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Abstract: Suppose that T is a plane tree without vertices of degree 2 and with at least one vertex
of at least degree 3, and C is the cycle obtained by connecting the leaves of T in a cyclic order.
Set G = T ∪C, which is called a Halin graph. A k-L(2, 1)-labeling of a graph G = (V, E) is a mapping
f : V(G) → {0, 1, . . . , k} such that, for any x1, x2 ∈ V(G), it holds that | f (x1) − f (x2)| ≥ 2 if
x1x2 ∈ E(G), and | f (x1)− f (x2)| ≥ 1 if the distance between x1 and x2 is 2 in G. The L(2, 1)-labeling
number, denoted λ(G), of G is the least k for which G is k-L(2, 1)-labelable. In this paper, we prove
that every Halin graph G with ∆ = 8 has λ(G) ≤ 10. This improves a known result, which states
that every Halin graph G with ∆ ≥ 9 satisfies λ(G) ≤ ∆ + 2. This result, together with some known
results, shows that every Halin graph G satisfies λ(G) ≤ ∆ + 6.

Keywords: Halin graph; L(2, 1)-labeling; maximum degree

1. Introduction

Graph coloring and labeling play significant roles in graph theory and combinatorial
optimization, for example, in the famous Four-Color Problem stimulating the rapid devel-
opment of graph theory and network theory, where many symmetric properties are widely
investigated and used, such as, symmetric graphs generated from automorphism groups,
symmetric embedding, and drawings of graphs in the surface. Stanley [1] introduced
a homogeneous symmetric function generalization of the chromatic polynomial of a graph
to investigate the graph coloring problems. In 2018, Gross et al. [2] explored the relation
between graph symmetry and colorings.

This paper focuses on simple graphs. Given a graph G, the notation V(G), E(G), |G|,
and ∆(G) (or simply, ∆) are used to denote the vertex set, the edge set, the vertex number,
and the maximum degree of G, respectively. For a vertex v of G, let NG(v) (or simply, N(v))
denote the set of vertices that are adjacent to v in G. We say that v is a d-vertex, a d+-vertex,
and a d−-vertex if the degree of v is d, at least d, and at most d, respectively. The distance,
denoted dG(y1, y2), between two vertices y1 and y2, is defined as the length of a shortest
path from y1 to y2 in G.

Assume that k ≥ 2 is an integer. A k-L(2, 1)-labeling of a graph G is a mapping
f : V(G)→ {0, 1, . . . , k} such that, for any x1, x2 ∈ V(G), it holds that | f (x1)− f (x2)| ≥ 2
if x1x2 ∈ E(G), and | f (x1) − f (x2)| ≥ 1 if dG(x1, x2) = 2. The L(2, 1)-labeling number,
denoted λ(G), of G is the least k for which G is k-L(2, 1)-labelable.

The L(2, 1)-labeling of graphs stems from the famous frequency channel assignment
problem, due to Hale [3]. By the definition, it holds trivially that λ(G) ≥ ∆ + 1 for any
graph G. Griggs and Yeh [4] put forward the following conjecture.

Conjecture 1. For a graph G with ∆ ≥ 2, λ(G) ≤ ∆2.

Conjecture 1 remains open. In 1996, Chang and Kuo [5] first proved that λ(G) ≤
∆2 +∆ for any graph G. Later, this result was improved to λ(G) ≤ ∆2 +∆− 1 in [6], and fur-
thermore to λ(G) ≤ ∆2 + ∆− 2 in [7]. By means of probabilistic analysis, Havet et al. [8]
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showed that there is a constant ∆0 so that every graph G with ∆ ≥ ∆0 has λ(G) ≤ ∆2. It
was shown in [9] that λ(G) ≤ 2∆ + 35 for a planar graph G. Molloy and Salavatipour [10]
decreased this bound to λ(G) ≤ d5∆/3e+ 95. Wang and Lih [11] proved that if a planar
graph G does not contain a cycle of length three or four, then λ(G) ≤ ∆ + 21. Zhu et al. [12]
reinforced this result by demonstrating that every planar graph G having no cycles of length
four satisfies λ(G) ≤ ∆ + 19. Wang [13] confirmed that a ∆ ≥ 3 tree T has λ(T) = ∆ + 1,
provided no two ∆-vertices x and y in T satisfies dT(x, y) ∈ {1, 2, 4}.

Suppose that T is a plane tree with ∆ ≥ 3 and without 2-vertices. Let v ∈ (T). We say
that v is a leaf if d(v) = 1, and a handle if d(v) ≥ 2 and v is adjacent to at most one 2+-vertex.
A d-handle is a handle that is of degree d. Let C be the cycle obtained by connecting the
leaves of T in a cyclic order. Define the graph G = T ∪ C, which is called a Halin graph.
The vertices in V(C) and in V(G) \V(C) are called the outer vertices and inner vertices of G,
respectively. As a special case, we call G a wheel if |V(G) \V(C)| = 1.

Halin graphs are a class of important planar graphs as they possess many interesting
structural properties. It is well known that Halin graphs are minimal 3-connected graphs.
Namely, every Halin graph is 3-connected, whereas each of its subgraphs is not. In an
earlier paper, Bondy and Lovász [14] showed that Halin graphs are almost pancyclic with
the possible exception of an even cycle. Stadler [15] proved that Halin graphs other than
necklaces have a unique minimum cycle basis. Chandran et al. [16] showed that the boxicity
of a Halin graph is 2. For other results on Halin graphs, the reader is referred to [17–22].

Suppose that G is a Halin graph. The third author of this paper proved in [23] that:
(a) λ(G) ≤ ∆ + 7; (b) λ(G) ≤ ∆ + 2 for ∆ ≥ 9; (c) λ(G) ≤ 9 for ∆ = 3. Chen and Wang [24]
showed that if ∆ ≤ 7, then λ(G) ≤ 10. The goal of this paper is to extend these results by
showing the following consequences:

(1) If G is a Halin graph with ∆ = 8, then λ(G) ≤ 10;
(2) For every Halin graph G, it holds that λ(G) ≤ ∆ + 6.

2. Structural Analysis

The proof of the main result in this paper is by induction on the vertex number of
graphs. To do this, we need to find some special structures in graphs under consideration
that can be reduced in the induction process. Such special structures may consist of
14 configurations, as described in the following lemma.

Lemma 1. Let G = T ∪ C be a Halin graph with ∆ = 8 that is not a wheel. Then C contains a
path Pk = x1x2 · · · xk, satisfying one of the following conditions, as shown in Figure 1:

(C1) k = 4, and there exists a vertex v adjacent to two 3-handles u1 and u2 such that
N(u1) = {v, x1, x2} and N(u2) = {v, x3, x4}.

(C2) k = 5, and there exists a vertex v adjacent to a 3-handle u1 and a 4-handle u2 such that
N(u1) = {v, x1, x2} and N(u2) = {v, x3, x4, x5}.

(C3) k = 6, and there exists a vertex v adjacent to two 4-handles u1 and u2 such that
N(u1) = {v, x1, x2, x3} and N(u2) = {v, x4, x5, x6}.

(C4) k = 4, and there exists a vertex v adjacent to x4 and a 4-handle u such that N(u) =
{v, x1, x2, x3}.

(C5) k = 3, and there exists a 5−-vertex v adjacent to x3 and a 3-handle u such that
N(u) = {v, x1, x2}.

(C6) k = 4, and there exists a 6−-vertex v adjacent to x1, x4 and a 3-handle u such that
N(u) = {v, x2, x3}.

(C7) k = 5, and there exists a 7-vertex v adjacent to x1, x4, x5 and a 3-handle u such that
N(u) = {v, x2, x3}.

(C8) k = 6, and there exists a 8-vertex v adjacent to x1, x4, x5, x6 and a 3-handle u such that
N(u) = {v, x2, x3}.

(C9) k = 7, and there exists a vertex v adjacent to x1, x4, x7 and two 3-handles u1 and u2
such that N(u1) = {v, x2, x3} and N(u2) = {v, x5, x6}.
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(C10) k = 8, and there exists a vertex v adjacent to x1, x4, x5, x8 and two 3-handles u1 and u2
such that N(u1) = {v, x2, x3} and NG(u2) = {v, x6, x7}.

