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Abstract: Numerical methods play an important role in modern mathematical research, especially
studying the symmetry analysis and obtaining the numerical solutions of fractional differential
equation. In the current work, we use two numerical schemes to deal with fractional differential
equations. In the first case, a combination of the group preserving scheme and fictitious time
integration method (FTIM) is considered to solve the problem. Firstly, we applied the FTIM role, and
then the GPS came to integrate the obtained new system using initial conditions. Figure and tables
containing the solutions are provided. The tabulated numerical simulations are compared with the
reproducing kernel Hilbert space method (RKHSM) as well as the exact solution. The methodology
of RKHSM mainly relies on the right choice of the reproducing kernel functions. The results confirm
that the FTIM finds the true solution. Additionally, these numerical results indicate the effectiveness
of the proposed methods.

Keywords: fictitious time integration method; time-fractional heat equation; fractional differential
equations; reproducing kernel Hilbert space method; group-preserving scheme

1. Introduction

The fractional calculus’ sense (FC) is presented after classical calculus, but after identi-
fying the limitations of the classical one, many researchers weighed the notions of fractional
calculus to comprehend the character systematically. Plenty of mathematicians promoted
the vital establishment with the aid of new attributes and corresponding outcomes for
FC [1–6]. Specifically, the particular functions are proposed to create novel non-integer
integral and differential operators. These latter are presented by many people to investigate
and symbolize different equations linked with phenomena [7–15]. The symmetric and
anti-symmetric solitons of the fractional Schrödinger equation have been studied in [16].
In [17], the authors extended the Lie symmetry analysis to the time fractional generalized
KdV equations. The Adomian decomposition technique for investigating the fractional
KdV–Burgers equation was applied in [18]. Since the Chebyshev collocation technique is
implemented for investigating the time-fractional nonlinear Klein–Gordon equation [19], a
geometric method is applied for the Korteweg–de Vries equation [20]. A combination of
FTIM and geometric method is applied for the fractional Burger–Huxley equation [21]. Ad-
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ditionally, in [22], a lie group approach is implemented for solving the fractional equation.
Some other applications can be seen in[23–31].

Consider the following equation:

cqCDα
0+ ,tu = λuxx + g(x, t), (x, t) ∈ Ω, (1)

u(x, t) = H(x, t), on Γ, (2)

where c denotes the specific heat, c is the density, λ describes the thermal conductivity
coefficient, and CDα

0+ ,t shows the Caputo fractional derivative. Equations of this type are
used to describe the transport processes with a long memory.The fractional heat equation
is one of the most well-known fractional partial differential equations that describe the
physical phenomenon. In recent years, solving the fractional heat equation magnetized the
attention of mathematicians because of its importance. Many methods have been worked
to solve this problem. The higher-order numerical method is used for investigating the
fractional heat equation [32]. Additionally, the Laplace homotopy technique is worked to
solve this equation [33]. In [34], authors used one-step backward-forward algorithms for
multi-dimensional backward heat conduction problems.

Motivated by the above works, in this paper, two numerical methods are worked to
solve this equation. One is a combination of a specific type of fictitious time integration
technique and the Runge–Kutta method. The other is the RKHSM. The main paper’s
contributions are as follows:

• We present new results on the numerical simulation for the considered equation.
• We apply two effective numerical methods to obtain these new accurate results.
• The convergence analysis that confirms the theoretical parts of both methods is discussed.

Variable transformation of a time integration method, namely FTIM, was suggested
by Atluri and Liu. Researchers used it for solving linear or nonlinear algebraic equations
by defining the fictitious time and using it to derive a system of nonautonomous first-order
ordinary differential equations that is equivalent to the original algebraic equations in an
n-dimensional space. Some applications of this technique can be seen in [35–39].

In another aspect of this paper, as we mentioned before, we applied the RKHSM for
solving the proposed equation.

Recently, the RKHSM has achieved great popularity and success. It became a powerful
tool in treating different types of FPDEs, such as the fractional Bloch–Torrey equations [40]
and fractional differential equations, including the ABC derivative [41], to name a few. See
also [42–47] for more research about this method. The RKHSM has many advantages, such
as its simplicity and flexibility in treating many fractional differential systems and the fact
that it is a mesh-free method. The rest of the paper consists of the following: Section 2
recalls some essential concepts about fractional calculus and reproducing kernel theories.
Sections 3 and 4 are where we see the main theory of the FTIM and RKHSM, respectively, to
build a numerical solution for the considered problem. Before finishing with the conclusion
part, we validate the proposed methods through two examples.

2. Basic Definitions

Definition 1. The left-sided Riemannian–Liouville fractional integral of order µ ∈ R+ of
f ∈ Cα, α ≥ −1, is

Iµ f (x) =
1

Γ(µ)

x∫
0

f (η)
(x− η)1−µ

dη, 0 < µ, x > 0, I0 f (x) = f (x). (3)

Definition 2. We write
f (x) ∈ Cm

α , x > 0, m ∈ N ∪ 0,
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provided
f (m) ∈ Cα.

