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Abstract: The Weibull distribution, one of the most significant distributions with applications in
numerous fields, is associated with numerous distributions such as generalized gamma distribution,
exponential distribution, and Rayleigh distribution, which are asymmetric. Nevertheless, it shares
a close relationship with a normal distribution where a process of transformation allows them to
become symmetric. The Weibull distribution is commonly used to study the failure of components
and phenomena. It has been applied to a variety of scenarios, including failure time, claims amount,
unemployment duration, survival time, and especially wind speed data. A suitable area for installing
a wind turbine requires a wind speed that is both sufficiently high and consistent, and so comparing
the variation in wind speed in two areas is eminently desirable. In this paper, methods to estimate
the confidence interval for the ratio of the coefficients of variation of two Weibull distributions are
proposed and applied to compare the variation in wind speed in two areas. The methods are the
generalized confidence interval (GCI), the method of variance estimates recovery (MOVER), and
Bayesian methods based on the gamma and uniform priors. The Bayesian methods comprise the
equal-tailed confidence interval and the highest posterior density (HPD) interval. The effectiveness
of the methods was evaluated in terms of their coverage probabilities and expected lengths and also
empirically applied to wind speed datasets from two different areas in Thailand. The results indicate
that the HPD interval based on the uniform prior outperformed the others in most of the scenarios
tested and so it is suggested for estimating the confidence interval for the ratio of the coefficients of
variation of two Weibull distributions.

Keywords: coefficient of variation; Weibull distribution; Bayesian; generalized confidence interval;
method of variance estimates recovery

1. Introduction

In statistics, Weibull distribution is a continuous probability distribution that is pos-
itively asymmetric. It is related to several other probability distributions, for instance, it
interpolates between the exponential distribution and the Rayleigh distribution. In addition,
we can apply a simple close-to-normal approximation of a Weibull random variable. Sup-
pose that random variable X follows a two-parameter Weibull distribution Weibull(a, k),
with a as the scale parameter and k as the shape parameter, then the probability density
function (pdf) of X can be defined as

f (x; a, k) =
k
a

( x
a

)k−1
exp

[
−
( x

a

)k
]

, x > 0, a > 0, k > 0, (1)

where E(X) = µ = aΓ(1 + 1
k ) and V(X) = σ2 = a2[Γ(1 + 2

k ) − (Γ(1 + 1
k ))

2]. Kulkarni
and Powar [1] proposed transformation Y = Xp, where the power p is chosen so that the
distribution of transformed variable Y only has very a small deviation from symmetry, and
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simultaneously has tail behavior very close to that of normal distribution with the same
mean and variance. To approximate the distribution of Y to a normal distribution, p = kθ
is exactly symmetric, where the value of θ is the solution of skewness equation (t(θ)) of the
distribution of Y as follows:

t(θ) = t(p, k) =
Γ(1 + 3θ)− 3Γ(1 + θ)Γ(1 + 2θ) + 2[Γ(1 + θ)]3

[Γ(1 + 2θ)− (Γ(1 + θ))2]3/2 . (2)

The skewness function of X is obtained by substituting µ, σ2, p = kθ, and thus is no
longer depends on scale parameter a. The Weibull distribution has been used in many fields,
including engineering, industry, insurance claims and weather forecasting. For example, it
has been used to analyze the survival time of guinea pigs injected with different doses of
tubercle bacilli [2] and the lifetime the front and rear brake pads [3]. Xu et al. [4] analysed the
effect of laser treatment in delay the onset of blindness in patients with diabetic retinopathy.
Wang et al. [5] investigated inverse estimators for parameters of Weibull distribution and
applied to the data on times to breakdown of an insulating fluid. Zhang et al. [6] studied
the reliability estimation of the multicomponent stress-strength model involving one stress
and two correlated strength components from a parallel system. Zhuang et al. [7] analyzed
the progressive-stress accelerated life tests with group effect under progressive censoring.
Pang et al. [8] approximated the Weibull distribution’s parameters using wind speed data
from a Hong Kong observatory. Yingni et al. [9] estimated the wind energy potential of 15
wind farms in China using the Weibull distribution. It has also been to estimate the distance
traveled by a vehicle before throttle failure [10–12]. One interesting data consideration
about Weibull distribution is wind speed data. In Thailand, a number of research studies
have been conducted on the potential of wind energy in order to find suitable sites for wind
turbine installations [13–18].

Wind is a significant source of renewable energy for the electricity generation that is
clean and ecologically friendly. Over the years, Thailand has been unable to utilize wind
power as efficiently as it should due to the high cost of building wind turbines. Therefore,
selecting suitable sites for the installation of wind turbines and wind potential measurement
stations is very important. If an area has poor wind speed potential, a station may have to
be dismantled and installed at a new site with better wind energy potential. Sufficient wind
power should have wind speeds that are not too low and consistent throughout the year,
and the mean of the distribution of the wind speed data should be applied for statistical
inference. However, since the distribution of the data is skewed, the mean may not be the
best measure of the central tendency as it is very sensitive to extreme values in a small
sample. Instead, the dispersion in the wind speed data over time is a better measure, with
low dispersion being preferable.

