

}
. (142)
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The summation indices ia in the right-hand side of Expression (142) take values in
{1, . . . , n} and enumerate all different closed chains (one closed chain as a graph can be
prescribed with different sequences of indices, what will be discussed in more details
further). In Expression (142) we have written only the terms with the unique chain, and
denoted the others as “. . .”. We will not write them down explicitly, since in the following
they will give only zero contribution.

Further, substituting the last expression into Expression (141), we arrive at the follow-
ing result:

GI,n[0]1 =
(−g)n(2G(0))nα/2

n!
An,1,α,1O

{
n

∏
a=1

∫
Q

dxa

}

×
{

n

∑
r=0

∑
i1,...,in−r

si1,i2 νi1,i2(Γ)G(xi1 − xi2)

G(0)
. . .

sin−r ,i1 νin−r ,i1(Γ)G(xin−r − xi1)

G(0)
+ . . .

}
.

(143)

Because of the operator O, each term in the sum
n
∑

r=0
survives if and only if νab(Γ) = 1

for a of b belonging to all the vertices which both lie in the chain. From this follows that the
graph Γ has to be contained in this chain. However, since Γ is connected, this condition
cannot be satisfied for the disconnected Isserlis–Wick graphs. This means that in the sum in
(143), only the terms corresponding to the connected graphs referring to pairings survive. In
particular, all the terms denoted as “. . .” disappear, since they have at least two non-trivial
chains and hence they are disconnected. Only the term with r = 0 in the remaining sum
gives the non-zero contribution in ∑

Γ∈GC,n

. One can note that this term corresponds to a

cyclic chain, schematically written as i1 − i2 − . . .− in − i1 for some distinct ia ∈ {1, . . . , n}.
Moreover, due to the invariance of every term under permutations of xa in coordinate

integration, we can suppose that ia = a. The number of different chains from n vertices
equals to 2nn!/2n, since n! is a total number of permutations of xa, and we have to divide
it by the number of permutations, assigning the same chain, which is 2n. The thing is, we
can make cyclic permutations of finite set of all xa, which do not change a chain (and there
are n of such transformations) as well as reflections of finite set of all xa (which should not
be confused with the transformation xa → −xa), for which we have exactly 2 ways. In total
it gives us the factor 2n. Moreover, we have to multiply the obtained number n!/(2n) by
2n since we have two possible choices of fields in each vertex. Though this derivation is
valid only for n > 2, this formula also gives the right result for n = 2. The illustration of
different enumerations of vertices in a given chain is also presented in Figure 6.

Calculating the integrals over all sab except for s1,2, . . . , sn,1, we obtain:

GI,n[0]1 =
(−2g)n(2G(0))nα/2

2n
An,1,α,1

{
n

∏
a=1

∫
Q

dxa

}

×
{∫ 1

0
ds12 ∂s12 . . .

∫ 1

0
dsn1 ∂sn1

}
s12G(x1 − x2)

G(0)
. . .

sn,1G(xn − x1)

G(0)
,

where we have used that after permutation of xa there will be n! equal terms, so n! in the
numerator and denominator cancel each other out. The remaining integrals over sab are
easily calculated:

GI,n[0]1 =
(−2g)n(2G(0))nα/2

2n
An,1,α,1

{
n

∏
a=1

∫
Q

dxa

}
G(x1 − x2)

G(0)
. . .

G(xn − x1)

G(0)
.
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Figure 6. Typical possible graph from Isserlis–Wick theorem for the for ten-dimensional Gaussian
moment with integer powers, equal to 2. The vertices are enumerated with the coordinates, corre-
sponding to the field insertions. Additionally, the several possible ways of vertices enumeration are
presented (clockwise and counterclockwise), illustrating the genesis of a combinatorial factor.

Let us change the variables to simplify this expression:

{
xa − xa+1 = ya, if a ∈ {1, . . . , n− 1},
xn = yn;

⇒ ~y =


1 −1 0 . . . 0
0 1 −1 0 . . .

. . . . . . . . . . . . . . .
0 . . . 0 1 −1
0 0 . . . 0 1

~x,

and the last argument is the sum of all the previous:

xn − x1 = (xn − xn−1) + (xn−1 − xn−2) + . . . + (x2 − x1).

The Jacobian of such a transformation is equal to 1, since it is a linear map with
upper-triangular matrix. Here, we also assume the limit V → ∞, so we will not change the
integration domain (since it is “big enough yet”), referring to the independent consideration
of thermodynamic limit in the Section 6.1. So we receive the result for n > 2:

GI,n[0]1 =
(−2g)n(2G(0))nα/2

2n
VAn,1,α,1

{
n−1

∏
a=1

∫
Q

dya
G(ya)

G(0)

}G
(

n−1
∑

k=1
yk

)
G(0)

.

The coefficients An,1,α,1 can also be simplified:

An,1,α,1 = 2−n−1 Γ(αn)

Γ(3n/2)
15α

(α + 1)(α + 3)
,

thus, finally, the expression for vacuum energy density (21) reads:

wvac,N=1 =
3(2α + 1)Γ

(
α+1

2

)
√

π(α + 1)(α + 3)
(2gG(0))α/2 +

15α

(α + 1)(α + 3)

×
∞

∑
n=2

(−1)n−12nα/2

4n

[
gG(0)α/2

]n Γ(αn)

Γ(3n/2)

{
n−1

∏
a=1

∫
Q

dya
G(ya)

G(0)

}G
(

n−1
∑

k=1
yk

)
G(0)

,

(144)
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where we assume the thermodynamic limit V → ∞.
Expression (144) is the simple approximate formula we worked for, and in the Sections

6 and 7 we will apply it for the calculations of vacuum energy density for particular cases
of propagators G. Unfortunately, the analysis of similar formula even for fourth-degree
approximation polynomial, i.e., N = 2, becomes much more complicated due to significant
variety of Isserlis–Wick graphs with the desired properties. Let us make a remark that in
this subsection we have received in a different way all the results from Section 5.2.6 for the
particular case, namely we have checked that all the non-zero contributions correspond to
the connected Isserlis–Wick graphs.

Let us also note that in the limiting case α = 2:

wvac,N=1 = −
∞

∑
n=1

(−2g)n

2n

{
n−1

∏
a=1

∫
Q

dya G(ya)

}
G

(
n−1

∑
k=1

yk

)
, (145)

which coincides with the exact result for α = 2. We will obtain this result in Section 6.3.
This is a simple test of Expression (144), since the function f (t) = t2 belongs to the linear
span of zero-degree and second-degree Legendre polynomials.