Definition 3. Suppose a real function f (with 0 < x) is in the space Cα, α ∈ R. By p(> α) such
that f (x) = xp f1(x) ∈ C[0, ∞]. Obviously, Cα ∈ Cβ if β ⊂ α.

Definition 4. Suppose f ∈ Cm
−1, m ∈ N, the Caputo derivative of f is

Dµ f (x) =


[Im−µ] f (x), µ ∈ (m− 1, m],

dm

dtm f (x), µ = m.

(4)

Iµ Iν f = Iµ+ν, 0 ≤ µ, 0 ≤ ν, f ∈ Cα, 0 ≤ α. (5)

Iµxξ f =
Γ(γ + 1)

Γ(γ + µ + 1)
xµ+ξ , 0 < µ, −1 < ξ, 0 < x. (6)

Lemma 1. Assume α ∈ (m− 1, m] and f ∈ L1[a, b]. Then,

Jµ
a f (x) =

1
Γ(α)

x∫
a

(x− t)1−µ f (t)dt, Dα
a Jα

a f (x) = f (x), (7)

and

Dα
a Jα

a f (x) = f (x)−
m−1

∑
k=1

f (k)(0)
(x− a)k

k!
, x > 0. (8)

Definition 5. The fractional derivative of f in the Caputo sense is

Dα f (x) = Jm−αDm f (x) =
1

Γ(m− α)

x∫
0

(x− t)m−α−1 f m(t)dt. (9)

Definition 6. The Caputo time-fractional derivative operator is

CDα
t u(x, t) =


1

Γ(m−α)

∫ t
0 (t− z)m−α−1 ∂mu(x,z)

∂zm dz, α ∈ (m− 1, m),

∂mu(x,t)
∂tm , α = m,

(10)

for m to be the smallest integer that exceeds α. The space-fractional derivative with β > 0 is
described by

CDβ
x u(x, t) =


1

Γ(m−β)

∫ x
0 (x− s)m−β−1 ∂mu(s,t)

∂sm ds, m− 1 < β < m,

∂mu(x,t)
∂tm , β = m.

(11)

Notations

(i) We will write

AC[a, b] = { f : [a, b]→ R | f is absolutely continuous on [a, b]}
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to denote the collection of all absolutely continuous functions on [a, b].

(ii) We write CCF to mean a completely continuous function.

Definition 7. Define the function space W3
2[a, b] by

W3
2[a, b] = { f (x)| f (j) ∈ AC[a, b], j = 0, 1, 2, f (3) ∈ L2[a, b], and f (a) = f (b) = 0}.

Definition 8. If f , g ∈W3
2[a, b], the inner product and norm of this space are described to be

〈 f , g〉W3
2
=

2

∑
i=0

f (i)(a)g(i)(a) +
∫ b

a
f (3)(x)g(3)(x)dx, (12)

and
‖ f ‖W3

2
=
√
〈 f , f 〉W3

2
. (13)

Theorem 1. The RK function of W3
2[0, 1] is the function Rζ(x) described as

Rζ(x) =
{

r(x, ζ), x ≤ ζ,
r(ζ, x), x > ζ,

(14)

with

r(x, ζ) = 3 x ζ
13 −

xζ5

156 + 5 xζ4

156 −
5 xζ3

78 −
5 xζ2

26 + 21 x2ζ2

104 −
x2ζ5

624 + 5 x2ζ4

624 −
5 x2ζ3

312 −
5 x2 ζ

26 + 7 x3ζ2

104 −
x3ζ5

1872

+ 5 x3ζ4

1872 −
5 x3ζ3

936 −
5 x3(ζ)

78 − x4(ζ)
104 + x4ζ5

3744 −
5 x4ζ4

3744 + 5 x4ζ3

1872 + 5 x4ζ2

624 −
x5ζ5

18720 + x5ζ4

3744 −
x5ζ3

1872

− x5ζ2

624 −
x5(ζ)
156 + x5

120 .

(15)

For the proof, see [43].

Definition 9. Define the function space W2
2[c, d] by

W2
2[c, d] = { f (t)| f (j) ∈ AC[c, d], j = 0, 1, f ′′ ∈ L2[c, d], and f (c) = 0}.

Definition 10. If f , g ∈W2
2[c, d], the inner product and norm are

〈 f , g〉W2
2
=

1

∑
i=0

f (i)(c)g(i)(c) +
∫ d

c
f ′′(t)g′′(t)dt, (16)

‖ f ‖W2
2
=
√
〈 f , f 〉W2

2
. (17)

Theorem 2. The RK function of W2
2[c, d] is the function Kη(t) defined by

Kη(t) =

 − 1
3 c3 + 1

2 c2η + c2 − η c +
(

1
2 c2 − η c− c + η

)
t + 1

2 η t2 − 1
6 t3, t ≤ η,

− 1
3 c3 + 1

2 c2η − 1
6 η3 + c2 − η c +

(
1
2 c2 − η c + 1

2 η2 − c + η
)

t, t > η.
(18)

For the proof, see [43].

