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Abstract: A solution to the trace convergence problem, which arises in proving the mean-square
convergence for the approximation of iterated Stratonovich stochastic integrals, is proposed. This
approximation is based on the representation of factorized Volterra-type functions as the orthogo-
nal series. Solving the trace convergence problem involves the theory of trace class operators for
symmetrized Volterra-type kernels. The main results are primarily focused on the approximation
of iterated Stratonovich stochastic integrals, which are used to implement numerical methods for
solving stochastic differential equations based on the Taylor–Stratonovich expansion.
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1. Introduction

For the analysis of dynamical systems whose mathematical models include stochastic
differential equations, numerical methods for their solution are often used. To obtain high
accuracy of the approximation of output processes, it is necessary to apply numerical
methods with high order of strong or mean-square convergence based on Taylor–Itô
or Taylor–Stratonovich expansions [1–4]. These methods involve modeling iterated Itô
or Stratonovich stochastic integrals, respectively, which can be represented as multiple
stochastic integrals of functions

kn1 ...nk (t1, . . . , tk) = (t1 − t0)
n1 . . . (tk − t0)

nk 1(tk − tk−1) . . . 1(t2 − t1)

=

{
(t1 − t0)

n1 . . . (tk − t0)
nk for t1 < . . . < tk

0 otherwise,
(1)

where k ∈ N = {1, 2, . . . }, t1, . . . , tk ∈ T = [t0, T] and n1, . . . , nk ∈ {0, 1, 2, . . . }, t0 > 0, 1 is
the unit step function:

1(t) =
{

1 for t > 0
0 for t 6 0.

If n1 = . . . = nk = 0, then the notation k is used instead of k0...0 for simplicity.
In the general theory of multiple and iterated stochastic integrals, a wider class of

functions is of interest:

kψ(t1, . . . , tk) = ψ1(t1) . . . ψk(tk)1(tk − tk−1) . . . 1(t2 − t1)

=

{
ψ1(t1) . . . ψk(tk) for t1 < . . . < tk
0 otherwise,

(2)

where ψ1, . . . , ψk ∈ L2(T). The function kψ is called the factorized Volterra-type function [5].
Here and further, L2(X) denotes the space of square-integrable functions f : X → R,
R = (−∞,+∞). Also, the space of continuous functions f : X→ R is denoted by C(X).
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The multiple Itô stochastic integral introduced in [6] is defined for any function
f ∈ L2(T

k), and such an integral can be represented as a multiple random series [7].
The multiple Stratonovich stochastic integral [8,9] is more complicated, and when it is
represented as a multiple random series, the trace convergence problem arises [10]. The rep-
resentation of multiple stochastic integrals by multiple random series is based on the
expansion of f in the orthogonal series using a basis of L2(T).

For clarity, we can use an analogy with the theory of linear operators. In fact, the differ-
ences between functions, for which we can define multiple Itô and Stratonovich stochastic
integrals, are partly similar to the differences between Hilbert–Schmidt operators and trace
class operators [11], respectively.

If we consider multiple Itô and Stratonovich stochastic integrals for numerical methods,
which are used for solving stochastic differential equations, then it is enough to restrict
ourselves to functions (2). In fact, we can only study functions (1) for this purpose [3].
However, multiple (or iterated) stochastic integrals should be specified with respect to
all possible combinations of components of the multidimensional Wiener process [1,3,12].
In [3,13,14], the trace convergence problem in this context is studied in detail with additional
smoothness conditions on the weights ψ1, . . . , ψk and with a restriction on both a parameter
k and a basis of L2(T).

Note that some multiple Stratonovich stochastic integrals coincide with corresponding
multiple Itô stochastic integrals, but for other Stratonovich integrals, the trace convergence
problem remains. One variant of the briefly described problem is solved in this paper for
the weights from L2(T) and without additional restrictions on both a parameter k and
a basis of L2(T).

The motivation for this study is that the solution to the trace convergence problem
provides a theoretical basis for the representation of iterated Stratonovich stochastic inte-
grals as multiple random series and for their mean-square approximation based on partial
sums of these series. This is an important component for the implementation of numerical
methods for solving stochastic differential equations with high order of strong or mean-
square convergence. Such methods can be used to simulate stochastic processes in different
fields [15–17].

2. Preliminary Discussion and Problem Statement

Let j1, . . . , jk ∈ {1, 2, . . . , s} and W1, . . . , Ws be independent Wiener processes defined
on a probability space (Ω,S, P). Denote by IJW(j1 ...jk)

T and SJW(j1 ...jk)
T two linear operators

that establish a correspondence between a function and multiple stochastic integrals for
that function. The operator IJW(j1 ...jk)

T corresponds to the multiple Itô stochastic integral,

and the operator SJW(j1 ...jk)
T corresponds to the multiple Stratonovich stochastic integral,

T = [t0, T]:

IJW(j1 ...jk)
T f =

∫
Tk

f (t1, . . . , tk)dWj1(t1) . . . dWjk (tk),

SJW(j1 ...jk)
T f =

∫
Tk

f (t1, . . . , tk) ◦ dWj1(t1) ◦ . . . ◦ dWjk (tk),

where k is the integral multiplicity, which is the same as the number of arguments of f ,
and the symbol ◦ is to distinguish Itô and Stratonovich stochastic integrals.

Further, we use the following notations: {qi}∞
i=0 is an orthonormal basis of L2(T),

and ζ
(j)
i are independent random variables having standard normal distribution for

i = 0, 1, 2, . . . and j = 1, . . . , s. Then, according to properties of multiple stochastic
integrals [18,19], we have

IJW(j1 ...jk)
T qi1 ⊗ . . .⊗ qik = ζ

(j1)
i1
∗ . . . ∗ ζ

(jk)
ik

,

SJW(j1 ...jk)
T qi1 ⊗ . . .⊗ qik = ζ

(j1)
i1

. . . ζ
(jk)
ik

,
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where ∗ means the Wick product defined for this case in terms of Hermite
polynomials [20,21], i1, . . . , ik = 0, 1, 2, . . .

