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Abstract: The rutting depth is an important index to evaluate the damage degree of the pavement.
Therefore, establishing an accurate rutting depth prediction model can guide pavement design and
provide the necessary basis for pavement maintenance. However, the sample size of pavement rutting
depth data is small, and the sampling is not standardized, which makes it hard to establish a prediction
model with high accuracy. Based on the data of RIOHTrack’s asphalt pavement structure, this study
builds a reliable data-augmented model. In this paper, different asphalt rutting data augmented
models based on Gaussian radial basis neural networks are constructed with the temperature and
loading of asphalt pavements as the main features. Experimental results show that the method
outperforms classical machine learning methods in data augmentation, with an average root mean
square error of 3.95 and an average R-square of 0.957. Finally, the augmented data of rutting depth is
constructed for training, and multiple neural network models are used for prediction. Compared
with unaugmented data, the prediction accuracy is increased by 50%.

Keywords: rutting depth; data augmentation model; RIOHTrack; radial basis function neural network;
feature engineering

1. Introduction

In recent years, with the promotion of road transportation by economic development,
the types and quantities of vehicles have been diversified, resulting in the rapid develop-
ment of expressways. However, due to the increase in traffic flow and traffic axle load,
the pavement will be damaged in varying degrees, such as cracks, permanent deformation,
looseness, potholes, and slippage. As the main damage types, ruts and lateral cracks reduce
the performance of the road surface, seriously affect driving comfort, threaten driving
safety, and even cause damage to the road structure.

One of the primary pavement fatigue modes is the rutting in the asphalt and the
underlying unbonded layer [1,2]. Rutting maintenance accounts for about 80% of asphalt
pavement maintenance in China [3]. As one of the indicators for inspecting the degree
of road damage, rutting has always played an indispensable and important role in road
construction, inspection, and maintenance. An accurate rutting prediction model can guide
pavement design and provide a foundation for pavement maintenance and repair.

By accurately predicting rutting depth, engineers can select the appropriate treatment
and optimize the sequence and funds of the maintenance at the network level. Furthermore,
good prediction allows for preventive maintenance throughout the pavement’s life cycle [4].
In order to collect pavement indicators, such as the rutting depth of different pavement
structures, a test road is usually constructed, and an actual vehicle loading test is carried
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out. Since test roads are subjected to real traffic and environmental conditions, they are
the most practical way to assess the impact of various parameters. It can be seen that a
large number of models apply AASHO, NCAT, and other relevant data of large-scale test
roads in the field loaded by actual vehicles. Although more accurate predictive models are
available, these models cannot effectively reflect the situation of Chinese roads.

In November 2015, RIOHTrack (Research Institute of Highway MOT Track) was com-
pleted in China, aiming to verify the life-cycle service performance of long-life asphalt
pavements [5]. Since then, China has fully grasped the evolution of asphalt pavements’
whole-life multi-service performance. The conditions have been created to make up for
the lack of original scientific data that has long constrained the innovation and develop-
ment of the pavement discipline in China [6]. In the ROIHTrack, 19 main test pavement
structures with different combinations of structural rigidity were erected to study and
compare long-term performance and evolution. Relying on the automatic monitoring data
of RIOHTrack, many prediction models and evaluation models for highway pavement
have emerged [7–10].

However, RIOHTrack experiments are costly, and data collection also requires high
costs. So far, an effective data enhancement model has yet to be proposed to augment the
RIOHTrack experimental data credibly. In this case, how to efficiently use existing data
and conduct credible data enhancement on existing data is very necessary. To generate
the experimental data for RIOHTrack reliably, we propose a rutting data augmentation
model based on Gaussian Radial Basis Neural Networks. These data provide sufficient
data on which to build the rutting depth prediction model, improve the prediction accu-
racy of different neural network models, and validate the effectiveness of the augmented
data model.

The main contributions of this paper are as follows:

(1) For the first time, the asphalt rutting depth data augmentation model based on the
Gaussian Radial Basis Neural Network algorithm is proposed, which has higher accu-
racy than other machine learning algorithms and can reliably augment the RIOHtrack
test data.