Definition 11. If f , g ∈W1
2[a, b], the inner product and norm are

〈 f , g〉W1
2
= f (a) g(a) +

∫ b

a
f ′(x)g′(x)dx, (19)
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and
‖ f ‖W1

2
=
√
〈 f , f 〉W1

2
. (20)

Theorem 3. The RK function of W1
2[a, b] is the function Fζ(x) defined by

Fζ(x) =
{

−a + 1 + t, t ≤ ζ,
ζ − a + 1, t > ζ.

(21)

For the proof, see [43].
Throughout Ω = [a, b]× [c, d].

Definition 12. Define the binary function space W(3,2)
2 (Ω) by

W
(3,2)
2 (Ω) = {u| ∂3

∂x2∂t
u is CCF on Ω,

∂5

∂x3∂t2 u ∈ L2(Ω),

u(x, c) = u(a, t) = u(b, t) = 0}.

Definition 13. If u, v ∈W
(3,2)
2 (Ω), the inner product and norm of this space are

〈u, v〉
W

(3,2)
2

= ∑1
j=0
∫ d

c

[
∂2

∂t2
∂j

∂xj u(a, t) ∂2

∂t2
∂j

∂xj v(a, t)
]
dt +

∫ d
c

[
∂2

∂t2 u(b, t) ∂2

∂t2 v(b, t)
]
dt

+∑1
j=0

〈
∂j

∂tj u(x, c), ∂j

∂tj v(x, c)
〉
W3

2

+
∫ d

c

∫ b
a

∂3

∂x3
∂2

∂t2 u(x, t) ∂3

∂x3
∂2

∂t2 v(x, t)dx dt,
(22)

and
‖u‖

W
(3,2)
2

=
√
〈u, u〉

W
(3,2)
2

. (23)

Theorem 4. The RK function of W(3,2)
2 (Ω) is the function

Y(ζ,η)(x, t) = Rζ(x) Kη(t). (24)

Definition 14. Define the binary function space W(1,1)
2 (Ω) by

W
(1,1)
2 (Ω) =

{
u(x, t)| u(x, t) is CCF in Ω,

∂2

∂x∂t
u(x, t) ∈ L2(Ω)

}
.

Definition 15. If u, v ∈W
(1,1)
2 (Ω), the inner product and norm of this space are

〈u, v〉
W

(1,1)
2

=
∫ d

c

[
∂
∂t u(a, t) ∂

∂t v(a, t)
]
dt + 〈u(x, c), v(x, c)〉W1

2

+
∫ d

c

∫ b
a

[
∂

∂x
∂
∂t u(x, t) ∂

∂x
∂
∂t v(x, t)

]
dx dt,

(25)

and
‖u‖

W
(1,1)
2

=
√
〈u, u〉

W
(1,1)
2

. (26)

Theorem 5. The RK function of W(1,1)
2 (Ω) is the function

T(ζ,η)(x, t) = Fζ(x) Fη(t). (27)

3. The Fictitious Time Integration Method (FTIM)

Here, the FTIM is implemented. Consider the following equation:

c qCDα
0+ ,tu + b(x)ux + uxx + g(x, t) = 0, (x, t) ∈ Ω. (28)
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Using (10), 0 < α < 1 and 0 < β ≤ 1 for Equation (28), we have

c q
Γ(1− α)

∫ t

0

uσ(x, σ)

(t− σ)α
dσ− b(x)ux

+ uxx + g(x, t) = 0.
(29)

To increase the stability of the technique, we propose a fictitious damping coefficient µ
in Equation (29) by

µ c q
Γ(1− α)

∫ t

0

uσ(x, σ)

(t− σ)α
dσ− µb(x)ux

+ µuxx + µg(x, t) = 0.
(30)

Imposing, in Equation (30), the transformation

ω(x, t, ξ) = (1 + θ)λu(x, t), 0 < λ ≤ 1, (31)

yields

µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ t

0

ωσ(x, σ, θ)

(t− σ)α
dσ

+ b(x)ωx(x, t, θ) + ωxx(x, t, θ)

)
+ µg(x, t) = 0.

(32)

We consider
∂ω

∂θ
= λ(1 + θ)λ−1u(x, t). (33)

Equation (32) will be

∂ω

∂θ
=

µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ t

0

ωσ(x, σ, θ)

(t− σ)α
dσ

+ b(x)ωx(x, t, θ) + ωxx(x, t, θ)

)
+ µg(x, t) + λ(1 + θ)λ−1u.

(34)

Equation (34) can be converted to a new class of PDE for ω by choosing
u = ω/(1 + θ)λ:

∂ω

∂θ
=

µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ t

0

ωσ(x, σ, θ)

(t− σ)α
dσ

+ b(x)ωx(x, t, θ) + ωxx(x, t, θ)

)
+ µg(x, t) +

λω(x, t, θ)

1 + θ
.