(C11) k ≥ 4, and there exists a (k + 1)-handle u such that N(u) = {v, x1, x2, . . . , xk}.
(C12) k ≥ 7, and there exists a vertex v adjacent to x3, x4, . . . , xk, w and a 3-handle u such

that N(u) = {v, x1, x2} and N(v) = {u, x3, . . . , xk, w}.
(C13) k ≥ 8, and there exists a vertex v adjacent to x3, x4, . . . , xk−2, w and two 3-handles u1 and

u2 such that N(u1) = {v, x1, x2}, N(u2) = {v, xk−1, xk}, and N(v) = {u1, u2, x3, . . . , xk−2, w}.
(C14) k = 10, and there exists a vertex v adjacent to x3, x4, x7, x8, w and three 3-handles

u1, u2, u3 such that N(u1) = {v, x1, x2}, N(u2) = {v, x5, x6}, N(u3) = {v, x9, x10}, and
N(v) = {u1, u2, u3, x3, x4, x7, x8, w}.

Proof. Since G is not a wheel, |V(G) \ V(C)| ≥ 2. If |V(G) \ V(C)| = 2, then (C4), (C5),
or (C11) holds clearly. Thus, assume that |V(G) \ V(C)| ≥ 3. Let P = y1y2 . . . yn be the
longest path in G − V(C). Then n ≥ 3 and y1, yn are handles in T. Let y3, z1, z2, . . . , zm
denote the neighbors of y2 in T in clockwise order, where 2 ≤ m ≤ 7, and y1 = zl for some
1 ≤ l ≤ m. Thus each zi is either a handle or a leaf in T by the choice of P.

If y2 is adjacent to a 5+-handle, then (C11) holds. If y2 is adjacent to two consecutive
4−-handles in N(y2), then either (C1), (C2), or (C3) holds. So suppose that neither 5+-
handles nor two consecutive 4−-handles are contained in N(y2). If y2 is adjacent to a
4-handle, say zj, then at least one of zj−1 and zj+1 is a leaf in T, where the indices are taken
modulo m. Thus, (C4) occurs in G. Otherwise, all handles in N(y2) are 3-handles. Let β
denote the number of 3-handles in {z1, z2, . . . , zm}. Then 1 ≤ β ≤ 4 since d(y2) ≤ ∆ ≤ 8. If
d(y2) ≤ 5, then (C5) holds obviously. Hence, assume that 6 ≤ d(y2) ≤ 8.

Case 1. β = 1.
If z1 or zm is 3-handle, then (C12) holds. Otherwise, zi is a 3-handle for some 2 ≤ i ≤

m− 1. If d(y2) = 6, then (C6) holds. If d(y2) ≥ 7, then (C8) holds.
Case 2. β = 2.
Suppose that zi and zj are 3-handles in {z1, z2, . . . , zm} with 1 ≤ i < j ≤ m.

Assume that |{z1, z2, . . . , zi−1}| ≤ |{zj+1, zj+2, . . . , zm}|. It suffices to consider the following
three possibilities by symmetry.

• i = 1 and j = m. Then (C13) holds;
• i = 1 and j ≤ m− 1. Then zj−1 and zj+1 are leaves in T. If d(y2) ≤ 6, then (C6) holds.

If d(y2) = 7, then (C7) holds. If d(y2) = 8, then m = 7, we have |{z2, z3, . . . , zs−1}| ≥ 3
or |{zs+1, zs+2, . . . , z7}| ≥ 3. Thus, (C8) holds;

• i ≥ 2 and j ≤ m − 1. If d(y2) ≤ 6, then (C6) holds. If d(y2) = 7, then (C7) holds.
Otherwise, d(y2) = 8. Note that 2 ≤ j− i ≤ 4. If j− i = 2, then (C9) holds. If j− i = 3,
then (C10) holds. If j− i = 4, that is i = 2 and j = 6, then (C8) holds.

Case 3. β = 3.
Suppose that zp, zq, zr are 3-handles adjacent to y2 with 1 ≤ p < q < r ≤ m.

Assume that |{z1, z2, . . . , zp−1}| ≤ |{zr+1, zr+2, . . . , zm}|, say. If d(y2) = 6, then (C6) holds.
Assume that d(y2) = 7. Then zq−1 and zq+1 are leaves in T. If both z1 and z6 are 3-handles,
then (C7) holds. Otherwise, we have p = 1, q = 3 and r = 5, and hence (C9) holds.
Now assume that d(y2) = 8. If p 6= 1 and r 6= 7, then it is easy to get that p = 2, q = 4,
and r = 6, and hence (C9) holds. Otherwise, we assume that p = 1. If r = 7, then it follows
that q ∈ {3, 4} or q ∈ {4, 5}, say the former holds. If q = 3, then (C8) holds. If q = 4, then
(C14) holds. Assume that r ≤ 6. It is easy to see that r ∈ {5, 6}. If r = 5, then (C9) holds.
If r = 6, then (C9) or (C10) holds.

Case 4. β = 4.
It is immediate to derive that z1, z3, z5, z7 are 3-handles, and hence (C9) holds.
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Figure 1. Configurations (C1)–(C14) in Lemma 1.

3. Preliminary Results

An L∗(2, 1)-labeling of a graph G is defined to be a one-to-one L(2, 1)-labeling. A func-
tion L is said to be an assignment for the graph G if it assigns a list L(v) of possible labels to
each vertex v of G. If G has an L(2, 1)-labeling (or L∗(2, 1)-labeling, respectively) f such
that f (v) ∈ L(v) for all vertices v, then we say that f is an L-L(2, 1)-labeling (or L-L∗(2, 1)-
labeling, respectively) of G. Given an integer n ≥ 1, we use n to denote three consecutive
integers n− 1, n, n + 1.

Lemma 2 below is an easy observation and hence we omit its proof.

Lemma 2. Let L be a list assignment for an edge xy such that |L(x)|, |L(y)| ≥ 2. Then xy has an
L-L(2, 1)-labeling unless L(x) = L(y) = {p, p + 1} for some integer p.

Lemma 3. Let P = x1x2x3 be a path. Let L be a list assignment for V(P) such that |L(x1)| ≥ 2,
|L(x2)| ≥ 4, and |L(x3)| ≥ 3. Then P has an L-L∗(2, 1)-labeling.
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Proof. Without loss of generality, assume that |L(x1)| = 2, |L(x2)| = 4, and |L(x3)| = 3.
Furthermore, let L(x2) = {a, b, c, d} with a < b < c < d.

First suppose that there exists p ∈ L(x1) \ L(x2). Label x1 with p and then define a
list assignment L′ for x2 and x3: L′(x2) = L(x2) \ {p − 1, p + 1} and L′(x3) = L(x3) \
{p}. Then |L′(x2)| ≥ 4− 2 = 2 and |L′(x3)| ≥ 3− 1 = 2. By Lemma 2, x2 and x3 are
not L′-L(2, 1)-labelable only if L′(x2) = L′(x3) = {q, q + 1} for some integer q, that is,
L(x2) = {p− 1, p + 1, q, q + 1} and L(x3) = {p, q, q + 1}. Since p− 1, p + 1, q, q + 1 are
mutually distinct, we may assume that p + 1 < q. Let r ∈ L(x1) \ {p}. If r < q, then we
label x1, x2, x3 with r, q + 1, p, respectively. Otherwise, r ≥ q, we label x1 with r, x2 with
p− 1, and x3 with a label in {q, q + 1} \ {r}.

Next suppose that L(x1) ⊂ L(x2). By symmetry, we only need to deal with the
following two cases.

Case 1. L(x1) = {a, t} where t ∈ {b, c, d}.
If there exists a label r ∈ L(x3) \ {a} such that r < c, then we label x1 with a, x2 with

d, and x3 with r. Otherwise, there exist r1, r2 ∈ L(x3) \ {a} such that r2 > r1 ≥ c. There are
three subcases to be considered, as follows.