If f ∈ L2(T
k), then this function can be represented as the orthogonal series [22], i.e.,

f =
∞

∑
i1,...,ik=0

Fi1 ...ik qi1 ⊗ . . .⊗ qik ,

where
Fi1 ...ik = (qi1 ⊗ . . .⊗ qik , f )L2(Tk), i1, . . . , ik = 0, 1, 2, . . . (3)

Formally (without considering the convergence issues), we can write that

IJW(j1 ...jk)
T f =

∞

∑
i1,...,ik=0

Fi1 ...ik ζ
(j1)
i1
∗ . . . ∗ ζ

(jk)
ik

,

SJW(j1 ...jk)
T f =

∞

∑
i1,...,ik=0

Fi1 ...ik ζ
(j1)
i1

. . . ζ
(jk)
ik

,

and multiple Itô and Stratonovich stochastic integrals do not generally coincide.
Consider a simple example for stochastic integrals of multiplicity k = 2 under condi-

tion j1 = j2. Let f ∈ L2(T
2) and

f =
∞

∑
i1,i2=0

Fi1i2 qi1 ⊗ qi2 ,

where
Fi1i2 = (qi1 ⊗ qi2 , f )L2(T2), i1, i2 = 0, 1, 2, . . . (4)

It is known [6,7] that

IJW(j1 j1)
T f =

∞

∑
i1,i2=0

Fi1i2 ζ
(j1)
i1
∗ ζ

(j1)
i2

,

where the multiple random series on the right-hand side converges in the mean-square
sense (the equivalent relation is given in [3] using different notations). But the multiple
random series on the right-hand side of the equality

SJW(j1 j1)
T f =

∞

∑
i1,i2=0

Fi1i2 ζ
(j1)
i1

ζ
(j1)
i2

can diverge, and the equality itself may not make sense, since

∞

∑
i1,i2=0

Fi1i2 ζ
(j1)
i1

ζ
(j1)
i2

=
∞

∑
i1,i2=0

Fi1i2 ζ
(j1)
i1
∗ ζ

(j1)
i2

+
∞

∑
i=0

Fii (ζ
(j1)
i1

ζ
(j1)
i2

= ζ
(j1)
i1
∗ ζ

(j1)
i2

+ δi1i2),

where δi1i2 is the Kronecker delta, i.e.,

δi1i2 =

{
1 for i1 = i2
0 for i1 6= i2,

and the convergence of series
∞

∑
i=0

Fii (5)

does not follow from condition f ∈ L2(T
2). This series can diverge or it can converge

conditionally, then its sum depends on a basis {qi}∞
i=0.
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Thus, the operator SJW(j1 j1)
T is defined only on some linear subspace of L2(T

2), al-

though the domain of the operator IJW(j1 j1)
T coincides with L2(T

2). In fact, the equality

SJW(j1 j1)
T f = IJW(j1 j1)

T f +
∞

∑
i=0

Fii

makes sense if the series (5) converges absolutely, and its sum does not depend on a basis
{qi}∞

i=0. It this case, we can write that

∞

∑
i=0

Fii =
∫
T

f (t, t)dt,

but the integral on the right-hand side should be understood in a special way, since any
function f ∈ L2(T

2) is defined up to a set of measure zero, while the set {(t, t) : t ∈ T}
has measure zero (on the plane). This integral is equal to the expectation of the multiple
Stratonovich stochastic integral SJW(j1 j1)

T f .
If j1 6= j2, then there is no such a problem, and the equality

SJW(j1 j2)
T f = IJW(j1 j2)

T f a.s.

holds (“a.s.” means “almost surely” or “with probability 1”).
For stochastic integrals of multiplicity k = 3, the series

∞

∑
i1=0

Fi1i1i3 ,
∞

∑
i1=0

Fi1i2i1 ,
∞

∑
i2=0

Fi1i2i2

can appear depending on values j1, j2, j3, where Fi1i2i3 are expansion coefficients (3) of
f ∈ L2(T

3), and the indices, over which the summation is not carried out, are parameters.
Under certain conditions, the following equalities

∞

∑
i1=0

Fi1i1i3 =

(
qi3 ,

∫
T

f (t, t, ·)dt
)

L2(T)

,
∞

∑
i1=0

Fi1i2i1 =

(
qi2 ,

∫
T

f (t, ·, t)dt
)

L2(T)

,

∞

∑
i2=0

Fi1i2i2 =

(
qi1 ,

∫
T

f (·, t, t)dt
)

L2(T)

hold.
The number of possible variants of such series increases with the multiplicity k. For ex-

ample, if k = 4, then it is required to consider the series

∞

∑
i1=0

Fi1i1i3i4 ,
∞

∑
i1=0

Fi1i2i1i4 , . . . ,
∞

∑
i3=0

Fi1i2i3i3 ,
∞

∑
i1,i3=0

Fi1i1i3i3 ,
∞

∑
i1,i2=0

Fi1i2i1i2 ,
∞

∑
i1,i2=0

Fi1i2i2i1 ,

where Fi1i2i3i4 are expansion coefficients (3) of f ∈ L2(T
4), and the set of series is determined

by values j1, j2, j3, j4. Here the indices, over which the summation is not carried out, are
also parameters.

Such series appear only if some values among j1, . . . , jk are equal. In particular, for
k = 3 under condition j1 = j2 6= j3, we need to consider only one series

∞

∑
i1=0

Fi1i1i3 ,

or for k = 4 under condition j1 = j2 6= j3 = j4, we need to consider only three series
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∞

∑
i1=0

Fi1i1i3i4 ,
∞

∑
i3=0

Fi1i2i3i3 ,
∞

∑
i1,i3=0

Fi1i1i3i3 .

Now we return to stochastic integrals of multiplicity k = 2. To establish convergence
conditions for the series (5), it is useful to apply the theory of trace class operators, but the
simplest example shows that we have to be careful. Indeed, consider the Volterra integral
operator V : L2(T)→ L2(T) defined as

Vg(t) =
∫ t

t0

g(τ)dτ =
∫
T
k(τ, t)g(τ)dτ,

where k(t1, t2) = 1(t2 − t1) is the kernel function.
It is known [22,23] that the operator V is not traceable, but it can be shown that the

property
∞

∑
i=0

Kii =
T − t0

2

is satisfied for an arbitrary basis {qi}∞
i=0, where

Ki1i2 = (qi1 ⊗ qi2 ,k)L2(T2) =
∫
T

qi2(t2)
∫ t2

t0

qi1(t1)dt1dt2, i1, i2 = 0, 1, 2, . . .

Note that the specified sum of that series corresponds to the well-known relation for
Itô and Stratonovich stochastic integrals [3,24]:

SJW(j1 j1)
T k = IJW(j1 j1)

T k+
T − t0

2
a.s.,

where
IJW(j1 j1)
T k =

∫
T

Wj1(t)dWj1(t),
SJW(j1 j1)
T k =

∫
T

Wj1(t) ◦ dWj1(t),

and
E SJW(j1 j1)

T k =
T − t0

2
,

where E means the expectation operator that associates a random variable with its expected
value.