5.3. Hard-Sphere Gas Approximation

The obtained general formulas from Section 5.2.5 are still difficult for analytical cal-
culations since of the coordinate integrals. So we have to make some assumptions to
obtain simpler and hence more useful formulas. Namely, the formulas become signifi-
cantly simpler if we use for Gn the HSG approximation, inspired by statistical physics. In
this subsection, we will also consider the coupling constant in the form g(x) = gχQ(x),
emulating a system with fixed coupling constant in finite volume V. In accordance with
Expression (10) in the Section 2, we keep all the diagonal elements equal to G(0), since they
are constant, and “cut off” all the off-diagonal elements for |xa − xb| > δ. For the graphical
illustration in Figure 7, we will denote the right hand side of Expression (10) as Gn,HSG.
Finally, according to the Section 2, we will denote the “volume of one hard-sphere particle”
as v. Let us note, that all the quantities in HSG approximation will be expressed in terms of
v and γ, so the obtained formulas will not have an explicit dependence on the definition of
these parameters.

Figure 7. Qualitative illustration of HSG approximation.
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We start from Formula (82), which precedes the Parseval–Plancherel identity, in order
to avoid the appearance of G−1

n,Γ and 1/
√

det Gn,Γ. Substituting the notion of measure (68)
and suggesting that j = 0, we arrive at the following expression:

GI,Λ,ε,n[0] =
(−g)n

n! ∑
Γ∈GC,n

{
n

∏
a=1

∫
Q

dxa

∫
R

dta

2π
F [UΛ(φ)] exp

(
−1

2
Gεt2

a

)}

×
n

∏
a<b
{exp[−νab(Γ)G(xa − xb)tatb]− 1}.

Applying for the matrix Gn HSG approximation (10) and introducing auxiliary vari-
ables sab, we obtain the following result:

GI,Λ,ε,n[0] =
(−g)n

n!
O
{

n

∏
a=1

∫
Q

dxa

n

∏
a<b

θ(δ− |xa − xb|)
}

×
{

n

∏
a=1

∫
R

dta

2π
F [UΛ(φ)] exp

(
−1

2
Gεt2

a

)} n

∏
a<b

exp[−γG(0)sabνab(Γ)tatb],

(146)

where we have used the fact that:

exp[−γG(0)νab(Γ)θ(xa − xb)tatb]− 1 = θ(xa − xb){exp[−γG(0)νab(Γ)tatb]− 1},

so the dependence of the coordinates factorises. Let us note that all the dependence of
coordinates remains only in Heaviside functions.

Now we can calculate the integrals over xa approximately with a commonly accepted
approximation analogical to one in the statistical physics of hard-sphere gas. We can place
the first particle in the full volume which gives us V and the following particle should be
no further from the first than δ:{

n

∏
a=1

∫
Q

dxa

}
n

∏
a<b

θ(δ− |xab|) ≈ Vvn−1.

Traveling back to Expression (146), we obtain:

GI,Λ,ε,n[0] =
(−g)n

n!
Vvn−1O

{
n

∏
a=1

∫
R

dta

2π
F [UΛ(φ)] exp

(
−1

2
Gεt2

a

)}

×
n

∏
a<b

exp(−γG(0)νab(Γ)sabtatb).

(147)

Expression (147) is much simpler than Expression (146), because the integrals over xa
in (147) have already been “calculated”. Well, it is still a problem to calculate directly the
remaining integrals over ta, so we use the developed technique of polynomial approxima-
tions. Exactly as in Sections 4.4.2 and 5.2, we find the following expression (“taking out of
brackets” all the transformations that lead us to it):

GI,n[0] =
(−g)n(2G(0))nα/2

n!
Vvn−1

∞

∑
q=0

q

∑
i=0

2−ni−1 Γ(αn)

Γ(ni)
uicq( f )

×O

∂2i
1 . . . ∂2i

n

∣∣∣∣
ηa=0

e
1
2

n
∑

a,b=1
sabνab(Γ)(γ(Jn)ab+(1−γ)δab)ηaηb

,

(148)

where we also used the convergence of the constructed polynomial approximations and
wrote the result as a series as well as removed all the regulators.
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Finally, substituting the explicit expression for the correlators (117) and using the
definition of vacuum energy density wvac (21), we arrive at the result:

wvac = −
∞

∑
n=1

(−g)n(2G(0))nα/2

n!
vn−1

∞

∑
q=0

q

∑
i=0

(2i)!n

2ni+1
Γ(αn)

Γ(ni)
uicq( f )

×O

 ∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a<b
(sabνab(Γ)γ)

lab

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!

.

(149)

One can also rewrite the last combinatorial sum, introducing laa = 2qa:

∑
{lab}

2
−

n
∑

a=1

laa
2

n
∏

a<b
(sabνab(Γ)γ)

lab

n
∏

a<b
(lab!)

n
∏

a=1

(
laa
2

)
!

=γni

{
n

∏
a=1

i−1

∑
qa=0

}
(2γ)

−
n
∑

a=1
qa 1

n
∏

a=1
qa!

∑
{lab}

′

1
n
∏

a<b
(lab!)

n

∏
a<b

(sabνab(Γ))
lab .

(150)

Convention: the last summation in the second line of Expression (150) is carried out

over all off-diagonal (a < b) lab > 0 satisfying the conditions
n
∑

b 6=a
lab = 2i− 2qa (where still

lab = lba). Expression (150) is useful for decreasing of the computational time for numerical
calculations using Formula (149).

Summarizing, we went ahead with some relatively simple approximate expression for
vacuum energy density wvac for a generic nonlocal propagator G. It can be simply realized
using any software suitable for symbolic computations, such as Wolfram Mathematica. Its
main advantage is that unlike in general formulas for GF one does not need to compute
numerically or analytically coordinate integrals. This fact makes us suppose that HSG
approximation is good enough for investigating the qualitative and partly quantitative
properties of nonlocal theories.

6. PT Calculation of System’s Physical Characteristics

Using the results obtained one can calculate the following characteristics of the quan-
tum scalar field in nonlocal theory:

1. quantum scalar field vacuum energy density;
2. quantum scalar field Green functions in terms of functional integral over primary field

φ, for example, two-particle Green function;
3. quantum scalar field composite operators Green functions, which are also often called

“form factors”.