(35)

Using

∂

∂θ

(
ω

(1 + θ)λ

)
=

ωθ

(1 + θ)λ
− λω

(1 + θ)λ+1 , (36)

Implementing 1/(1 + θ)λ for Equation (35), one obtains

∂

∂θ

(
ω

(1 + θ)λ

)
=

µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ t

0

ωσ(x, σ, θ)

(t− σ)α
dσ

+ b(x)ωx(x, t, θ) + ωxx(x, t, θ)

)
+ µg(x, t).

(37)
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By u = ω
(1+θ)λ , we obtain

uθ =
µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ t

0

uσ(x, σ, θ)

(t− σ)α
dσ

+ b(x)ux(x, t, θ) + uxx(x, t, θ)

)
+ µg(x, t).

(38)

Suppose that uj
i(θ) := u(xi, tj, θ) as the discrete values of u at a grid point (xi, tj), and

Equation (38) converts to

d
dξ

uj
i(θ) =

µ

(1 + θ)λ

(
c q

Γ(1− α)

∫ tj

0

uσ(xi, σ, θ)

(tj − σ)α
dσ

+ b(xi)ux(xi, tj, θ) + uxx(xi, tj, θ)

)
+ µg(xi, tj),

(39)

where

∫ tj

0

uσ(xi, σ, θ)

(tj − σ)α
dσ ≈

j−1

∑
l=1

u(xi, tl+1, θ)− u(xi, tl , θ)

∆t(tj − tl)α
, (40)

where tj = j∆t, xi = a + i∆x, and ∆t = T
n .

u = (u1
1, u2

1, . . . , un
m)

T , Equation (39) can be abstracted by

u′ = Q(u, ξ), u ∈ Rm×n, ξ ∈ R, M = m× n, (41)

where Q ∈ RM is a vector-valued function of u and θ and u is an M-dimensional vector.
Now, we implement the group-preserving scheme (GPS) [48] to solve Equation (39) as

us+1 = us +

[
cosh

(
∆θ‖Qs‖
‖us‖

)
− 1
]

Qs.us + sinh
(

∆θ‖Qs‖
‖us‖

)
‖us‖‖Qs‖

‖Qs‖2 Qs = us + ΞsQs. (42)

Now, we employ the GPS by taking the initial value of uj
i(0) to solve Equation (39)

from the initial fictitious time θ = 0 to a selected final fictitious time θ f . Additionally, the
terminating criterion for this method is√√√√ m,n

∑
i,j=1

[uj
i(s + 1)− uj

i(s)]
2 ≤ ε, (43)

where ε is a picked convergence criterion. The solution of u will be obtained by

uj
i =

uj
i(θ0)

(1 + θ0)λ
, (44)

where θ0(≤ θ f ) satisfies the above criterion.

4. The Application of RKHSM
4.1. Methodology for RKHSM

In this part, the RKHSM is used to solve Problems (1) and (2), using the following way:
Step 1: Considering the following transformation

v = u− P, (45)
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where P(x, t) = −( f2(0)− f2(t)) x
b − ( f1(0)− f1(t))

(
1− x

b
)
+ u0(x) for which

u(0, t) = f1(t), u(b, t) = f2(t), and u(x, 0) = u0(x).
Consequently, the new form of (1) and (2) is as follows:

cqCDα
0+ ,tv− λvxx = }(x, t), 0 ≤ x ≤ b, 0 ≤ t ≤ d, (46)

With
v(x, t) = 0 on Γ, (47)

where }(x, t) = λPxx(x, t)− cqCDα
0+ ,tP(x, t) + g(x, t).

Step 2: Defining a linear operator T : W(3,2)
2 (Ω)→W

(1,1)
2 (Ω) as follows

T : W(3,2)
2 (Ω) → W

(1,1)
2 (Ω)

v → cqCDα
0+ ,tv− λvxx.

(48)

Lemma 2. The operator T is a bounded linear.

Proof. We begin by checking directly that T is bounded. So, we must show that

‖Tv‖
W

(1,1)
2
≤ C‖v‖

W
(3,2)
2

, with C > 0. (49)

We have

‖Tv(x, t)‖2
W

(1,1)
2

=〈Tv(x, t),Tv(x, t)〉
W

(1,1)
2

=
∫ d

c

[
∂

∂t
Tv(a, t)

]2
dt + 〈Tv(x, c),Tv(x, c)〉W1

2
+
∫ d

c

∫ b

a

[
∂

∂x
∂

∂t
Tv(x, t)

]2
dx dt

=[Tv(a, c)]2 +
∫ b

a

[
∂

∂x
Tv(x, c)

]2
dx +

∫ d

c

[
∂

∂t
Tv(a, t)

]2
dt

+
∫ d

c

∫ b

a

[
∂

∂x
∂

∂t
Tv(x, t)

]2
dxdt.