(2) Aiming at the effect of data enhancement, the experimental analysis is carried out
on different asphalt structure pavements. For different neural network algorithms,
using augmented data for rutting depth prediction improves the prediction accuracy
by 30% compared with the original data. The effectiveness of the asphalt rutting data
augmentation model based on the Gaussian Radial Basis Neural Network is verified.

The rest of this paper is organized as follows: Section 2 introduces the existing neural
network-based rutting depth prediction work and the motivation of this paper. Section 3
introduces some basic concepts and principles of the algorithm. Section 4 builds a rutting
data expansion model based on feature engineering and radial basis function neural net-
works; then, it compares various data expansion methods through numerical experiments
and analyzes their advantages and disadvantages. Finally, Section 5 evaluates the data
expansion model and looks forward to future work.

2. Related Word

The prediction and evaluation of rutting disease on asphalt pavement is an important
index to study the degree of pavement damage and has been paid more and more attention
by researchers. With the continuous development of computational science and data-driven
methods [11–14], several researchers have studied the mechanical properties of asphalt
mixtures from the perspective of theoretical analysis, aiming to accurately establish the
intrinsic structure relationships of asphalt mixtures using viscoelastic, flexible layered
systems and finite element analysis methods [6,10,15–18]. Many scholars have studied
pavement metrics such as rutting depth using neural networks or statistical methods
and proposed a data-driven approach to predict asphalt pavement metrics [7,19,20].

As a new tool in the field of modeling and prediction, artificial neural network (ANN)
has become very popular in many fields, such as medicine, finance, transportation, etc. [21].
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Neural networks (NNs) have been successfully utilized recently to solve many pavement
engineering tasks, including pavement performance evaluation, pavement roughness
estimation, fatigue cracking prediction, and maintenance decision optimization, due to
their effectiveness in prediction and classification [22–25]. There are two main categories
of NNs applications for rutting data mining. Different asphalt mixtures can be evaluated
for the performance of rutting depth and then used as a guide to design and maintain
pavements. The other is to build a rutting depth prediction model through NN, which
provides an essential basis for the maintenance and repair of the road surface.

According to Simpson et al. [26], neural networks are used to model rutting based
on 12 parameters, such as asphalt concrete (AC) thickness, base thickness, and AC voids.
As compared to linear regression, NN’s prediction performance is significantly better.
Overfitting occurs when all data are trained, resulting in the duplication of features. Based
on the long-term pavement performance (LTPP) database, Gong et al. [27] use NN training
to predict rutting. In order to explain the NN algorithm, a random forest model is used
to calculate the importance of pavement features. Based on artificial neural networks
and genetic programming models, Mirabdolazimi et al. [28] predict the rutting depth.
Experimental results are in good agreement with both artificial neural networks and genetic
programming models. A neural network model has been used to investigate the complex
relationships between asphalt properties and behavior, using a civil engineering application
involving asphalt materials. Suo et al. [29] apply multiple regression techniques to develop
a nonlinear model that can be used to study asphalt rutting behavior. This analysis can be
used to design asphalt mixtures for new and repaired pavements. Xu et al. [30] develop
a rutting prediction model using a random forest module on Python, suggesting that
the proposed model can improve rutting prediction accuracy and identify the factors
influencing the prediction. To establish a better performance rutting prediction model
based on deep learning, Shang et al. [31] use a neural network (BPNN) and long short-
term memory (LSTM) neural network combined with an attention model. It is found that
the model has excellent prediction performance, with R2 values of 0.821 for the training
set and 0.796 for the testing set. Experiments have demonstrated that neural network
algorithms perform well in modeling rutting prediction, but they require a lot of data to
provide support.

When modeling and predicting road rutting using the NN, appropriate input data
will directly affect the selection of parameters, model performance quality, and prediction
results’ accuracy. In addition, due to the uncertainty of field data and the short-term
characteristics of indoor experimental data, if the amount of input data is insufficient,
the NN cannot be accurately modeled. In the case of limited data, it is very necessary to
enhance the original data.

