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Abstract: Motivated by recent studies of circuit complexity in weakly interacting scalar field theory,
we explore the computation of circuit complexity in Z2 Even Effective Field Theories (Z2 EEFTs). We
consider a massive free field theory with higher-order Wilsonian operators such as φ4, φ6, and φ8. To
facilitate our computation, we regularize the theory by putting it on a lattice. First, we consider a
simple case of two oscillators and later generalize the results to N oscillators. This study was carried
out for nearly Gaussian states. In our computation, the reference state is an approximately Gaussian
unentangled state, and the corresponding target state, calculated from our theory, is an approximately
Gaussian entangled state. We compute the complexity using the geometric approach developed by
Nielsen, parameterizing the path-ordered unitary transformation and minimizing the geodesic in the
space of unitaries. The contribution of higher-order operators to the circuit complexity in our theory
is discussed. We also explore the dependency of complexity on other parameters in our theory for
various cases.

Keywords: circuit complexity; effective field theory; AdS/CFT correspondence

1. Prologue

In recent years, tools and techniques from quantum information have played a vital
role in developing new perspectives in areas such as quantum field theory and holography,
particularly for AdS/CFT duality. A particular line of study in the context of AdS/CFT
correspondence is deciphering the emergence of bulk physics using information from the
boundary CFT [1]. It was shown in [2–4] that the codimension-2 extremal surfaces in the
AdS are associated with the entanglement entropy (EE) of the boundary CFT. However, in
recent years, studies in black hole physics have suggested that EE is not sufficient to capture
the complete information, which led Susskind et al. to introduce a new measure known as
Quantum Computational Complexity (QCC) [5–13]. In the context of AdS/CFT, the QCC
of the dual CFT is proposed to be associated with the properties of the codimension-0 and
codimension-1 extremal surfaces. This aroused the study of QCC in QFTs.

The complexity of quantum states has aroused a significant amount of interest not
only in the context of holography but across different subfields of physics (from quantum
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computing and information to many-body physics), as it appears to be a better measure of
information. In [14,15], the notion of circuit complexity was defined and studied for free
bosonic field theory, and in [16,17], it was defined and studied for free fermionic field theory.
For a weakly interacting field theory, the authors of [18] extended the study to the φ4 theory,
where in addition to the study of QCC, its relationship with renormalization group flows
was also explored. The growth of complexity in the quantum circuit model was studied in
[19]. Circuit complexity was also discussed in the context of chaos, quantum mechanics, and
quantum computing in [20–23]. It has been probed in relation to conformal and topological
field theories and the Chern–Simmons theory [24–27]. Active study in the context of
many-body quantum systems has been also gaining interest in recent years [28]. QCC
has been studied in many other contexts. It has been explored extensively in holography
[29–57]. The thermodynamic properties of QCC were studied in [58–60]. In addition,
various applications and properties of QCC were investigated in [61–84].

In this paper, we extend the work in [18] by including even higher-order Wilsonian
operators, which we denote with Z2 EEFT (Even Effective Field Theory). Our theory
contains the interaction terms φ4, φ6, and φ8. These are weakly coupled to the free scalar
field theory via the coupling constants λ4, λ6, and λ8 respectively. The primary motivation
for studying QCC in this context is to compute and understand QCC by including higher-
order terms. The organization of the paper is as follows. In Section 2, we summarize
Nielsen’s method for computing circuit complexity. In Section 3, we briefly discuss the
pertinent details of EFT related to our work. In Section 4, we illustrate the computation
of QCC for our theory by first giving an example of two coupled oscillators. In Section
5, we generalize the calculation to the N oscillator case. Since we could not observe any
analytical expression for the relevant eigenvalues for N oscillators, in Section 6, we resort
to numerical computation of the QCC. We plot the corresponding graphs of QCC with the
relevant parameters in our theory. We finish up by summarizing and providing possible
future prospects for our work.

2. Circuit Complexity and Its Purposes

Computationally, circuit complexity is defined as a measure of the minimum number
of elementary operations required by a computer to solve a certain computational problem
[85–90]. In quantum computation, a quantum operation is described by a unitary trans-
formation. Therefore, quantum circuit complexity is the length of the optimized circuit
that performs this unitary operation. As the size of the input increases, if the complexity
grows polynomially, then the problem is called “easy”, but if it grows exponentially, then
the problem is called “hard”.

Quantum information-theoretic concepts, such as entanglement, have proven to be
helpful in areas other than quantum computing [91–94]. Quantum circuit complexity (QCC)
is emerging as one such quantum information-theoretic concept that has the potential to
explain phenomena in several areas of quantum physics. However, the lower bounding
quantum circuit complexity is an extremely challenging open problem.

For our purpose, we will consider the geometric approach to computing quantum
circuit complexity developed by Nielsen et al. [85,87]. The prime reason to consider a
geometric approach is that it is much easier to minimize a smooth function in a smooth space
than to minimize an arbitrary function in a discrete space. Since the unitaries are continuous,
this method of optimization suits our needs well. Interestingly, this approach allows
us to formulate the optimal circuit-finding problem in the language of the Hamiltonian
control problem, for which a mathematical method called the calculus of variations can be
employed to find the minima. Another reason is that this method is similar to the general
Lagrangian formalism, where the motion of the test particle is obtained from minimizing a
global functional. For example, in general relativity, test particles move along geodesics of
spacetime described by the following geodesic equation:

d2xj

dt2 + Γj
kl

dxk

dt
dxl

dt
= 0
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where xj represents the coordinates for the position on the manifold and Γj
kl represents the

Christoffel symbols given by the geometry of the spacetime. Thus, the problem of finding
an optimal quantum circuit is related to “freely falling” along the minimal geodesic curve
connecting the identity to the desired operation, and the path is given by the “local shape”
of the manifold. If we have information about the local velocity and the geometry, then
it is possible to predict the rest of the path. In this regard, geometric analysis of quantum
computation is quite powerful, as it allows one to design the rest of the shortest quantum
circuit with information about only part of it.

2.1. Main Mathematical Ideas

Our goal is to understand how difficult it is to implement an arbitrary unitary opera-
tion U generated by a time-dependent Hamiltonian H(t):

U(s) =
←−P exp

[
− i

∫ s

0
ds′ H(s′)

]
(1)

where
←−P is the path-ordering operator and the space of the circuits is parameterized by s.

The path-ordering operator
←−P is the same as the time-ordering operator, which indicates

that the circuit runs from right to left. We can expand the Hamiltonian H(s) as follows:

H(s) = ∑
I

Y I(s)MI (2)

where MI represents the generalized Pauli matrices and the coefficient Y I(s) represents the
control functions that tell us the gate to be applied at particular values of s.

The Schrödinger equation dU/dt = −iHU describes the evolution of the unitary
operation:

dU(s)
ds

= −iY(s)I MIU(s) (3)

where at the final time t f , U(t f ) = U.
We can impose a cost function F(U, U̇) on the Hamiltonian control H(t) which will

tell us how difficult it is to apply a specific unitary operation U. One can then define
a Riemannian geometry in the space of the unitary operations with this cost function.
Then, the problem of finding an optimal control function is translated to the problem of
finding the minimal geodesic in this geometry, and we can define a notion of distance in
SU(2n). For this, we have to define a curve U between the identity operation I and the
desired unitary U, which is a smooth function U : [0, t f ]→ SU(2n) such that U(0) = I and
U(t f ) = U. The length of this curve is defined as

d([U]) =
∫ t f

0
dtF(U, U̇) (4)

This length d([U]) gives the total cost of synthesizing the Hamiltonian that describes the
motion along the curve. In particular, the distance d(I,U) is also a lower bound on the
number of one- and two-qubit quantum gates necessary to exactly simulate U. The proof
is available in the original papers of Nielsen [85]. Therefore, one can also consider the
distance d([U]) as an alternative description of the complexity.