In this paper, we will focus on the vacuum energy density computation. We will use the
first few exactly calculated terms of PT series in coupling constant g as well as approximate
expressions for general terms and explore what physical results can be obtained from
them. Derivation for the non-zero source general case remains the same but includes more
technical details and large calculations. Everywhere in Sections 6 and 7 we will suppose
g(x) = gχQ(x) in all the obtained formulas.

We start by considering special cases n = 1, 2 of the general Formula (81) (everywhere
in this section we refer to graphs only as the Meyer graphs; see Section 5.2.6):

1. for n = 1 there are no sab variables, since a < b, and the only graph is the single-point,
therefore:

G1[0, G1 = G(0)] = Z1[0, G1,Γ = G(0)]; (151)
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2. for n = 2 there is one sab variable, namely s12, and the only one connected graph
without loops Γ, for which ν12 = 1. So the matrix G2,Γ has a form:

G2,Γ =

(
G(0) s12G(x1 − x2)

s12G(x1 − x2) G(0)

)
,

and Formula (81) in this case reads as follows:

G2[0, (G2)ab] =
∫ 1

0
ds12 ∂s12Z2[0, (G2,Γ)ab]. (152)

Let us note that we consider only the zero-source case, for which the index I of GFs
can be omitted due to Definitions (25) and (26).

Now we are going to calculate the first orders of PT from Section 4 exactly. It appears
that for n = 1, 2 it is possible to do without using the constructed polynomial approxima-
tions or HSG approximation. For n = 1, the result can be expressed in terms of elementary,
and for n = 2 in terms of Gauss hypergeometric functions.

6.1. First Orders of Complete Green Functions and Connected Green Functions GFs

In this subsection we will provide exact expressions for Zn for n = 1, 2. Then we
obtain from them the corresponding Gn. We start with Expression (54):

Zn[0, (Gn)ab] =
(−g)n

n!(2π)n/2

{
n

∏
a=1

∫
Q

dxa

∫
R

dφa |φa|α
}

e
− 1

2

n
∑

a=1
(Gn)

−1
ab φaφb√

det(Gn)
. (153)

The matrix Gn can be degenerate on null sets, though is does not affect the convergence
of integrals because of the obtained majorant in Section 4.3.

The first order calculation is straightforward. Applying the scaling transformation of
φ and calculating the integrals over φ and then over x, we arrive at the following result:

G1[0, G(0)] = Z1[0, G(0)] = −
gG(0)

α
2 V2

α
2 Γ
(

α+1
2

)
π1/2 . (154)

The second order calculation demands more mental and technical effort. First, we
write the matrix R2 := (G2)

−1, inverse to the matrix G2:

R2(x1, x2) =
1

G(0)2 − G(x1 − x2)2

(
G(0) −G(x1 − x2)

−G(x1 − x2) G(0)

)
. (155)

This matrix is defined almost everywhere in xa space. So for the complete Green
functions GF two-particle contribution we have the multiple integral:

Z2[0, (G2)ab] =
g2

4π

∫
Q

∫
Q

dx1 dx2√
G(0)2 − G(x1 − x2)2

×
∫
R

∫
R

dφ1 dφ2 |φ1|α|φ2|α e−
1
2 R(2)

11 φ2
1−

1
2 R(2)

11 φ2
2−R(2)

12 φ1φ2 .

To calculate this integral, one should firstly rescale φ1 and φ2 variables to make the
coefficients in φ2

1 and φ2
2 in the exponent equal to one. Then, calculating the obtained
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integrals alternately, one can express the result in terms of Gauss hypergeometric function
2F1:

Z2[0, (G2)ab] =
g2G(0)α2α−1Γ

(
α+1

2

)2

π

∫
Q

∫
Q

dx dy
(

1− G(x− y)2

G(0)2

)α+ 1
2

× 2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(x− y)
G(0)

)2
)

.

(156)

Here, 2F1 is the Gauss hypergeometric function:

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
, (157)

for |z| < 1 and the analytical continuation of this series for |z| > 1. The parameters a, b and
c are positive in our paper, (a)n, (b)n and (c)n are the rising factorials. Expression (156) can
be simplified, but we move on to calculating G2.

For calculating G2, we have to recall (152). In the case n = 2 it is useful to rewrite the
operator O as the difference of values for s12 = 1 and s12 = 0, rather than the integration of
the derivative. So the following formula holds:

G2[0, (G2)ab] = Z2[0, (G2,Γ)ab]−Z2[0, G(0)δab]. (158)

In the result, since 2F1(a, b; c; 0) = 1 for positive a, b, c, we obtain:

G2[0, (G2)ab] =
g2G(0)α2α−1Γ

(
α+1

2

)2

π

∫
Q

∫
Q

dx dy


(

1− G(x− y)2

G(0)2

)α+ 1
2

× 2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(x− y)
G(0)

)2
)
− 1

}
.

(159)

Let us note that the coordinate integrals in G1 and G2 diverge as V → ∞ (in the thermo-
dynamic limit). However, the integrals for Z1 and Z2 diverge as V and V2, correspondingly.
Additionally, the connected Green functions GF G[0] is constructed so that all the terms
diverging in total (with prefactors also taken into account) faster than V vanish. As a result,
we obtain that G[0] ∼ V, which makes correct the definition of vacuum energy density.
This fact is well known in statistical physics. Thus, in the thermodynamic limit, we obtain
the following result:

G2[0, (G2)ab] =
g2G(0)αV2α−1Γ

(
α+1

2

)2

π

∫
Rd

dx


(

1− G(x)2

G(0)2

)α+ 1
2

× 2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(x)
G(0)

)2
)
− 1

}
.

(160)

Informally, this result is expected, since it can be obtained by changing the variables
Ξ = x + y and ξ = x− y, and integration over Ξ gives the factor V. Though, to prove it in
a more strict manner we should make some effort. Namely, denoting the integrand in (159)
as f , consider the following transformations:∫

Q

∫
Q

dx dy f (x− y) =
∫

Q
dy
{∫

Rd
dx f (x− y)−

∫
Rd\Q

dx f (x− y)
}

. (161)
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In the first integral we shift the variable x in the inner integration, and in the second
integral we make the change of variables to Ξ and ξ, therefore:∫

Q
dy
∫
Rd\Q

dx f (x− y) = V
∫
Rd\2Q

dξ f (ξ) +
∫

2Q
dξ ξ1 . . . ξd f (ξ), (162)

where we have introduced the notation 2Q for the cube with the same centre, as Q, and
doubled lengths of the edges. Further, for the applicability of the thermodynamic limit, we
require that:

1.
∫
Rd\2Q dξ f (ξ)→ 0, when V → ∞;

2. |
∫

2Q dξ ξ1 . . . ξd f (ξ)| < ∞, when V → ∞.

