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1. Introduction

As a result of Euler and Heine’s pioneering work, Frank Hilton Jackson developed
g-calculus in a systematic manner at the beginning of the previous century. In his work,
Jackson systematically developed the concepts of the g-derivative (Jackson [1]), as well
as the g-integral (Jackson [2]). Calculus without limits is called g-calculus. Due to its
applications in mathematics, mechanics, and physics, symmetric g-calculus is experiencing
rapid growth. Ismail et al. [3] were the first to apply g-calculus to geometric function
theory (GFT) by generalizing the set of starlike functions into g-analogs, called g-starlike
functions. Several authors have extensively investigated the g-difference operator in GFT
based on the same idea. Some recent works related to this operator on analytic functions
include [4-22]. Several properties of certain analytic multivalent functions are considered
in this paper using the g-analog of the Saldgean differential operator. Let A, (j) denote the
class of functions that have the form

f(z) =2\ 4+ i alzl, (pjeN:={1,2,...}), 1)
I=p+j

that are analytic in the open unit disc E = {z € C: |z| < 1}. Let A = A;(1). In [1,2], the
g-derivative operator d; of a function f was defined by Jackson as follows:

flaz2)—f(z) (z #0)
9f(z) = { 1)z ' @)
! fO  (z=0)
For a function f(z) € A, (j), we deduce that
9f(2) = [plyz' " + Lz, 3)
1=2
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where

ol
1], = ~—1

Asq— 17, [l], — 1. Jackson [1] introduced the g-integral

[ foae==0-q) ¥ q's(=q),
0 1=0

1

as long as the series converges. For a function f(z) = z', one can observe that

/f(t)dqt:/tldqt: [l+11]q21+1 (1#—1).
0 0

For a function f(z) € Ap(j), E-Qadeem and Mamon [23] defined the p-valent g-
Salagean operator by

Dpoflz) = f(2),

Dpof(z) = Dpef(z) = 2f(2) _ zP + i glﬁzl’
[p]q I=p+j [ ]q

2 = Ly & 21
D;af(z2) = Dpg(Dpaf(2)) =2"+ ), a o)

I=p+j
therefore,
n n—1 14 - [l]q nl
Disof(z) = Dpg(Dp'f(2) =2/ + ¥ @ o) @)
I=p+j \Plg

When p = 1, the g-Sdldgean operator was introduced by Govindaraj and Sivasubra-
manian [24]. The g-shifted factorial, see [25], is defined for a € C by

(a:q)n = 1 if n=0,
= (1—a)(1—aq)(1—ag?)...(1—ag" "), ifne N=1{1,2,...},
let (4;9)00 = fo[ (1 — ag"). Recalling the g-analog definitions given by Gasper and Rah-

n=0
man [26], the g-Gamma function is given by

(4.9) 1-2
Iy(z) = < (1— 0<g<),
q ) (qz’ q)oo ( q) ( q )
and the g-binomial expansion is given by

- (L) = [T E

n=0 (%)qnﬂ/‘

For functions f and g analytic in I, one can say that f is subordinate to g, written
as f < g or f(z) < g(z) (z € E), if there exists a Schwarz function w, that is analytic in
E with w(0) =0, |w(z)| < 1and f(z) = g(w(z)) (z € E). In addition, if the function g is
univalent in [, then the following equivalence will occur

f(z) < g(z) & f(0) < g(0),
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and
f(E) C g(E).

For functions fj(z) = Y12, al,jzl (j =1,2) analytic in E, the Hadamard product (or
convolution) of f(z) and f,(z) is defined by

(fi*f2)(z Zﬂzmzz (f2xf1)(z) (z€E).

A function f € A is convex, if and only if f(E) is a convex domain. We denote this
subclass of A by K. Analytically, a function f € A belongs to the class K if and only if

zf (2)
§R{1+ ) }>0 (z € E).