The cost function F has to satisfy certain properties, such as continuity, positivity,
positive homogeneity, and triangle inequality [77]. If we also demand F to be smooth
(i.e., F ∈ C∞), then the manifold is referred to as the Finsler manifold. Since the field of
differential geometry is relatively mature, we hope that borrowing tools from differential
geometry can provide a unique perspective on quantum complexity.
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In the literature, there are several alternative definitions of the cost function F(U, v).
Some of them are

F1(U, Y) = ∑
I
|Y I |

Fp(U, Y) = ∑
I

pI |Y I |

F2(U, Y) =
√

∑
I
|Y I |2

Fq(U, Y) =
√

∑
I

qI |Y I |2

(5)

where F1, the linear cost functional measure, is the concept closest to the classical concept
of counting gates, while F2, the quadratic cost functional, can be understood as the proper
distance in the manifold. Fp is similar to F1 but with penalty parameters pI used to favor
certain directions over others.

In Figure 1 the left figure represents a unitary transformation from a reference state
to a target state using quantum gates, and the right figure represents geometrizing the
problem of calculating the minimum number of gates representing the transformation.

Figure 1. The left figure represents a unitary transformation from a reference state to a target state
using quantum gates (square blocks), and the right figure represents geometrizing the problem of
calculating the minimum number of gates representing the transformation.

2.2. Geometric Algorithm to Compute Circuit Complexity

We will now describe the algorithm for computing the circuit complexity. These
algorithms are not rigorously proven, but from an operational point, these general steps
are implemented to calculate the circuit complexity:

1. Give the Hamiltonian corresponding to a particular physical system;
2. Specify the reference state |ψ〉R, the target state |ψ〉T , and the unitary operation U that

takes the former to the latter, where |ψ〉T = U |ψ〉R;
3. Now, we need to choose some set of elementary gates Qab = exp[εMab], where MI

represents the generators of the group corresponding to the choice of gates and ε
is a controllable parameter. For simplicity, we often choose generators satisfying
Tr[MI MT

J ] = δI J .
4. With the basis of generators MI , we parametrize the unitary operation U as U(s);
5. The velocity component Y I(s) can be explicitly computed using

Y I(s)MI = i(∂sU(s))U−1(s))→ Y I(s) =
1

Tr
[

MI(MI)
T
]Tr
[

∂sU(s)U−1
(

MI
)T
]

(6)

For generators obeying Tr[MI MT
J ] = δI J , Y I(s) reduces to

Y I(s) = Tr[i(∂sU(s))U−1(s)MT
I ] (7)
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The right invariant metric in the space is given by

ds2 = GI JY IY J (8)

where GI J gives the penalty parameters. If GI J = δI J (i.e., assigning an equal cost to
every choice of gate), and having an extra condition Tr[MI MT

J ] = δI J , we obtain a
metric of the reduced simple form

ds2 = δI JTr[i(∂sU(s))U−1(s)MT
I ]Tr[i(∂sU(s))U−1(s)MT

J ] (9)

6. The general form of the circuit complexity would be

C[U] =
∫ 1

0
ds
√

GI JY I(s)Y J(s) (10)

The circuit complexity for the F2 metric (i.e., GI J = δI J) is then

C[U] =
∫ 1

0
ds
√

gij ẋi ẋj (11)

7. From the boundary conditions of the evolution of unitary operations, we can compute
the geodesic path and geodesic length. This length then gives a measure of circuit
complexity.

In the literature, circuit complexity, using this geometric approach, is computed mostly
for Gaussian wave functions because of its simpler structure compared with non-Gaussian
wave functions. A Gaussian wave function can be represented as follows:

ψ ≈ exp
[
−1

2
va A(s)ab vb

]
, where v = {xa, xb} (12)

where xa and xb are the bases of vector v. If we can simultaneously diagonalize the reference
and target states, then a common pattern observed in the complexity is that it will be given
by some function of the ratio of the eigenvalues of A(s = 0) and A(s = 1). Here, A(s = 0)
represents the reference state, and A(s = 1) represents the target state.

We would like to mention that our approach to computing complexity is based on
Nielsen’s geometric approach, which suffers from ambiguity in choosing the elementary
quantum gates and states. However, these choices of our gates significantly simplify
the calculation. Furthermore, the previous works on complexity in QFT and interacting
QFT [14,18], using similar quantum gates to ours, have been connected to a holographic
proposal, which is the original motivation to study quantum circuit complexity in QFT.
Recently, Krylov complexity has been proposed as a tool for studying operator growth
and associated quantum chaos [95–103]. Contrary to Nielsen’s geometric approach, the
Krylov complexity is independent of such arbitrary choices, making it a good candidate for
complexity in QFT and holography. However, Krylov complexity does not have a good
operational meaning, such as in Nielsen’s geometric measure. Nielsen’s measure not only
gives the state complexity but also gives us a method of constructing an optimal quantum
circuit. This feature makes it more appealing than the Krylov complexity. In the future, we
would like to study the Krylov complexity for our case too.

3. Effective Field Theory in a Nutshell

An effective field theory (EFT) is a theory corresponding to the dynamics of a physical
system at energies that are smaller than the cutoff energy. EFTs have made a significant
impact on several areas of theoretical physics, including condensed matter physics [104],
cosmology [105–111], particle physics [112,113], gravity [114,115], and hydrodynamics
[116,117]. The idea behind an EFT is that we can compute results without knowing the
full theory. In the context of quantum field theory, this implies that using the method of
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EFTs, one can study the low energy aspect of the theory without having a full theory in the
high energy limit. If the high-energy theory is known, then one can obtain an EFT using
the “top-down” approach [118], where one has to eliminate high-energy effects. Using the
“bottom-up” approach, one can obtain an EFT if the theory for high energy is not available.
Here, one has to impose constraints given by symmetry and “naturalness” on suitable
Lagrangians.

The Hamiltonian of our theory is

H =
1
2

∫
dd−1x

[
π(x)2 + (∇φ(x))2 + m2φ2(x) + 2

4

∑
n=2

C2nφ2n(x)

]
(13)

where the coefficients C2n = 2λ̂2n/(2n)! are called the “Wilson coefficients” for the Z2
EEFTs in arbitrary dimensions. These coefficients depend on the scaling of the theory.
These coefficients are expected to be functions of the λs, the cutoffs of our theory, and this
functional dependence can be found by solving the renormalization group equations or
Callan–Symanzik equations. φ2ns are called the “Wilson operators” in Z2 EEFTs. φ2(x)
and φ4(x) are called “relevant operators of EEFTs”, and this theory is renormalizable up to
φ4(x). Beyond that, all the higher-order even terms, which are φ6(x) and φ8(x) in our case,
are called “non-renormalizable irrelevant operators of Z2 EEFTs”. However, it should be
noted that even though this theory goes up in the “Wilson operator” order, the contributions
from those terms decrease gradually. Therefore, it is an infinite convergent series. Building
upon this, we go on to compute the circuit complexity in the Z2 EEFT.