The coefficient of variation (CV) is a measure of the degree of dispersion in a dis-
tribution. It is the ratio of the standard deviation to the mean, and, unlike the variance
and standard deviation, the measurement unit of the original data is not involved, which
makes it very useful for comparing the dispersion in multiple datasets with different units
or very different means. Utilization of the CV is widespread, including in the fields of
science, engineering, and medicine. For example, Billings et al. [19] estimated the CV
for the impact of socioeconomic status on paying hospital bills. Kim et al. [20] analyzed
variations in the cycle of hydrogen-fueled engines. Romano et al. [21] analyzed the shear
and tensile bond strength of the tooth structure. Saelee et al. [22] examined the variability
of agricultural production using an approximate confidence interval for the CV. Ospina
and Marmolejo-Ramos [23] studied the stability of a robust CV estimator for psychological
and genetic data. Estimating the CV can be achieved via point or interval estimation. Of
the two, the confidence interval is more meaningful and provides better information on the
parameter of interest than a point estimator [24]. For example, Yosboonruang et al. [25]
estimated the confidence interval for the CV of rainfall data from Songkhla province in
Thailand, while La-ongkaew et al. [26] estimated the confidence for the difference in the
CVs of wind datasets from Trad and Chonburi provinces in Thailand. Either the difference
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between or the ratio of the parameter of interest values can be applied to compare two
populations. However, if the difference between the CVs is small, the conclusions drawn
for the statistical inference may not be accurate. Therefore, the ratio of the parameter values
is usually more appropriate than the difference between them. In the present study, we are
interested in comparing the dispersion of wind speed data in two locations in Thailand.
Since the dispersion of wind speed in a similar area or province may not be that different,
we change constructed estimators for the confidence interval for the ratio of the CVs of
two wind speed datasets. Estimating the confidence interval for the ratio of CVs of two
populations has been studied in many instances.

For example, Verrill and Johnson [27] introduced the confidence bounds for the ratio of
the CVs of normal distributions using both asymptotic and simulation procedures. Buntao
and Niwitpong [28] estimated the confidence bounds for the ratio of the CVs of two indepen-
dent delta-lognormal distributions using the concepts of the generalized variable approach
(GVA) and the method of variance estimates recovery (MOVER). Sangnawakij et al. [29]
provided two new estimators based on MOVER, Wald, and Score intervals for the confi-
dence interval of the ratio of CVs of gamma distributions. Niwitpong and WongKhao [30]
provided estimators for the confidence bounds for the ratio of the CVs of normal distribu-
tions with known ratio of variances based on GVA and MOVER. Moreover, estimating the
confidence interval for the ratio of the CVs of two two-parameter exponential distributions
was achieved using MOVER and the generalized confidence interval (GCI) method by
Sangnawakij et al. [31]. Hasan and Krishnamoorthy [32] improved the confidence interval
estimation for the ratio of the CVs of two lognormal distributions based on MOVER and the
fiducial approach. Based on the GCI, Puggard et al. [33] estimated the confidence interval
for the ratio of the CVs of Birnbaum–Saunders distributions and compared it along with the
biased-corrected percentile bootstrap and the biased-corrected and accelerated approaches.
Using the ideas of GCI and MOVER, Yosboonruang and Niwitpong [34] proposed new
confidence interval estimator for the ratio of the CVs of delta-lognormal distributions.
However, to the best of our knowledge, estimating the confidence interval for the ratio of
the CVs of two Weibull distributions has not previously been considered.

Herein, we propose estimators for the confidence interval of the ratio of the CVs of
two two-parameter Weibull distributions. The methods used are GCI, MOVER based on
Hendricks and Robey’s confidence interval, and Bayesian methods using the gamma and
uniform priors, the details of which are given in Section 2. The details of a simulation study
and the results thereof are covered in Section 3. Application of the methods to two wind
speed datasets to illustrate their efficacy is provided in Section 4. Finally, a discussion and
conclusions are presented in the last section.