The proof can be found in [27]. A similar characterization can be made for the class S*
of functions starlike in [E. A function f € A belongs to the class S* if and only if

%{zf'(z)} >0 (ze€ E).

f(2)

More details on the classes of starlike and convex functions can be found in [28,29].
A univalent function f : E — € = C U {oo} is said to be concave if the complement C\ f
is convex (functions mapping on the exterior of a convex curve). An analytic, univalent
function f € A is said to be in the class C,(a), if it is concave, satisfies f(1) = oo with an
opening angle of f(E) at oo less than or equal to a7t with « € (1,2]. Due to the similarity
with convex functions, sometimes the inequality

f(2) ,
m{1+f(z)}<o (z € E),

is also used as a definition for concave functions (see e.g., [30]) see also, Avkhadiev et al. [31],
Cruz and Pommerenke [32], and the references within. Recently, Nishiwaki and Owa [33]
defined and studied the subclasses M (B) and N (B) of A as follows: for some B(B > 1),
let M (PB) be the subclass of A consisting of functions f(z), which satisfy

%{Z]J‘C,(S)} <B (z€E),

let N'(B) be the subclass of A consisting of functions f(z), which satisfy

é}e{uzjf:é))} <B (z€E),

(see [33-36]). With the use of the differential operator Dz,q' we introduce class Ay 4(1, ], B),
which generalizes the above-mentioned classes M (B) and N (B).

Definition 1. We say that a function f(z) € Ap(j) belongs to the class Ap,q(n, j, B), if it satisfies

the condition
o[ 24D, f()
D} qf(2)
wheren € Ng =NU{0},p e N, > [p]q,and 0<g<l

}</3 (z € E), ©)



Symmetry 2023, 15, 93

40f13

As f(z) = zP belongs to the class A, 4(n, ], B), it is not empty. Ay ;(n, j, B) generalizes
the classes M (B) and NV (B) as follows

Remark 1. 1. lim.A;,4(0,1,8) = M(B);
g—1

2 limAuy(1,1,8) = N ()

In this paper, we derive some interesting subordination results, coefficient inequalities,
and various distortion theorems involving fractional g-calculus operators for functions in
the class Ap,q(n, j, B)- Moreover, some special cases are also indicated.

2. Coefficient Estimates
Theorem 1. If f(z) € Ay (j) satisfies the condition

3 G”ﬁ) (11, = 2l + |1, + 2], — 28 )l < 2(B— [#),). ©)

I=p+j

for some ﬁ(,B > [p}q);n € Nothen f(z) € Apq(n,j, B)-

Proof. Let condition (6) be true. Then, we have

20,(Dl, £(2))
oL e~ Pl

293 Dinf ()
P — (26— 1vl,)
I=p+

j <[;]]a)n([l]q - [Pb)z’

—2(p-[pl,)r+ T az([,l,]f)n([l]qﬂp]q—2ﬁ)zl

I=p+j

= £ () @,
I=p+j

2(p-1ply) ~ I £ jal() |

I=p+j
2 (g L) (10, - 91,)

2(p - mq) - 5 (52 Ji,+ 191, - 28]

the last expression is bounded above by 1 if

5 ([114) (10, ~ Iy + |1, + ), — 28] leal < 2(B [, ).

IN

_2‘3‘

This completes the proof of Theorem 1. [J

Remark 2. Letting p = 1,9 — 1, and n = 1 in Theorem 1, we obtain the result obtained by
Nishwaki and Owa [33].
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Corollary 1. If f(z) € A,(j) satisfies the condition

3 (5}1‘;) (11, B) Il < (B~ l,).

I=p+j
for someﬁ([p]q <B< W’);n € Ny, then f(z) € Apq(n,j, B).

Proof. Since ([l], + [p], — 2p) is an increasing function of I(I > p + j), we have

. y o it
- 2

O

3. Subordination Results

Definition 2 ([37]). A sequence {b;};° of complex numbers is said to be subordinating factor
sequence if, whenever f(z) = z + Y52, aiz!, ay = 1 is analytic, univalent, and convex in E,
we have

Y bz < f(z) (z€E).
I=1
Lemma 1 ([37]). The sequence {b;}" , is subordinating factor sequence if and only if

%(1 +2iblzl> >0 (z€E).

I=1

Let Aj - (n, ], B) denoted the class of functions f(z) € A, (j) whose coefficients satisfy
the condition (6).