4. Circuit Complexity with (λ̂4φ4 + λ̂6φ6 + λ̂8φ8) Interaction for the Case of Two
Harmonic Oscillators

We work with massive scalar field theory and with the even interaction terms φ4, φ6,
and φ8, which are weakly coupled to the free field theory via the coupling constants λ̂4, λ̂6,

and λ̂8, respectively. The inequality between the coupling constants is λ̂4
4! > λ̂6

6! > λ̂8
8! . The

Hamiltonian for this scalar field in d spacetime dimensions is

H =
1
2

∫
dd−1x

[
π(x)2 + (∇φ(x))2 + m2φ(x)2 + 2

4

∑
n=2

C2nφ2n(x)

]
(14)

where the mass of the scalar field φ is m. We work in the weak coupling regime
(
λ̂� 1

)
so that perturbative methods can be used to investigate the theory. The system can be
reduced to a chain of harmonic oscillators if we regulate the theory by placing it on a(
d− 1

)
dimensional square lattice with lattice spacing δ. We are taking the infinite system

in Equation (14) and discretizing it to a finite N oscillator system because if we have an
infinite convergent theory and an infinite number of terms in the Hamiltonian, then we
do not have the finite symmetries that we are interested in. Therefore, the discretized
Hamiltonian becomes

H =
1
2 ∑

~n

{
π(~n)2

δd−1 + δd−1

[
1
δ2 ∑

i
(φ(~n)− φ(~n− x̂i))

2 + m2φ(~n)2 +
2λ̂4

4!
φ(~n)4 +

2λ̂6

6!
φ(~n)6 +

2λ̂8

8!
φ(~n)8

]}
(15)

where ~n denotes the spatial position vectors of the points on the lattice in d dimensions
and x̂i represents the unit vectors along the lattice. We make the following substitutions to
simplify the form of the Hamiltonian:

X(~n) = δd/2φ(~n) P(~n) = π(~n)/δd/2 M =
1
δ

, ω = m, Ω =
1
δ

λ4 =
λ̂4

4!
δ−d λ6 =

λ̂6

6!
δ−2d λ8 =

λ̂8

8!
δ−3d
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After the substitutions, we obtain

H = ∑
~n

{P(~n)2

2M
+

1
2

M
[
ω2X(~n)2 + Ω2 ∑

i
(X(~n)− X(~n− x̂i))

2 + 2
{

λ4X(~n)4 + λ6X(~n)6 + λ8X(~n)8}]} (16)

We observe that the Hamiltonian obtained is identical to that of an infinite family of
coupled anharmonic oscillators. The nearest term interaction comes from the kinetic part,
and the self-interactions come from the remaining portion of the Hamiltonian. We start
with the simple case of two coupled oscillators and generalize it to the case of N oscillators
later in this paper. By setting M = 1, the Hamiltonian takes the form

H = 1
2

[
p2

1 + p2
2 + ω2(x2

1 + x2
2
)
+ Ω2(x1 − x2)

2 + 2
{

λ4
(
x4

1 + x4
2
)
+ λ6

(
x6

1 + x6
2
)
+ λ8

(
x8

1 + x8
2
)}]

(17)

Now, let us consider the normal mode basis:

x̄0 =
1√
2
(x1 + x2), x̄1 =

1√
2
(x1 − x2), (18)

p̄0 =
1√
2
(p1 + p2), p̄1 =

1√
2
(p1 − p2)

ω̃2
0 = ω2, ω̃2

1 = ω2 + 2Ω2

In the normal mode basis, the unperturbed Hamiltonian becomes decoupled. Then,
the eigenfunctions and eigenvalues for the unperturbed Hamiltonian can be easily solved,
which is just a product of the ground-state eigenfunctions of the oscillators in the normal ba-
sis:

ψ0
n1,n2

(x̄0, x̄1) =
1√

2n1+n2 n1!n2!
(ω̃0ω̃1)

1/4
√

π
e−

1
2 ω̃0 x̄2

0−
1
2 ω̃1 x̄2

1 Hn1

(√
ω̃0 x̄0

)
Hn2

(√
ω̃1 x̄1

)
(19)

Here, Hn(x)s denote Hermite polynomials of an order n. The ground state wavefunc-
tion with first-order perturbative correction in λ4, λ6, and λ8 has the following expression:

ψ0,0(x̄0, x̄1) = ψ0
0,0(x̄0, x̄1) + λ4ψ1

0,0(x̄0, x̄1)4 + λ6ψ1
0,0(x̄0, x̄1)6 + λ8ψ1

0,0(x̄0, x̄1)8 (20)

Here, ψ1
0,0(x̄0, x̄1)4, ψ1

0,0(x̄0, x̄1)6, and ψ1
0,0(x̄0, x̄1)8 are the terms representing the first-

order perturbative corrections to the ground state wavefunction due to the φ4, φ6, and φ8

interactions, respectively, which are as follows:

ψ1
0,0(x̄0, x̄1)4 =− 3(ω̃0 + ω̃1)

4
√

2ω̃0ω̃3
1

ψ0
0,2 −

√
3

8
√

2ω̃3
1

ψ0
0,4 −

3(ω̃0 + ω̃1)

4
√

2ω̃3
0ω̃1

ψ0
2,0 −

3
4ω̃0(ω̃0 + ω̃1)ω̃1

ψ0
2,2

−
√

3
8
√

2ω̃3
0

ψ0
4,0

ψ1
0,0(x̄0, x̄1)6 =− 45(ω̃0 + ω̃1)

2

32
√

2ω̃2
0ω̃4

1

ψ0
0,2 −

15
√

3(ω̃0 + ω̃1)

32
√

2ω̃0ω̃4
1

ψ2
0,4 −

√
5

16ω̃4
1

ψ0
0,6 −

45(ω̃0 + ω̃1)
2

32
√

2ω̃4
0ω̃2

1

ψ2,0

− 45(ω̃0 + ω̃1)

16ω̃2
0(ω̃0 + ω̃1)ω̃

2
1

ψ0
2,2 −

15
√

3
16ω̃0(ω̃0 + 2ω̃1)ω̃

2
1

ψ0
2,4 −

15
√

3/2(ω̃0 + ω̃1)

32ω̃4
0ω̃1

ψ0
4,0

− 15
√

3
16ω̃2

0(2ω̃0 + ω̃1)ω̃1
ψ0

4,2 −
√

5
16ω̃4

0
ψ0

6,0
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ψ1
0,0(x̄0, x̄1)8 =

(105
√

2
8ω̃5

0
+

315
√

2
8ω̃4

0ω̃1
+

315
√

2
8ω̃3

0ω̃2
1
+

105
√

2
8ω̃2

0ω̃3
1

)
ψ0

2,0 +
(105

√
2

8ω̃5
1

+
105
√

2
8ω̃3

0ω̃2
1
+

315
√

2
8ω̃3

0ω̃2
1

+
315
√

2
8ω̃4

1ω̃0

)
ψ0

0,2 +
( 315

4ω̃3
0ω̃1(ω̃0 + ω̃1)

+
315

2ω̃2
0ω̃2

1(ω̃0 + ω̃1)
+

315
4ω̃3

1ω̃0(ω̃0 + ω̃1)

)
∗ ψ0

2,2 +
(105

√
6

16ω̃5
0

+
105
√

6
8ω̃4

0ω̃1
+

105
√

6
16ω̃3

0ω̃2
1

)
ψ0

4,0 +
(105

√
6

16ω̃5
1

+
105
√

6
8ω̃4

1ω̃0
+

105
√

6
16ω̃2

0ω̃3
1

)
∗ ψ0

0,4 +
( 105

√
3

2ω̃3
0ω̃1(2ω̃0 + ω̃1)

+
105
√

3
2ω̃2

0ω̃2
1(2ω̃0 + ω̃1)

)
ψ0

4,2 +
( 105

√
3

2ω̃3
1ω̃0(2ω̃1 + ω̃0)

+
105
√

3
2ω̃2

0ω̃2
1(ω̃0 + 2ω̃1)

)
ψ0

2,4 +
105

4ω̃2
0ω̃2

1(ω̃0 + ω̃1)
ψ0

4,4 +
(7
√

5
2ω̃5

0
+

7
√

5
2ω̃4

0ω̃1

)
ψ0

6,0+(7
√

5
2ω̃5

1
+

7
√

5
2ω̃4

1ω̃0

)
ψ0

0,6 +
21
√

10
2ω̃3

1ω̃0(3ω̃1 + ω̃0)
ψ0

2,6 +
21
√

10
2ω̃3

1ω̃0(3ω̃1 + ω̃0)
ψ0

2,6

+
3
√

70
ω̃5

0
ψ0

8,0 +
3
√

70
ω̃5

1
ψ0

0,8

We can approximate the total ground state wave function in Equation (20) in exponen-
tial form as the values of λ4, λ6, λ8 � 1:

ψ0,0(x̄0, x̄1) ≈
(ω̃0ω̃1)

1/4
√

π
exp[α0] exp

[
− 1

2

(
α1 x̄2

0 + α2 x̄2
1 + α3 x̄2

0 x̄2
1 + α4 x̄4

0 + α5 x̄4
1 + α6 x̄4

0 x̄2
1 + α7 x̄2

0 x̄4
1

+ α8 x̄6
0 + α9 x̄6

1 + α10 x̄2
0 x̄6

1 + α11 x̄6
0 x̄2

1 + α12 x̄4
0 x̄4

1 + α13 x̄8
0 + α14 x̄8

1

)]
(21)

We shall take ψ0,0(x̄0, x̄1) as the general target state wavefunction for calculating
complexity in the following sections. The coefficients α0, α1, α2 . . . α14 involved in the
approximate wavefunction Equation (21) are given in the Table 1.
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Table 1. Expression for coefficients α0, α1, α2 . . . α14, present in the wavefunction.