These requirements can be satisfied, for example, if the propagator G satisfies the HSG
approximation applicability conditions, which we assume to be satisfied throughout this
paper, as already discussed after Equation (12). As a result, we have proven the expansion
for V → ∞: ∫

Q

∫
Q

dx dy f (x− y) = V
{∫

Rd
dx f (x) + o(1)

}
. (163)

This expression finishes the proof of (160).
Finally, we also introduce the hyperspherical coordinates for rotational invariant

theories, which leads us to the following result:

G2[0, (G2)ab] =
g2G(0)αV2α−1Γ2

(
α+1

2

)
π

dπd/2

Γ(d/2 + 1)

×
∫ ∞

0
dr rd−1


(

1− G(r)2

G(0)2

)α+ 1
2

2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(r)
G(0)

)2
)
− 1

.

(164)

Because, physically, we usually consider theories with a propagator G that depends
only on the distance between particles. This is true, in particular, for Euclidean Klein–
Gordon (with sharp cut-off) and virton propagators, which we will describe in the Section 7.

6.2. First Orders of Vacuum Energy Density

In this short subsection, we list the expressions for the vacuum energy density wvac
(21). Collecting the contributions of the first two PT orders, we arrive at the final expression
in thermodynamic limit:

wvac =
gG(0)

α
2 2

1+α
2 Γ
(

α+1
2

)
(2π)1/2 −

g2G(0)α2α−1Γ
(

α+1
2

)2

π

×
∫
Rd

dx


(

1− G(x)2

G(0)2

)α+ 1
2

2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(x)
G(0)

)2
)
− 1

.

(165)

Similarly for rotational invariant theory:

wvac =
gG(0)

α
2 2

1+α
2 Γ
(

α+1
2

)
(2π)1/2 −

g2G(0)α2α−1Γ
(

α+1
2

)2

π

dπd/2

Γ(d/2 + 1)

×
∫ ∞

0
dr rd−1


(

1− G(r)2

G(0)2

)α+ 1
2

2F1

(
α + 1

2
,

α + 1
2

;
1
2

;
(

G(r)
G(0)

)2
)
− 1

.

(166)

We will consider important particular cases in the following.
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6.3. Verification of Pt Formulas for the First Orders for α = 2

We can independently calculate the GF Z for α = 2, which simply yields the Gaussian
integral. Using the result, one can check the formulas for the vacuum energy density,
obtained above. In this subsection, we restrict ourselves to the case of a zero source and
denote all the results of the presented independent calculation specific for α = 2 with the
upper index: something(α=2).

6.3.1. Exact Result

We start from the GF Z in terms of path integral in physical notations of Section 3:

Z (α=2)[0] =
∫

Φ
D[φ] e−

1
2
∫
Rd
∫
Rd dx dy L(x,y)φ(x)φ(y)−

∫
Rd dx g(x)φ(x)2

,

with the same requirements to L and G = L−1, as in the Section 4.1. In terms of the Gaussian
measure γG, this expression reads as follows:

Z (α=2)[0] =
∫

Φ
γG(dφ) e−

∫
Rd dx g(x)φ(x)2

.

Such an integral is well-known and equals to [47] (hereafter, Id is the identity operator):

Z (α=2)[0] =
1√

det(Id + 2Gg)
. (167)

We define the product Gg of operators G and g as the result of applying first the new
operator g, which consists in multiplying by the function g (we denote this function with
the same symbol), and then the operator G. The operator Gg is trace class as a product of
trace class G and bounded g. Therefore, it is compact and has a countable set of eigenvalues,
and, possibly, zero in its spectrum, and nothing more. We denote these eigenvalues as
(Gg)n for n ∈ N. The infinite-dimensional determinant is defined as follows:

det(Id + 2Gg) :=
∞

∏
n=1
{1 + 2(Gg)n}. (168)

Let us note that it is exactly the Fredholm determinant of the operator Gg. This infinite

product converges, since converges the series tr (Gg) =
∞
∑

n=1
(Gg)n. Expression (167) can be

obtained with the same methods, as PT in Section 4.2. One should apply DCT and then
calculate the remaining Gaussian integrals, which gives the desired formula. For the GF G
we therefore obtain:

G(α=2)[0] = −1
2

tr ln(Id + 2Gg), (169)

where we have used the formula ln det(1 + A) = tr ln(1 + A) for trace class operator A.
This formula can be proved using the definition of function of an operator through the
values of this function on the eigenvalues of A, and we will not present its derivation here,
referring to textbooks in functional analysis. Expanding the logarithm of an operator, using
equivalent for analytical functions and bounded operators definition of function of an
operator, we obtain the following series:

G(α=2)[0] =
1
2

∞

∑
n=1

(−2)n

n
tr
{
(Gg)n}. (170)
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Now we rewrite the powers of operators in terms of integrals, using the notion of oper-
ator’s G integral kernel G(x− y) and also substitute the coupling constant g(x) = gχQ(x),
which cuts off the integration domains:

G(α=2)[0] =
1
2

∞

∑
n=1

(−2g)n

n

{
n

∏
a=1

∫
Q

dxa

}
G(xn − x1)

n−1

∏
a=1

G(xa − xa+1). (171)

Similarly to Section 5.2.7, we change variables and reduce the number of integrals by
one, which leads to the appearance of the factor V:

G(α=2)[0] =
1
2

V
∞

∑
n=1

(−2g)n

n

{
n−1

∏
a=1

∫
Q

dya G(ya)

}
G

(
n−1

∑
a=1

ya

)
. (172)

Finally we can write down the expression for the vacuum energy density (21):

w(α=2)
vac = −G[0]

V
= −1

2

∞

∑
n=1

(−2g)n

n

{
n−1

∏
a=1

∫
Q

dya G(ya)

}
G

(
n−1

∑
a=1

ya

)
. (173)

From this expression one can see that it coincides with Legendre polynomial approxi-
mation for α = 2, obtained in the Section 5.2.7.