Theorem 2. Let f(z) € A} ,(n, ], B), §(2z) € K, and

<[%q>”(qpmq +|ip+,+ 7], —28])
2{ (%) 01+ o+ + o —28]) = (8- 1)}

then
(= 7f(2) #8(2) < 8(2) (z€ B), )
and
§R<(Z)) o1 ®)
zp—1 e

The constant

is the best estimate.
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Proof. Let f(z) € A} (n,j,B), and let g(z) =z + 1%, c;z' belong to the subclass K. Then

(szl Pf(z ) Zblclz (z € E),

€ (1=1),
b={ 0 (@<I<)),
eapi-1 (I>2j+1).

where

Hence, by using Definition 2, the subordination result (7) will be true, if {b;}; is the
subordinating factor sequence. Since

Taw:(§i>(mqwb+wb+umzﬂ) )

is an increasing function of /(I > j+ 1), we have

%{1+22blzl}—§}%{1+2£z+2 Yy blzl}
I=1 I=j+1

) (0 + o+, + [y~ 28]
(Pl + i+ - 28]) + (5 )

(5 o i+, 1, ~26]) + (- 1)
5 ([p[+j]q>n(qr’[j]q+\[p+f]q+[mq—2ﬁ\)azz’“P}
(552 )" i+ [+ + 1,2
%) (g + |1+ + 1ol = 28]) + (8 01,)

W\ (i _
s @%J (1~ 191, + |11, + )y 28 e
T (52 (01, + i+ + by~ 28]) + (8- )

Thus, by using Theorem 1, and Lemma 1 we deduce that

zZ

r

@R{Hsz,Zk}

=1

()" (a1, + i+ + 1~ 28]
{5 (@ + o+ g+ )~ 28]) + (B 191,)}
(/3—[P]q)

_ { ([p{Z}ib)"(qPUh n ‘[P-i—j]q +[p], _2[3D + (,3— [P]q)}

> 0.

> 1-

r
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This proves the subordination result (7). Letting ¢(z) = 1= = Y212/ (z € E) in(7),
we easily get the result (8). O

Theorem 3. Let f(z) be in the class A3, ,(n, j, B), defined by (1). Then for |z| = r < 1, we have

Pl 2(/5 - [P]q) %ﬂ .
i ([pﬁ?q)n{hﬂ +ly = Iply+ |Ip + 11, + ), — 28]}
a(f))| <
Pyt 2( - I#l,) pirms” .
[p —m],! ([P[;r]i]q)”{[p—i-j]q—[p} + |+ 11, + el — 26}
The result is sharp for the function f(z) given by
fay = 2(,3 - [P]q) [P[%j]"qﬂq‘ i (10)

T el o)

Proof. Since ¥ (1) given by (9) is an increasing function of /(! > j+ 1), Theorem 1 gives

(“’W) (19 +1lq — [Pla + |19+ 11a + [Pla —28]) 3

I=p+j
< é (/) (1 = ol + |1, + (), — 28] )l < 2(B— [p],)-

That is

= 2(8-1rl,) |
S () 1o+l = o+ 1o+l + 1), ~ 26

(11)

The m'" g-derivative of the functions f(z) € A,(j) is given by

[p],!
9y (f(2)) = 2P+ 2,
i p— ]q 1 ;r] - m]q'
then we have
[p],! < [, i
9 (f(z))] = T —|z|P7" — T ay||z|'
2% | [p— ] lzgﬂ. = }q!
! . +]]
A e 5 Ja
[p—ml,! [p+j—m! q'l ot
p+ilyt s
2(g— g
> [ply! _ (ﬁ [p]"> P ppm

o) (19l )+ [l -+ 71+ 91, — 26])



Symmetry 2023, 15, 93

8of 13

and
‘a?(f(z))‘ < [] | ‘P m+ Z ‘111||Z|
[p—ml,! ] I= P+J q
g e §
= [p—m]q!p +[P+]— m],! e l/;rj‘ !
[p+ily!
N 2(p ~ o) ey
P (Y (e =29
O

Putting m = 0 in Theorem 3 we have the following corollary

Corollary 2. Let f(z) defined by (1) be in the class A}, ,(n, j, B).Then for |z| = r < 1, we have

Iz 1o 2(p ~ I7l,)" ",
= ([P+ﬂq>n{[p_|_j] — [ply + o+ 71, + ), — 28|}
W, 7 B
and
f@) < |1+ 2(/3_[P]q>r] .