αi Coefficient of αi

α0

− 2
[

9λ4
32ω̃3

0
+ 9λ4

32ω̃3
1
+ 3λ4

8ω̃0ω̃1
2 +

3λ4
8ω̃0

2ω̃1
+ 3λ4

4ω̃0(−2ω̃0−2ω̃1)ω̃1
+ 55λ6

128ω̃0
4 +

55λ6
128ω̃1

4 +
135λ6

128ω̃0ω̃1
3 +

45λ6
32ω̃0

2ω̃1
2

− 45λ6
32ω̃0(−2ω̃0−4ω̃1)ω̃1

2 +
45λ6

16ω̃0(−2ω̃0−2ω̃1)ω̃1
2 +

135λ6
128ω̃0

3ω̃1
− 45λ6

32ω̃0
2(−4ω̃0−2ω̃1)ω̃1

+ 45λ6
16ω̃0

2(−2ω̃0−2ω̃1)ω̃1

+ 875λ8
1024ω̃0

5 +
875λ8

1024ω̃1
5 +

385λ8
128ω̃0ω̃1

4 +
105λ8

256ω̃0
2ω̃1

3 +
2625λ8

256ω̃0
3ω̃1

2 +
385λ8

128ω̃0
4ω̃1
− 315λ8

64ω̃0ω̃1
3(ω̃0+ω̃1)

− 2835λ8
256ω̃0

2ω̃1
2(ω̃0+ω̃1)

− 315λ8
64ω̃0

3ω̃1(ω̃0+ω̃1)
+ 315λ8

64ω̃2
0ω̃2

1(2ω̃0+ω̃1)
+ 315λ8

64ω̃3
0ω̃1(2ω̃0+ω̃1)

− 105λ8
64ω̃0

3ω̃1(3ω̃0+ω̃1)

+ 315λ8
64ω̃0ω̃1

3(ω̃0+2ω̃1)
+ 315λ8

64ω̃0
2ω̃1

2(ω̃0+2ω̃1)
− 105λ8

64ω̃0ω̃1
3(ω̃0+3ω̃1)

]

α1

ω0− 2
[
−3λ4
8ω̃0

2 − 3λ4
4ω̃0ω̃1

− 3λ4
2(−2ω̃0−2ω̃1)ω̃1

− 15λ6
32ω̃0

3 − 45λ6
32ω̃0ω̃1

2 +
45λ6

16(−2ω̃0−4ω̃1)ω̃1
2 − 45λ6

8(−2ω̃0−2ω̃1)ω̃1
2

− 45λ6
32ω̃0

2ω̃1
+ 45λ6

8ω̃0(−4ω̃0−2ω̃1)ω̃1
− 45λ6

8ω̃0(−2ω̃0−2ω̃1)ω̃1
− 105λ8

128ω̃0
4 − 105λ8

32ω̃0ω̃1
3 − 315λ8

64ω̃0
2ω̃1

2 − 105λ8
32ω̃0

3ω̃1

+ 315λ8
32ω̃1

3(ω̃0+ω̃1)
+ 1575λ8

64ω̃0ω̃1
2(ω̃0+ω̃1)

+ 315λ8
32ω̃0

2ω̃1(ω̃0+ω̃1)
− 315λ8

16ω̃0ω̃1
2(2ω̃0+ω̃1)

− 315λ8
16ω̃0

2ω̃1(2ω̃0+ω̃1)

+ 315λ8
32ω̃2

0ω̃1(3ω̃0+ω̃1)
− 315λ8

32ω̃1
3(ω̃0+2ω̃1)

− 315λ8
32ω̃0ω̃1

2(ω̃0+2ω̃1)
+ 105λ8

32ω̃1
3(ω̃0+3ω̃1)

]

α2

ω1− 2
[
−3λ4
8ω2

1
− 3λ4

4ω0ω1
− 3λ4

2ω0(−2ω0−2ω1)
− 15λ6

32ω3
1
− 45λ6

32ω2
0ω1

+ 45λ6
16ω2

0(−4ω0−2ω1)
− 45λ6

8ω2
0(−2ω0−2ω1)

− 45λ6
32ω0ω2

1
+ 45λ6

8ω0(−2ω0−4ω1)ω1
− 45λ6

8ω0(−2ω0−2ω1)ω1
− 105λ8

128ω4
1
− 105λ8

8ω3
0ω1

+ 315λ8
64ω2

0ω2
1
− 105λ8

32ω0ω3
1

+ 315λ8
32ω3

0(ω0+ω1)
+ 1575λ8

64ω2
0ω1(ω0+ω1)

+ 315λ8
32ω0ω12(ω0+ω1) −

315λ8
32ω3

0(2ω0+ω1)
− 315λ8

32ω2
0ω1(2ω0+ω1)

+ 105λ8
32ω3

0(3ω0+ω1)

− 315λ8
16ω0ω2

1(ω0+2ω1)
− 315λ8

16ω2
0ω1(ω0+2ω1)

+ 315λ8
32ω0ω2

1(ω0+3ω1)

]

α3

− 2
[

3λ4
−2ω̃0−2ω̃1

− 45λ6
4ω̃0(−4ω̃0−2ω̃1)

+ 45λ6
4ω̃0(−2ω̃0−2ω̃1)

− 45λ6
4(−2ω̃0−4ω̃1)ω̃1

+ 45λ6
4(−2ω̃0−2ω̃1)ω̃1

− 315λ8
16ω̃2

0(ω̃0+ω̃1)
− 315λ8

16ω̃1
2(ω̃0+ω̃1)

− 945λ8
16ω̃0ω̃1(ω̃0+ω̃1)

+ 315λ8
8ω̃2

0(2ω̃0+ω̃1)
+ 315λ8

8ω̃0ω̃1(2ω̃0+ω̃1)
− 315λ8

16ω̃2
0(3ω̃0+ω̃1)

+ 315λ8
8ω̃2

1(ω̃0+2ω̃1)
+ 315λ8

8ω̃0ω̃1(ω̃0+2ω̃1)
− 315λ8

16ω̃2
1(ω̃0+3ω̃1)

]

α4

− 2
[
−λ4
8ω̃0
− 5λ6

32ω̃2
0
− 15λ6

32ω̃0ω̃1
− 15λ6

8(−4ω̃0−2ω̃1)ω̃1
− 35λ8

128ω̃0
3 − 105λ8

64ω̃0ω̃2
1
− 35λ8

32ω̃2
0ω̃1
− 105λ8

64ω̃2
1(ω̃0+ω̃1)

+ 105λ8
16ω̃1

2(2ω̃0+ω̃1)
+ 105λ8

16ω̃0ω̃1(2ω̃0+ω̃1)
− 105λ8

16ω̃0ω̃1(3ω̃0+ω̃1)

]

α5

− 2
[
− λ4

8ω̃1
− 15λ6

8ω̃0(−2ω̃0−4ω̃1)
− 5λ6

32ω̃1
2 − 15λ6

32ω̃0ω̃1
− 35λ8

128ω̃1
3 − 35λ8

32ω̃0ω̃2
1
− 105λ8

64ω̃0
2ω̃1
− 105λ8

64ω̃2
0(ω̃0+ω̃1)

+

105λ8
16ω̃0

2(ω̃0+2ω̃1)
+ 105λ8

16ω̃0ω̃1(ω̃0+2ω̃1)
− 105λ8

16ω̃0ω̃1(ω̃0+3ω̃1)

]
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Table 1. Cont.