• t = b. If r1 > c, or r2 > d, then we label x1 with a, x2 with c, and x3 with r2.
Otherwise, r1 = c and r2 ≤ d. If a ∈ L(x3), then we label x1 with b, x2 with d, and x3 with
a. So assume that a /∈ L(x3). Thus, there is r3 ∈ L(x3) \ {c, r2} with r3 > c. If r3 > r2, then
we label x1 with a, x2 with c, and x3 with r3. If c < r3 < r2, then we label x1 with a, x2 with
c, and x3 with r2;

• t = c. If r1 > c, then we label x1 with a, x2 with c, and x3 with r2. Otherwise, r1 = c.
If r2 ≥ d, then we label x1 with c, x2 with a, and x3 with r2. Otherwise, c < r2 < d, we label
x1 with a, x2 with d, and x3 with c;

• t = d. If r2 > d, then we label x1 with a, x2 with c, and x3 with r2. Otherwise, r2 ≤ d
and henceforth c ≤ r1 < d. If r1 = c, then we label x1 with d, x2 with a, and x3 with c.
Otherwise, r1 > c, we label x1 with a, x2 with c, and x3 with r2.

Case 2. L(x1) = {b, c}.
Let L(x3) = {q1, q2, q3} with q1 < q2 < q3. If q3 ≥ d, then we label x1 with c, x2

with a, and x3 with q3. If q1 ≤ a, then we label x1 with b, x2 with d, and x3 with q1.
Otherwise, a < q1 < q2 < q3 < d, we label x1 with b, x2 with d, and x3 with some label in
{q1, q2} \ {b}.

Lemma 4. Let P = x1x2x3x4 be a path. Let L be a list assignment for V(P) such that |L(x1)| ≥ 2,
|L(x2)|, |L(x3)| ≥ 5, and |L(x4)| ≥ 3. Then P has an L-L∗(2, 1)-labeling.

Proof. Assume that |L(x1)| = 2, |L(x2)| = |L(x3)| = 5, and |L(x4)| = 3. If there is a
label a ∈ L(x1) such that |L(x2) ∩ {a}| ≤ 2, then we label x1 with a and then define a
list assignment L′ for x2, x3, x4 as follows: L′(x2) = L(x2) \ {a}, L′(xi) = L(xi) \ {a} for
i = 3, 4. It is easy to calculate that |L′(x2)| ≥ 3, |L′(x3)| ≥ 4, and |L′(x4)| ≥ 2. By Lemma 3,
x2, x3, x4 are L′-L(2, 1)-labelable.

If there is a label b ∈ L(x1) \ L(x4), then we label x1 with b and then define a
list assignment L′ for x2, x3, x4 as follows: L′(x2) = L(x2) \ {b}, L′(x3) = L(x3) \ {b},
and L′(x4) = L(x4). Then |L′(x2)| ≥ 2, |L′(x3)| ≥ 4, and |L′(x4)| = 3. By Lemma 3,
x2, x3, x4 are L′-L(2, 1)-labelable.

Otherwise, we have L(x1) ⊂ L(x2) ∩ L(x4), and for each a ∈ L(x1), we have |L(x2) ∩
{a}| = 3. Let L(x1) = {p, q} with p < q. Then p− 1, p, p + 1, q− 1, q, q + 1 ∈ L(x2). Since
|L(x2)| = 5, we obtain that q− p ≤ 2.

Case 1. q = p + 1, say p = 5 and q = 6.
Since |L(x3)| = 5, there must exist a label r ∈ L(x3) such that r ≤ 4 or r ≥ 9, so that

we can label x1, x2, x3, x4 with 5, 7, r, 6, respectively.
Case 2. q = p + 2, say p = 5 and q = 7.
It follows that L(x1) = {5, 7}, L(x2) = {4, 5, 6, 7, 8}, and 5, 7 ∈ L(x4). If there is

r ∈ L(x3) such that r ≤ 3, then we label x1, x2, x3, x4 with 5, 8, r, 7, respectively. If there is
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r ∈ L(x3) such that r ≥ 9, then we label x1, x2, x3, x4 with 7, 4, r, 5, respectively. Otherwise,
L(x3) = {4, 5, 6, 7, 8}. Let b ∈ L(x4) \ {5, 7}. If b ≤ 4, then we label x1, x2, x3, x4 with
5, 8, 6, b, respectively. If b ≥ 8, then we label x1, x2, x3, x4 with 5, 7, 4, b, respectively. If b = 6,
then we label x1, x2, x3, x4 with 5, 7, 4, 6, respectively.

Lemma 5. Let P = x1x2x3x4 be a path. Let L be a list assignment for V(P) such that
|L(x1)|, |L(x4)| ≥ 2 and |L(x2)|, |L(x3)| ≥ 5. Then P has an L-L(2, 1)-labeling.

Proof. Assume that |L(x1)| = |L(x4)| = 2 and |L(x2)| = |L(x3)| = 5. If there is a
label a ∈ L(x1) such that |L(x2) ∩ {a}| ≤ 2, then we label x1 with a and then define a
list assignment L′ for x2, x3, x4 as follows: L′(x2) = L(x2) \ {a}, L′(x3) = L(x3) \ {a},
and L′(x4) = L(x4). Then |L′(x2)| ≥ 3, |L′(x3)| ≥ 4, and |L′(x4)| = 2. By Lemma 3,
x2, x3, x4 are L′-L(2, 1)-labelable. So suppose that L(x1) ⊂ L(x2) and for each a ∈ L(x1),
it holds that |L(x2) ∩ {a}| = 3. Similarly, L(x4) ⊂ L(x3) and for each b ∈ L(x4), we have
|L(x3) ∩ {b}| = 3. Thus, each of L(x2) and L(x3) contains at least four consecutive labels,
and each of L(x1) and L(x4) consists of two labels whose difference is exactly 1 or 2.

Analogous to the proof of Lemma 4, we give the following discussion by symmetry.
Case 1. L(x1) = {5, 7} and L(x2) = {4, 5, 6, 7, 8}.
First assume that L(x3) = {b, b + 1, b + 2, b + 3, b + 4} and L(x4) = {b + 1, b + 3}

for some integer b. If b = 4, i.e., L(x3) = {4, 5, 6, 7, 8} and L(x4) = {5, 7}, then we label
x1, x2, x3, x4 with 5, 8, 4, 7, respectively. If b ≥ 5, then we label x1, x2, x3, x4 with 7, 4, b +
3, b + 1, respectively. If b ≤ 3, then we label x1, x2, x3, x4 with 5, 8, b, b + 3, respectively.

Next assume that {b, b + 1, b + 2, b + 3} ⊂ L(x3) and L(x4) = {b + 1, b + 2}. If b = 4,
i.e., L(x4) = {5, 6}, then we label x1, x2, x3, x4 with 5, 8, 4, 6, respectively. If b ≥ 5, then we
label x1, x2, x3, x4 with 7, 4, b + 3, b + 1, respectively. If b ≤ 3, then we label x1, x2, x3, x4
with 5, 8, b, b + 2, respectively.

Case 2. L(x1) = {5, 6}, {4, 5, 6, 7} ⊂ L(x2), L(x4) = {b + 1, b + 2}, and {b, b + 1, b +
2, b + 3} ⊂ L(x3).

If b = 4, i.e., L(x4) = {5, 6}, then we label x1, x2, x3, x4 with 5, 7, 4, 6, respectively. If
b ≥ 5, then we label x1, x2, x3, x4 with 6, 4, b + 3, b + 1, respectively. If b ≤ 3, then we label
x1, x2, x3, x4 with 5, 7, b, b + 2, respectively.

Lemma 6. Let P = x1x2x3x4 be a path. Let L be a list assignment for V(P) such that
|L(x1)|, |L(x4)| ≥ 2 and |L(x2)|, |L(x3)| ≥ 6. Then P has an L-L∗(2, 1)-labeling.

Proof. Let |L(x1)| = |L(x4)| = 2 and |L(x2)| = |L(x3)| = 6. If there is a label a ∈ L(x1)
such that |L(x2)∩{a}| ≤ 2, then we label x1 with a, x4 with b ∈ L(x4) \ {a}, and then define
a list assignment L′ for x2, x3 as follows: L′(x2) = L(x2) \ {a, b}, and L′(x3) = L(x3) \ {b, a}.
Then |L′(x2)| ≥ 3 and |L′(x3)| ≥ 2. By Lemma 2, x2, x3 are L′-L(2, 1)-labelable.

If L(x1) 6= L(x4), then we label x1 with a label a ∈ L(x1) \ L(x4) and then define a
list assignment L′ for x2, x3, x4 as follows: L′(x2) = L(x2) \ {a}, L′(x3) = L(x3) \ {a}, and
L′(x4) = L(x4). Noting that |L′(x2)| ≥ 3, |L′(x3)| ≥ 5, and |L′(x4)| = 2, x2, x3, x4 are
L′-L(2, 1)-labelable by Lemma 3.