Data augmentation was performed in the analysis of spectral data [32]. Data density
is increased by adding Gaussian noise to the original data, thereby reducing prediction
error. Data augmentation is becoming increasingly common in computer vision and pattern
recognition, especially in image processing [33–35]. Take an image as an example. Data
augmentation is simply deforming the image to augment the data set and deal with image
deformation caused by different camera angles. The most commonly used methods are
left and right flip, random crop, rotation, translation, noise perturbation, brightness and
contrast transformation, and many other simples and efficient methods. In addition to
enhancing image data, neural networks have been widely used in the enhancement tasks
of time-series data. Guillermo et al. [36] develop a probabilistically composed electrocardio-
gram generation algorithm, used synthetic data to enhance training convolutional neural
networks, and achieved good classification results. Snow [37] uses multiple Generative
Adversarial Network (GAN) stacks to simulate a variety of multivariate time-series data
and apply it in the financial field. Li et al. [38] introduce the Transformer algorithm based
on GAN to solve the problem that traditional algorithms cannot effectively model long
sequence data points with irregular time relationships. However, few augmented models
for asphalt rutting data are based on neural network algorithms. So far, the work has yet to
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be conducted on the augmentation of rutting data, which shows that the augmentation of
rutting data is meaningful.

In contrast to previous work, this paper makes use of Gaussian radial basis neural
networks to develop an augmented model for rutting depth data with high accuracy.
Moreover, it has good applicability to different types of asphalt pavements of RIOHTrack.
It provides credible data support for the subsequent discovery of asphalt pavements’
short-term and long-term service performance using rutting data.

3. Algorithm Introduction
3.1. Radial Basis Function Neural Network (RBFNN)

The use of neural networks has been successful in solving a variety of problems. A sim-
ple processing system consists of interconnected elements. A neural network aims to learn
the nonlinear mapping between inputs and outputs based on sensor information. High-
performance neural networks such as RBFNNs are among the most popular [39]. RBFNN
is derived from function approximation and is a standard tool for function interpolation.
RBFNN uses the radial basis function (RBF) as the ’base’ of hidden units to form hidden
layers. By mapping the low-dimensional input data into the high-dimensional space,
the linearly inseparable problem in the low-dimensional space can be linearly separable in
the high-dimensional space.

The RBF is the primary function in function space. They are the monotonic functions
of the Euclidean distance between any point x in the space and a specific center c, which is
denoted as φ(‖x− c‖). RBFs are commonly expressed in Table 1 with the Gaussian kernel
being a popular choice [40,41].

Table 1. Kernel functions commonly used by RBFs.

Radial Basis Function Mathematical Representation

Gaussian Function φ(c) = exp(− c2

2σ2 )

Multi-Quadric Function φ(c) = (c2 + σ2)1/2

Thin Plate Spline Function φ(c) = c2ln(c)
Cubic Function φ(c) = c3

Linear Function φ(c) = c

A RBFNN is a three-layer network, which includes input, hidden, and output layers,
as shown in the following Figure 1.

x1

x2

x3

ϕ1

ϕ2

· · ·

· · ·

ϕN

y1

y2

Figure 1. The structure of RBFNN.
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For a set of n-dimensional input data X, the hidden layer contains NT neurons and the
radial basis function center of the i-th neuron is ci. The ci is also an n-dimensional vector.
The mathematical expression of RBFNN can be expressed as [39]:

y =
NT

∑
i=1

ωiφ(‖X − ci‖2) (1)

where y is the output of the radial basis function; ωi is the weight from the i-th neuron of the
hidden layer to the output; φ is the RBF; and ci is the center of the radial basis function φi.
When the Gaussian function is selected as the kernel function, RBFNN can be expressed as

y =
NT

∑
i=1

ωiexp(−‖x− ci‖2

2σ2
i

), (2)

where σi is the radius of φi. The key to RBFNN is to find N Gaussian radial basis functions
φi and their corresponding weights ωi.

Training a neural network involves adjusting its parameters to react to a stimulus to
produce the desired response. The training of RBFNN algorithm consists of the following
steps [42]:

Step 1. Preset the number N of neurons in the hidden layer;
Step 2. Determine the center ci of the Gaussian radial basis function through a specific
algorithm;
Step 3. Determine the radius σi of the Gaussian RBF through a specific algorithm;
Step 4. Calculate the weight matrix W from the hidden layer to the output layer.