2. Methods

Suppose that Xi = (Xi1, Xi2, . . . , Xini ), i = 1, 2 are independent two-parameter Weibull
random variables, denoted as Weibull(ai, ki), where positive constants ai and ki are the
scale parameters and shape parameters, respectively. The pdf of Xi is given by

f (xij; ai, ki) =
ki
ai

( xij

ai

)ki−1
exp

[
−
( xij

ai

)ki
]

, xij > 0. (3)

The maximum likelihood estimation can be used to estimate parameters ai and ki.
Since the maximum likelihood estimators lack a closed form, they must have been ac-
quired numerically; (see the results of Cohen [35] and Lemon [36]). Maximum likelihood
estimators k̂i of ki can be obtained from the solution to the following equation:

1
k̂i
−

∑
[

xk̂i
ij ln(xij)

]
∑(xk̂i

ij )
+

1
ni

∑ ln(xij) = 0. (4)

Similarly, the maximum likelihood estimators of âi of ai are defined by
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âi =
[
∑ xk̂i

ij /ni

] 1
k̂i . (5)

Furthermore, the mean, variance, and CV of Xi are, respectively, obtained as

E(Xi) = µi = aiΓ
(

1 +
1
ki

)
(6)

V(Xi) = a2
i

[
Γ
(

1 +
2
ki

)
−
(

Γ
(

1 +
1
ki

))2
]

(7)

CV(Xi) = λi =

√√√√√√ Γ
(

1 + 2
ki

)
(

Γ
(

1 + 1
ki

))2 − 1. (8)

Let X1 = (X11, X12, . . . , X1n1 ) and X2 = (X21, X22, . . . , X2n2 ) be random samples of size
n1 and n2 from Weibull distributions with the parameters a1, a2, k1 and k2, respectively.
Thus, the ratio of their CVs can be derived as

β =
λ1

λ2
=

√√√√ Γ
(

1+ 2
k1

)
(

Γ
(

1+ 1
k1

))2 − 1

√√√√ Γ
(

1+ 2
k2

)
(

Γ
(

1+ 1
k2

))2 − 1

. (9)

Next, the six methods for estimating the confidence interval for β are derived.

2.1. The GCI Approach

The important concept of GCI introduced by Weerahandi [37] uses the concept of the
generalized pivotal quantity (GPQ).

Let X = (X1, X2, . . . , Xn) be a random variable from a distribution with the parameter
(ϕ,γ), where ϕ is the parameter of interest and γ is possibly a nuisance parameter, and x is
the observed value of X. The GPQ, R(X; x, ϕ, γ) for confidence interval estimation, must
satisfy the following conditions.

(GPQ1) The probability distribution of R(X; x, ϕ, γ) is free of unknown parameters.
(GPQ2) The observed value of R(X; x, ϕ, γ) at X = x is the parameter of interest.
Afterward, the 100(1− α)% confidence interval using the GCI for ϕ is provided by

[Rϕ(α/2),Rϕ(1 − α/2)], where Rϕ(α/2) is obtained by using 100(α/2)-th percentile of
Rϕ(X; x).

The GPQs of the parameters of a Weibull distribution are presented by Krishnamoorthy
et al. [38]. They presented that the distribution of k̂

k is k̂∗ and the distribution of k̂ ln â
a is

k̂∗ ln â∗, neither of which depend on the parameter, and so they are the GPQs of a and k.
Let â∗ and k̂∗ be the maximum likelihood estimators from Weibull(1, 1), and let â0 and k̂0
be the observed values of â and k̂, respectively. Thus, the GPQs of the shape and scale
parameters are, respectively, obtained by

Rk =
k
k̂

k̂0 =
k̂0

k̂∗
, (10)

and

Ra =
( a

â

) k̂
k̂0 â0 =

(
1
â∗

) k̂∗
k̂0 â0. (11)

Suppose that Xi = (Xi1, Xi2, . . . , Xini ), i = 1, 2 are random samples of size ni from
Weibull distributions, then the respective GPQs of the parameters can be defined as
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Rki
=

ki

k̂i
k̂i0 =

k̂i0

k̂∗i
, i = 1, 2, (12)

and

Rai =

(
ai
âi

) k̂i
k̂i0 âi0 =

(
1
â∗i

) k̂∗i
k̂i0 âi0 , i = 1, 2. (13)

A useful feature of the GVA is that the GPQs of the functions of a and k can be
obtained by simply plugging their GPQs into the function. The GPQ for function g(ai, ki)
is g(Rai , Rki

). According to β in Equation (9), which depends on shape parameter k,
Rβ = β(Rki

). Thus, the GPQ of the ratio of the CVs of two Weibull distributions is given by

Rβ =

√√√√√ Γ
(

1+ 2
Rk1

)
(

Γ
(

1+ 1
Rk1

))2 − 1

√√√√√ Γ
(

1+ 2
Rk2

)
(

Γ
(

1+ 1
Rk2

))2 − 1

. (14)

Subsequently, the 100(1− α)% two-sided GCI confidence interval for the ratio of the
CVs of two Weibull distributions is

CIgci.β =
[
Lgci.β, Ugci.β

]
=
[
Rβ(α/2), Rβ(1− α/2)

]
, (15)

where Rβ(α/2) is the 100(α/2)-th percentile of Rβ.