Nevertheless, it is possible to apply the theory of trace class operators by symmetriza-
tion of f ∈ L2(T

2). Linear operators IJW(j1 j1)
T and SJW(j1 j1)

T have one useful property:
they can be considered on the set of equivalence classes constructed by symmetrization.
In particular,

IJW(j1 j1)
T f = IJW(j1 j1)

T f ∗ = IJW(j1 j1)
T 〈 f 〉,

SJW(j1 j1)
T f = SJW(j1 j1)

T f ∗ = IJW(j1 j1)
T 〈 f 〉,

where

f ∗(t1, t2) = f (t2, t1), 〈 f (t1, t2)〉 =
f (t1, t2) + f ∗(t1, t2)

2
=

f (t1, t2) + f (t2, t1)

2
,

and expansion coefficients (4) do not change under condition i1 = i2 for such functions,
〈·〉 is the symmetrization operator.

In fact, if 〈 f 〉 = 〈g〉, then

IJW(j1 j1)
T f = IJW(j1 j1)

T g, SJW(j1 j1)
T f = SJW(j1 j1)

T g,

hence
IJW(j1 j1)
T k = IJW(j1 j1)

T c, SJW(j1 j1)
T k = SJW(j1 j1)

T c,
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where c(t1, t2) = 〈k(t1, t2)〉 = 1/2, and the linear operator with trivial kernel c is traceable.
Iterated stochastic integrals can be represented by solutions to corresponding systems

of stochastic differential equations. For the integral

IJW(j1 ...jk)
T kψ =

∫
T

. . .
∫ t3

t0

∫ t2

t0

ψ1(t1)ψ2(t2) . . . ψk(tk)dWj1(t1)dWj2(t2) . . . dWjk (tk),

we have IJW(j1 ...jk)
T kψ = IXk(T), where IXk is the component of the solution to the system

of Itô stochastic differential equations

d IXl(t) = ψl(t)IXl−1(t)dWjl (t),
IXl(t0) = 0, l = 1, . . . , k, (6)

and IX0(t) = 1.
Similarly, for the integral

SJW(j1 ...jk)
T kψ =

∫
T

. . .
∫ t3

t0

∫ t2

t0

ψ1(t1)ψ2(t2) . . . ψk(tk) ◦ dWj1(t1) ◦ dWj2(t2) ◦ . . . ◦ dWjk (tk),

we have SJW(j1 ...jk)
T kψ = SXk(T), where SXk is the component of the solution to the system

of Stratonovich stochastic differential equations

d SXl(t) = ψl(t)SXl−1(t) ◦ dWjl (t),
SXl(t0) = 0, l = 1, . . . , k, (7)

and SX0(t) = 1.
Note that for the system (6) we can derive the equivalent system of Stratonovich

stochastic differential equations

d IXl(t) = −
1
2

δjl−1 jl ψl−1(t)ψl(t) IXl−2(t)dt + ψl(t) IXl−1(t) ◦ dWjl (t),
IXl(t0) = 0,

and the system (7) can be transformed into the equivalent system of Itô stochastic differen-
tial equations

d SXl(t) =
1
2

δjl−1 jl ψl−1(t)ψl(t) SXl−2(t)dt + ψl(t) SXl−1(t)dWjl (t),
SXl(t0) = 0.

Here, in addition to above notations, we use the following: IX−1(t) = SX−1(t) = 0,
j0 = 0, δjl−1 jl is the Kronecker delta.

The structure of obtained equations shows that the differences between Itô and Strato-
novich stochastic differential equations exist only when some values j1, . . . , jk with neigh-
boring indices are equal. And these differences form traces, which are sums of expansion
coefficients Kψ

i1 ...ik
of the function kψ given by the formula (2):

Kψ
i1 ...ik

= (qi1 ⊗ . . .⊗ qik ,kψ)L2(Tk)

=
∫
T

qik (tk)ψk(tk) . . .
∫ t3

t0

qi2(t2)ψ2(t2)
∫ t2

t0

qi1(t1)ψ1(t1)dt1 . . . dtk, (8)

i1, . . . , ik = 0, 1, 2, . . .

Traces are formed only by summing over neighboring pairs of indices. If we assume
that possible parameters are fixed (all indices, over which the summation is not carried out,
are parameters), then it suffices to consider the following series:
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∞

∑
i=0

Kψ
ii (k = 2),

∞

∑
i1,i3=0

Kψ
i1i1i3i3

(k = 4), . . . ,

∞

∑
i1,i3,...,ik−1=0

Kψ
i1i1i3i3 ...ik−1ik−1

(k = 2γ, γ ∈ N).

The problem statement is to prove the absolute convergence of these series and
to express their sums as a functional depending on the weights ψ1, . . . , ψk ∈ L2(T).

Next sections present proofs of the absolute convergence of these series regardless
of a basis {qi}∞

i=0. The main results are formulated separately for cases k = 2 and k = 2γ,
γ ∈ N.

3. Main Result for the Case k = 2

Consider the Hilbert–Schmidt operatorF : L2(T)→ L2(T) with the kernel f ∈ L2(T
2)

given by the relation (“a.e.” means “almost everywhere”)

x = Fg ⇐⇒ x(t) =
∫
T

f (τ, t)g(τ)dτ a.e. on T = [t0, T].

This operator is the trace class operator [23,25] if there exist functions f̌ , f̂ ∈ L2(T
2)

such that
f (t1, t2) =

∫
T

f̌ (t1, τ) f̂ (τ, t2)dτ, f̌ , f̂ ∈ L2(T
2). (9)

Conversely, if F is the trace class operator, then there exists a (nonunique) representa-
tion (9) for its kernel.

One of the simplest examples of trace class operators is the operator with the kernel

f (t1, t2) = ϕ(t1)ψ(t2), ϕ, ψ ∈ L2(T). (10)

Here, it suffices to show that f can be represented by the equality (9). For this, we
assume that f̌ (t1, t2) = ϕ(t1)/

√
T − t0 and f̂ (t1, t2) = ψ(t2)/

√
T − t0. Then

f (t1, t2) =
ϕ(t1)ψ(t2)

T − t0

∫ T

t0

dτ = ϕ(t1)ψ(t2).