3.2. Calculate the Parameters of the RBFNN

In the hidden layer, the number of neural units is determined by the needs of the
described problem. When the number of neurons equals the number of input samples,
a zero-error RBFNN is created with few training samples. Initially, a neural unit is estab-
lished based on the largest error in the input data when the scale of training samples is
large. The network is redesigned by gradually increasing the number of neurons to reduce
error. The procedure ends when the error reaches the specified error performance or the
number of neurons reaches the maximum. The amount of data n is usually much more
than the number of neurons N.

3.2.1. Determine the Center by K-Means Clustering Algorithm

The K-means clustering algorithm is a typical data clustering algorithm widely used
in various fields [43]. The key is to divide the data set into K clusters and minimize the
distance sum of each data to the cluster center in each classification. For a given data
set D = {xi}, obtain clusters El from clustering, minimizing the sum of squares of errors
denoted by SSE. The formula for calculating SSE is:

SSE =
K

∑
l=1

∑
x∈El

dist(cl , x)2, (3)

where El is the l-th cluster, and cl is the center of cluster El . The primary process of the
K-means clustering algorithm is as follows:

Step 1. As an initial cluster center, randomly select K objects from n sample data;
Step 2. The distance between each sample and each cluster center should be calculated
separately, and the data should be assigned to the closest cluster center;
Step 3. The cluster centers of K should be recalculated once all data allocations are complete;
Step 4. Calculate the centers for each cluster based on the K clusters obtained in the
previous calculation. If any cluster’s center changes, proceed to step 2; otherwise, proceed
to step 5;
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Step 5. Terminate the algorithm and output the clustering results.

3.2.2. Determine Radius by k-Nearest Neighbor Algorithm

Next, determine the radius of the Gaussian radial basis function after finding its
center. In the radius solution, distances between samples, distances between clusters,
and distances between clusters are taken into account as measures of similarity. The k-
nearest neighbor algorithm [44] is the most common method, also named as KNN, which
is one of the simplest supervised machine learning algorithms used for classification.
It is a classifier algorithm that classifies data by calculating the similarity of one data to
another. In order to measure the similarity between samples, Euclidean distance, Manhattan
distance, and Minkowski distance are used. Euclidean distance is the most commonly used,
and its formula is as follows:

dist(xs, xt) =

√√√√ m

∑
j=1

(xtj − xsj)2, (4)

where xs and xt are different data sample. The primary process of the KNN algorithm is
as follows:

Step 1. Determine the number k of neighbors;
Step 2. Calculate the distance of each node from the center by Equation (4), sort them in
ascending order according to the size of the distance value, and the first k data samples
after pre-sorting are selected;
Step 3. A root-mean-squared distance is calculated between the cluster and its k nearest
neighbors. This is the value for σi, and its formula is expressed as:

σi =

√√√√1
k

k

∑
j=1

(xij − ci)2, (5)

where xij is the k neighbors of ci.

In summary, the process of calculating the parameters of the Gaussian RBF is illustrated
in Figure 2.

Figure 2. The process of calculating the parameters of the Gaussian RBF.
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3.3. Calculate the Weights from the Hidden Layer to the Output Layer

After determining the number of neurons and the parameters of the Gaussian RBF,
the next step is to determine the weights ωi from the hidden layer to the output layer
satisfing the following equations:

w1φ1(x1) + . . . + wNφN(x1) = y1

w1φ1(x2) + . . . + wNφN(x2) = y2
...
w1φ1(xn) + . . . + wNφN(xn) = yn

, (6)

The compact form of Equation (6) is

φW = y, (7)

where φ ∈ Rn×N , and W = (ω1, ω2, . . . , ωN)
T . So, the weight matrix W is:

W = (φTφ)−1φTy. (8)

4. Experiment and Analysis

The measured rutting data come from the RIOHTrack. RIOHTrack includes 25 types
of asphalt pavement structures in a runway-like layout totaling 2039 m. Over 1200 dynamic
stress and strain sensors were embedded in 19 types of asphalt pavement structures in the
main test section of the Ring Road in order to collect the mechanical response state of the
asphalt pavement structure in real time under the coupling effect of load and environment.
During the past five years, the collection work has accumulated relatively complete data of
rutting depth about different pavement structures [45].