(50)

In view of reproducing the property,

v(x, t) =
〈

v(�, ∗), Y(x,t)(�, ∗)
〉
W

(3,2)
2

. (51)

In a similar way, we deduce

∂i

∂xi
∂j

∂tj
Tv(x, t) =

〈
v(�, ∗), ∂i

∂xi
∂j

∂tj
TY(x,t)(�, ∗)

〉
W

(3,2)
2

, i, j ∈ {0, 1}. (52)

Applying the Schwarz inequality, we discover∣∣∣∣ ∂i

∂xi
∂j

∂tj
Tv(x, t)

∣∣∣∣ =
∣∣∣∣∣
〈

v(�, ∗), ∂i

∂xi
∂j

∂tj
TY(x,t)(�, ∗)

〉
W

(3,2)
2

∣∣∣∣∣ ≤ ‖v‖W(3,2)
2

∥∥∥∥ ∂i

∂xi
∂j

∂tj
TY(x,t)(�, ∗)

∥∥∥∥
W

(3,2)
2

. (53)

Since Y(x,t)(�, ∗) is continuous, we consequently have∣∣∣∣ ∂i

∂xi
∂j

∂tj
Tv(x, t)

∣∣∣∣ ≤ Ci,j‖v‖W(3,2)
2

, i, j ∈ {0, 1}. (54)

Hence
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‖Tv(x, t)‖2
W

(1,1)
2
≤C2

0,0‖v‖
2
W

(3,2)
2

+
∫ b

a
C2

1,0‖v‖
2
W

(3,2)
2

dξ +
∫ d

c
C2

0,1‖v‖
2
W

(3,2)
2

dτ

+
∫ d

c

∫ b

a
C2

1,1‖v‖
2
W

(3,2)
2

dx dt

≤
[
C2

0,0 + C2
1,0 (b− a) + C2

0,1(d− c) + C2
1,1(b− a) (d− c)

]
‖v‖2

W
(3,2)
2

.

(55)

Therefore,
‖Tv(x, t)‖2

W
(1,1)
2
≤ C‖v‖2

W
(3,2)
2

, (56)

where C = C2
0,0 + C2

1,0 (b− a) + C2
0,1(d− c) + C2

1,1(b− a) (d− c).

We apply, next, the operator T in order to reformulate the problem (46) and (47) to be{
Tv(x, t) = }(x, t), (x, t) ∈ Ω,
v(x, t) = 0 on Γ,

(57)

where }(x, t) = λPxx(x, t)− cqCDα
0+ ,tP(x, t) + g(x, t).

Step 3: Construct the {Θ̄i}∞
i=1 on W

(3,2)
2 (Ω), providing this by using the Gram–

Schmidt process:

Θ̄i(x, t) =
i

∑
k=1
ℵikΘk(x, t), 0 < ℵii, i = 1, 2, . . . , (58)

where

• Θi(x, t) = T∗$i(x, t), in which T∗ denotes the adjoint of T and $i(x, t) = T(xi,ti)(x, t)
where T(xi,ti)(x, t) is given by (27).

• The countable set {(xi, ti)}∞
i=1 is dense in Ω.

• {Θi}∞
i=1 is a function system in W

(3,2)
2 (Ω) and the following shows the way that we

can construct it:

Θi(x, t) = T∗$i(x, t) =
〈
T∗$i(ζ, η), Y(x,t)(ζ, η)

〉
W

(3,2)
2

=
〈

$i(ζ, η),T(ζ,η)Y(x,t)(ζ, η)
〉
W

(1,1)
2

=
〈
T(ζi,ηi)(ζ, η),T(ζ,η)Y(x,t)(ζ, η)

〉
W

(1,1)
2

= T(ζ,η)Y(x,t)(ζ, η)|(ζ,η)=(xi,ti)

= T(ζ,η)Y(ζ,η)(x, t)|(ζ,η)=(xi,ti)

=
{

cqCDα
0+ ,ηY(ζ,η)(x, t)− λ∂2

ζ2Y(ζ,η)(x, t)
}∣∣∣(ζ,η)=(xi,ti).

(59)

• ℵik is the orthogonalization coefficients which are defined by

ℵij =


1
‖Θ1‖

, for i = j = 1,
1
ςi

, for i = j 6= 1,
− 1

ςi
∑i−1
k=j Cikℵkj, for i > j,

(60)

where ςi =
√
‖Θi‖2 −∑i−1

k=1 C2
ik, Cik =

〈
Θi, Θ̄k

〉
W

(3,2)
2

.