2.2. The MOVER Approach

MOVER (Donner and Zou [39]) can be used to construct the confidence interval for
the difference or the ratio of two distribution parameters. For the ratio of λi, i = 1, 2, the
confidence interval is identified as

CIm = [Lm, Um], (16)

where the lower bound and upper bound for λ̂1/λ̂2 are defined by

Lm =

(
λ̂1λ̂2

)
−
√(

λ̂1λ̂2
)2 − l1u2

(
2λ̂1 − l1

)(
2λ̂2 − u2

)
u2
(
2λ̂2 − u2

) , (17)

and

Um =

(
λ̂1λ̂2

)
+
√(

λ̂1λ̂2
)2 − u1l2

(
2λ̂1 − u1

)(
2λ̂2 − l2

)
l2
(
2λ̂2 − l2

) . (18)

Suppose that li and ui are the intervals of λi (Hendricks and Robey [40]), then the
confidence intervals for λ1 and λ2 can, respectively, be defined as

(l1, u1) =

(
λ̂1 − t(α/2,n1−1)

λ̂1√
2n1

, λ̂1 + t(α/2,n1−1)
λ̂1√
2n1

)
, (19)

and

(l2, u2) =

(
λ̂2 − t(α/2,n2−1)

λ̂2√
2n2

, λ̂2 + t(α/2,n2−1)
λ̂2√
2n2

)
, (20)

where t(α/2,n1−1) and t(α/2,n2−1) is obtained by using 100(α/2)-th percentiles of two t-
distributions with degrees of freedom of n1 − 1 and n2 − 1, respectively.

Afterward, the 100(1− α)% two-sided MOVER with Hendricks and Robey’s confi-
dence interval for the ratio of the CVs of two Weibull distributions is
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CImover.β =
[
Lmover.β, Umover.β

]
. (21)

2.3. The Bayesian Approaches

In Bayesian methodology, the posterior density is obtained from the posterior distri-
bution as follows:

Posteriordistribution ∝ Priordistribution× Likelihood f unction. (22)

Suppose that X is a random variable following a Weibull distribution, then another
form of the pdf of X is provided by

f (x; a′, k) = a′kxk−1 exp(a′xk), x > 0, (23)

where a′ =
(

1
a

)k
. In this study, we applied two priors for the parameters which are defined

in the following subsections.

2.3.1. The Gamma Prior

First, we consider the independent priors of the two parameters from a Weibull
distribution as follows:

π(k) ∼ gamma(v1, z1), (24)

and
π(a′) ∼ gamma(v2, z2), (25)

where v1, z1, v2, z2 are the hyperparameters.
Accordingly, the joint posterior density function of a′ and k given x can be written as

π(a′, k|x) ∝ L(a′, k|x)× π(k)π(a′), (26)

where L(a′, k|x) is a likelihood function.
Assuming that the priors in Equation (24) and Equation (25) are independent, then the
conditional posterior distributions of parameters are, respectively, given by

π(k|a′, x) ∝ kn+v1−1 exp
[
−kv1 − a′∑ xk

]
, (27)

and
π(a′|k, x) ∼ gamma(n + v2, z2 + ∑ xk). (28)

It can be seen that a sample of a′ can be obtained from a gamma distribution. However,
the distribution of π(k, a′|x) is not closed and for solving this problem, so that the Markov
chain Monte Carlo (MCMC) (Geman and Geman [41]), a Gibbs sampling procedure was
applied in the present study to generate a sample from the posterior density function.
However, MCMC cannot be applied to the conditional posterior distribution of the shape
parameter in a straightforward manner, so we combined it with the Random walk Metropo-
lis (RWM) algorithm. The combined algorithm obtained using the Bayesian estimate for
β̂(t) is as follows.

1. Start with (a′(0), k(0)), where it is an initial value

2. Generate a′(t) from gamma distribution with parameters (n + v2, z2 + ∑ xk(t−1)
)

3. Update k(t) from RWM algorithm

• Generate ε from normal distribution with parameters (0, σ2
k )

• Calculate k∗ from k(t−1) + ε

• Calculate Ak =
L(k∗ ,a′ |x)π(k∗)
L(k,a′ |x)π(k)

• Generate variable u from uniform distribution with parameters (0, 1)
• If u ≤ min(1, Ak) set k(t) = k∗, else set k(t) = kt−1

4. Calculate the parameter of interest, β̂(t)



Symmetry 2023, 15, 46 7 of 15

5. Discard the first 1000 values of β̂(t)

For i = 1, 2, let Xi = (Xi1, Xi2, . . . , Xini ) be random samples from Weibull population
with parameters ai and ki. After we computed Bayesian estimates via the above algorithms,
confidence interval estimation can be obtained from the percentile of the estimate as follows.