RIOHTrack covers all AC structure layers of China’s high-grade highways as well as
the flexible base thickness of thick asphalt pavement. The thickness of the asphalt concrete
structure layer is 12, 18, 24, 28, 36, and 48 cm (or 52 cm). From the perspective of the type
of base structure, it includes four typical structures: rigid base structure, semi-rigid base
structure, flexible base structure, and full-thick asphalt pavement structure [5]. Figure 3
shows the layout of the pavement structure.

Figure 3. Structure of RIOHTrack.

This study uses measurement data of the full-scale pavement structure of 19 types of
asphalt pavements as the data source. For each road surface, 103 efficient data samples are
available, 52 of which are used for training, and the rest are used for testing. The features in
the training set correlate highly with rutting depth. RMSE, MAE, MAPE, and R2 indicators
indicate the difference between the actual and predicted values. The smaller the RMSE,
MAE, and MAPE values, the higher the model’s accuracy. The closer R2 is to 1, the higher
the model’s accuracy. The definitions of these accuracy metrics are shown in Table 2.
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Table 2. Definitions of accuracy metrics.

Index Formula

RMSE
√

1
n ∑n

i=1(yi − f (xi))2

MAE 1
n ∑n

i=1 | yi − f (xi) |
MAPE 100%

n ∑n
i=1 |

yi− f (xi)
yi

|
R2 score 1− ∑n

i=1(yi− f (xi))
2

∑n
i=1(yi−ȳ)2

4.1. Model Building

The framework of the rutting data augmented model based on RBFNN is shown in
Figure 4, which includes data preprocessing, feature engineering, and data augmentation.

Data preprocessing is a way of converting the raw data into a much-desired form so
that valuable information can be derived from it, which is fed into the training model for
successful medical decisions, diagnoses, and treatments [46]. This article deletes duplicate
and missing data first; then, it converts the cumulative loading axis value into logarithmic
form for consideration, since it is too large.

Figure 4. Framework of the rutting data expansion model.

Data features are created by transforming raw data into features that more accurately
describe the problem and then are applied to the prediction model, improving its accuracy.
The features in the data directly affect the predictive model and the obtained results. A recent
rutting prediction model based on RIOHTrack automatic monitoring data fits the expression
of the mechanical empirical constitutive equation (M-E model), which shows that the rutting
depth is affected by temperature, load, deflection, and material parameters [47].

In this paper, the existing data are analyzed first, and the highly correlated features
are removed according to the Pearson correlation coefficient to avoid the duplication of
features in the modeling process. The existing data of the ring road are the loading period
(LP), atmospheric temperature (AT), road surface temperature (RST), and logarithm of
accumulated load (LAL). Taking the road data of STR2 as an example, six features, including
single loading times (SLT) and difference in load change (DLC), are obtained by feature
engineering. The data are shown in Table 3.

Table 3. Raw data of STR2.

LP LAL SLT DLC AT RST RD

N1 4.4533 0 0.56515204 3.8 13.52 15.67
N2 5.0184 0.56515204 −0.110689294 1.2 10.61 15.98
N3 5.4729 0.454462746 −0.24277208 0.9 11.08 14.81
N4 5.6846 0.211690666 −0.069787146 3.6 21.30 16.36
N5 5.8265 0.14190352 −0.036580855 11.4 30.75 8.53
. . . . . . . . . . . . . . . . . . . . .

N103 7.7407 0.006166064 −0.006166064 15.9 11.51 78.56
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The heat map of the Pearson correlation coefficient matrix obtained from the correlation
analysis is shown in Figure 5. If the correlation coefficient is above 0.8, it is considered that
two features are highly correlated, and one feature is deleted to avoid feature duplication.

It can be seen that the features highly correlated with the rutting data are LP and
LAL. However, there is also a high correlation between these two features, so only LAL is
retained in this paper. In addition, this paper keeps AT due to the high correlation between
AT and RST. Finally, the rutting data are extended by four essential features: AT, LAL, SLT,
and DLC.