Theorem 6. Assume {(xi, ti)}∞
i=1 is dense; therefore, {Θi}∞

i=1 is the complete system of W(3,2)
2 (Ω).
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Proof. Clearly, Θi(x, t) ∈W
(3,2)
2 (Ω). Thus, for v(x, t) ∈W

(3,2)
2 (Ω),

〈v(x, t), Θi(x, t)〉
W

(3,2)
2

= 0, i = 1, 2, . . . . (61)

as

〈v, Θi〉W(3,2)
2

= 〈v(x, t),T∗$i(x, t)〉
W

(3,2)
2

= 〈Tv(x, t), $i(x, t)〉
W

(1,1)
2

= Tv(xi, ti) = 0, (62)

and due to the density of {(xi, ti)}∞
i=1 in Ω :

Tv(x, t) = 0. (63)

by applying T−1,
v(x, t) = 0. (64)

Step 4: The solution’s representation is given by

Theorem 7. Assume {(xi, ti)}∞
i=1 is a dense set on Ω and (57) has a unique solution on W

(3,2)
2 (Ω),

then

v(x, t) =
∞

∑
i=1

i

∑
k=1
ℵik}(xk, tk)Θ̄i(x, t) (65)

is the solution of (57), and the solution of (1) and (2) is

u(x, t) =
∞

∑
i=1

i

∑
k=1
ℵik}(xk, tk)Θ̄i(x, t)− P(x, t). (66)

Proof. We know that the basis
{

Θ̄i(x, t)
}∞
i=1 is a complete orthonormal system in the space

W
(3,2)
2 (Ω), then

v(x, t) = ∑∞
i=1
〈
v(x, t), Θ̄i(x, t)

〉
W

(3,2)
2

Θ̄i(x, t)

= ∑∞
i=1 ∑i

k=1 ℵik〈v(x, t), Θk(x, t)〉
W

(3,2)
2

Θ̄i(x, t)

= ∑∞
i=1 ∑i

k=1 ℵik〈v(x, t),T∗ρk(x, t)〉
W

(3,2)
2

Θ̄i(x, t)

= ∑∞
i=1 ∑i

k=1 ℵik〈Tv(x, t), $k(x, t)〉
W

(1,1)
2

Θ̄i(x, t)

= ∑∞
i=1 ∑i

k=1 ℵik
〈
Tv(x, t), T(xk,tk)(x, t)

〉
W

(1,1)
2

Θ̄i(x, t)

= ∑∞
i=1 ∑i

k=1 ℵik}(xk, tk)Θ̄i(ξ, τ),

(67)

with }(xk, tk) = Tv(xk, tk).
On the other hand, (66) follows directly from u = v− P(x, t).

Remarks

1. We have

vn(x, t) =
n

∑
i=1

i

∑
k=1
ℵik}(xk, tk)Θ̄i(x, t). (68)

2. W
(3,2)
2 (Ω) is a Hilbert space. Then, we deduce

∞

∑
i=1

i

∑
k=1
ℵik}(xk, tk)Θ̄i(x, t) < ∞. (69)
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4.2. Convergence Analysis

The approximate solution of (65) takes the form

vn(x, t) =
n

∑
i=1

ΛiΘ̄i(x, t), (70)

where

Λi =
i

∑
k=1
ℵik}(xk, tk). (71)

Here, by letting (x1, t1) = (a, c), it is possible to know the values of v(x1, t1) from the
initial and boundary conditions. In addition, v0(x1, t1) = v(x1, t1).

Theorem 8. Suppose that ‖vn‖
W

(3,2)
2

is bounded in (57), {(xi, ti)}∞
i=1 is dense on Ω, and the

solution of (70) is unique. Then, vn converges to v and

vn(x, t) =
n

∑
i=1

ΛiΘ̄i(x, t). (72)

Proof. (i) From (70), we know

vn+1 = vn + Λn+1Θ̄n+1. (73)

then,

‖vn+1‖2
W

(3,2)
2

=
∥∥vn + Λn+1Θ̄n+1

∥∥2
W

(3,2)
2

=
〈
vn + Λn+1Θ̄n+1, vn + Λn+1Θ̄n+1

〉
W

(3,2)
2

= 〈vn, vn〉
W

(3,2)
2

+
〈
vn, Λn+1Θ̄n+1

〉
W

(3,2)
2

+
〈
Λn+1Θ̄n+1, vn

〉
W

(3,2)
2

+
〈
Λn+1Θ̄n+1, Λn+1Θ̄n+1

〉
W

(3,2)
2

= ‖vn‖2
W

(3,2)
2

+
〈
vn, Λn+1Θ̄n+1

〉
W

(3,2)
2

+
〈
Λn+1Θ̄n+1, vn

〉
W

(3,2)
2

+, Λ2
n+1
〈
Θ̄n+1, Θ̄n+1

〉
W

(3,2)
2

.