6.3.2. Comparison of PT Formulas for the First Orders for α = 2 with the Exact Result

Let us recall Formulas (154) and (160) for G1 and G2 and substitute α = 2 into them.
Taking into account, that:

2F1

(
3
2

,
3
2

;
1
2

; z2
)
=

2z2 + 1

(1− z2)
5/2 , (174)

we receive the following compact expressions:

G1[0, G(0)] = −gG(0)V, G2[0, (G2)ab] = g2V
∫
Rd

dx G(x)2, (175)

which coincides with directly obtained result for α = 2. So, our formulas pass this simple
test, which indirectly displays that they are correct.

7. Research of System Physical Characteristics
7.1. Research of First PT Terms in Vacuum Energy Density

In this subsection we are going to calculate the first PT terms for vacuum energy
density. Formerly we have obtained the general Formulas (154) and (164), and now we are
going to substitute different propagators into these formulas: virton propagator [3], which
is purely nonlocal, and Euclidean Klein–Gordon propagator (with sharp cut-off), which
admits a local limit. Then we will consider a local theory as a certain limit of a nonlocal
one, being its regularization. However, let us note that the nonlocal theory is of important
independent interest.

7.1.1. Nonlocal Case

We start from a typical nonlocal QFT propagator, which is the virton propagator:

G(x) = G(0) e−µ2x2
, (176)

where µ is an ultraviolet cut-off parameter and G(0) > 0 is a some constant. Let us calculate
numerically the following integral:

ψ(d, α) =
∫ ∞

0
dt td−1

{(
1− e−2t2

)α+ 1
2

2F1

(
α + 1

2
,

α + 1
2

;
1
2

; e−2t2
)
− 1
}

. (177)
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The plots for ψ(d, α) depending on α at different d are presented in Figure 8. Let us
note that the integrand above is always positive.

Figure 8. Results of numerical calculation of the integral ψ(d, α).

As a result, we arrive at the following expression for the vacuum energy density:

wvac = b1gG(0)
α
2 − b2

g2G(0)α

µd + O(g3), (178)

where:

b1 =
2

α
2 Γ
(

α+1
2

)
π1/2 , b2 =

2α−1Γ
(

α+1
2

)2
πd/2−1

Γ
(

d
2 + 1

) ψ(d, α).

In all the following calculations, we will see the qualitatively similar behaviour of
wvac at small g: positive coefficient in linear term and the negative one in quadratic term.
Therefore, all the results obtained in the paper are consistent with each other.

7.1.2. Local Case

Now let us consider the local QFT and calculate the first terms of vacuum energy
density for the Klein–Gordon propagator. We consider the usual cut-off regularization of
Gaussian theory Green function with Heaviside step function, i.e., sharp cut-off:

G(x) =
∫
Rd

dk
(2π)d

eikx

k2 + m2 θ(µ− |k|),

where µ is again the UV cut-off parameter. Since we want to obtain a local theory as a
limiting case, it is appropriate to consider the cases of d = 2, 3. Taking into account, that
µ� m, for G(0) for Klein–Gordon propagator in d dimensions one have:

G(0) =
∫
Rd

dk
(2π)d

θ(µ− |k|)
k2 + m2 '

 1
4π ln

(
µ2

m2

)
, d = 2;

µ

2π2 , d = 3.
(179)

It will be convenient not to substitute G(0) explicitly in the obtained formulas.
To calculate the second order perturbation theory, let us note that the integrand

depends on the ratio G(x)
G(0) , where G(0) is an extremely large. So one can find the value of
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the integral in the dominating order in µ by expanding the integrand in powers of G(x)
G(0) . So,

in principal order in µ:

G2[0] ' 2α−1α2Γ

(
α + 1

2

)2
g2VG(0)α

∫
Rd

dx
(

G(x)
G(0)

)2

,

where we use the analyticity of 2F1 in zero argument and take the values of derivatives
from (157). We can directly calculate the remaining integral:

∫
Rd

dx G2(x) =
∫
Rd

dk

(2π)d
θ(µ− |k|)
(k2 + m2)

2 =


1

2π

∫ ∞
0 dk k

(k2+m2)
2 = 1

4m2π
, d = 2;

1
2π2

∫ ∞
0 dk k2

(k2+m2)
2 = 1

8mπ , d = 3.
(180)

In the second equality of Expression (180), we removed the UV regulator, since this is
possible for the corresponding values of d. Hence, we receive:

G2[0] '


2α−3α2

m2π
Γ
(

α+1
2

)2
g2VG(0)α−2, d = 2;

2α−4α2

mπ Γ
(

α+1
2

)2
g2VG(0)α−2, d = 3.

(181)

Putting it all together, for the first PT terms for the vacuum energy density wvac we
obtain the expression, that was already mentioned in the Section 2:

wvac m−d = a1
gG(0)α/2

md + a2

(
gG(0)α/2

md

)2(
md−2

G(0)

)2

+ O(g3)

a1 = 2
α+1

2 Γ

(
α + 1

2

)
, a2 =

2α−1

π
Γ

(
α + 1

2

)2
{

1
4 , d = 2;
1
8 , d = 3.

Here, we have artificially separated some combination of parameters. In the Section 7.3
it will turn out that a necessary condition for the non-triviality of the local limit is to keep
constant exactly these combinations. However, it should be noted that obtaining local
theories, as limiting cases of nonlocal ones, generally requires a deeper research.

7.2. Research of Second-Degree Legendre Polynomial Approximation Formula

Let us start from the general Formula (144) for second-degree Legendre polynomial
approximation (in the thermodynamic limit, in which the vacuum energy density is of
greatest interest):

wvac,N=1 =
15α/4

(α + 1)(α + 3)

{
Γ

(
α + 1

2

)
2α/2+2
√

π

1 + 2α

5
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∞

∑
n=2

(−1)n−1

n

× 2nα/2
Γ
(

n(α+1)
2

)
Γ
( 3n

2
) [

gG(0)α/2
]n
{

n−1

∏
a=1

∫
Rd

dya
G(ya)

G(0)

}G
(

n−1
∑

a=1
ya

)
G(0)

.

(182)

In the following, we will consider only the terms with n ≥ 2, since the case n = 1 is
already simple enough. Now we are going to substitute different propagators into this
formula.
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1. Nonlocal Case. For the virton propagator, the integrals in Expression (182) are Gaussian,
therefore, can be calculated explicitly:

{
n−1

∏
a=1

∫
Rd

dya
G(ya)

G(0)

}G
(

n−1
∑

a=1
ya

)
G(0)

=
(2π)

n−1
2 d

√
nµd(n−1)

.