The 100(1 − α)% two-sided confidence interval for the ratio of CVs based on the
Bayesian method using the gamma prior is given by

CIgamma.β =
[
Lgamma.β, Ugamma.β

]
, (29)

where Lgamma.β and Ugamma.β are the lower and upper bounds of the 100(1− α)% equal-tailed
confidence intervals and the highest posterior density (HPD) interval of β, respectively.

The HPD interval is the shortest interval in the HPD region when all of the values in-
side the HPD region have higher probability densities than any value outside of it [42]. The
HPD interval was calculated by using the HDInterval package in the R programming suite.

2.3.2. Uniform Prior Distribution

The non-informative uniform prior can be applied as follows:

π(a) ∼ uni f orm(0, 100) (30)

and
π(k) ∼ uni f orm(0, 4). (31)

A sample from a joint posterior distribution can be acquired via Gibbs sampling. For a
Weibull distribution, Khan and Ahmed [43] used the R2jags package in R programming (a
Gibbs sampler) to summarize the posterior inference. Thereby, they specified the model
for a two-parameter Weibull distribution and provided the code for generating an MCMC
sample.

Model specification:
"model{
# Likelihood
for (i in 1:length(x)){
p[i]← dweib(x[i],shape, theta);
ones[i] ∼ dbern(p[i]);
}
# Priors
shape ∼ dunif(0,4)
scale ∼ dunif(0,100)
theta← pow(1/(scale), shape)

}", file = "weibullmodel.txt"),
where theta is a transformation of a scale parameter in another form. The R2jags functions
and the arguments used for fitting the parameters of a Weibull distribution are obtained
from Su and Yajima [44] as follows:

jags.fit← jags(data, inits, parameters.to.save, n.iter = 20,000, model.file = "weibullmodel.txt",
n.burnin = 1000)

From the sample obtained via R2jags (denoted as β̂(j)), the 100(1− α)% Bayesian
equal-tailed and the HPD interval based on uniform prior for the ratio of the CVs of two
Weibull distributions are given by

CIuni.β =
[
Luni.β, Uuni.β

]
, (32)

where Luni.β and Uuni.β are the lower and upper bounds.
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3. Simulation Results

Using the R statistical program, the performances of the confidence interval estimators
were compared in terms of their coverage probability (CP) and expected length (EL). The
best-performing method in each scenario had a CP greater than or equal to the nominal
confidence level and the shortest EL.

For the simulation study, sample sizes (n1, n2) = (10, 10), (10, 30), (10, 50), (30, 30),
(30, 50), (50, 50), (50, 100), or (100, 100); scale parameters a1 = a2 = 2; shape parameters
k1 = 1 and k2 = 0.5, 1, 2, or 4 with the ratio of the CVs of 0.4472, 1, 1.9130, or 3.5645,
respectively. The number of times each situation is replicated was M = 5000, with m = 2500
for the GCI method. Furthermore, T = 20,000 realizations of MCMC were generated using
the Gibbs algorithm with a burn-in of 1000. The nominal confidence level was set as 0.95.

The following algorithm 1 was used to obtain the CP and the EL of the confidence
interval estimates.

Algorithm 1: The CP and EL of the confidence interval estimates for the ratio of
the CVs
1. Set M, m, T, n1, n2, a1, a2, k1, and k2
2. Generate Xi = (Xi1, Xi2, . . . , Xini ) from Weibull(ai, ki)

3. Construct generalized confidence interval (Lgci.β, Ugci.β) from Equation (15)
4. Construct MOVER confidence interval (Lmover.β, Umover.β) from Equation (21)
5. Construct equal-tailed and HPD interval based on Bayesian using gamma prior

distribution (Lgamma.β, Ugamma.β) from Equation (29)
6. Construct equal-tailed and HPD interval based on Bayesian using uniform prior

distribution (Luni.β, Uuni.β) from Equation (32)
If (L ≤ β ≤ U), then set P = 1, else set P = 0