(74)

Now, the orthogonality of
{

Θ̄i(x, t)
}∞
i=1 implies

‖vn+1‖2
W

(3,2)
2

= ‖vn‖2
W

(3,2)
2

+ Λ2
n+1

= ‖vn−1‖2
W

(3,2)
2

+ Λ2
n + Λ2

n+1

= ‖vn−2‖2
W

(3,2)
2

+ Λ2
n−1 + Λ2

n + Λ2
n+1

...
= ‖v1‖2

W
(3,2)
2

+ Λ2
2 + Λ2

3 + · · ·+ Λ2
n + Λ2

n+1

= ‖v0‖2
W

(3,2)
2

+ ∑n+1
i=1 Λ2

i ,

(75)

Hence,
‖vn‖

W
(3,2)
2
≤ ‖vn+1‖W(3,2)

2
. (76)

The convergence of ‖vn‖
W

(3,2)
2

follows directly from the boundedness of ‖vn‖
W

(3,2)
2

. So,

there exists z such that
∞

∑
i=1

Λ2
i = z, (77)

where the constant z is positive.
As a result, {

Λ2
i

}∞

i=1
∈ `2.
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As (vm − vm−1) ⊥ · · · ⊥ (vn+1 − vn) and for n < m, we write

‖vm − vn‖2
W

(3,2)
2

= ‖vm − vm−1 + vm−1 − · · ·+ vn+1 − vn‖2
W

(3,2)
2

= ‖vm − vm−1‖2
W

(3,2)
2

+ ‖vm−1 − vm−2‖2
W

(3,2)
2

+ · · ·+ ‖vn+1 − vn‖2
W

(3,2)
2

.
(78)

Furthermore,
‖vm − vm−1‖2

W
(3,2)
2

= Λ2
m. (79)

Thus,

‖vm − vn‖2
W

(3,2)
2

=
m

∑
p=n+1

Λ2
p → 0, as n, m→ ∞. (80)

The completeness of W(3,2)
2 (Ω) allows us to deduce that vn → ṽ as n→ ∞.

(ii) To prove this, let us take the limits in (70)

ṽ(x, t) =
∞

∑
i=1

ΛiΘ̄i(x, t). (81)

We apply the linear operator T to (81)

Tṽ(x, t) =
∞

∑
i=1

ΛiTΘ̄i(x, t), (82)

Hence,
Tṽ(xp, tp) = ∑∞

i=1 Λi

〈
TΘ̄i(x, t), $p(x, t)

〉
W

(1,1)
2

= ∑∞
i=1 Λi

〈
Θ̄i(x, t),T∗$p(x, t)

〉
W

(3,2)
2

= ∑∞
i=1 Λi

〈
Θ̄i(x, t), Θp(x, t)

〉
W

(3,2)
2

.
(83)

Thus,

ℵjpTṽ(xp, tp) = ℵjp

[
∞

∑
i=1

Λi

〈
Θ̄i(x, t), Θp(x, t)

〉
W

(3,2)
2

]
, (84)

and we take the summation ∑j
p=1 to deduce

∑j
p=1 ℵjpTṽ(xp, tp) = ∑∞

i=1 Λi

〈
Θ̄i(x, t), ∑j

p=1 ℵjpΘp(x, t)
〉
W

(3,2)
2

= ∑∞
i=1 Λi

〈
Θ̄i(x, t), Θ̄j(x, t)

〉
W

(3,2)
2

= Λj.

(85)

Observe then from (71) that

Tṽ(xp, tp) = }(xp, tp). (86)

For all (ζ, η) ∈ Ω, it exists {(xqj, tqj)}∞
j=1 such that (xqj, tqj)→ (ζ, η), as j→ ∞.

It is well-known to us that

Tṽ(xqj, tqj) = }(xqj, tqj). (87)

Using the continuity of } and letting j→ ∞ allows us to

Tṽ(ζ, η) = }(ζ, η). (88)
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5. Numerical Experiments

We apply the proposed methods to solve some problems. In Example 1, we use
RKHSM to solve the considered equation, and the GPS is considered for Example 2 to deal
with the fractional convection–diffusion equation. Now, how to apply the RKHSM can be
summarized in the following procedure:
Step 1: Setting n = p× q;
Step 2: Setting Θi(xi, ti) = T(ζ,η)Y(x,t)(ζ, η)|(ζ,η)=(xi,ti);
Step 3: Calculating the orthogonalization coefficients ℵij using (60);
Step 4: Setting Θ̄i(xi, ti) = ∑i

k=1 ℵikΘk(xi, ti), i = 1, 2, . . . , n;
Step 5: Choosing an initial guess u0(x1, t1);
Step 6: Setting i = 1;
Step 7: Setting Λi = ∑i

k=1 ℵik}(xk, tk);
Step 8: ui(xi, ti) = ∑i

`=1 Λ`Θ̄`(x`, t`);
Step 9: If i < n, set i = i+ 1. Go to step 7. Else stop, Where xi = i

p , i = 1, 2, . . . , p and

tj = j
q , j = 1, 2, . . . , q. n is the grid points’ number.

Example 1. Considering the following problem with the fractional order α = 0.5:

CDα
0+ ,tu = uxx + g(x, t), (x, t) ∈ [0, 1]2, (89)

where
u(x, t) = exp(x)x2(1− x)2tα,

and

g(x, t) = ex
((

x
(

x3 + 6x2 + x− 8
)
+ 2
)
(−tα)− π(x− 1)2x2 csc(πα)

Γ(−α)

)
.