Pl " , ,
( p[iﬂ]]qq> {[p+]]q —[pl, + ‘[P+]]q+ [Pl —Zﬁ‘}
This result is sharp.

4. Application of g-Fractional Calculus Operators

Let the function f(z) be defined by (1). Then the g-Bernardi integral operator jffp is
given by

_|_
E +;;]]qalzl (c>—p), (12)

jcqpf(z) = [C‘;P]q /OZ tc_lf(z)dqt =P+ i

I=p+j q

this operator introduced by El-Qadeem and Mamon [23] (see also [17,38]). For f(z) € A,(j),
we define the following g-fractional calculus operators given by Purohit and Raina [39,40].

Definition 3. The fractional q-integral operator of order m(m > 0) is defined, for a function f, by

LS = i ) (2 a0

where f is analytic in a simply-connected region of the z- plane containing the origin and the function
)‘ <land |argz| < 7.

(z — qt)_,, is single-valued when ’arg( ﬁ)‘ <m,

Definition 4. The fractional g-derivative operator of order m is defined, for a function f, by
1 z
Q" =— 9 / — gt Hd,t (1 >0),
@) = g f) (00Ot (1> 20)

where f suitably constrained and removing the multiplicity of (z — qt)_,,, as in Definition 3 above.
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Remark 3. From Definitions 3 and 4, we see that

To(y+1)
Q" zr = LT grem (> 0,v>-1),
9.z Loy —m+1) ( )
To(y+1)
QM = T ydm 0,v>-1).
1z Li(y+m+1) ( v )

This gives that, for f(z) € Ay(j),

- T,(p+1) © T, (1+1)
Q- __'q St _ AN T g m 13
q,z (Z) T,;(p—i—l—l—m +l§qu l+1+m)ﬂlz ( )
and To(p+1) r,(1+1)
m p+ —m . q + I—m
o Y p T g, 14
A PR SRR VR NS ek (14
Using the formulas (13), (14), and (12), we have
- Ty(p+1) © [ct+pl, T,(1+1)
0O m C‘i — q p+m q q l+m, 15
gz (Jepf(2)) L +itm” 1:%]- e, i1 (15)
Lo(p+1) - © [c+pl, T,(1+1) -
O q _ 9 p—m 9 9 l ml 16
g:(Tepf(2)) Tq(p+1—m)z +l:§j o+, Fq(l—i—l—m)alz (16)
[c+p] T,(p+1)
1 (Q7m _ q 9 p+m
Tep(Qy2'f(2)) [c+p+m], 1"q(]0+1—|-m)Z
il c+ r,(l+1
5 e+ 7l g+1) —— 17)
15 [c+1+m], Tg(l+1+m)
and
[c+p] T,(p+1)
Ja _ 9 q LP=m
(g (2) [c+p—m], Tq(p+1—m)
i c+ r,(l+1
[ P}q (I +1) aZ (18)

l:%j [c+1—m] Tl +1—m)

Here, we investigate the distortion properties of functions in the class A} (1, ], B)
involving the operators jq 2 (7', and O,

Theorem 4. Let f(z) be in the class Apq(n,j, B), defined by (1). Then for |z| = r < 1, we have

r 1 cim : .
02Tt = { e s Y Bl a9
0g 1 (Tl f(2)| < {m +Y6]m(n,ﬁ)|z|j}|zp+ml 20)
where
cjm [c+p] 20(p+j+1)(B—[pl,)
Yp,]q ( /ﬁ) = [C+P+z} d d

ittt (5 ) L, — 9l + 1o+, + 91, — 28]}
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(0<m<1,¢c>—p,p € N). Each of the assertions are sharp for f given by (10).