Otherwise, we may assume that L(x1) = L(x4) = {a, b} with a < b, and furthermore
L(x2) = L(x3) = {a− 1, a, a + 1, b− 1, b, b + 1}. Label x1, x2, x3, x4 with a, b + 1, a + 1, b,
respectively.

Lemma 7. Let P = x1x2x3x4x5 be a path. If L is a list assignment for V(P) satisfying the
following conditions (1) and (2), then P has an L-L∗(2, 1)-labeling.

1. |L(x1)| ≥ 2, |L(x2)|, |L(x3)|, |L(x4)| ≥ 5, and |L(x5)| ≥ 3.
2. L(x2) = L(x3) = L(x4) = S and L(x1), L(x5) ⊂ S.

Proof. Assume that |L(x1)| = 2, |L(x5)| = 3, |S| = 5, and S = {a1, a2, a3, a4, a5} with
a1 < a2 < a3 < a4 < a5. Then the proof splits into the following two cases.
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Case 1. L(x5) contains a1 or a5, say a1 ∈ L(x5).
If a3 ∈ L(x1), then we label x1, x2, x3, x4, x5 with a3, a5, a2, a4, a1, respectively. If a4 ∈

L(x1), then we label x1, x2, x3, x4, x5 with a4, a2, a5, a3, a1, respectively. Otherwise, L(x1) ⊂
{a1, a2, a5}.
• L(x1) = {a1, a2}. If a3 ∈ L(x5) or a4 ∈ L(x5), we have a similar proof. Otherwise,

L(x5) = {a1, a2, a5}. Label x1, x2, x3, x4, x5 with a2, a4, a1, a3, a5, respectively;
• L(x1) = {a1, a5}. With the similar reasoning, we have L(x5) = {a1, a2, a5}, and

x1, x2, x3, x4, x5 can be labeled with a5, a3, a1, a4, a2, respectively;
• L(x1) = {a2, a5}. In view of the above discussion, we may assume that L(x5) =

{a1, a3, a4}. It suffices to label x1, x2, x3, x4, x5 with a2, a4, a1, a5, a3, respectively.

Case 2. L(x5) = {a2, a3, a4}.
Note that at least one of a1, a2, a3, a5 is in L(x1). For each possible situation, we can

construct a proper labeling for V(P), similarly to the foregoing argument.

Lemma 8. Let P = x1x2 . . . x7 be a path. If L is a list assignment for V(P) satisfying the following
conditions (1) and (2), then P has an L-L∗(2, 1)-labeling.

(1) L(x3) = L(x4) = L(x5) = S, L(x1) ⊂ L(x2) ⊂ S, and L(x7) ⊂ L(x6) ⊂ S;
(2) |L(x1)|, |L(x7)| ≥ 2, |L(x2)|, |L(x6)| ≥ 6, and |S| ≥ 7.

Proof. Assume that |L(x1)| = |L(x7)| = 2, |L(x2)| = |L(x6)| = 6, and |S| = 7. In addition,
let S = {a1, a2, . . . , a7} with a1 < a2 < · · · < a7. If there is a label p ∈ L(x1) such that
|L(x2) ∩ {p}| ≤ 2, then we label x1 with p and x7 with q ∈ L(x7) \ {p}, and then define a
list assignment L′ for x2, x3, x4, x5, x6 as follows:

L′(x2) = L(x2) \ {p, q},
L′(x6) = L(x6) \ {q, p},
L′(xi) = L(xi) \ {p, q} for i = 3, 4, 5.
It follows that |L′(x2)| ≥ 3, |L′(x6)| ≥ 2, and |L(xi)| ≥ 5 for i = 3, 4, 5. Observing that

L′(x3) = L′(x4) = L′(x5) and L′(x2), L′(x6) ⊂ L′(x3), Lemma 4 asserts that x2, x3, x4, x5, x6
are L′-L∗(2, 1)-labelable. Otherwise, for any p ∈ L(x1) we have |L(x2) ∩ {p}| = 3,
and for any q ∈ L(x7) we have |L(x6) ∩ {q}| = 3. Assume that L(x1) = {a, b} with
a < b, and L(x7) = {c, d} with c < d. Then L(x2) = {a− 1, a, a + 1, b− 1, b, b + 1} and
L(x6) = {c− 1, c, c + 1, d− 1, d, d + 1}. By symmetry, we have to consider the following
three cases.

Case 1. L(x1) = {a2, a5} and L(x2) = S \ {a7}.
If L(x7) = {a2, a5} and L(x6) = S \ {a7}, then we label x1, x2, x3, x4, x5, x6, x7 with

a2, a6, a4, a7, a1, a3, a5, respectively. If L(x7) = {a2, a6} and L(x6) = S \ {a4}, then we la-
bel x1, x2, x3, x4, x5, x6, x7 with a5, a2, a4, a1, a7, a3, a6, respectively. If L(x7) = {a3, a6} and
L(x6) = S \ {a1}, then we label x1, x2, x3, x4, x5, x6, x7 with a2, a6, a4, a7, a1, a5, a3, respectively.

Case 2. L(x1) = {a2, a6} and L(x2) = S \ {a4}.
If L(x7) = {a2, a6} and L(x6) = S \ {a4}, then we label x1, x2, x3, x4, x5, x6, x7 with

a2, a5, a1, a4, a7, a3, a6, respectively. If L(x7) = {a3, a6} and L(x6) = S \ {a1}, then we label
x1, x2, x3, x4, x5, x6, x7 with a2, a6, a4, a1, a7, a5, a3, respectively.

Case 3. L(x1) = L(x7) = {a3, a6} and L(x2) = L(x6) = S \ {a1}.
It suffices to label x1, x2, x3, x4, x5, x6, x7 with a3, a5, a2, a7, a1, a4, a6, respectively.

Lemma 9. Let C = xyzx be a 3-cycle. Let L be a list assignment for V(C) such that |L(x)| ≥ 3,
|L(y)| ≥ 4, and |L(z)| ≥ 5. Then C has an L-L(2, 1)-labeling.

Proof. Let a denote the minimum integer in the set L(x) ∪ L(y) ∪ L(z). The proof is split
into the following three cases.

• a ∈ L(x). Labeling x with a, we define a list assignment L′ for y, z as follows: L′(y) =
L(y) \ {a, a + 1} and L′(z) = L(z) \ {a, a + 1}. Then |L′(y)| ≥ 4− 2 = 2 and |L′(z)| ≥
5− 2 = 3. By Lemma 2, y, z are L′-L(2, 1)-labelable;
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• a ∈ L(y) and a /∈ L(x). Labeling y with a, we define a list assignment L′ for x, z as
follows: L′(x) = L(x) \ {a+ 1} and L′(z) = L(z) \ {a, a+ 1}. Then |L′(x)| ≥ 3− 1 = 2
and |L′(z)| ≥ 5− 2 = 3. By Lemma 2, x, z are L′-L(2, 1)-labelable;

• a ∈ L(z) and a /∈ L(x) ∪ L(y). Labeling z with a, we define a list assignment L′ for x, y
as follows: L′(x) = L(x) \ {a + 1} and L′(y) = L(y) \ {a + 1}.
Then |L′(x)| ≥ 3− 1 = 2 and |L′(y)| ≥ 4− 1 = 3. By Lemma 2, x, y are L′-L(2, 1)-
labelable.

Wheels are special Halin graphs, which contain only one inner vertex. The L(2, 1)-
labeling number of a wheel has been determined in [23]:

Lemma 10. Let Wn be a wheel with n vertices. Then λ(Wn) = 6 if 4 ≤ n ≤ 5, and
λ(Wn) = ∆(Wn) + 1 if n ≥ 6.

4. L(2, 1)-Labeling

Now we give the main result of this paper, i.e., Theorem 1, whose proof depends on
the structural lemma in Section 2 and auxiliary lemmas in Section 3.

Theorem 1. Let G be a Halin graph with ∆ = 8. Then λ(G) ≤ 10.

Proof. Let B = {0, 1, . . . , 10} denote a set of 11 labels. The proof is proceeded by induction
on the vertex number |G|. Since ∆ = 8, we see that |G| ≥ 9. If |G| = 9, then G is a wheel
of nine vertices and hence the result holds from Lemma 10. So suppose that G is a Halin
graph with ∆ = 8 and |G| ≥ 10. Then G is clearly not a wheel. By Lemma 1, there exists
a path x1x2 · · · xk in C such that one of the conditions (C1)–(C14) holds.