LP LAL SLT DLC AT RST RD

LP
LA

L
SL

T
DL

C
AT

RS
T

RD

1 0.94 -0.39 -0.016 0.091 -0.13 0.94

0.94 1 -0.53 -0.16 0.17 -0.055 0.93

-0.39 -0.53 1 -0.43 -0.27 -0.13 -0.46

-0.016 -0.16 -0.43 1 -0.02 -0.017 -0.011

0.091 0.17 -0.27 -0.02 1 0.85 0.19

-0.13 -0.055 -0.13 -0.017 0.85 1 -0.033

0.94 0.93 -0.46 -0.011 0.19 -0.033 1

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Correlation coefficient matrix heat-map.

4.2. Performance of RBFNN-Based Rutting Augmentation Model

Designed pavement structures in RIOHTrack can be further classified into six cate-
gories based on their structural combination and asphalt layer thickness [47]. There are six
types of pavement structures selected in this paper for expansion, with STR2 representing
thin semi-rigid AC base structures, STR8 representing common semi-rigid base structures,
STR5 representing rigid composite base structures, STR12 representing an inverted struc-
ture, STR11 representing thick AC base structures, and STR18 representing full depth AC
structures. Figure 6 shows the differences between the augmented data and the actual
data in the test set of road data. There are five nodes in the input layer, n nodes in the
hidden layer, and one node in the output layer of the RBFNN structure. The hidden layer
neural units can be obtained through training, and in the RBFNN of the six road structures,
there are 28, 22, 17, 30, 22, and 28 units. The accuracy indicators of the six types of data
augmentation are shown in Table 4.

Table 4. RBF performance of different asphalt pavements.

Type RMSE MAE MAPE R2

STR2 3.757 2.874 0.074 0.9503
STR8 5.010 4.034 0.072 0.9620
STR5 3.524 2.229 0.081 0.9137
STR12 3.376 2.628 0.054 0.9680
STR11 3.862 3.186 0.053 0.9702
STR18 4.142 3.143 0.063 0.9776
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Figure 6. Comparison of six types of pavement rutting depth augmented data and real data.

As shown in Table 4, the RMSE and MAE of the six types of structures are both single
digits, and the values of MAPE are all less than 10%. Except that R2 of STR5 is 0.9137,
the R2 values of other types are all above 0.95. The results show that the RBFNN-based
data augmentation model proposed in this paper can make full use of feature information
and achieve better augmentation accuracy. Hence, the model is suitable for all pavement
structure data and has good generalization ability.

The residual distribution should be zero mean to ensure a good effect of the rutting
depth interpolation augmentation model. Therefore, it is necessary to test the residuals.
RBFNN augments the rutting data of six road surfaces, the residual histogram of the result
is shown in Figure 7, and the probability density map of residual error is shown in Figure 8.

Figure 8 shows that the residuals of the model results in this paper are close to a
normal distribution. To better test the distribution of model prediction residuals, the K-S
test [48] is used to test whether the residuals of the model in this paper obey the normal
distribution to verify the model’s reliability. When the significance level is 0.05, the statistic
calculated by the K-S test is 0.06294, and the p value is 0.16181 (>0.05), which does not
violate the original hypothesis, indicating that the prediction residuals of the model obey
the normal distribution.



Symmetry 2023, 15, 33 11 of 15

Figure 7. Histogram of the predicted residuals of the model in this paper.

Figure 8. The predicted residual probability distribution of the model in this paper.

4.3. Model Comparison and Evaluation

This paper also compares the performance of RBFNN, KNN, DT, RF, XGBoost, MLP
and SVM in terms of RMSE, MAE, MAPE and R2. Using the Scikit learn [49] library for
Python, the baseline models are implemented using recommended parameters.

RBFNN in this paper is almost the best algorithm used to augment the above six
types of road surfaces. The average results of six types of pavement indicators are used for
simplicity. The comparison results of all algorithms are shown in Table 5.

Table 5. Algorithmics performance of different asphalt pavements.