Let S ε : L2(T
2)→ C(T2) be the averaging operator [23]:

S ε f (t1, t2) =
1

4ε2

∫
Dε(t1,t2)

f (τ1, τ2)dτ1dτ2, ε > 0,

where Dε(t1, t2) = {(τ1, τ2) ∈ T2 : max{|t1− τ1|, |t2− τ2|} < ε}, i.e., S ε is a linear operator,
which associates a function f with a continuous function that has well-defined value at
each point (t1, t2) as the average value of f on the square Dε(t1, t2) ⊂ R2 centered at this
point ( f should be defined by zero outside the square T2). Then f̄ (t1, t2) = f (t1, t2) a.e. on
T2, where

f̄ = lim
ε→0
S ε f .

Theorem 1 ([23,25]). Let F : L2(T) → L2(T) be the trace class operator with the kernel f ∈
L2(T

2) and let {qi}∞
i=0 be a basis of L2(T). Then

trF =
∞

∑
i=0

Fii = tr f , (11)

where Fi1i2 are expansion coefficients (4) of f relative to the basis {qi1 ⊗ qi2}∞
i1,i2=0, and

tr f = lim
ε→0

∫
T
S ε f (t, t)dt.
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Remark 1. The series in the relation (11) is called the trace of the operator F . It converges
absolutely, and its sum does not depend on a basis {qi}∞

i=0.

Next, we prove two technical lemmas, after that we can formulate and prove one of
the main results.

Lemma 1. Operators with symmetric kernels

f (t1, t2) = tm+n
1 tn

2 1(t2 − t1) + tm+n
2 tn

1 1(t1 − t2), (12)

f (t1, t2) = tn
1 tm+n

2 1(t2 − t1) + tn
2 tm+n

1 1(t1 − t2), (13)

where m ∈ N and n ∈ {0, 1, 2, . . . }, are trace class operators.

Proof of Lemma 1. Let f̌ (t1, t2) = mtn
1 tm−1

2 1(t1 − t2) and f̂ (t1, t2) = tl
21(t2 − t1) with

m > 1 and l, n > −1/2. According to the representation (9), we have

f (t1, t2) = mtn
1 tl

2

∫
T

τm−11(t1 − τ)1(t2 − τ)dτ = mtn
1 tl

2

∫ min{t1,t2}

t0

τm−1dτ

= tn
1 tl

2 min{tm
1 , tm

2 } − tm
0 tn

1 tl
2 = tm+n

1 tl
21(t2 − t1) + tn

1 tl+m
2 1(t1 − t2)− tm

0 tn
1 tl

2.

The term tm
0 tn

1 tl
2 defines the trace class operator with the kernel (10). In addition, we

can restrict ourselves to conditions m ∈ N and l = n ∈ {0, 1, 2, . . . }, so the function (12)
defines the trace class operator.

Let f̌ (t1, t2) = tn
1 1(t2 − t1) and f̂ (t1, t2) = mtm−1

1 tl
21(t1 − t2), m > 1 and l, n > −1/2.

Using the representation (9), we obtain

f (t1, t2) = mtn
1 tl

2

∫
T

τm−11(τ − t1)1(τ − t2)dτ = mtn
1 tl

2

∫ T

max{t1,t2}
τm−1dτ

= Tmtn
1 tl

2 − tn
1 tl

2 max{tm
1 , tm

2 } = Tmtn
1 tl

2 − tn
1 tl+m

2 1(t2 − t1)− tm+n
1 tl

21(t1 − t2).

Similarly, the function (13) also defines the trace class operator, since the term Tmtn
1 tl

2
defines the trace class operator with the kernel (10).

Lemma 2. Let λ, µ be polynomials. Then the operator F with the symmetric kernel

f (t1, t2) = λ(t1)µ(t2)1(t2 − t1) + λ(t2)µ(t1)1(t1 − t2)

is the trace class operator.

Proof of Lemma 2. The operator G with the symmetric kernel

g(t1, t2) = tn1
1 tn2

2 1(t2 − t1) + tn1
2 tn2

1 1(t1 − t2), n1, n2 = 0, 1, 2, . . . ,

is the trace class operator.
Indeed, for n1 = n2 we have the kernel g(t1, t2) = (t1t2)

n1 , which satisfies the condition
(10). For n1 6= n2, the required result follows from Lemma 1. For functions (12) and (13),
conditions m + n = n1 > n2 = n and n = n1 < n2 = m + n, respectively, should be satisfied.

The function f is represented as a linear combination of functions g, and it defines the
trace class operator F , since the space of trace class operators is linear [26].

Theorem 2. Let ϕ, ψ ∈ L2(T) and let {qi}∞
i=0 be a basis of L2(T). Then

∞

∑
i=0

∫
T

ϕ(t2)qi(t2)
∫ t2

t0

ψ(t1)qi(t1)dt1dt2 =
1
2
(ϕ, ψ)L2(T)

. (14)
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Proof of Theorem 2. Define functions g, g∗ ∈ L2(T
2) as follows:

g(t1, t2) = λ(t1)µ(t2)1(t2 − t1), g∗(t1, t2) = µ(t1)λ(t2)1(t1 − t2) = g(t2, t1).

Then their expansion coefficients Gi1i2 and G∗i1i2
relative to the basis {qi1 ⊗ qi2}∞

i1,i2=0
are defined by the formula (4):

Gi1i2 = (qi1 ⊗ qi2 , g)L2(T2) =
∫
T

µ(t2)qi1(t2)
∫ t2

t0

λ(t1)qi2(t1)dt1dt2,

G∗i1i2 = (qi1 ⊗ qi2 , g∗)L2(T2) =
∫
T

λ(t2)qi1(t2)
∫ T

t2

µ(t1)qi2(t1)dt1dt2,

and for them the condition Gi1i2 = G∗i2i1
holds due to the symmetry, i1, i2 = 0, 1, 2, . . .

Let

f (t1, t2) = g(t1, t2) + g∗(t1, t2) = g(t1, t2) + g(t2, t1) = f (t2, t1), f ∈ L2(T
2),

i.e., f = 〈g〉, where 〈·〉 is the symmetrization operator. Then expansion coefficients Fi1i2 of
f are determined as

Fi1i2 = Gi1i2 + G∗i1i2 = Gi1i2 + Gi2i1 = Fi2i1 and Fii = 2Gii for i = 0, 1, 2, . . .

Moreover, we can write that

lim
ε→0
S ε f (t, t) = λ(t)µ(t) and tr f =

∫
T

λ(τ)µ(τ)dτ = (λ, µ)L2(T)
,

and this means that the equality (14) is equivalent to the relation (11), which holds for the
trace class operator F with some kernel f according to Theorem 1.