In the sequel, let y ∈ NC(x1) \ {x2}, z ∈ NC(xk) \ {xk−1}, NG(y) = {x1, y1, y2},
and NG(z) = {xk, z1, z2}. We will reduce these 14 configurations one by one.

(C1) Let H = G − {x1, x2, x3, x4}+ {yu1, u1u2, u2z}. Then H is a Halin graph with
∆(H) = 8 and |H| < |G|. By the induction hypothesis, H has an L(2, 1)-labeling f with the
label set B. Define a list assignment L for x1, x2, x3, x4 as follows:

L(x1) = B \ { f (u1), f (y), f (v), f (y1), f (y2)},
L(x2) = B \ { f (u1), f (y), f (v), f (u2)},
L(x3) = B \ { f (u2), f (z), f (v), f (u1)},
L(x4) = B \ { f (u2), f (z), f (v), f (z1), f (z2)}.
Since |B| ≥ 11, it follows that |L(x1)| ≥ 11− 3− 3− 3 ≥ 2 and |L(x2)| ≥ 11− 3− 3 ≥ 5.

Similarly, |L(x4)| ≥ 2 and |L(x3)| ≥ 5. By Lemma 5, x1, x2, x3, x4 are L′-L(2, 1)-labelable.
(C2) Let H = G− x4 + x3x5. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|.

By the induction hypothesis, H has an L(2, 1)-labeling f with the label set B. Define a list
assignment L for x2, x3, x4 as follows:

L(x2) = B \ { f (x1), f (u1), f (y), f (v), f (u2)},
L(x3) = B \ { f (u2), f (x1), f (u1), f (v), f (x5)},
L(x4) = B \ { f (u2), f (x5), f (v), f (z)}.
Then |L(x2)| ≥ 11− 3− 3− 3 ≥ 2, |L(x3)| ≥ 11− 3− 4 ≥ 4, and |L(x4)| ≥ 11− 3−

3− 2 ≥ 5. By Lemma 3, x2, x3, x4 can be labeled properly.
(C3) Let H = G− x2 + x1x3. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|.

By the induction hypothesis, H has an L(2, 1)-labeling f with the label set B. Define a list
assignment L for x2, x3, x4 as follows:

L(x2) = B \ { f (x1), f (u1), f (y), f (v)},
L(x3) = B \ { f (u1), f (x1), f (u2), f (v), f (x5)},
L(x4) = B \ { f (u2), f (x5), f (u1), f (v), f (x6)}.
Then |L(x2)| ≥ 3, |L(x3)| ≥ 4, and |L(x4)| ≥ 2. By Lemma 3, x2, x3, x4 are L-L(2, 1)-

labelable.
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(C4) Let H = G− x2 + x1x3. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|.
By the induction hypothesis, H has an L(2, 1)-labeling f with the label set B. Define a list
assignment L for x1, x2, x3 as follows:

L(x1) = B \ { f (y), f (u), f (y1), f (y2), f (v)},
L(x2) = B \ { f (u), f (y), f (v), f (x4)},
L(x3) = B \ { f (u), f (x4), f (z), f (v)}.
Then |L(x1)| ≥ 2, |L(x2)| ≥ 5, and |L(x3)| ≥ 3. By Lemma 3, x1, x2, x3 are L-L(2, 1)-

labelable.
(C5) Let N(v) = {u, x3, t1, . . . , tl}. Since d(v) ≤ 5, we see that l ≤ 3. Let H =

G− {x1, x2}+ {x3u, uy}. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|. By the
induction hypothesis, H has an L(2, 1)-labeling f using B. Erasing the label of u, we define
a list assignment L for x1, x2, u as follows:

L(x1) = B \ { f (y), f (y1), f (y2), f (v), f (x3)},
L(x2) = B \ { f (x3), f (z), f (y), f (v)},
L(u) = B \ { f (v), f (y), f (x3), f (t1), . . . , f (tl)}.
Then |L(x1)| ≥ 4, |L(x2)| ≥ 5, and |L(u)| ≥ 3. By Lemma 9, u, x1, x2 are L-L(2, 1)-

labelable.
(C6) Let N(v) = {u, x1, x4, t1, . . . , tm}. Since d(v) ≤ 6, we see that m ≤ 3. Let

H = G− {x2, x3}+ {x1u, ux4}. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|. By
the induction hypothesis, H admits an L(2, 1)-labeling f using B. Erasing the label of u, we
define a list assignment L for x2, x3, u as follows:

L(x2) = B \ { f (x1), f (y), f (v), f (x4)},
L(x3) = B \ { f (x4), f (z), f (v), f (x1)},
L(u) = B \ { f (v), f (x1), f (x4), f (t1), . . . , f (tm)}.
Since m ≤ 3, we have that |L(u)| ≥ 3 and |L(x2)|, |L(x3)| ≥ 5. By Lemma 9, u, x2, x3

are L-L(2, 1)-labelable.
(C7) Set N(v) = {u, x1, x4, x5, t1, t2, t3} because d(v) = 7. Let H = G − {x2, x3} +

{x1u, ux4}. Then H is a Halin graph with ∆(H) = 8 and |H| < |G|. By the induc-
tion hypothesis, H admits an L(2, 1)-labeling f using B. Let f (x1) = a, f (x4) = b, and
f (x5) = c. Deleting the label of u, we define a list assignment L for x2, x3, u as follows:

L(x2) = B \ {a, b, f (v), f (y)},
L(x3) = B \ {b, a, c, f (v)},
L(u) = B \ { f (v), a, b, c, f (t1), f (t2), f (t3)}.
Then |L(u)| ≥ 2 and |L(x2)|, |L(x3)| ≥ 5. It is easy to show by Lemmas 2 and 9 that

u, x2, x3 cannot be labeled only if L(x2) = L(x3) = S = {i, i + 1, i + 2, i + 3, i + 4} and
L(u) = {i + 1, i + 3} for some i ∈ B. This implies that a− 1, a, a + 1, b− 1, b, b + 1, c /∈ S,
and thus i + 1, i + 3 /∈ {c− 1, c, c + 1}. Let s denote the neighbor of x5 other than v and x4.
Relabel x4 with a label p ∈ {i + 1, i + 3} \ { f (s)}. If p = i + 1, then we label u with b, x3
with i + 3, and x2 with i. If p = i + 3, then we label u with b, x3 with i + 1, and x2 with
i + 4.

(C8) Set N(v) = {u, x1, x4, x5, x6, t1, t2, t3}, and let H = G − {x2, x3} + {x1u, ux4}.
Then H is a Halin graph with ∆(H) = 8 and |H| < |G|. By the induction hypothesis, H ad-
mits an L(2, 1)-labeling f using B such that x1, x4, u, x5, x6, y, v are labeled by a, b, c, d, e, g, h,
respectively. Define a list assignment L for x2 and x3 as follows:

L(x2) = B \ {a, c, h, g, b},
L(x3) = B \ {b, c, h, d, a}.
Then |L(x2)| ≥ 2 and |L(x3)| ≥ 2. By Lemma 2, x2 and x3 cannot be labeled only if

L(x2) = L(x3) = {i, i + 1} for some i ∈ B. It follows that

{a− 1, a + 1, g} = {b− 1, b + 1, d} (1)

Note that a, b, c, d, e are distinct and d /∈ {c− 1, c, c + 1}. Switch the labels of u and x4
and then define a new list assignment L′ as follows:

L′(x2) = B \ {a, b, h, g, c},
L′(x3) = L(x3).
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We assert that x2, x3 are L′-L(2, 1)-labelable. If not, we have that L′(x2) = L′(x3) =
L(x3) = {i, i + 1} for some i ∈ B. Thus,

{a− 1, a + 1, g} = {c− 1, c + 1, d} (2)

Combining (1) and (2), we get that {b− 1, b+ 1, d} = {c− 1, c+ 1, d}, i.e., b = c, which
contradicts the fact that b 6= c.