7. Repeat steps 1–6 for M times
8. Determine the average of P for the CP
9. Determine the average of (U − L) for the EL

The simulation results for n1 = n2 in Table 1, show that the GCI method yielded CP
higher than or close to the nominal confidence level of 0.95 for all cases whereas those
using the MOVER method were under estimated, except for (n1, n2) = (10, 10). Of the
Bayesian methods, the HPD interval based on the uniform prior outperformed the others
for k2 = 1 or 2 because its CPs were greater than the target. Furthermore, CPs of the HPD
interval based on the gamma prior were over or close to 0.95 in most cases. Especially, for
(n1, n2) = (100, 100) and k2 = 0.5, it also provided the shortest EL. The Bayesian equal-tailed
confidence interval based on the gamma prior and uniform prior yielded CPs close to the
goal, except for the Bayesian method based on the uniform prior when k2 = 0.5 or 4. The
results for n1 6= n2 in Table 2 were similar to those for n1 = n2 in Table 1 in that the Bayesian
methods based on the uniform prior provided CPs greater than 0.95 and the shortest ELs
in most cases. The CPs obtained with the equal-tailed confidence interval satisfied the
target for (n1, n2) = (10, 30) and (10, 50) and k2 = 1 or 2; (n1, n2) = (30, 50), and k2 = 2.
Meanwhile, the HPD interval obtained CPs that satisfied the target for (n1, n2) = (30, 50)
and k2 = 1, and (n1, n2) = (50, 100) and k2 = 1 or 2. Finally, the CPs and ELs of the methods
in Tables 1 and 2 are summarized in Figures 1 and 2.
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Table 1. Performance indicators for the six approaches for the 95% confidence intervals for the ratio
of CVs of Weibull distributions for n1 = n2.

(n1, n2) k2

Coverage Probability (Expected Length)

GCI MOVER
Gamma Uniform

Equal-Tailed HPD Equal-Tailed HPD

(10, 10) 0.5 0.9520 0.9656 0.9368 0.9416 0.9624 0.9642
(2.0648) (1.9351) (1.8019) (1.6623) (1.5806) (1.4741)

1 0.9504 0.9702 0.9376 0.9428 0.9616 0.9510
(3.7588) (3.6355) (3.2665) (2.9949) (2.6755) (2.4894)

2 0.9460 0.9730 0.9310 0.9390 0.9560 0.9541
(3.7833) (3.6691) (3.3161) (3.0380) (2.6936) (2.5071)

4 0.9498 0.9696 0.9152 0.9258 0.8808 0.8176
(7.1887) (6.8958) (6.1165) (5.5691) (3.3775) (3.1385)

(30, 30) 0.5 0.9418 0.8738 0.9390 0.9406 0.0636 0.0806
(0.4774) (0.3689) (0.4648) (0.4553) (0.4301) (0.4216)

1 0.9466 0.9356 0.9438 0.9444 0.9666 0.9622
(0.8855) (0.8066) (0.8590) (0.8378) (0.7359) (0.7215)

2 0.9432 0.9414 0.9412 0.9456 0.9532 0.9560
(1.6203) (1.5406) (1.5718) (1.5290) (1.3727) (1.3489)

4 0.9426 0.9414 0.9298 0.9312 0.8830 0.8492
(3.0110) (2.8598) (2.8841) (2.8005) (1.8310) (1.8076)

(50, 50) 0.5 0.9502 0.8632 0.9490 0.9466 0.0046 0.0074
(0.3509) (0.2665) (0.3458) (0.3413) (0.3270) (0.3232)

1 0.9486 0.9414 0.9436 0.9474 0.9568 0.9516
(1.1872) (1.1296) (1.1657) (1.1461) (1.0505) (1.0390)

2 0.9494 0.9446 0.9462 0.9474 0.9576 0.9506
(1.1938) (1.1354) (1.1727) (1.1528) (1.0525) (1.0410)

4 0.9474 0.9388 0.9392 0.9408 0.8928 0.8664
(2.2261) (2.1142) (2.1671) (2.1279) (1.4584) (1.4470)

(100,
100) 0.5 0.9518 0.8604 0.9500 0.9504 0.0000 0.0000

(0.2423) (0.1821) (0.2404) (0.2386) (0.2377) (0.2359)
1 0.9478 0.9304 0.9474 0.9484 0.9632 0.9602

(0.4471) (0.4053) (0.4429) (0.4390) (0.3988) (0.3955)
2 0.9512 0.9414 0.9500 0.9484 0.9576 0.9518

(0.8142) (0.7749) (0.8068) (0.7990) (0.7486) (0.7435)
4 0.9516 0.9408 0.9450 0.9434 0.8980 0.8852

(1.5205) (1.4443) (1.4908) (1.4752) (1.0810) (1.0748)
The CP higher than the target of 0.95 and the shortest EL are in bold.

Figure 1. The performance of the six approaches in terms of CP and EL for equal sample sizes.
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Table 2. Performance indicators for the six approaches for the 95% confidence intervals for the ratio
of CVs of Weibull distributions for n1 6= n2.