If λ, µ are polynomials, then the operator F : L2(T)→ L2(T) with the kernel f is the
trace class operator according to Lemma 2, and an arbitrary function from L2(T) can be
approximated using polynomials (polynomials are dense in L2(T)).

Further, let ϕ, ψ ∈ L2(T) and

ϕ = lim
n→∞

ϕn, ψ = lim
m→∞

ψm,

where

ϕn =
n

∑
i=0

Φi P̂i and ψm =
m

∑
i=0

Ψi P̂i, n, m ∈ {0, 1, 2, . . . },

and Φi, Ψi are expansion coefficients of ϕ, ψ relative to orthonormal Legendre polynomials
{P̂i}∞

i=0, i.e.,
Φi = (P̂i, ϕ)L2(T)

, Ψi = (P̂i, ψ)L2(T)
.

Then we can establish the following equality for arbitrary n and m:

∞

∑
i=0

[ ∫
T

ϕn(t2)qi(t2)
∫ t2

t0

ψm(t1)qi(t1)dt1dt2

+
∫
T

ψm(t2)qi(t2)
∫ T

t2

ϕn(t1)qi(t1)dt1dt2

]
= (ϕn, ψm)L2(T)

, (15)

where the series converges absolutely, and its sum does not depend on a basis {qi}∞
i=0.

If we fix n in the equality (15), then it defines a bounded linear functional in L2(T),
which is given by the function ϕn (the trace of operator is also a bounded linear functional
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but in the space of trace class operators [26]). Letting m→ ∞, we obtain a bounded linear
functional given by the function ψ:

∞

∑
i=0

[ ∫
T

ϕn(t2)qi(t2)
∫ t2

t0

ψ(t1)qi(t1)dt1dt2

+
∫
T

ψ(t2)qi(t2)
∫ T

t2

ϕn(t1)qi(t1)dt1dt2

]
= (ϕn, ψ)L2(T)

.

Similarly, letting n→ ∞, we obtain the relation

∞

∑
i=0

[ ∫
T

ϕ(t2)qi(t2)
∫ t2

t0

ψ(t1)qi(t1)dt1dt2 +
∫
T

ψ(t2)qi(t2)
∫ T

t2

ϕ(t1)qi(t1)dt1dt2

]
= 2

∞

∑
i=0

∫
T

ϕ(t2)qi(t2)
∫ t2

t0

ψ(t1)qi(t1)dt1dt2 = (ϕ, ψ)L2(T)
,

which proves the theorem.

4. Main Result for the Case k = 2γ for γ ∈ N
Define the Hilbert–Schmidt operator F : L2(T

γ) → L2(T
γ) with the kernel f ∈

L2(T
k), k = 2γ for γ ∈ N:

x = Fg ⇐⇒

x(t1, t2, . . . , tγ) =
∫
Tγ

f (τ1, t1, . . . , τγ, tγ)g(τ1, τ2, . . . , τγ)dτ1 . . . dτγ a.e. on Tγ = [t0, T]γ.

It is known [23,25] that if the function f is represented as

f (t1, . . . , tk) =
∫
Tγ

f̌ (t1, τ1, t3, τ2, . . . , tk−1, τγ) f̂ (τ1, t2, τ2, t4, . . . , τγ, tk)dτ1 . . . dτγ, (16)

where f̌ , f̂ ∈ L2(T
k), then F is the trace class operator.

Let S ε : L2(T
k)→ C(Tk) be the averaging operator [23]:

S ε f (t1, . . . , tk) =
1

(2ε)k

∫
Dε(t1,...,tk)

f (τ1, . . . , τk)dτ1 . . . dτk, ε > 0,

where Dε(t1, . . . , tk) = {(τ1, . . . , τk) ∈ Tk : maxl=1,...,k |tl − τl | < ε}, i.e., S ε is a linear
operator, which associates a function f with a continuous function that has well-defined
value at each point (t1, . . . , tk) as the average value of f on the hypercube Dε(t1, . . . , tk) ⊂
Rk centered at this point ( f should be defined by zero outside the hypercube Tk). In this
case, we have f̄ (t1, . . . , tk) = f (t1, . . . , tk) a.e. on Tk, where

f̄ = lim
ε→0
S ε f .

Theorem 3 ([23,25]). Let F : L2(T
γ) → L2(T

γ) be the trace class operator with the kernel
f ∈ L2(T

k) and let {qi}∞
i=0 be a basis of L2(T). Then

trF =
∞

∑
i1,i3,...,ik−1=0

Fi1i1i3i3 ...ik−1ik−1
= tr f , (17)

where Fi1 ...ik are expansion coefficients (3) of f relative to the basis {qi1 ⊗ . . .⊗ qik}
∞
i1,...,ik=0, and

tr f = lim
ε→0

∫
Tγ
S ε f (t1, t1, t3, t3, . . . , tk−1, tk−1)dt1dt3 . . . dtk−1.
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Remark 2.

1. The series in the relation (17) is the trace of the operator F . It converges absolutely, and its
sum does not depend on a basis {qi}∞

i=0.
2. Obviously, Theorem 1 is the particular case of Theorem 3.
3. There is the trace-oriented definition of the averaging operator S ε [25]. However, the above

definition naturally agrees with the definition of the multiple Stratonovich stochastic integral
from [9,19], and the main results presented in this paper are directly related to such integrals.

Now we give the technical lemma and then formulate and prove a more general result
compared to Theorem 2.

Lemma 3. If the function fr ∈ L2(T
2) defines the trace class operator Fr : L2(T) → L2(T),

r = 1, . . . , γ, then the operator F : L2(T
γ)→ L2(T

γ) with the kernel

f (t1, . . . , tk) =
γ

∏
r=1

fr(t2r−1, t2r) (18)

is the trace class operator.

Proof of Lemma 3. Since Fr is the trace class operator, for its kernel fr there exists a repre-
sentation (9), i.e.,

fr(θ1, θ2) =
∫
T

f̌r(θ1, τ) f̂r(τ, θ2)dτ, f̌r, f̂r ∈ L2(T
2), r = 1, . . . , γ,

but then the representation (16) holds for the function f if

f̌ (t1, . . . , tk) =
γ

∏
r=1

f̌r(t2r−1, t2r), f̂ (t1, . . . , tk) =
γ

∏
r=1

f̂r(t2r−1, t2r),

where f̌ , f̂ ∈ L2(T
k). Hence, F is the trace class operator.