(C9) Let H = G− {x2, x3, x5, x6}+ {x1u1, u1x4, x4u2, u2x7}. Then H is a Halin graph
with ∆(H) = 8 and |H| < |G|. By the induction hypothesis, H admits an L(2, 1)-labeling
f using B such that u1, x4, u2, x1, x7, v, y, z are labeled by a, b, c, d, e, g, h, i, respectively.
Define a list assignment L for x2, x3, x5, x6 as follows:

L(x2) = B \ {a, d, b, g, h},
L(x3) = B \ {a, b, d, g},
L(x5) = B \ {c, b, e, g},
L(x6) = B \ {c, e, b, g, i}.
Then |L(x2)|, |L(x6)| ≥ 2 and |L(x3)|, |L(x5)| ≥ 3. By Lemma 2, we can show that

x2, x3, x5, x6 cannot be labeled only if L(x2) = {i, i + 1}, L(x3) = {i, i + 1, p},
L(x5) = {j, j + 1, p}, and L(x6) = {j, j + 1} for some i, j ∈ B. Note that i may be
equal to j. It implies that any two labels in {c− 1, c, c + 1, b− 1, b, b + 1, e, g} are distinct,
and any two labels in {c− 1, c, c + 1, e− 1, e, e + 1, b, g, i} are distinct. A similar conclusion
holds for the sets {a− 1, a, a + 1, b− 1, b, b + 1, d, g} and {a− 1, a, a + 1, d− 1, d, d + 1, g, h}.
Now we switch the labels of x4 and u2 and then define a new list assignment L′ for
x2, x3, x5, x6 as follows:

L′(x2) = B \ {a, d, c, g, h},
L′(x3) = B \ {a, c, d, g},
L′(x5) = L(x5),
L′(x6) = B \ {b, e, c, g, i}.
It is easy to confirm that L′(x2) = (L(x2)∪ {b}) \ {c} = {i, i + 1, b} \ {c}. If |L′(x2)| ≥

3, the proof can be reduced to the previous case. Otherwise, since b 6= c, we get that c = i
or c = i + 1, that is, L′(x2) = {b, i + 1} or L′(x2) = {b, i}. Since i, i + 1 ∈ L(x3), we see that
|b− i| ≥ 2 and |b− (i + 1)| ≥ 2. This shows that two labels in L′(x2) are not consecutive.
Thus, x2, x3, x5, x6 admit an L′-L(2, 1)-labeling.

(C10) Without loss of generality, assume that d(v) = 8 and N(v) = {u1, u2, x1, x4,
x5, x8, t1, t2}. Let H = G − {u1, u2, x2, x3, . . . , x7} + x1x8. Then H is a Halin graph with
∆(H) ≤ 8 and |H| < |G|. If ∆(H) ≤ 7, then H is 10-L(2, 1)-labelable by the result in [24].
If ∆(H) = 8, then H is also 10-L(2, 1)-labelable by the induction hypothesis. Thus, H
always admits an L(2, 1)-labeling f using B such that v, x1, x8, y, z, t1, t2 are labeled by
i1, i2, i3, i4, i5, i6, i7, respectively. Define a list assignment L as follows:

L(u1) = L(u2) = L(x4) = L(x5) = S = B \ {i1, i2, i3, i6, i7},
L(x2) = B \ {i2, i1, i4},
L(x3) = B \ {i1, i2},
L(x6) = B \ {i1, i3},
L(x7) = B \ {i3, i1, i5}.
It is easy to deduce that |L(x2)|, |L(x7)| ≥ 6, |L(x3)|, |L(x6)| ≥ 9, and |S| ≥ 4.

Assume that |S| = 4 and S = {a, b, c, d} with 0 ≤ a < b < c < d ≤ 10. To complete
the proof, we consider the following three subcases.

(C10.1) a = 0. (If d = 10, we have a similar argument.)
Label x4 with a, u1 with b, x5 with c, and u2 with d. Define a list assignment L′ for

x2, x3, x6, x7 as follows:
L′(x2) = L(x2) \ {b, 0},
L′(x3) = L(x3) \ {b, 0, 1, c},
L′(x6) = L(x6) \ {c, d, 0},
L′(x7) = L(x7) \ {d, c}.
It is easy to show that |L′(x3)| ≥ 3 and |L′(x2)|, |L′(x6)|, |L′(x7)| ≥ 2. By Lemma 2, x2

and x3 are L′-L(2, 1)-labelable. If x6, x7 are also L′-L(2, 1)-labelable, we are done. Otherwise,
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by Lemma 2, we have L′(x6) = L′(x7) = {j, j + 1} for some j ∈ B. This implies that
d ≥ c + 3, as otherwise we derive that |L′(x6)| ≥ 3, which is impossible. Now we switch
the labels of x5 and u2 to induce a new list assignment L′′ from L′. On the one hand, it
still holds that |L′′(x2)| ≥ 2 and |L′′(x3)| ≥ 3, and hence x2, x3 are L′′-L(2, 1)-labelable.
On the other hand, L′′(x6) = L′(x6), and L′′(x7) = (L′(x7)∪{d− 1, d+ 1}) \ {c− 1, c+ 1} =
{j, j+ 1, d− 1, d+ 1} \ {c− 1, c+ 1}. Since j, j+ 1 /∈ {c− 1, c+ 1, d− 1, d+ 1} and d ≥ c+ 3,
it follows that either |L′′(x7)| ≥ 3 or L′′(x7) = {j, k} with |j− k| ≥ 2. By Lemma 2, x6 and
x7 are L′′-L(2, 1)-labelable.

(C10.2) b ≤ a + 2. (If d ≤ c + 2, we have a similar discussion).
After x4, u1, x5, u2 with a, b, c, d, respectively, we define a list assignment L′ for

x2, x3, x6, x7 as follows:
L′(x2) = L(x2) \ {b, a},
L′(x3) = L(x3) \ {b, a, c},
L′(x6) = L(x6) \ {c, d, a},
L′(x7) = L(x7) \ {d, c}.
Since b ≤ a + 2, it follows that |{a− 1, a, a + 1, b− 1, b, b + 1}| ≤ 5. Thus, |L′(x3)| ≥ 3

and |L′(x2)|, |L′(x6)|, |L′(x7)| ≥ 2. The remaining discussion is analogous to (C10.1).
(C10.3) b ≥ a + 3 and c ≤ b + 2.
Label x5, x4, u1, u2 with a, b, c, d, respectively, and define a list assignment L′ as follows:
L′(x2) = L(x2) \ {c, b},
L′(x3) = L(x3) \ {c, b, a},
L′(x6) = L(x6) \ {a, d, b},
L′(x7) = L(x7) \ {d, a}.
Since c ≤ b + 2, we derive that |L′(x3)| ≥ 3 and |L′(x2)|, |L′(x6)|, |L′(x7)| ≥ 2.

The remaining discussion is analogous to (C10.1).
(C11) Note that 4 ≤ k ≤ 7. Let H = G− {x1, x2, . . . , xk}+ {yu, uz}. By the induction

hypothesis or the result in [24], H has an L(2, 1)-labeling f using B such that u, y, z are
labeled with p, q, r, respectively. Define a list assignment L for x1, x2, . . . , xk as follows:

L(x1) = B \ {p, q, f (v), f (y1), f (y2)},
L(xk) = B \ {p, r, f (v), f (z1), f (z2)},
L(x2) = B \ {p, f (v), f (y)},
L(xk−1) = B \ {p, f (v), f (z)},
L(xi) = B \ {p, f (v)} for i = 3, 4, . . . , k− 2.
Then |L(x1)|, |L(xk)| ≥ 2, |L(x2)|, |L(xk−1)| ≥ 6, and |L(xi)| ≥ 7 for i = 3, 4, . . . , k− 2.