Thus we arrive at the following expression:

wvac,N=1(z, µ) =
15α/4

(α + 1)(α + 3)
µd

(2π)d/2 h
(
(2π)d/22α/2z

)
, (183)

for the entire function:

h(z) =
4α− 3

5

Γ
(
(α+1)

2

)
Γ(3/2)

z +
∞

∑
n=1

(−1)n−1

n3/2 zn
Γ
(

n(α+1)
2

)
Γ(3n/2)

, (184)

and the parameter:
z = gG(0)α/2/µd. (185)

The summation over n indeed starts from one, but it is convenient to separate the linear
term into two parts.

2. Local Case. Again we restrict ourselves to the cases d = 2 and 3. We have already
calculated G(0) for Klein–Gordon propagator. For integrals, that we have for n ≥ 2,
the following chain of equalities is true:

{
n−1

∏
a=1

∫
Rd

dya
G(ya)

G(0)

}G
(

n−1
∑
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)
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=
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(2π)d
1

(k2 + m2)
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(
m2) d

2−n
Γ
(

n− d
2

)
(4π)

d
2 Γ(n)

.

We removed the UV regulator again. This formula is valid for d = 2, 3. It is convenient
to introduce the following dimensionless parameters:

z =
gG(0)α/2

md = const, ξ =
md−2

G(0)
= const. (186)

In contrast to the nonlocal case, in the local one we define the parameter z in terms
of m. In the following subsection we will explore the way to scale parameters of a
nonlocal theory to obtain a non-trivial local limit. Looking ahead, we announce that
keeping exactly these parameters constant is a necessary condition of the non-trivial
local limit existence.
So, in these terms the expression for the vacuum energy density reads:

wvac,N=1m−d =
15α/4

(α + 1)(α + 3)

{
Γ

(
α + 1

2

)
2α/2+2
√

π

1 + 2α
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(4π)d/2n!

Γ
(

n(α+1)
2

)
Γ
(

n− d
2

)
Γ
( 3n

2
) (zξ)n

.

(187)

The numerical plots of (183) and (187) are presented in Figure 9. Their discussion
will be given in the Section 7.5. Let us note that these formulas are not very friendly for
numerical calculations, though, their asymptotics may be of separate interest. In the present
paper, however, we restrict ourselves to numerical results.
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Figure 9. Plots of vacuum energy density wvac second-degree approximations (144), applied to vir-
ton (183) and Klein–Gordon (187) cases in dimension d = 3 and α = 4/3. The picture is qualitatively
the same for d = 2 and others α ∈ (1, 2).

7.3. Local Theory as a Limit of a Nonlocal One

In this subsection we are going to research briefly whether it is possible to scale
nonlocal theory in some way to obtain a local one. We start from the writing the generic
term of the polynomial approximation for GI [0]. Everywhere in this subsection the term
“converging integral” means the converges of integral when the region of integration
extends from Q to Rd. The same for the term“diverging integral”. We also will use the
notations from Formulas (117) and (128).

According to these formulas, we have the following n-particle term for the GI [0] (to
simplify the analysis, only one term from the combinatorial sum is written out and up to a
some numerical coefficient depending on the term):

(
gG(0)α/2

)n
{

n

∏
a=1

∫
Q

dxa

}
n

∏
a<b

G(xa − xb)
lab

G(0)lab
= Vmd

(
gG(0)α/2

md

)n(
md−2

G(0)

) n
∑

a<b
lab

.

We have written this expression from the dimension considerations and translational
invariance of the considering propagator. Let us assume that all the coordinate integrals
except one converge, and in this case m is the only dimensional parameter in the integrals.
So for the vacuum energy density we have the following expression:

wvacm−d = Ψ

(
gG(0)α/2

md ,
md−2

G(0)

)
,

for some function Ψ (formal power series). Therefore, in order to obtain a non-trivial local
limit one should scale m, g and G(0) so that the arguments of Ψ stay constant. However,
it is only a necessary condition but not sufficient, since for the degrees of the polynomial
approximation higher than two there appear diverging integrals and one have to solve the
renormalization problem.

It is well-known that in d = 2 all the power theories are renormalizable and in d = 3
only the theories with power which ≤ 5 are renormalizable. This means that for d = 3 it is
impossible to gather all the “infinities” coming from the monomials with degrees higher
than 4 into some new parameters. So, we cannot write a better approximation for d = 3
than the fourth-degree approximation.

The conclusion is that being applied to local theories in d > 2, our method has a limited
precision of degree 4 in d = 3 and degree 2 in d ≥ 4. Though, even the second-degree
approximation can provide some tool for (rough) quantitative research.
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7.4. Hard-Sphere Gas Approximation

The formulas for vacuum energy density (149) and (150), obtained using HSG, are
convenient and simple for numerical calculations. As a practise in statistical physics and
numerical simulations show, HSG approximation gives worthy results, consistent with the
experiment. Unfortunately, we have to deal with the power series in system parameters, so
it requires accurate work with precision of calculations to distinguish the errors from real
results. We make the truncations of both series in Expression (149), namely n0 for index
n and N for index q, and use a numerical experiment to explore the truncations influence
on the results. We assume α = 4/3, and one can check that there will be no qualitative
differences for others α ∈ (1, 2).

Recall that in the HSG approach we have approximated the matrix Gn by the Heaviside
step function and parameters γ and δ in accordance with Expression (10). Let us introduce
new variables:

z = gG(0)α/2v, εvac = wvacv, (188)

where εvac is the vacuum energy, contained in one “hard-ball” (specific energy). Further,
we are going to plot the dependency εvac(γ, z), since for HSG approximation γ and z are
the most natural parameters.

The plots for different truncations (n0, N) are presented in Figure 10.

Figure 10. Comparative plots of specific energy εvac approximations for γ = 0.5 and different values
of truncations (n0, N). Only the complete graph is taken into account in the calculations.

So we argue that a quite accurate and simple approximation for complete graph
contribution for z ∈ [0, 20] and γ ∈ [0, 1] is given by the following expression:

εvac(γ, z)≈ 1√
π(α + 1)(α + 3)(α + 5)(α + 7)
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)]}

.