αi Coefficient of αi

α6

− 2
[

15λ6
4(−4ω̃0−2ω̃1)

+ 105λ8
16ω̃1(ω̃0+ω̃1)

− 105λ8
8ω̃0(2ω̃0+ω̃1)

− 105λ8
8ω̃1(2ω̃0+ω̃1)

+ 105λ8
8ω̃0(3ω̃0+ω̃1)

]

α7

− 2
[

15λ6
4(−2ω̃0−4ω̃1)

+ 105λ8
16ω̃0(ω̃0+ω̃1)

− 105λ8
8ω̃0(ω̃0+2ω̃1)

− 105λ8
8ω̃1(ω̃0+2ω̃1)

+ 105λ8
8ω̃1(ω̃0+3ω̃1)

]
α8

− 2
[

λ6
24ω̃0
− 7λ8

96ω̃2
0
− 7λ8

24ω̃0ω̃1
+ 7λ8

8ω̃1(3ω̃0+ω̃1)

]
α9

− 2
[
−λ6
24ω̃1
− 7λ8

96ω̃2
1
− 7λ8

24ω̃0ω̃1
+ 7λ8

8ω̃0(ω̃0+3ω̃1)

]
α10

7λ8
2(ω̃0+3ω̃1)

α11
7λ8

2(3ω̃0+ω̃1)

α12
35λ8

8(ω̃0+ω̃1)

α13
λ8

32ω̃0

α14
λ8

32ω̃1

4.1. Circuit Complexity

We will describe complexity in terms of a quantum circuit model. To calculate the
circuit complexity for the two-oscillator system with even interactions up to φ8, we need
to fix our reference state, target state, and a set of elementary gates. We will construct the
unitary transformation using these gates. This unitary transformation will take the system
from the reference state (|ψ〉R) to the target state (|ψ〉T) (i.e., |ψ〉T = U |ψ〉R). The minimum
number of gates needed to construct such a unitary transformation is the complexity of
the target state. Since our wave functions are nearly Gaussian, we can consider our space
of states as the space of positive quadratic forms. This space can be parameterized as a
function of a smooth parameter s as follows:

ψs(x̄0, x̄1) = N s exp
[
− 1

2

(
va A(s)ab vb

)]
(22)

Here, N s is the normalization constant, and the parameter s runs from 0 to 1. If s = 1,

then the circuit represents the target state in Equation (21) with N s=1 = (ω̄0ω̄1)
1/4

√
π

exp[α0],
and at s = 0, the circuit is in the reference state. The continuous unitary transformation,
specified by the s parameter, gives us the target state from the reference state. Writing the
states in the form of Equation (22) helps us formulate the matrix version of our problem.
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Now, we want to represent the exponent of the wavefunction, which is a polynomial in the
matrix form A(s):

ψs=0(x1, x2) = N s=0 exp
[
−

ωre f

2
(x2

1 + x2
2 + λ4

0(x4
1 + x4

2) + λ6
0(x6

1 + x6
2) + λ8

0(x8
1 + x8

2))
]

(23)

Here λ4
0, λ6

0, and λ8
0 are the initial coupling constants for φ4, φ6, and φ8 respectively.

By transforming them into the normal coordinates, we obtain

ψs=0(x̄0, x̄1) =N s=0 exp
[
−

ω̃re f

2
(x̄2

0 + x̄2
1 +

λ4

2
(x̄4

0 + x̄4
1 + 6x̄2

0 x̄2
1) +

λ6

4
(x̄6

0 + x̄6
1 + 15x̄4

0 x̄2
1

+ 15x̄4
1 x̄2

0) +
λ8

8
(x̄8

0 + x̄8
1 + 28x̄6

0 x̄2
1 + 28x̄2

0 x̄6
1 + 28x̄0

4 x̄1
4))
]

(24)

We represent the exponent of the reference state shown above in a block diagonal
matrix form as follows:

A(s = 0) =



A0
1 0 0 0

0 A0
2 0 0

0 0 A0
3 0

0 0 0 A0
4


14×14

(25)

The basis chosen for this representation is

~v =
{

x̄0, x̄1, x̄0 x̄1, x̄2
0, x̄2

1, x̄2
0 x̄1, x̄0 x̄2

1, x̄3
0, x̄3

1, x̄0 x̄3
1, x̄3

0 x̄1, x̄2
0 x̄1, x̄4

0, x̄4
1

}
(26)

We need to ensure that the determinants of the A(s = 0) and A(s = 1) matrices are
positive so that the wavefunction remains square-integrable everywhere. It should be noted
that the matrix elements of A (i.e., A0

1 − A0
4) are matrices themselves as shown below:

A0
1 =

 ω̃re f 0

0 ω̃re f

 A0
2 = λ4

0ω̃re f


b 0 0

0 1
2

1
2 (3− b)

0 1
2 (3− b) 1

2



A0
3 = ω̃re f λ6

0



p
2 0 0 1

8 (15− 2k)

0 k 1
8 (15− 2p) 0

0 1
8 (15− 2p) 1

4 0

1
8 (15− 2k) 0 0 1

4
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A0
4 = ω̃re f λ8

0



1
8

1
4 (

35
4 − e) 0 0 0

1
4 (

35
4 − e) 1

8 0 0 0

0 0 e 1
16 (1− c) 1

16 (1− d)

0 0 1
16 (1− c) 7

2
1
4 (

35
4 − e)

0 0 1
16 (1− d) 1

4 (
35
4 − e) 7

2


We have introduced a few parameters (b, p, k, c, d, and e) to ensure that the determinant

of each block diagonal matrix is positive definite. Because we are considering higher even
interactions, it is necessary to consider various quadratic and other higher-order terms. To
find the positive determinant of the A0

2 block, the value of b must be in the range 2 < b < 4.
To eliminate the off-diagonal components, we set b = 3, as it would give the minimum line
element. In the A0

3 block, we fix k = 15
2 , and the determinant becomes

Det(A3
0) = −

1
512

p
(

221 + 4(−15 + p)p ω4
re f λ4

6

)
We set p as 15/2 in the range 13

2 < p < 17
2 to satisfy the condition Det(A0

3) > 0.
Similarly, to ensure that the determinant of the A4

0 block is positive and the line element is
at its minimum, we set c = d = 1 and e = 35/4.

Using the same basis as that mentioned in Equation (26), the target state matrix
A(s = 1) can be written as another 14× 14 matrix:

A(s = 1) =



A1
1 0 0 0

0 A1
2 0 0

0 0 A1
3 0

0 0 0 A1
4


14×14

(27)

where we have the following block diagonal entries:

A1
1 =

 α1 0

0 α2

 A1
2 =


b̃α5 0 0

0 α3
1
2 (1− b̃)α5

0 1
2 (1− b̃)α5 α4



A1
3 =



p̃α6 0 0 1
2 (1− k̃)α7

0 k̃α7
1
2 (1− p̃)α6

0 1
2 (1− p̃)α6 α8 0

1
2 (1− k̃)α7 0 0 α9
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A1
4 =



d̃α10
1
4 (1− ẽ)α12 0 0 0

1
4 (1− ẽ)α12 c̃α11 0 0 0

0 0 ẽα12
1
2 (1− c̃)α11

1
2 (1− d̃)α10

0 0 1
2 (1− c̃)α11 α13

1
4 (1− ẽ)α12

0 0 1
2 (1− d̃)α10

1
4 (1− ẽ)α12 α14



Here as well, we fix k̃, c̃, and d̃ to be one to make the off-diagonal terms zero and keep
b̃, p̃, and ẽ for the positivity of all the block matrices.