(n1, n2) k2

Coverage Probability (Expected Length)

GCI MOVER
Gamma Uniform

Equal-Tailed HPD Equal-Tailed HPD

(10, 30) 0.5 0.9486 0.9072 0.9402 0.9374 0.3928 0.5386
(0.8166) (0.5324) (0.6863) (0.6292) (0.8269) (0.7489)

1 0.9494 0.9146 0.9326 0.9248 0.9558 0.9386
(1.6640) (1.1570) (1.3775) (1.2518) (1.1762) (1.0756)

2 0.9486 0.9242 0.9368 0.9244 0.9508 0.9268
(3.1679) (2.2231) (2.6069) (2.3608) (2.1986) (2.0139)

4 0.9524 0.9286 0.9394 0.9294 0.9132 0.8626
(5.8946) (4.1368) (4.8418) (4.3767) (3.2922) (3.0077)

(10, 50) 0.5 0.9514 0.8840 0.9376 0.9204 0.3404 0.4954
(0.7584) (0.4823) (0.6248) (0.5688) (0.8235) (0.7448)

1 0.9520 0.9078 0.9416 0.9300 0.9608 0.9402
(1.6131) (1.0692) (1.3127) (1.1862) (1.2534) (1.0941)

2 0.9500 0.9050 0.9344 0.9206 0.9500 0.9200
(3.0181) (2.0274) (2.4529) (2.2141) (2.3623) (2.0736)

4 0.9478 0.9034 0.9356 0.9216 0.9194 0.8700
(5.6118) (3.7664) (4.5533) (4.1062) (3.3073) (3.0073)

(30, 50) 0.5 0.9512 0.8896 0.9476 0.9466 0.0294 0.0386
(0.4070) (0.3095) (0.3940) (0.3848) (0.4112) (0.4032)

1 0.9484 0.9312 0.9470 0.9490 0.9668 0.9618
(0.7873) (0.6847) (0.7589) (0.7381) (0.6423) (0.6296)

2 0.9518 0.9422 0.9482 0.9444 0.9574 0.9458
(1.4532) (1.3041) (1.3967) (1.3562) (1.2026) (1.1812)

4 0.9488 0.9394 0.9396 0.9392 0.8996 0.8706
(2.7121) (2.4311) (2.5940) (2.5152) (1.7579) (1.7306)

(50, 100) 0.5 0.9470 0.8820 0.9464 0.9442 4e-04 8e-04
(0.2894) (0.2241) (0.2839) (0.2796) (0.3228) (0.3190)

1 0.9510 0.9282 0.949 0.9458 0.9656 0.9576
(0.5648) (0.4967) (0.5523) (0.5425) (0.4780) (0.4723)

2 0.9530 0.9444 0.9493 0.9491 0.9520 0.9500
(1.0335) (0.9400) (1.0118) (0.9923) ( 0.9054) (0.8957)

4 0.9600 0.9450 0.9465 0.9460 0.8909 0.8860
(1.8778) (1.7113) (1.8156) (1.7801) (1.3977) (1.3818)

The CP higher than the target of 0.95 and the shortest EL be in bold.

Figure 2. The performance of the six approaches in terms of CP and EL for unequal sample sizes.

4. Applications
4.1. Example 1

Data on wind speed collected in April and May 2019 by the Department of Alternative
Energy Development and Efficiency, the Thai Ministry of Energy [45] from wind energy
stations in Thailand’s southern and central regions, were used to demonstrate the effec-
tiveness of the proposed approaches. The Weibull Q-Q plots for the datasets with p-values
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of 0.4442 and 0.6988, respectively, in Figure 3, and the Akaike Information Criterion (AIC)
values in Table 3 confirm that the Weibull distribution is the best fits. The statistics of the
datasets are n1 = 12, â1 = 2.5334, k̂1 = 2.3957, µ̂1 = 2.2457, σ̂2

1 = 0.9964, λ̂1 = 0.4445, and
n2 = 6, â2 = 5.0390, k̂2 = 3.4741, µ̂2 = 4.5320, σ̂22 = 2.0248, λ̂2 = 0.3186. The ratio of CVs
for the two Weibull distributions is β̂ = 1.3954. From the 95% confidence interval estimates
based on all approaches as shown in Table 4, it is clearly that the length of the HPD interval
using uniform prior was the shortest. Therefore, this result supports the simulation result
for small sample sizes. Thus, the HPD interval using the uniform prior is suitable for
estimating the confidence interval for the ratio of the CVs of the two wind speed datasets.
Moreover, the interval between the lower and upper bounds of the confidence interval
estimates for all of the proposed methods provide is 1. Thus, it is reasonable to conclude
that the CVs of the two wind speed datasets are not significantly different.

Figure 3. Weibull Q-Q plot of wind speed data in (A) southern (B) central.

Table 3. AIC values for fitting the five distributions.

Distributions

Weibull Gamma Log-Normal Exponential Normal

Southern 37.9176 39.2535 41.5439 45.4623 38.0888
Central 25.5902 26.1197 26.5604 32.0977 25.7886

The smallest AIC of the distribution be in bold.

Table 4. The 95% confidence intervals for the ratio of CVs based on two regions of wind speed data.