(189)

This expression looks complicated but algebraically it is a polynomial in z and γ, so it
can be manipulated without significant struggles in any system of computer algebra, e.g.,
Wolfram Mathematica.
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At the end of the subsection, it is curious to plot the 2-dimensional surface of εvac(γ, z)
for n0 = 3 and N = 3 as well as the plot εvac(γ, z) for some chosen γ. The results are
presented in Figure 11.

Figure 11. Plot of specific energy εvac(γ = 0.5, z) (left) and surface of εvac(γ, z) (right) for n0 = 3, N = 3
and α = 4/3.

The following subsection is devoted to the discussion of plots.

7.5. Analysis of Plots and Comparison with PT

Throughout this paper we have obtained the plots of vacuum energy density or specific
energy for three different cases, namely:

1. virton vacuum energy density for the second-degree polynomial approximation (Figure 9);
2. Klein–Gordon vacuum energy density for the second-degree polynomial approxima-

tion (Figure 9);
3. specific energy in HSG approximation (Figure 11).

Throughout this subsection, for every theory from the three considered (virton, Klein–
Gordon and HSG), we will use the notation z for the argument, keeping in mind that its
definition is the same for every theory and is given by (185), (186) and (188), correspondingly.
For this reason, it is also incorrect to compare the numerical values of wvac for Klein–Gordon
and virton theories, because the parameters µ and m are fundamentally different. The
parameter µ is UV parameter, while the parameter m is IR one. As for the HSG formulas,
they could be compared with virton and Klein–Gordon cases separately, but after the
proper change of parameters to γ and v according to (12).

7.5.1. Analysis of HSG Approximation

In the case of HSG approximation we have found the inflexion point. It was observed
from the third-order in the coupling constant g and the sixth-order polynomial approxima-
tion, which we encoded in the plot as (3, 3) (three particles and sixth degree). It slightly
changed by increasing the approximation order that was checked up to (4, 3) (four particles
and the sixth degree). Thus we expect that this result stays relevant for higher orders of
approximation.

Both the virton and Klein–Gordon Gaussian theory Green functions satisfy the HSG
approximation conditions. Though, the error of this approximation demands separate
research, we can extract some predictions from this fact. For example, we can estimate
that the next orders of polynomial approximation addition (without HSG) should result in
arising of an inflexion point in virton and Klein–Gordon cases.
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7.5.2. Analysis of PT First Orders

In the general propagator case there is no point of inflexion in orders g and g2 (165)
and the function wvac is convex upwards (concave function). The existence of the inflexion
point will be determined with the next PT orders.

We have also calculated the order g3 for the fourth-degree approximation in the virton
theory, but we will not present it here, because of this paper size. However, this contribution
is positive for g > 0, so it produces an inflexion point referring to the virton propagator.
Recalling the behaviour of polynomial approximations in the HSG approach, we expect
that fourth and higher PT orders as well as higher degrees of approximations will not affect
the existence of such an inflexion point. In the Klein–Gordon case, the coordinate integrals
are much more complicated, so we postpone its research for future papers.

7.5.3. Analysis of Virton and Klein–Gordon Second-Degree Approximation Formulas

At the same time, we do not observe an inflexion point in the case of second-order
polynomial approximation for the virton (183) and Klein–Gordon (187) vacuum energy
densities. Numerically its absence follows from plots, and analytically from the asymptotics
of the corresponding series. Namely, we have:

wKG
vac = az− b(zξ)3/2, wv

vac = Az + B ln3/2 z, (190)

for some positive constants A, B, a, b. We do not present the derivation of these asymptotics
in this paper since they are used only for reference.

From the written asymptotics it follows that both functions are convex upwards, which
(combined with numerical plots) proves the absence of the inflexion points in the approxi-
mations of the second degree. Moreover, their convexity differs from the one predicted with
the first three PT orders (at least, for the virton case) and the HSG consideration. Recall that
we have deduced from these approaches that the correct behaviour at infinity is downward
convex (convex function). Thus we come to the conclusion that these formulas are not
applicable for a strong coupling limit.

Moreover, the vacuum energy density in the Klein–Gordon theory behaves non-
physically in the large coupling constants region because it becomes negative for sufficiently
large z. It can be seen both from plots and asymptotics. Moreover, from the asymptotic, it
follows that such negative values are reached for any ξ if z is sufficiently large.

Summarising the discussion of the second-degree polynomial approximation formulas,
they fail to reach a strong coupling limit. Though, they can describe the intermediate values
of the coupling constant (rather than very small only), and therefore they can be the
computational alternative for PT first orders. The plots of vacuum energy density for
second-degree polynomial approximation should be cut on some value of g.

8. Discussion

Let us start the discussion section from a brief overview of the work carried out
in the paper. This paper starts from the theory with fractional power self-interaction∫
Rd dx g(x)|φ(x)|α with α ∈ (1, 2) for the nonlocal quadratic part. We rewrite the interaction

potential through the successive application of straight and inverse Fourier transform (41).
After that, in GF we expand the exponent with potential (50) and face the problem: we
need to calculate complicated Gaussian expectation value of fractional potential Fourier
transform. The solution to this problem arises from the Parseval–Plancherel identity (52),
which brings us back to the original potential. Proof of the obtained series convergence for
zero sources is presented in Section 4.3.

Our next goal is to introduce the connected Green functions GF (18) using the Meyer
theorem (66). It generalizes the standard technique commonly used in statistical physics
and results in the general expression for the connected Green functions GF in terms of
coupling constant powers series (79).
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The main part of our work focuses on the research of the “fractional Gaussian mo-
ments” (101) expansion in terms of integer moments. We perform careful approximation
with the Legendre polynomials after restriction of the integration domain on a compact
(hypersphere) Sn−1 in every n-particle contribution, resulting in (128), rewrite the obtained
sum over graphs in a form convenient for direct calculations, and end with the expression
for connected Green functions GF in terms of weighted sum of theories with integer powers
contributions, obtaining this way an immediate generalisation of Feynman technique, but
with converging series.