According to the size of k, we have to deal with the following subcases.
(C11.1) k = 4.
Since |L(x1)|, |L(x4)| ≥ 2 and |L(x2)|, |L(x3)| ≥ 6, x1, x2, x3, x4 are L-L(2, 1)-labelable

by Lemma 6.
(C11.2) k = 5.
We note that L(x1) ⊂ L(x2) ⊂ L(x3), L(x5) ⊂ L(x4) ⊂ L(x3), |L(x1)|, |L(x5)| ≥ 2,

|L(x2)|, |L(x4)| ≥ 6, and |L(x3)| ≥ 7. Assume, w.l.o.g., that |L(x1)| = |L(x5)| = 2,
|L(x2)| = |L(x4)| = 6, and |L(x3)| = 7. If L(x1) 6= L(x5), then we label x5 with a label
a ∈ L(x5) \ L(x1) and then define a list assignment L′ for x1, x2, x3, x4 as follows:

L′(x1) = L(x1),
L′(x4) = L(x4) \ {a},
L′(xi) = L(xi) \ {a} for i = 2, 3.
Then |L′(x1)| ≥ 2, |L′(x2)| ≥ 5, |L′(x3)| ≥ 6, and |L′(x4)| ≥ 3. By Lemma 4,

x1, x2, x3, x4 are L-L(2, 1)-labelable. Otherwise, L(x1) = L(x5) = {p, q} with p < q.
If |L(x2)∩ {p}| ≤ 2, then we label x1 with p and x5 with q and then define a list assignment
L′ for x2, x3, x4 as follows:

L′(x2) = L(x2) \ {p, q},
L′(x3) = L(x3) \ {p, q},
L′(x4) = L(x4) \ {q, p}.
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Then |L′(x2)| ≥ 3, |L′(x3)| ≥ 5, and |L′(x4)| ≥ 2. By Lemma 3, x2, x3, x4 are L′-L(2, 1)-
labelable. Otherwise, |L(x2) ∩ {p}| = 3. Similarly, |L(x2) ∩ {q}| = 3, |L(x4) ∩ {p}| = 3,
and |L(x4) ∩ {q}| = 3. This implies that L(x2) = L(x4) = {p− 1, p, p + 1, q− 1, q, q + 1},
and L(x3) = {p − 1, p, p + 1, q − 1, q, q + 1, r}. Since p < q, we have p + 1 < q − 1.
If r > q + 1, we label x1 with q, x2 with p − 1, x3 with r, x4 with q − 1, and x5 with p.
If r < p− 1, we have a similar labeling. If p + 1 < r < q− 1, we label x1 with q, x2 with
p− 1, x3 with r, x4 with q + 1, and x5 with p.

(C11.3) k = 6.
Assume that |L(x1)| = |L(x6)| = 2, |L(x2)| = |L(x5)| = 6, and |L(x3)| = |L(x4)| = 7.

Note that L(x3) = L(x4), L(x1) ⊂ L(x2) ⊂ L(x3) and L(x6) ⊂ L(x5) ⊂ L(x4). If there is
a ∈ L(x1) such that |L(x2) ∩ {a}| ≤ 2, then we label x1 with a, x6 with b ∈ L(x6) \ {a},
and then define a list assignment L′ for x2, x3, x4, x5 as follows:

L′(x2) = L(x2) \ {a, b},
L′(xi) = L(x4) \ {a, b} for i = 3, 4,
L′(x5) = L(x5) \ {b, a},
Then |L′(x2)| ≥ 3, |L′(x3)|, |L′(x4)| ≥ 5, and |L′(x5)| ≥ 2. By Lemma 4, x2, x3, x4, x5

are L′-L(2, 1)-labelable. Otherwise, for each a ∈ L(x1) we have |L(x2) ∩ {a}| = 3 and for
each b ∈ L(x6) we have |L(x5) ∩ {b}| = 3. Let L(x3) = L(x4) = S = {b1, b2, . . . , b7} with
b1 < b2 < · · · < b7. Since |L(x2)| = |L(x5)| = 6 and L(x2), L(x5) ⊂ S, we only need to
consider the following cases by symmetry.

• L(x1) = {b2, b5}. Then L(x2) = S \ {b7}. If L(x6) = {b2, b5}, then L(x5) = S \
{b7}, we label x1, x2, x3, x4, x5, x6 with b2, b6, b4, b1, b3, b5, respectively. If L(x6) =
{b2, b6}, or L(x6) = {b3, b6}, then L(x5) = S \ {b4}, or L(x5) = S \ {b1}, we label
x1, x2, x3, x4, x5, x6 with b5, b1, b4, b7, b3, b6, respectively;

• L(x1) = {b2, b6}. Then L(x2) = S \ {b4}. If L(x6) = {b2, b6}, then L(x5) = S \ {b4},
we label x1, x2, x3, x4, x5, x6 with b2, b7, b3, b5, b1, b6, respectively. If L(x6) = {b3, b6},
then L(x5) = S \ {b1}, we label x1, x2, x3, x4, x5, x6 with b2, b7, b4, b1, b5, b3, respectively;

• L(x1) = L(x6) = {b3, b6}. Then L(x2) = L(x5) = S \ {b1}. We label x1, x2, x3, x4,
x5, x6 with b3, b7, b5, b1, b4, b6, respectively.

(C11.4) k = 7.
Since |L(x1)|, |L(x7)| ≥ 2, |L(x2)|, |L(x6)| ≥ 6, |L(x3)|, |L(x4)|, |L(x5)| ≥ 7, L(x3) =

L(x4) = L(x5), L(x1) ⊂ L(x2) ⊂ L(x3), and L(x7) ⊂ L(x6) ⊂ L(x5), Lemma 8 guarantees
that x1, x2, . . . , x7 are L-L(2, 1)-labelable.

(C12) Note that 6 ≤ k ≤ 8. Let H = G−{u, x1, x2, . . . , xk} +{yv, vz}. By the induction
hypothesis or the result in [24], H has an L(2, 1)-labeling f using B such that v, w, y, z, y1, y2,
z1, z2 are labeled with a, b, c, d, c1, c2, d1, d2, respectively. Label x2 with some label in
{a − 1, a + 1} \ {c}, say a + 1. Then we label xk with e ∈ B \ {a, d, b, d1, d2}, x1 with
g ∈ B \ {c, a, a + 1, c1, c2}, and u with h ∈ B \ {g, a, a + 2, b, c, e}. Now we define a list
assignment L for x3, x4, . . . , xk−1 as follows:

L(x3) = B \ {a, a + 2, b, e, g, h},
L(xi) = B \ {a, b, e, h} for i = 4, 5, . . . , k− 2,
L(xk−1) = B \ {a, e, b, d, h}.
It follows that |L(x3)| ≥ 3, |L(xk−1)| ≥ 2, and |L(xi)| ≥ 5 for i = 4, 5, . . . , k − 2.

If k = 6, then x3, x4, x5 are L-L(2, 1)-labelable by Lemma 3. If k = 7, then x3, x4, x5, x6 are
L-L(2, 1)-labelable by Lemma 4. If k = 8, then x3, x4, x5, x6, x7 are L-L(2, 1)-labelable by
Lemma 7.

(C13) Note that 7 ≤ k ≤ 9. Let H = G − {u1, u2, x1, x2, . . . , xk} +{yv, vz}. By the
induction hypothesis or the result in [24], H has an L(2, 1)-labeling f using B such that
v, w, y, z, y1, y2, z1, z2 are labeled with a, b, c, d, c1, c2, d1, d2, respectively. Label x2 with some
label in {a− 1, a + 1} \ {c}, say a + 1, and xk−1 with some label in {a− 1, a + 1} \ {c}, say
a− 1, Then we label x1 with g ∈ B \ {c, a + 1, c1, c2}, xk with h ∈ B \ {d, a− 1, d1, d2}, u1
with e′ ∈ B \ {e, a + 1, a− 1, b, c}, and u2 with h′ ∈ B \ {h, a− 1, a + 1, b, d, e′}.

Afterwards we define a list assignment L for x3, x4, . . . , xk−2 as follows:
L(x3) = B \ {a, a + 2, b, e, e′, h′},
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L(xk−2) = B \ {a, a− 2, b, e′, h, h′},
L(xi) = B \ {a, b, e′, h′} for i = 4, 5, . . . , k− 2.
Then |L(x3)|, |L(xk−2)| ≥ 3, and |L(xi)| ≥ 5 for i = 4, 5, . . . , k − 3. If k = 7, then

x3, x4, x5 can be L-L(2, 1)-labeled by Lemma 3. If k = 8, then x3, x4, x5, x6 can be L-
L(2, 1)-labeled by Lemma 4. If k = 9, then x3, x4, x5, x6, x7 can be L-L(2, 1)-labeled by
Lemma 7.