As we are considering a closed quantum system, the reference state evolves into the
target state via a certain unitary operator. Now, we represent this as

ψs=1(x̄0, x̄1) = U(s = 1)ψs=0(x̄0, x̄1) (28)

We represent the unitary matrix in the following form:

U =
←−P exp

[∫ s

0
dsY I(s)OI

]
(29)

We have to enact the operatorsOI in a particular order. The Y′Is depend on the specific
order in which the OIs are acting on the reference state. To find the minimum complexity,
we try to have a geometric understanding of this unitary evolution process. Then, we can
write the expression in Equation (29) as follows:

U =
←−P exp

[∫ s

0
Y I(s)MIds

]
(30)

where (MI)
′
jks represents the GL(14,R) generators satisfying

Tr
[

MI MT
J

]
= δI J (31)

Here, I, J runs from 1 to 196. As mentioned above, A(s = 0) is the reference state
which undergoes a unitary transformation to find the target state A(s = 1). It enables us to
calculate the boundary conditions that lead us to calculate the complexity functional. Thus,
we have

A(s = 1) = U(s = 1)A(s = 0)UT(s = 1) (32)

This leads to the expression

Y I MI = ∂sU(s)U(s)−1 (33)

Hence, we obtain

Y I =
1

Tr
[

MI(MI)
T
] Tr

[
∂sU(s)U−1

(
MI
)T
]

(34)

Now, the line element can be defined in terms of Y I ’s as follows:
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ds2 = GI JdY IdY J (35)

= GI J

[
1

Tr[MI(MI)
T
]

Tr
[
dsU(s)U−1(MI)T

]][
1

Tr
[

MJ(MJ)
T] Tr

[
dsU(s)U−1(MJ)T

]]

Here, we should mention that dY I does not denote the total differential for Y I . When
observing the structure of the matrix A, we find that U(s) can be considered an element of
GL(14,R) with a positive determinant. Now, we will express the U matrix with a similar
structure to that in the target state matrix, and the unitary matrix contains four block
diagonal matrices:

U =



U1 0 0 0

0 U2 0 0

0 0 U3 0

0 0 0 U4


14×14

(36)

where

U1 =

 x0 − x1 x3 − x2

x3 + x2 x0 + x1

 U2 =


x̃4 0 0

0 x̃5 − x̃6 x̃8 − x̃7

0 x̃8 + x̃7 x̃5 + x̃6



U3 =



x̃9 0 0 0

0 x̃10 − x̃11 x̃13 − x̃12 0

0 x̃13 + x̃12 x̃10 + x̃11 0

0 0 0 x̃14


U4 =



x̃15 − x̃16 x̃18 − x̃17 0 0 0

x18 + x17 x15 + x16 0 0 0

0 0 x̃19 0 0

0 0 0 x̃20 − x̃21 x̃23 − x̃22

0 0 0 x̃23 + x̃22 x̃20 + x̃21


We have decomposed U(s) in terms of four block diagonal matrices. First, we note that

the quadratic part of the first block is always diagonal, which induces a flat space, and thus
we have x3 = x2 = 0. In the unitary operator U, we do not allow the off-diagonal terms as
in the final state, and only the block diagonal form remains. Thus, if we allow off-diagonal
terms, we will have an increased line element, which we do not want. Now, GL(2,R) can
be expressed as R× SL(2,R), and so we observe that our U has an R10 × SL(2,R)4 group
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structure. We will parameterize each 2× 2 block matrix in U as performed in [18] (i.e., we
will parameterize it as an AdS3 space):

x0 = exp[y1] cosh(ρ1) x1 = exp[y1] sinh(ρ1)

x̃4 = exp[y2] x5 = exp[y3] cos(τ3) cosh(ρ3)

x̃6 = exp[y3] sin(θ3) cosh(ρ3) x̃7 = exp[y3] sin(τ3) cosh(ρ3)

x̃8 = exp[y3] cos(θ3) sinh(ρ3) x̃9 = exp[y4]

x̃10 = exp[y5] cos(τ5) cosh(ρ5) x̃11 = exp[y5] sin(θ5) sinh(ρ5)

x̃12 = exp[y5] sin(τ5) cosh(ρ5) x̃13 = exp[y5] cos(θ5) sinh(ρ5)

x̃14 = exp[y6] x̃15 = exp[y7] cos(τ7) cosh(ρ7)

x̃16 = exp[y7] sin(θ7) sinh(ρ7) x̃17 = exp[y7] sin(τ7) cosh(ρ7)

x̃18 = exp[y7] cos(θ7) sinh(ρ7) x̃19 = exp[y8]

x̃20 = exp[y9] cos(τ9) cosh(ρ9) x̃21 = exp[y7] sin(θ9) sinh(ρ9)

x̃22 = exp[y9] sin(τ9) cosh(ρ9) x̃23 = exp[y9] cos(θ9) sinh(ρ9)

(37)

Using these parameters for U, we can then calculate the infinitesimal line element in
Equation (35), which now becomes

ds2 =

[
2y2

1 + y2
2 + 2y2

3 + y2
4 + 2y2

5 + y2
6 + 2y2

7 + y2
8 + 2y2

9 + 2
(

ρ2
1 + ρ2

3

+ ρ2
5 + ρ2

7 + ρ2
9 + cosh(2ρ3)

{
cosh2(ρ3)τ

2
3 + sinh2(ρ3)θ

2
3

}
− sinh2(2ρ3)θ3τ3

+ cosh(2ρ5)
{

cosh2(ρ5)τ
2
5 + sinh2(ρ5)θ

2
5

}
− sinh2(2ρ5)θ5τ5

+ cosh(2ρ7)
{

cosh2(ρ7)τ
2
7 + sinh2(ρ7)θ

2
7

}
− sinh2(2ρ7)θ7τ7

+ cosh(2ρ9)
{

cosh2(ρ9)τ
2
9 + sinh2(ρ9)θ

2
9

}
− sinh2(2ρ9)θ9τ9

)]
(38)

We need to find the shortest path between the reference and the target state in this
geometry, described by metric expressed in Equation (38). This shortest path will be the
circuit complexity for our problem. For this purpose, we also need to calculate the proper
boundary conditions denoting the reference and target states.