Theorem 4. Let ψl ∈ L2(T), l = 1, . . . , k, and let {qi}∞
i=0 be a basis of L2(T). Then

∞

∑
i1,i3,...,ik−1=0

∫
T

qik (tk)ψk(tk) . . .
∫ t3

t0

qi2(t2)ψ2(t2)
∫ t2

t0

qi1(t1)ψ1(t1)dt1 . . . dtk

∣∣∣
i1=i2,...,ik−1=ik

=
1

2γ
(ψ1 ⊗ ψ3 ⊗ . . .⊗ ψk−1, ψ2 ⊗ ψ4 ⊗ . . .⊗ ψk)L2(∆Tγ), (19)

where ∆Tγ = {(t1, . . . , tγ) ∈ Tγ : t1 < . . . < tγ}.

Proof of Theorem 4. Define functions gr, g∗r ∈ L2(T
2) as follows:

gr(θ1, θ2) = λr(θ1)µr(θ2)1(θ2 − θ1), g∗r (θ1, θ2) = µr(θ1)λr(θ2)1(θ1 − θ2) = gr(θ2, θ1),

and let

fr(θ1, θ2) = gr(θ1, θ2) + g∗r (θ1, θ2) = gr(θ1, θ2) + gr(θ2, θ1) = fr(θ2, θ1), r = 1, . . . , γ.

If λr, µr are polynomials, then the operatorFr : L2(T)→ L2(T) with the kernel fr is the
trace class operator according to Lemma 2. Therefore, the operator F : L2(T

γ)→ L2(T
γ)

with the kernel
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f (t1, . . . , tk) =
γ

∏
r=1

fr(t2r−1, t2r) =
γ

∏
r=1

(
gr(t2r−1, t2r) + g∗r (t2r−1, t2r)

)
=

γ

∏
r=1

(
gr(t2r−1, t2r) + gr(t2r, t2r−1)

)
=

2γ−1

∑
p=0

hp(t1, . . . , tk)

is the trace class operator according to Lemma 3, where

h0(t1, . . . , tk) =
γ

∏
r=1

gr(t2r−1, t2r) =
γ

∏
r=1

λr(t2r−1)µr(t2r)1(t2r − t2r−1), (20)

and for p = 1, . . . , 2γ − 1 the function hp is obtained from h0 by permutation of variables
in pairs (t2r−1, t2r) if the binary representation of p is (pγ . . . p1)2 and pr = 1. So, values
of f are not change by permutation of variables t2r−1 and t2r, r = 1, . . . , γ, i.e., f is the
symmetrized function relatively pairs (t1, t2), (t3, t4), . . . , (tk−1, tk):

f = 2γ〈h0〉 = 2γ〈hp〉 ∀ p ∈ {0, . . . , 2γ − 1},

where 〈·〉 is the corresponding symmetrization operator.
Functions of type (20) allow to obtain an approximation to the function

x(t1, . . . , tk) = y(t1, . . . , tk)
γ

∏
r=1

1(t2r − t2r−1), y ∈ L2(T
k),

where, for example,

y(t1, . . . , tk) = ψ1(t1) . . . ψk(tk)
γ−1

∏
r=1

1(t2r+1 − t2r)

= ψ1(t1) . . . ψk(tk)1(t3 − t2)1(t5 − t4) . . . 1(tk−1 − tk−2),

and then x coincides with the function kψ given by the formula (2), and its expansion
coefficients Kψ

i1 ...ik
satisfy the relation (8).

We can represent y as a product of two functions of γ arguments:

ϕ(t1, t4, t5, . . . )ψ(t2, t3, t6, . . . ), ϕ, ψ ∈ L2(T
γ),

where the first function depends on variables tl for l = 4β− 3 and l = 4β, and the second
one depends on variables tl for l = 4β− 1 and l = 4β− 2, where β ∈ N under condition
l ∈ {1, . . . , k}. Thus, we separate variables so that the list of arguments of each function
does not include both variables that form any pair (t1, t2), (t3, t4), . . . , (tk−1, tk):

ϕ(t1, t4, t5, . . . ) =


ψ1(t1)ψ4(t4)ψ5(t5)1(t5 − t4)× . . .
× ψk−4(tk−4)ψk−3(tk−3)1(tk−3 − tk−4)ψk(tk) for even γ

ψ1(t1)ψ4(t4)ψ5(t5)1(t5 − t4)× . . .
× ψk−2(tk−2)ψk−1(tk−1)1(tk−1 − tk−2) for odd γ,

ψ(t2, t3, t6, . . . ) =


ψ2(t2)ψ3(t3)1(t3 − t2)× . . .
× ψk−2(tk−2)ψk−1(tk−1)1(tk−1 − tk−2) for even γ

ψ2(t2)ψ3(t3)1(t3 − t2)× . . .
× ψk−2(tk−2)ψk−1(tk−1)1(tk−1 − tk−2)ψk(tk) for odd γ.

Further, represent function ϕ, ψ ∈ L2(T) as

ϕ = lim
n→∞

ϕn, ψ = lim
m→∞

ψm,
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where

ϕn =
n

∑
i1,...,iγ=0

Φi1,...,iγ P̂i1 ⊗ . . .⊗ P̂iγ , ψm =
m

∑
i1,...,iγ=0

Ψi1,...,iγ P̂i1 ⊗ . . .⊗ P̂iγ ,

n, m ∈ {0, 1, 2, . . . },

and Φi1,...,iγ , Ψi1,...,iγ are expansion coefficients of ϕ, ψ relative to orthonormal Legendre
polynomials {P̂i}∞

i=0, i.e.,

Φi1,...,iγ = (P̂i1 ⊗ . . .⊗ P̂iγ , ϕ)L2(Tγ), Ψi1,...,iγ = (P̂i1 ⊗ . . .⊗ P̂iγ , ψ)L2(Tγ).

This implies that

y = lim
n→∞

lim
m→∞

ynm = lim
n→∞

yn, x = lim
n→∞

lim
m→∞

xnm = lim
n→∞

xn,

where

ynm(t1, . . . , tk) = ϕn(t1, t4, t5, . . . )ψm(t2, t3, t6, . . . ),

yn(t1, . . . , tk) = ϕn(t1, t4, t5, . . . )ψ(t2, t3, t6, . . . ),

xnm(t1, . . . , tk) = ynm(t1, . . . , tk)
γ

∏
r=1

1(t2r − t2r−1),

xn(t1, . . . , tk) = yn(t1, . . . , tk)
γ

∏
r=1

1(t2r − t2r−1).