Algorithm Mean RMSE Mean MAE Mean MAPE Mean R2

RBFNN 3.945 3.016 0.066 0.957
KNN 4.252 3.273 0.067 0.948

DT 5.403 3.961 0.088 0.906
RF 4.348 3.218 0.069 0.943

XGBoost 5.006 3.678 0.080 0.926
MLP 10.378 8.494 0.175 0.528
SVM 13.352 9.476 0.272 0.571

In Table 5, the RBFNN model is more accurate than the baseline model for data aug-
mented and is the best performer under different metrics. It can be seen that the data augmen-
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tation model proposed in this paper not only has a good data augmentation effect but also
has a good generalization ability and can adapt to highly complex pavement structures.

4.4. Performance of the Augmented Dataset on Other Tasks on Rutting Depth

The regression estimation of rutting depth is tested to verify whether the augmented
rutting data can be used in other tasks. This paper compares the training results before
and after data augmentation for different NN algorithms, such as RBFNN, MLP, and ELM
algorithms. For RBFNN, ELM, and MLP, 9 input nodes, 28 hidden nodes, and 1 output
node are set up to perform regression estimation on the rutting depths of six pavement
structures of STR2, STR5, STR8, STR11, STR12, and STR18, respectively. Boxplots of the
performance of each algorithm on RMSE, MAE, and MAPE are shown in Figure 9.
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Figure 9. Boxplots of accuracy index with different algorithms.

As shown in Figure 9, it is easy to find that the model accuracy has been significantly
improved for the neural network algorithms under two different settings of the data set,
using the augmented data as the training set. The comparison results of different algorithms
are shown in Tables 6 and 7.

Table 6. Performance of different algorithms using raw data as training set on rutting depth regres-
sion estimation.

Algorithm Average RMSE Average MAE Average MAPE

RBF 4.8327 4.4620 4.67%
MLP 6.2957 5.7092 5.97%
ELM 4.6720 4.1737 4.38%
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Table 7. Performance of different algorithms using augmented data as training set on rutting depth
regression estimation.

Algorithm Average RMSE Average MAE Average MAPE

RBF 3.5965 3.0492 3.27%
MLP 3.6690 3.1193 3.40%
ELM 2.9782 2.4725 2.75%

Compared with the raw dataset, the Average MAPE of the model trained with the
augmented dataset, the maximum boost, the minimum boost, and the average boost
are 75.49%, 42.86%, and 59.25%, respectively. The Average RMSE has an enormous im-
provement. The maximum, minimum and average improvements are 71.59%, 34.37%,
and 54.28%, respectively. The maximum increase in Average MAE, minimum, and average
are 83.03%, 46.34%, and 66.05%, respectively. It is found from the experiment that using
the RBFNN model to enhance the original data of the rutting data can effectively improve
the prediction accuracy of the neural network algorithm for the rutting depth regression
compared with the original data. It is verified that the augmented model is beneficial to the
data mining tasks of rutting depth.

5. Conclusions

This paper proposes a rutting data augmentation model based on a radial basis
function neural network, and the pavement rutting data of six different structures are
augmented by screening out important, relevant features. The test experiments show that
the expansion performance of the proposed model is better than other traditional models
and neural network models in terms of accuracy indicators. Moreover, the model has
better generalization performance. An experiment is tested for the rutting depth regression
estimation, and it is found that using augmented data as the training set can effectively
improve the regression accuracy of the neural network algorithm. This experiment verifies
that the data augmentation method can effectively improve data quality.

In summary, the rutting data augmentation model proposed in this paper has the
following advantages:

1. Avoid the uncertainty error caused by the use of field data and increase the amount of
data, which can further improve the accuracy of the neural network-based prediction
model;

2. Generate relatively regular data and try some new algorithms to explore the periodic
characteristics of the data;

3. Effectively reduce the measurement cost. It can perform low-density measurements
of rutting data and high-density measurements of easy-to-measure data such as
temperature and axle order.

In further research, we hope to introduce the constitutive equation of rutting depth
into the data augmentation model, aiming to transform the data-driven model to both a
mechanistic and data-driven model.
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