In the final part we focus on the exploration of the obtained PT applications for the
cases of virton and Klein–Gordon propagators as well as for the HSG case. Thus, we
provide comprehensive thorough research of various generating functionals. A brief list of
the obtained results follows:

1. Construction of non-asymptotic PT series for generating functional Z in powers of
coupling constant g (53), proof of its convergence in Section 4.3 and derivation of
similar formulas for GF G = lnZ (82). We assume that these PT series have a strong
coupling limit;

2. Derivation of the general Formulas (53) and (85) for Zn and Gn in fractional potential
scalar field theory (1) with arbitrary nonlocal quadratic part of the action. These
expansions are the generalization of common PT where we explicitly have a sum over
Wick graphs (Feynman diagrams) with additional weights;

3. Construction of calculable and converging approximations for Zn and Gn (111) with
any precision, obtained with the polynomial approximation of function f (t) = |t|α in
[−1, 1]. It results in the fact that we can extend our attention to non-integer potential
theories and rewrite it through a weighted sum of integer potential theories. As
a consequence for the probability theory, we provide the series representation for
multidimensional Gaussian distribution moments of fractional order, which has not
been described in the literature yet, as far as we know;

4. Application of HSG approximation for Zn[0] and Gn[0] (148), obtaining vacuum energy
density (149) and clarifying its dependence on parameters of the theory (189);

5. Calculation and plotting of virton (183) and Klein–Gordon vacuum energy densities
(187) for the second-degree Legendre polynomial approximation wvac,N=1;

6. Finding the inflection point for the vacuum energy density in HSG approximation
(Figure 10). We expect that this result remains if one adds the next orders of approxi-
mation and also in the exact result.

There were made multiple checks and comparisons of the obtained results.

9. Conclusions

Traveling back to the very beginning, to the motivation of the research, presented in
this paper: the research of nonlocal field theories with interaction potential g|φ|α may shed
light on the strong coupling behaviour of nonlocal φ4 theory providing such a definition
that the latter is non-trivial for d ≥ 4. Similarly for the nonlocal φ6 theory and d ≥ 3.
Moreover, our research produces new techniques for treating nonpolynomial potentials.

Additionally in the conclusion, we provide a brief list of possible further research
topics that develop and generalize the material of our paper:

1. Research of the local limit of the nonlocal theories and their renormalizability. We
expect that the new PT gives finite results for local QFTs with fractional potential after
a suitable renormalization. That is sufficiently different from common PT, where this
type lies out of applicability;

2. Research of the analytical continuation of the obtained formulas in parameter α to the
domain α > 2, specifically to α = 4 and α = 6;

3. We have carried out our research for the fractional potential, but all the general formulas
can be easily generalized for other nonpolynomial potentials;

4. There are many different fields in QFT, e.g., complex-valued scalar field, fermionic
field, tensor field. All these theories allow fractional generalization;
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5. The research of φ4 and φ6 theories directly in terms of integral over Gaussian measure
in separable HS;

6. Application of the Parseval–Plancherel identity for the integral over Gaussian measure
in separable HS, which is very important for the strong coupling limit. It may find a
lot of application in condensed matter and statistical physics;

7. One of the central points of our paper is the polynomial approximation, where we can
find error explicitly. Due to this, we have next two directions in this area:

(a) Research of the polynomial approximation next orders. It is a common direction
for all perturbation theories;

(b) Careful treatment of error rate for different parameters in the theory, that can
improve understanding of this approximation validity. An interesting question is
“Where do we have to truncate the parameter z to obtain a physically meaningful
result?”;

8. In our paper we focused on vacuum energy density and did not pay enough attention
to two-particle correlation function, four-particle, etc. The first one gives the Green
function of theory with interaction and the second one describes the collision of
particles. The research of n-particle Green functions is the natural next step in the study
of fractional field theories. Unfortunately, this is difficult to do in one paper due to
the large volume of material. It is also interesting to explore the composite operators
Green functions, which were already mentioned above;

9. Stochastic flow velocity field can be added in a multiplicative way to the theory of
the scalar field with fractional interaction. In this case, we obtain a passive scalar
model (a model of turbulent transport of impurity particles), which is of independent
interest [44];

10. The obtained formulas are rather cumbersome, so their direct exploration is difficult
enough. In such situations, asymptotic expressions are commonly used. Therefore,
finding asymptotics for both HSG and high-order polynomial approximations is an
independent interesting and useful problem;

11. We derived the expansion for fractional QFT in terms of integer QFTs. This situation
is similar to conformal field theory, where a product of operators expands through
infinite sum of other operators. However, there are such conformal theories in which
this sum is finite. Therefore, we can assume that there are such nonlocal nonpolynomial
theories in which we have a finite number of integer moments. Probably, such theories
should contain not only bosonic but also fermionic fields;

12. It also seems natural to consider fractional field theories in a curved space-time. There
are several problems that can arise here:

(a) In the virton propagator case, there are no solutions to the classical equations of
motion for scalar field in flat space-time. However, virton quantum fluctuations
in flat space-time are non-zero (which is clarified by the word “virton” itself).
If in a curved space-time the correct definition of virton is still possible, then
quantum fluctuations of virtons can affect the classical gravitational field. If the
propagator ensures the existence of a non-zero classical solution, the interaction
action value on classical fields (scalar and gravitational) is non-zero. This may
be useful in astrophysics as scalar models of dark energy. However, establishing
the connection between the parameters of the nonlocal field theory and those
observed in astrophysics requires a separate study.

(b) Inspired by string theory, one can consider fractional field theory in high-
dimensional spacetime, in particular d = 26. In this case, it is interesting to
consider various compactifications of the theory, as well as the calculation of GFs
after compactification. Perhaps such a problem will also be useful in astrophysi-
cal research.

(c) Perhaps the most general case here is the calculation of integrals over Gaussian
measures specified in the space of both fields (scalar and gravitational). In
physical terminology, the calculation of the path integrals over both fields. The



Symmetry 2023, 15, 1823 62 of 64

development of methods for calculating integrals over Gaussian measures in
infinite-dimensional spaces is the necessary condition for the formulation of the
quantum theory of gravitation.

Speaking about the most far-reaching research topics, one should mention the idea of
the UV divergences elimination directly in path integral using some special (still unknown)
“rule” and definitions of measure and integral in LCTVS. The family of seminorms defined
by the Minkowski functionals and the scale hierarchy of QFT may turn out to be related to
each other. However, this is quite a complicated topic and it takes a considerable amount
of effort.

Note added. Instead of expanding path integrals in convergent PT series, one can
research the issue of its approximation by absolutely convergent series finite number of
terms. In other words, is it possible to approximate a path integral with any predetermined
accuracy by a finite sum, depending on this accuracy? The answer to this question for
scalar field theories with polynomial interactions turns out to be positive, and the proof is
given in two papers [62,63] that deserve a special mention.
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GCPF Grand Canonical Partition Function
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