In this example, the RKHSM is tested with the standard grid points xi = i
p ,

i = 1, . . . , p and tj = j
q , j = 1, . . . , q with p× q = n = 100. The comparison of (89) with

(1) and (2) shows Ω = [0, 1]× [0, 1], cq = 1, λ = 1, and u(0, t) = u(1, t) = u(x, 0) = 0.
Therefore, as we see in Section 4, the approximate solution of (89) takes the form

vn(x, t) =
n

∑
i=1

i

∑
k=1
ℵikg(xk, tk)Θ̄i(x, t). (90)

In Table 1, a numerical comparison between the obtained results via RKHSM with
the exact solution, for α = 0.9, 0.8, 0.75, is given. These results clearly show that the
approximate solution (using the RKHSM) converges to the exact solution. The results are
in good agreement with each other, and this confirms the effectiveness of the RKHSM to
solve this type of equation.

Table 1. Absolute errors of the RKHSM solution for Example 1.

RKHSM-Absolute Error

(x, t) α = 0.9 α = 0.8 α = 0.75

(0.1, 0.1) 1.3016× 10−3 1.3446× 10−3 1.9199× 10−3

(0.3, 0.3) 1.0876× 10−4 3.8615× 10−4 8.1880× 10−4

(0.5, 0.5) 5.9252× 10−5 8.7214× 10−4 1.3792× 10−3

(0.7, 0.7) 5.9929× 10−4 1.0365× 10−3 1.6629× 10−3

(0.9, 0.9) 9.5379× 10−4 1.6982× 10−4 4.2782× 10−4

Example 2. Consider the problem (28) with b(x) = x and fractional order α = 0.01 where

u(x, t) = x2t2α 2Γ(α + 1)
Γ(2α + 1)

,



Symmetry 2023, 15, 65 14 of 16

and
g(x, t) = 2t2 + 2x2 + 2.

We solve this problem by using the GPS with taking ∆θ = 1e − 10, m = n = 20,
and λ = 1. Additionally, an initial guess of uj

i(0) = 1e− 1 is taken. Figure 1 shows the
numerical solution, exact solution, absolute error, and absolute error’s contour. Indeed, we
present in Table 2 the values of absolute errors between the numerical solution (using the
GPS) and the exact solution for Example 2. From this table’s results, it is clear that the error
estimate confirms the accuracy of this new method, and Figure 1 shows that both graphs
are very similar in their behavior.

Table 2. Comparison between the exact solution and FITM solution for Example 2.

(x, t) Approximate Exact Absolute Error

(0.1, 0.1) 0.0215 0.0213 1.5308× 10−4

(0.2, 0.2) 0.0893 0.0864 2.9000× 10−3

(0.3, 0.3) 0.2016 0.1960 5.6000× 10−3

(0.4, 0.4) 0.3133 0.3076 5.7000× 10−3

(0.5, 0.5) 0.4958 0.4958 3.9629× 10−8

0

0.5

0.1

0.2

0.4

0.3

 u
(x

,t
)

0.3

0.4

 t 

0.5

Exact solution 

0.50.2
0.4

x 

0.30.1
0.2

0.10 0

0

0.5

0.1

0.2

0.4

0.3

 u
(x

,t
)

0.3

0.4

 t 

0.5

Approximate solution 

0.50.2
0.4

x 

0.30.1
0.2

0.10 0

0

0.5

2

0.4

4

10-3

 E
rr

o
r 

o
f 

u
(x

,t
)

6

0.3

t

8

Plot Of Error 

0.50.2
0.4

x

0.30.1
0.2

0.10 0

Contour of absolute error

0 0.1 0.2 0.3 0.4 0.5

x 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 t
 

0

1

2

3

4

5

6

10
-3

Figure 1. Solution under applying GPS for the fractional convection-diffusion equation in Example 2.

6. Conclusions

In the current work, we successfully implemented two numerical schemes to gain
approximate solutions to the considered problems. One is the FITM, which converted the
original problem into a new one with one extra dimension. After that, we used GPS to solve
the problem. The other is the RKHSM, which was used for the mentioned problem. The
main steps for applying this method are defining an appropriate bounded linear operator
and constructing an orthonormal function system of the appropriate RKHS. Indeed, the
both methods are shown to have good convergence. Two examples were employed to show
the capacity and reliability of the FITM and RKHSM. Our obtained results are compared
with exact results and they are found to be in good agreement with each other. From the
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numerical results, it can be observed the suitability, ease, and effectiveness of the proposed
approaches for solving such types of fractional partial differential equation. This research
opens the way for the use of the two proposed methods to study the mentioned problem
for various new fractional derivatives. As part of our purpose, we plan to apply the FTIM
and RKHSM to multidimensional fractional partial differential equations, which will be
new in the literature.
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