Proof. By using (11) and (15), we have

- Ty(p+1) ® fe+pl, Ty(k+1) l
m q q p+m q q +m
OIS = ek PO e Ll

rq(P+1) |Z|p+m_ [C+p]‘7 r‘i(p+]+1) ’Z|p+j+m i |al|

T,(p+1+m) c+p+il, Talp+i+1+m) 1
{rizﬁgipm)—Y%fﬁbth}zw+ﬂ
where
Y3, ) = 28, (p ++ (B - [7))
[e+p+]]

x4+ 1) (5 ) i, = 9l + o+, + 1, — 28]}

Similarly, using (15) and (11) we have

T +1 ¢im ; m
0, (e < { i + Y5O Bl ™

Thus, the proof of the theorem is completed. [J

Theorem 5. Let f(z) be in the class Apq(n,j, B), defined by (1). Then for |z| = r < 1, we have

(@) = {2 ~ Sl e, @
o) < {2 S B e, @)
where
o5 (n,p)
e+, 2y(p -+ +1)(B 7],
[c+p+]]

”q(p+j+1—m><[ﬂ?q>n{[zﬂ+ﬂq—[p]ﬁ [p+j]q+[p]q—2ﬁ\}'

According to (10), each assertion is sharp.

Proof. Using (11) and (16), the assertions (21) and (22) of Theorem 5 can now be proved
similarly to Theorem 4. [

Theorem 6. Let f(z) be in the class Apq(n,j, B), defined by(1). Then for |z| = r < 1, we have

c—I—P Iy(p+1 ; .
T O3 2f(2))]| 2 { p A;'!ém<n,ﬁ>|z|f}|zp+m

+p+m] Lh(p+1+m)

C+P T(p+1)
To(0 \_{ 7

AC]m , j p—&-ml
C+p+m}Fﬂp+1+m)+ Wﬁ””}”'

where
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e+, 2T4(p+j+1) (B~ [pl,)
C+P+]]qrq(P+]'+1+m)<[p[:]]q]q> {[p+j]q_[P]q+‘[p+j]‘7+[p]q_2ﬁ‘}

(m >0,c> —p,p € N). The result is sharp for the function f given by (10).

A" (n, B) = [

Proof. We only prove the first inequality. The argument for the second inequality is similar
and hence omitted. Using (17) and (11), we have

T f(2))]
e+ pl, Fﬂp+1)|dmw__ [c+pl, T,(p+j+1)
[c—i—p—i—m]ql"q(p—i—l—f—m) [C—i—p—i—j—f—M]qrq(p—l—j-ﬁ—l-i-m)

[c+pl,  Tep+1) |
[c+p+m], Tg(p+1+m)

e+ 7], 204(p+j+ )27 (B — [p],)

T e m () {41, bl 4+, 28]

= _ /\C/]rm ] p+m
{[c+p+m]ql"q(p+1+m) pa (Bl 217,

. [e9)
2P Y Jal

I=p+j

|p+m

where
cjmm [c+p] 2h(p+j+1)(B—[p],)
A" (n,B) = - 1 — :
P rry g m) () iy~ bl + o+, + ), 28]}
O

Theorem 7. Let f(z) be in the class Apq(n,j, B), defined by (1). Then for |z| = r < 1, we have

I(p+1 cim . o
ij ‘_ { [c+p— m} rq(;(ﬁ1_)m) _sz;,]é (n,ﬁ)z|]}|z|p ,
I c,jm i —m
Ty ‘* { [c+p— jn} Fq(;(—fjl) )+q>] <”':3)Z|j}|z|p ,
where
@} (n, B)
_ _letrl, 20, (p+j+1) (B~ [p],)
[c+p+]]

: P+l " . . '
qfﬂv+1+1+"0<ﬂﬁ0 ﬁp+ﬂq—Wb+Mp+ﬂq+WL—2ﬂ}
(0<m < 1,¢c> —p,p € N). Each of the assertions are sharp for f given by (10).

Proof. As the same manner in proving Theorem 6, we can easily deduce the proof of
this theorem. [

5. Conclusions

Quantum calculus is classical calculus without limits. The field of g-calculus has
recently attracted researchers’ attention. Its application in various branches of mathematics
and physics is responsible for this extraordinary interest. Jackson [1,2] was one of the first
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to define the g-analog to derivative the integral operators and provide some applications for
them. Numerous subclasses of normalized analytic functions in the open symmetric unit
disc associated with g-derivatives have already been investigated in geometric function
theory. Using the Sildgean g-difference operator, we introduce a new class of analytic p-
valent functions in the open symmetric unit disc. Several subordination results, coefficient
inequalities, fractional g-calculus applications, and distortion theorems are also presented.
The paper also generalizes some known results. For future work, we can study some new
classes of analytic p-valent functions in the open symmetric unit disc in the same way.
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