Methods Confidence Intervals for β

Lower Upper Length

GCI 0.5474 2.7031 2.1557
MOVER 0.6185 5.5925 4.9740

Bayesian: Gamma prior (Equal-tailed) 0.6204 2.6643 2.0439
Bayesian: Gamma prior (HPD) 0.5482 2.5195 1.9713

Bayesian: Uniform prior (Equal-tailed) 0.5686 2.1387 1.5701
Bayesian: Uniform prior (HPD) 0.4905 2.0174 1.5268

The shortest length of the proposed method be in bold.

4.2. Example 2

In this case, the first dataset comprises wind speed entries from stations on surface area
provided by the Department of Energy Development and Promotion (DEDP), the Electricity
Generating Authority of Thailand, and the Royal Thai Air Force while the second dataset
comprises wind speed entries provided by stations in the sea and coastal areas situated
on buoys belonging to the National Research Council of Thailand, lighthouses belonging
to the Thai Royal Navy, gas platforms belonging to the Union Oil Company of California,
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and belonging to the Defense Meteorological Satellite Program. This information was
obtained from a report by the DEDP prepared by the Fellow Engineering Consultants
Company Limited [46]. Weibull Q-Q plots in Figure 4 with p-values of 0.3988 and 0.0833,
respectively, and the AIC values in Table 5 indicate that once again, the Weibull distribution
provides the best fit for these datasets. The statistics for the two wind speed datasets
are n1 = 24, â1 = 2.5736, k̂1 = 2.7015, µ̂1 = 2.2887, σ̂2

1 = 0.8347, λ̂1 = 0.3992, and
n2 = 36, â2 = 4.3482, k̂2 = 5.0395, µ̂2 = 3.9941, σ̂22 = 0.8249, λ̂2 = 0.2274, while the ratio of
their CVs β̂ = 1.7555. The 95% confidence intervals for β are presented in Table 6. These
findings suggest that the length of the HPD interval using uniform prior distribution was
once again the shortest. According to the results in Table 6, the lower and the upper bounds
of the confidence interval provide a length that is higher than 1, and thus it can be stated
that the CV of the wind speed data from stations on surface area is significantly higher than
that of the wind speed data from stations in the sea and coastal areas. This indicated that
the potential of obtaining wind energy from sea and coastal areas is greater than obtaining
it from wind turbines on surface area.

Figure 4. Weibull Q-Q plot wind speed data in (A) surface area (B) sea and coastal area.

Table 5. AIC values for fitting the five distributions.

Distributions

Weibull Gamma Log-Normal Exponential Normal

Surface area 67.4324 68.3245 69.5641 89.5692 68.7864
Sea and coastal area 105.1392 118.2662 124.4380 173.4727 108.9670

The smallest AIC of the distribution be in bold.

Table 6. The 95% confidence intervals for the ratio of CVs based on two areas of wind speed data.

Methods Confidence Intervals for β

Lower Upper Length

GCI 1.3134 2.7317 1.4183
MOVER 1.2370 2.7271 1.4901

Bayesian: Gamma prior (Equal-tailed) 1.4087 2.5853 1.1767
Bayesian: Gamma prior (HPD) 1.3498 2.4569 1.0171

Bayesian: Uniform prior (Equal-tailed) 1.0129 1.8634 0.8505
Bayesian: Uniform prior (HPD) 1.0008 1.8244 0.8236

The shortest length of the proposed method be in bold.

5. Discussion

La-ongkaew et al. [26] proposed Bayesian methods based on the gamma prior for
establishing the confidence interval for the difference between the CVs of a Weibull distri-
bution, in which the Bayesian HPD interval performed the best in most cases. In the present
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research, of the Bayesian methods based on the gamma and uniform priors for estimating
the confidence interval for the ratio of the CVs of Weibull distributions, the HPD interval
using the uniform prior performed well in most cases since its CPs were higher than or
close to the target and it obtained the shortest ELs. Nevertheless, it is unsuitable when
shape parameter k2 = 0.5, which illustrates the limitation of using this method. Moreover,
the ELs tended to decrease when the ratio of the CVs decreased, thereby showing its
robustness. In addition, from the results of La-ongkaew et al. [26] found that the bootstrap
method yielded the coverage probabilities highly lower than 0.95, which happened as well
as constructing a confidence interval of the ratio of the CVs of two Weibull distributions.
Thus, we did not consider using this approach in the present study.

6. Conclusions

GCI, MOVER, and Bayesian methods using the gamma and uniform priors were
derived to estimate the confidence interval for the ratio of the CVs of two Weibull distribu-
tions. Simulation study results reveal that the Bayesian HPD interval using the uniform
prior performed the best for shape parameter k2 = 1 or 2 but not for k2 = 0.5 or 4, thereby
indicating the limitation of using this method. However, GCI and the Bayesian methods
based on the gamma prior can be used in these scenarios instead.
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