(C14) Let H = G− {u1, u2, u3, x1, x2, . . . , xk} +{yv, vz}. By the induction hypothesis
or the result in [24], H has an L(2, 1)-labeling f using B such that v, w, y, z, y1, y2, z1, z2 are
labeled with a, b, c, d, c1, c2, d1, d2, respectively. Similarly to the proof of the previous cases,
we label, w.l.o.g., x2, x5 with a + 1, x6, x9 with a− 1, x1 with g, x10 with h, u1 with g′ and u3
with h′. Define a list assignment L for x3, x4, x7, x8 as follows:

L(x3) = B \ {a, a + 2, b, g, g′, h′},
L(x4) = B \ {a, a + 2, b, g′, h′},
L(x7) = B \ {a, a− 2, b, g′, h′},
L(x8) = B \ {a, a− 2, b, g′, h, h′}.
It is not difficult to see that |L(x3)|, |L(x8)| ≥ 3, |L(x4)|, |L(x7)| ≥ 4, L(x3) ⊂ L(x4),

L(x8) ⊂ L(x7), and 3 ≤ |L(x4) ∩ L(x7)| ≤ 4. Assume that |L(x3)| = |L(x8)| = 3,
and |L(x4)| = |L(x7)| = 4.
Claim 1 x3, x4, x7, x8 are L-L∗(2, 1)-labelable.

Proof. First, assume that L(x3) = L(x8) = {α, β, γ} with α < β < γ. Then α, β, γ ∈
L(x4) ∩ L(x7). Furthermore, assume that L(x4) = {α, β, γ, φ}. If φ < α, then we label
x3, x4, x7, x8 with β, φ, α, γ, respectively. If α < φ < β, then we label x3, x4, x7, x8 with
γ, φ, α, β, respectively. If β < φ < γ, then we label x3, x4, x7, x8 with α, φ, β, γ, respectively.
If γ < φ, then we label x3, x4, x7, x8 with β, φ, α, γ, respectively.

Next assume that L(x3) 6= L(x8). Label x3 with α ∈ L(x3) \ L(x8) and x4 with
β ∈ L(x4) \ {α}. Define a list assignment L′ for x7, x8 as follows:

L′(x7) = L(x7) \ {α, β},
L′(x8) = L(x8) \ {β}.
Then |L′(x7)| ≥ 2 and |L′(x8)| ≥ 2. By Lemma 2, x7, x8 are not L′-L(2, 1)-labelable only

if L′(x7) = L′(x8) = {p, p + 1} for some p ∈ B. It turns out that L(x7) = {α, β, p, p + 1},
L(x8) = {β, p, p + 1}, α, β ∈ L(x4), and α ∈ L(x3). Since |L(x4) ∩ L(x7)| ≥ 3 by their
definitions, at least one of p and p + 1 belongs to L(x4).

Case I. β < p.

• α < β. If p ∈ L(x4), we label x3, x4, x7, x8 with α, p, p + 1, β, respectively.
Otherwise, p /∈ L(x4). Then p /∈ L(x3) since L(x3) ⊂ L(x4), and p + 1 ∈ L(x4).
This implies that at least one of β and p + 1 belongs to L(x3) since L(x3) ⊂ L(x4)
and |L(x4) ∩ L(x7)| ≥ 3. Label x7 with α, x8 with p, x3 with some label γ ∈
L(x3) ∩ {β, p + 1}, and x4 with some label in {β, p + 1} \ {γ};

• β < α < p. If p + 1 ∈ L(x4), we label x3, x4, x7, x8 with α, p + 1, p, β, respectively.
Otherwise, p + 1 /∈ L(x4) and hence p + 1 /∈ L(x3), and p ∈ L(x4). If β ∈ L(x3),
we label x3, x4, x7, x8 with β, p, α, p + 1, respectively. Otherwise, L(x3) = {p, α, γ}
and L(x4) = {p, α, β, γ} for some γ ∈ B. If γ < α, then we label x3, x4, x7, x8 with
p, γ, β, p + 1, respectively. If γ > p, then we label x3, x4, x7, x8 with α, p, β, p + 1,
respectively;

• α > p + 1. If p ∈ L(x4), we label x3, x4, x7, x8 with α, p, p + 1, β, respectively.
Otherwise, p /∈ L(x4) and hence p /∈ L(x3), and p + 1 ∈ L(x4). If p + 1 ∈ L(x3),
we label x3, x4, x7, x8 with p + 1, β, α, p, respectively. Otherwise, β ∈ L(x3), we label
x3, x4, x7, x8 with β, p + 1, α, p, respectively.

Case II. β > p + 1.

• α < p. If p + 1 ∈ L(x4), then we label x3, x4, x7, x8 with α, p + 1, β, p, respectively.
Otherwise, p + 1 /∈ L(x4), and p ∈ L(x4). If β ∈ L(x3), then we label x3, x4, x7, x8
with β, p, α, p + 1, respectively. Otherwise, p ∈ L(x3), then we label x3, x4, x7, x8 with
p, β, α, p + 1, respectively;
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• p + 1 < α < β. If p ∈ L(x4), then we label x3, x4, x7, x8 with α, p, β, p + 1, respectively.
Otherwise, p /∈ L(x4), and p + 1 ∈ L(x4). If β ∈ L(x3), then we label x3, x4, x7, x8
with β, p + 1, α, p, respectively. Otherwise, p + 1 ∈ L(x3), we label x3, x4, x7, x8 with
p + 1, β, α, p, respectively;

• α > β. If p + 1 ∈ L(x4), then we label x3, x4, x7, x8 with α, p + 1, β, p, respectively.
Otherwise, p + 1 /∈ L(x4), and p ∈ L(x4). If β ∈ L(x3), then we label x3, x4, x7, x8
with β, p, α, p + 1, respectively. Otherwise, p ∈ L(x3), we label x3, x4, x7, x8 with
p, β, α, p + 1, respectively. The completes the proof of Claim 1.

By Claim 1, we label x3, x4, x7, x8 with p1, p2, p3, p4, respectively. Finally, we label u2
with some label in B \ {a, b, g′, h′, p1, p2, p3, p4}.

Combining Theorem 1 and the results in [23], we obtain easily the following:

Corollary 1. For every Halin graph G, it holds that λ(G) ≤ ∆ + 6.

5. Concluding Remarks

Halin graphs are important and interesting planar graphs. The research of structures
and parameters for Halin graphs has attracted considerable attention in the recent decades.
The L(2, 1)-labeling of graphs can be thought of as the generalization of the proper vertex
coloring of graphs, which are of wide applications in frequency channel assignment, traffic
phasing, task assignment, and other practical problems. This paper has contributed with
the L(2, 1)-labeling of Halin graphs.

We first proved that the L(2, 1)-labeling number of each Halin graph of maximum
degree 8 is at most 10. To explain that the upper bound 10 is sharp, we observed the
graph H∗, depicted in Figure 2. Note that H∗ is a Halin graph consisting of three 8-
vertices and twenty 3-vertices, which implies that ∆(H∗) = 8. It was shown in [4] that if a
graph G contains a ∆-vertex that is adjacent to at least two ∆-vertices, then λ(G) ≥ ∆ + 2.
This fact immediately implies that λ(H∗) ≥ ∆(H∗) + 2 = 8 + 2 = 10. On the other hand,
a 10-L(2, 1)-labeling of H∗ using the labels 0, 1, . . . , 10 is constructed in Figure 2, which
gives that λ(H∗) ≤ 10. Consequently, λ(H∗) = 10.
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Figure 2. A Hain graph H∗ with ∆ = 8 and λ(H∗) = 10.

Our Theorem 1 and the result in [23] confirm that every Halin graph G with ∆ ≥ 8 has
λ(G) ≤ ∆ + 2. Here, the lower bound 8 for ∆ does not seem like the best possibility. Thus,
we would like to propose the following problem:

Problem 1. Determine the least integer ∆0 such that every Halin graph G with ∆(G) ≥ ∆0 has
λ(G) ≤ ∆ + 2.
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It is easy to check that the complete graph K4 is a Halin graph with λ(K4) = 6 =
∆(K4) + 3. This fact and Theorem 1 imply that 4 ≤ ∆0 ≤ 8.

The second result we establish in this paper is that every Halin graph G has λ(G) ≤
∆ + 6. We feel that the constant 6 in the expression can be further improved.

Problem 2. Determine the least constant C such that every Halin graph G has λ(G) ≤ ∆ + C.

The above discussion clearly implies that 3 ≤ C ≤ 6.
To obtain the main contributions of this paper, we first analyzed the structures of Halin

graphs with the maximum degree 8, i.e., that is, 14 inevitable configurations (C1)–(C14)
were found in the graph under consideration. These structural characterizations could
perhaps be applied to the study of other problems.
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