Moreover, for functions

fnm = 2γ〈xnm〉, fn = 2γ〈xn〉, f = 2γ〈x〉,

we have
f = lim

n→∞
lim

m→∞
fnm = lim

n→∞
fn,

since 〈·〉 is a linear bounded operator [23].
The function fnm defines the trace class operator because xnm is the function of

type (20). Its expansion coefficients Fnm
i1 ...ik

relative to the basis {qi1 ⊗ . . .⊗ qik}
∞
i1,...,ik=0 are

given by the formula (3):

Fnm
i1 ...ik = (qi1 ⊗ . . .⊗ qik , fnm)L2(Tk), i1, . . . , ik = 0, 1, 2, . . .

Expansion coefficients Xnm
i1 ...ik

of xnm can be similarly determined. According to both
the linearity and the symmetry, they are related to Fnm

i1 ...ik
by

Fnm
i1i1i3i3 ...ik−1ik−1

= 2γXnm
i1i1i3i3 ...ik−1ik−1

.

Since the convergence in the norm implies the weak convergence, expansion coeffi-
cients for limit functions can be defined as follows:

Fi1 ...ik = lim
n→∞

lim
m→∞

Fnm
i1 ...ik = lim

n→∞
Fn

i1 ...ik , Xi1 ...ik = lim
n→∞

lim
m→∞

Xnm
i1 ...ik = lim

n→∞
Xn

i1 ...ik .

Further, we can write that

lim
ε→0
S ε fnm(t1, t1, t3, t3, . . . , tk−1, tk−1) = ϕn(t1, t3, . . . , tk−1)ψm(t1, t3, . . . , tk−1),

tr fnm =
∫
Tγ

ϕn(τ1, . . . , τγ)ψm(τ1, . . . , τγ)dτ1 . . . dτγ = (ϕn, ψm)L2(Tγ),
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and in accordance with Theorem 3 we have the following equality for arbitrary n and m:

∞

∑
i1,i3,...,ik−1=0

Fnm
i1i1i3i3 ...ik−1ik−1

= 2γ
∞

∑
i1,i3,...,ik−1=0

Xnm
i1i1i3i3 ...ik−1ik−1

= (ϕn, ψm)L2(Tγ), (21)

where the series converge absolutely, and their sums do not depend on a basis {qi}∞
i=0.

Similar relations hold for functions fn and f .
We can fix n in the equality (21). Then it defines a bounded linear functional in L2(T

γ),
which is given by the function ϕn (the trace of operator is also a bounded linear functional
but in the space of trace class operators [26]). Letting m→ ∞, we obtain a bounded linear
functional given by the function ψ:

∞

∑
i1,i3,...,ik−1=0

Fn
i1i1i3i3 ...ik−1ik−1

= 2γ
∞

∑
i1,i3,...,ik−1=0

Xn
i1i1i3i3 ...ik−1ik−1

= (ϕn, ψ)L2(Tγ).

Letting n→ ∞, we obtain the following result:

∞

∑
i1,i3,...,ik−1=0

Fi1i1i3i3 ...ik−1ik−1
= 2γ

∞

∑
i1,i3,...,ik−1=0

Xi1i1i3i3 ...ik−1ik−1
= (ϕ, ψ)L2(Tγ),

hence

∞

∑
i1,i3,...,ik−1=0

Kψ
i1i1i3i3 ...ik−1ik−1

=
1

2γ

∫
Tγ

ϕ(τ1, . . . , τγ)ψ(τ1, . . . , τγ)dτ1 . . . dτγ

=
1

2γ

∫
Tγ

ψ1(τ1)ψ2(τ1) . . . ψk−1(τγ)ψk(τγ)

× 1(τ2 − τ1)1(τ3 − τ2) . . . 1(τγ − τγ−1)dτ1 . . . dτγ

=
1

2γ
(ψ1 ⊗ ψ3 ⊗ . . .⊗ ψk−1, ψ2 ⊗ ψ4 ⊗ . . .⊗ ψk)L2(∆Tγ),

i.e., the theorem is proved.

Remark 3.

1. A transition to symmetrized Volterra-type kernels is made in proving Theorems 2 and 4. The se-
ries in relations (14) and (19) converge regardless of a basis {qi}∞

i=0, and as a consequence
they converge absolutely.

2 Certainly, Theorem 2 is the particular case of Theorem 4. However, it is useful to formulate
and prove Theorem 2 separately for two reasons. Firstly, for the case k = 2, the proof is more
simple, and it gives an idea of the proof in the general case. Secondly, this theorem is sufficient
for solving the trace convergence problem if we consider not multiple series but iterated ones,
for example,

∞

∑
i1=0

∞

∑
i3=0

. . .
∞

∑
ik−1=0

Kψ
i1i1i3i3 ...ik−1ik−1

or
∞

∑
ik−1=0

. . .
∞

∑
i3=0

∞

∑
i1=0

Kψ
i1i1i3i3 ...ik−1ik−1

instead of
∞

∑
i1,i3,...,ik−1=0

Kψ
i1i1i3i3 ...ik−1ik−1

.

For solving the trace convergence problem with iterated series, it suffices to apply Theorem 2
iteratively. This approach seems appropriate for applications to iterated Stratonovich stochas-
tic integrals.

3. How the trace convergence problem is related to the definition of the multiple Stratonovich
stochastic integral is shown in [27].
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As an example, we can find the sum of series

∞

∑
i1,i3,...,ik−1=0

Kn1n2n3n4 ...nk−1nk
i1i1i3i3 ...ik−1ik−1

,

where Kn1n2n3n4 ...nk−1nk
i1i1i3i3 ...ik−1ik−1

are expansion coefficients (8) of the function kn1 ...nk given by the
formula (1) for k = 2γ and γ ∈ N, T = [0, 1].

Applying Theorem 4, we obtain

∞

∑
i1,i3,...,ik−1=0

Kn1n2n3n4 ...nk−1nk
i1i1i3i3 ...ik−1ik−1

=
1

2γ

∫
[0,1]γ

τn1
1 τn2

1 τn3
2 τn4

2 . . . τ
nk−1
γ τ

nk
γ 1(τ2 − τ1)1(τ3 − τ2) . . . 1(τγ − τγ−1)dτ1dτ2 . . . dτγ

=
1

2γ

∫ 1

0
τ

nk−1+nk
γ . . .

∫ τ3

0
τn3+n4

2

∫ τ2

0
τn1+n2

1 dτ1dτ2 . . . dτγ,

and then we should integrate sequentially, i.e.,

∞

∑
i1,i3,...,ik−1=0

Kn1n2n3n4 ...nk−1nk
i1i1i3i3 ...ik−1ik−1

=
1

2γ(n1 + n2 + 1)

∫ 1

0
τ

nk−1+nk
γ . . .