4.2. Boundary Conditions for the Geodesic

As we mentioned before, the minimal geodesic will be equivalent to finding the
geodesic in the GL(14, R) group manifold. The geodesic can be found by minimizing the
following equation on the distance functional:

D(U) =
∫ 1

0

√
gij ẋi ẋjds (39)

The boundary conditions from Equation (32) are

yi(0) = ρj(0) = 0 (40)

where i = 1, 2, . . . , 9 and j = 1, 3, 5, 7, 9.
For solving the geodesic equations, we have to find conserved charges using the results

of [14], as our metric is R10 × SL(2,R)4. Using Equations (40) and (42), we obtain

yi(s) = yi(1)s ρj(s) = ρj(1)s (41)

where, i = 1, 2, . . . , 9 and j = 1, 3, 5, 7, 9:
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2
(
y1(1)− ρ1(1)) = ln

[
α1

ω̃re f

]
2
(
y1(1) + ρ1(1)) = ln

[ α2

ω̃re f

]

2y2(1) = ln

[
b̃α5

3ω̃re f λ4

]
2y3(1) = ln


√

4α3α4 − (1− b̃)2α2
5

ω̃re f λ4


2ρ3(1) = cosh−1

 α3 + α4√
4α3α4 − (1− b̃)2α2

5

 2y4(1) = ln
[ 4p̃α6

15ωre f λ6

]

2y5(1) = ln


√

16α7α8 − 4(1− p̃)2α2
6

ω̃re f λ6

 2y6(1) = ln

[
4α9

ω̃re f λ6

]

2ρ5(1) = cosh−1

[
2(α7 + α8)√

16α7α8 − 4(1− p̃)2α6

]
2y7(1) = ln


√

64α10α11 − 4(1− ẽ)2α2
12

ω̃re f λ8


2ρ7(1) = cosh−1

 α10 + α11√
64α10α11 − 4(1− ẽ)2α2

12

 2y8(1) = ln

[
4ẽα12

35ω̃re f λ6

]

2ρ9(1) = cosh−1

 α13 + α14√
4α13α14 − ((1− ẽ)2/4)α2

12

 2y9(1) = ln


√

4α13α14 − ((1− ẽ)2/4)α2
12

7ω̃re f λ8



(42)

With the same arguments in [14], we set

τj(s) = 0 θj(s) = θcj (43)

where j = 3, 5, 7, 9 and θcj are constants which do not depend on s. Therefore, we have the
freedom to choose any constant value of θcj here which indicates that it will leave the origin
in any direction. (Note: When we are calculating ρ5, any arbitrary constant value will not
provide us an analytical expression, so we choose θ5 to be zero to find the simple analytical
expression in Equation (42)) By taking into account all of these terms and conditions, we
find the complexity functional as follows:
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D(U) =

√√√√2

[
9

∑
i=1,odd

[yi(1)]
2 +

1
2

8

∑
i=2,even

[yi(1)]
2 +

9

∑
j=1,odd

[ρi(1)]
2

]

=
1√
2

(
2

[
cosh−1

(
α3 + α4√

4α3α4 − α2
5(−1 + b̃)2

)]2

+ 2

cosh−1

 α10 + α11

2
√

16α10α11 + (1− ẽ)2α2
12

2

+ 2

[
cosh−1

(
α13 + α14√

4α13α14 − ((1− ẽ)2/4)α12

)]2

+ 2

cosh−1

 2(α7 + α8)√
−α2

6 + 4α7α8 + α2
6 p̃

2

+
1
2

[
ln

α2

α1

]2
+

1
2

[
ln

(
α1α2

ω̃2
re f

)]2

+

[
ln

(
4α9

λ6ω̃re f

)]2

+ 2

ln


√

4α3α4 − (1− b̃)2α2
5

ω̃re f λ4

2

+ 2

[
ln

(
b̃α5

3λ4ω̃re f

)]2

+ 2

ln


√

64α10α11 − 4(−1 + ẽ)2α2
12

ω̃re f λ8

2

+

[
ln

(
4α12 ẽ

35λ8ω̃re f

)]2

+ 2

ln


√

4α13α14 − ((−1 + ẽ)2/16)α2
12

7ω̃re f λ8

2

+ 2

ln

2
√
−α2

6 + 4α7α8 + α6 p̃

ω̃re f λ6

2

+

[
ln

(
4α6 p̃

15λ6ω̃re f

)]2) 1
2

(44)

which is a straight line, as there is no off-diagonal term for when we set τi(s) to be 0 and
θj(s) to be independent of s, according to Equation (41).

For the particular choice of a cost function that we used (i.e., F2), the complexity
functional is

C2 =
∫ 1

s=0
dsF2 (45)

As was shown in Equation (44), the complexity functional can be written in terms of
some boundary values only. It can also be proven that this functional can just involve the
eigenvalues of the reference and target matrix:

C2 =
1
2

√√√√ 14

∑
i=1

log
[
(λT)i
(λR)i

]2

(46)

The proof of this expression is explicitly constructed in Appendix B. This result is very
crucial, and we exploit this relation to generalize the complexity to N oscillators.

5. Analysis for N Oscillators

To this point, our discussion in this paper has been concerned with two coupled
harmonic oscillators involving higher-order interactions. To extend our analysis to effective
field theories, we first need to generalize our results to N coupled harmonic oscillators with(
φ4 + φ6 + φ8) interaction terms. Then, we will gradually move toward the continuum

limit for this problem. With that in mind, we consider the following Hamiltonian:

H =
1
2

N−1

∑
a=0

[
p2

a + ω2x2
a + Ω2(xa − xa+1)

2 + 2λ4x4
a + 2λ6x6

a + 2λ8x8
a
]

(47)
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Now, we will assume that the periodic boundary condition is valid on this lattice of
N oscillators such that xa+N = xa (as it allows us to impose translational symmetry and
use a Fourier transform for expression in terms of the normal mode coordinates). Then, we
perform discrete a Fourier transform for this lattice using

xa =
1√
N

N−1

∑
k=0

exp
[

i
2πa
N

k
]

x̃k (48)

pa =
1√
N

N−1

∑
k=0

exp
[

i
2πa
N

k
]

p̃k (49)

Using the above Equations (48) and (49), we can transform the spatial coordinates into
normal mode coordinates. The resultant Hamiltonian is then

H =
1
2

N−1

∑
a=0

[
p2

a + ω2x2
a + Ω2(xa − xa+1)

2 + 2λ4x4
a + 2λ6x6

a + 2λ8x8
a
]

=
1
2

N−1

∑
k=0

[
| p̃k|2 +

(
ω2 + 4Ω2 sin2

(πk
N

))
|x̃k|2

]
+ H′

φ4 + H′φ6 + H′φ8

(50)

where H′
φ4 ,H′

φ6 , and H′
φ8 are the contributions from the φ4, φ6, and φ8 interaction terms,

respectively. Now, we have

H′
φ4 =

λ4

N

N−1

∑
k1,k2,k3=0

x̃α x̃k1 x̃k2 x̃k3 ; α = N − k1 − k2 − k3 mod N (51)

H′φ6 =
λ6

N2

N−1

∑
k1,k2,k3,k4,k5=0

x̃α x̃k1 x̃k2 x̃k3 x̃k4 x̃k5 ; α =

(
N −

5

∑
i=1

ki

)
mod N (52)

H′φ8 =
λ8

N3

N−1

∑
k1,k2,k3,k4,k5,k6,k7=0

x̃α x̃k1 x̃k2 x̃k3 x̃k4 x̃k5 x̃k6 x̃k7 ; α =

(
N −

7

∑
i=1

ki

)
mod N (53)

The proof of transformation of the interaction Hamiltonian in a Fourier space is given
in Appendix A.

The target state wavefunction is given by

ψ0,0,···0(x̄0, · · · x̃N−1) =

(
ω̃0ω̃1 . . . ω̃N−1

πN

) 1
4

exp

[
−1

2

N−1

∑
k=0

ω̃k x̃2
k + λ4ψ1

4 + λ6ψ1
6 + λ8ψ1

8

]
(54)

where the total perturbation wavefunction ψ1 is

ψ1 = λ4ψ1
4 + λ6ψ1

6 + λ8ψ1
8 (55)

where λ4ψ1
4 , λ6ψ1

6 , and λ8ψ1
8 are first-order perturbation corrections for the self-interaction

terms φ4, φ6, and φ8, respectively.
The expression of ψ1

4 along with the B terms was taken from [18].
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The expression for ψ1
4 is

ψ1
4 =

N−1

∑
a=0

4a mod N≡0

B1(a) +
N−1

∑
a,b=0

(2a+2b) mod N≡0
a 6=b

B2(a, b)
2

+
N−1

∑
a,b=0

(3b+a) mod N≡0
a 6=b

B3(a, b)

+
N−1

∑
a,b,c=0

(a+2b+c) mod N≡0
a 6=b 6=c

B4(a, b, c)
2

+
N−1

∑
a,b,c,d=0

(a+b+k+d) mod N≡0
a 6=b 6=c 6=d

B5(a, b, c, d)
24

(56)