∫ τ4

0
τn5+n6

3

∫ τ3

0
τn1+n2+n3+n4+1

2 dτ2dτ3 . . . dτγ

=
1

2γ(n1 + n2 + 1)(n1 + n2 + n3 + n4 + 2)

×
∫ 1

0
τ

nk−1+nk
γ . . .

∫ τ4

0
τn1+n2+n3+n4+n5+n6+2

3 dτ3dτ4 . . . dτγ = . . .

=
1

2γ

γ

∏
j=1

( j

∑
l=1

(n2l−1 + n2l + 1)
)−1

.

For the particular case n1 = . . . = nk = 0 when kn1 ...nk = k, we conclude that

∞

∑
i1,i3,...,ik−1=0

Ki1i1i3i3 ...ik−1ik−1
=

1
2γγ!

,

where expansion coefficients Ki1i1i3i3 ...ik−1ik−1
= K0...0

i1i1i3i3 ...ik−1ik−1
corresponds to the function

k = k0...0, i.e.,

∞

∑
i=0

Kii =
1
2

(k = 2, γ = 1),
∞

∑
i1,i3=0

Ki1i1i3i3 =
1
8

(k = 4, γ = 2), . . .

These values correspond to expectations of the simplest iterated Stratonovich stochas-
tic integrals of even multiplicities:

E SJW(j1 j1)
[0,1] k = E

∫ 1

0
Wj1(t) ◦ dWj1(t) =

1
2

(k = 2),

E SJW(j1 j1 j3 j3)
[0,1] k = E

∫ 1

0

∫ t

0

∫ τ

0
Wj1(θ) ◦ dWj1(θ) ◦ dWj3(τ) ◦ dWj3(t) =

1
8

(k = 4), . . . ,

where j1, j3, . . . ∈ {1, 2, . . . , s} (j1 = j2, j3 = j4, . . . ), E means the expectation operator.
Next, we present some numerical results. In Table 1, partial sums of series
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L−1

∑
i=0

Kii (k = 2),
L−1

∑
i1,i3=0

Ki1i1i3i3 (k = 4)

are given under conditions that L = 4, 8, . . . , 64 and the basis {qi}∞
i=0 is chosen as follows:

qi(t) =


1 for i = 0√

2 cos iπt for even i > 0√
2 sin(i + 1)πt for odd i,

(F)

qi(t) =
{

1 for i = 0√
2 cos iπt for i > 0,

(C)

qi(t) =
√

2 sin(i + 1)πt, (S)

i.e., we consider three cases: the Fourier basis, cosines (for expansion of even functions
in Fourier series), and sines (for expansion of odd functions in Fourier series). For k = 2
and for both bases (F) and (C), partial sums coincide with the exact value, since in this
case q0 is the constant function. Otherwise, partial sums approximate the corresponding
exact values.

Table 1. Partial sums of series.

Basis L = 4 L = 8 L = 16 L = 32 L = 64 Exact

k = 2
(F) 0.500000 0.500000 0.500000 0.500000 0.500000 1/2
(C) 0.500000 0.500000 0.500000 0.500000 0.500000 1/2
(S) 0.450316 0.474799 0.487351 0.493669 0.496834 1/2

k = 4
(F) 0.101826 0.112996 0.118849 0.121881 0.123429 1/8
(C) 0.110621 0.118255 0.121733 0.123392 0.124202 1/8
(S) 0.093084 0.107566 0.115893 0.120348 0.122650 1/8

Table 2 gives the estimates of the expectation of iterated Stratonovich stochastic
integrals SJW(j1 j1)

[0,1] k and SJW(j1 j1 j3 j3)
[0,1] k under the same conditions. We use the following

partial sums of multiple random series for their simulation:

SJW(j1 j1)
[0,1] k ≈

L−1

∑
i1,i2=0

Ki1i2 ζ
(j1)
i1

ζ
(j1)
i2

,

SJW(j1 j1 j3 j3)
[0,1] k ≈

L−1

∑
i1,i2,i3,i4=0

Ki1i2i3i4 ζ
(j1)
i1

ζ
(j1)
i2

ζ
(j3)
i3

ζ
(j3)
i4

,

where ζ
(j)
i are independent random variables having standard normal distribution for

i = 0, 1, 2, . . . and j = j1, j3 (we assume that j1 6= j3). These estimates are obtained from 106

realizations of iterated Stratonovich stochastic integrals. Obviously, they correspond to
partial sums from Table 1.

Moreover, these numerical results together with data from [4,21] show that the Fourier
basis, which used for approximation of iterated Stratonovich stochastic integrals in the
Milstein method and then in the strong 1.5 order method [1,2] does not provide high
accuracy. This is noted in [3] based on a comparison the Fourier basis with Legendre
polynomials. However, the presented result indicates that trigonometric functions can be
effectively used for the approximation of iterated Stratonovich stochastic integrals, but it is
only necessary to restrict ourselves to cosines.
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Table 2. The estimates of the expectation of iterated Stratonovich stochastic integrals.

Basis L = 4 L = 8 L = 16 L = 32 L = 64 Exact

k = 2
(F) 0.499867 0.499904 0.499622 0.500227 0.499657 1/2
(C) 0.499242 0.499384 0.499971 0.499813 0.500034 1/2
(S) 0.449581 0.474902 0.486190 0.494549 0.496971 1/2

k = 4
(F) 0.101850 0.113372 0.118709 0.121523 0.123627 1/8
(C) 0.110726 0.118727 0.121476 0.123099 0.124747 1/8
(S) 0.093502 0.107255 0.115730 0.120210 0.122978 1/8

5. Conclusions

In this paper, one variant of the trace convergence problem is solved. This problem
is to prove the absolute convergence of traces that are formed by summing the expansion
coefficients of factorized Volterra-type functions. Here we restrict ourselves to summing
over neighboring pairs of indices only, assuming that this is sufficient. Solving the trace
convergence problem involves the theory of trace class operators for symmetrized Volterra-
type kernels. In general, i.e., for all square-integrable functions, this problem has no
solution. Therefore, it is required to reduce the class of functions.

The main application of the presented results is related to the mean-square approxima-
tion of iterated Stratonovich stochastic integrals, which are used to implement numerical
methods for solving stochastic differential equations based on the Taylor–Stratonovich ex-
pansion. In addition, these results can be relevant to other stochastic integrals with similar
properties. For example, the obtained results can be applied to iterated Ogawa stochastic
integrals [28], since they also require the representation of factorized Volterra-type functions
as the orthogonal series.
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