The expression for ψ1
6 is

ψ1
6 =

1
N2

[
N−1

∑
a=0

6a mod N≡0

C1(a) +
N−1

∑
a,b=0

(a+5b) mod N≡0
a 6=b

C2(a, b)

+
N−1

∑
a,b=0

(3b+3a) mod N≡0
a 6=b

1
2

C3(a, b) +
N−1

∑
a,b=0

(2a+4b) mod N≡0
a 6=b

C4(a, b)

+
N−1

∑
a,b,c=0

(a+b+4c) mod N≡0
a 6=b 6=c

1
2

C5(a, b, c) +
N−1

∑
a,b,c=0

(2a+b+3c) mod N≡0
a 6=b 6=c

C6(a, b, c)

+
N−1

∑
a,b,c=0

(2a+2b+2c) mod N≡0
a 6=b 6=c

1
6

C7(a, b, c) +
N−1

∑
a,b,c,d=0

(a+b+c+3d) mod N≡0
a 6=b 6=c 6=d

1
6

C8(a, b, c, d)

+
N−1

∑
a,b,c,d=0

(a+b+2c+2d) mod N≡0
a 6=b 6=c 6=d

1
4

C9(a, b, c, d) +
N−1

∑
a,b,c,d,e=0

(a+b+c+d+2e) mod N≡0
a 6=b 6=c 6=d 6=e

1
4!

C10(a, b, c, d, e)

+
N−1

∑
a,b,c,d,e, f=0

(a+b+c+d+e+ f ) mod N≡0
a 6=b 6=c 6=d 6=e 6= f

1
6!

C11(a, b, c, d, e, f )

]

(57)

where the terms C1, C2, . . . , C11 are given according to the Table 2.
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Table 2. Expression for the terms C1, C2 . . . C11.

Expression for Ci Coefficients

C1 [
55

32ω̃4
a
− 15x̃2

a
8ω̃3

a
− 5x̃4

a
8ω̃2

a
− x̃6

a
6ω̃a

]

C2 [
−180x̃a x̃b

(ω̃a+ω̃b)(ω̃a+3ω̃b)(ω̃a+5ω̃b)
− 60x̃a x̃3

b
(ω̃a+3ω̃b)(ω̃a+5ω̃b)

− 6x̃a x̃5
b

ω̃a+5ω̃b

]

C3 [
−120x̃a x̃b

(ω̃a+ω̃b)(3ω̃a+ω̃b)(ω̃a+3ω̃b)
− 10x̃3

a x̃b
(ω̃a+ω̃b)(3ω̃a+ω̃b)

− 10x̃a x̃3
b

(ω̃a+ω̃b)(ω̃a+3ω̃b)
− 10x̃3

a x̃3
b

3(ω̃a+ω̃b)

]

C4 [
135

32ω̃aω̃3
b
+ 45

8ω̃2
a(ω̃a+ω̃b)(ω̃a+2ω̃b)

− 45x̃2
a

4ω̃a(ω̃a+ω̃b)(ω̃a+2ω̃b)
− 45(ω̃a+3ω̃b)x̃2

b
8ω̃2

b(ω̃a+ω̃b)(ω̃a+2ω̃b)
− 45x̃2

a x̃2
b

2(ω̃a+ω̃b)(ω̃a+2ω̃b)

− 15x̃4
b

8ω̃aω̃b+16ω̃2
b
− 15x̃2

a x̃4
b

2ω̃a+4ω̃b

]

C5 [
− 180x̃a x̃b

(ω̃a+ω̃b)(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)
− 180x̃a x̃b x̃2

c
(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)

− 30x̃a x̃b x̃4
c

ω̃a+ω̃b+4ω̃c

]

C6 [
−360(ω̃a+ω̃b+2ω̃c)x̃b x̃c

(ω̃b+ω̃c)(2ω̃a+ω̃b+ω̃c)(ω̃b+3ω̃c)(2ω̃a+ω̃b+3ω̃c)
− 180x̃2

a x̃b x̃c
(2ω̃a+ω̃b+ω̃c)(2ω̃a+ω̃b+3ω̃c)

− 60x̃b x̃3
c

(ω̃b+3ω̃c)(2ω̃a+ω̃b+3ω̃c)

− 60x̃2
a x̃b x̃3

c
2ω̃a+ω̃b+3ω̃c

]

C7 [
45

8ω̃aω̃bω̃2
c
+ 45

8ω̃aω̃2
bω̃c

+ 45
8ω̃2

aω̃bω̃c
− 45

8ω̃aω̃b(ω̃a+ω̃b)ω̃c
− 45

8ω̃aω̃bω̃c(ω̃a+ω̃c)
− 45

8ω̃aω̃bω̃c(ω̃b+ω̃c)

+ 45
8ω̃aω̃bω̃c(ω̃a+ω̃b+ω̃c)

− 45(2ω̃a+ω̃b+ω̃c)x̃2
a

4ω̃a(ω̃a+ω̃b)(ω̃a+ω̃c)(ω̃a+ω̃b+ω̃c)
− 45x̃2

a x̃2
a x̃2

c
ω̃a+ω̃b+ω̃c

− 45x̃2
a x̃2

b
2(ω̃a+ω̃b)(ω̃a+ω̃b+ω̃c)

− 45(ω̃a+ω̃b+2ω̃c)x̃2
c

4ω̃c(ω̃a+ω̃c)(ω̃b+ω̃c)(ω̃a+ω̃b+ω̃c)
− 45x̃2

a x̃2
c

2(ω̃a+ω̃c)(ω̃a+ω̃b+ω̃c)
− 45x̃2

a x̃2
c

2(ω̃b+ω̃c)(ω̃a+ω̃b+ω̃c)

− 45(ω̃a+2ω̃b+ω̃c)x̃2
a

4ω̃b(ω̃a+ω̃b)(ω̃b+ω̃c)(ω̃a+ω̃b+ω̃c)

]

C8 [
−360x̃a x̃b x̃c x̃d

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+3ω̃d)
− 120x̃a x̃b x̃c x̃3

d
ω̃a+ω̃b+ω̃c+3ω̃d

]

C9 [
−360(ω̃a+ω̃b+ω̃c+ω̃d)x̃a x̃b

(ω̃a+ω̃b)(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))
− 180x̃a x̃b((ω̃a+ω̃b+2ω̃d)x̃2

x+(ω̃a+ω̃b+2ω̃c)x̃2
d)

(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))

− 180x̃a x̃b x̃2
x x̃2

d
ω̃a+ω̃b+2(ω̃c+ω̃d)

]
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Table 2. Cont.

Expression for Ci Coefficients

C10 [
−360x̃a x̃b x̃c x̃d

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)
− 360x̃a x̃b x̃c x̃d x̃2

e
(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)

]

C11 [
−720x̃a x̃b x̃c x̃d x̃e x̃ f

(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f )

]

The expression for ψ1
8 is
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ψ1
8 =

1
N3

[
N−1

∑
a=0

8a mod N≡0

D1(a) +
N−1

∑
a,b=0

(6a+2b) mod N≡0
a 6=b

D2(a, b)

+
N−1

∑
a,b=0

(5a+3b) mod N≡0
a 6=b

D3(a, b) +
N−1

∑
a,b=0

(4a+4b) mod N≡0
a 6=b

1
2

D4(a, b)

+
N−1

∑
a,b=0

(a+7b) mod N≡0
a 6=b

D5(a, b) +
N−1

∑
a,b,c=0

(a+b+6c) mod N≡0

1
2

D6(a, b, c)

+
N−1

∑
a,b,c=0

(a+2b+5c) mod N≡0
a 6=b 6=c

D7(a, b, c) +
N−1

∑
a,b,c=0

(a+4b+3c) mod N≡0
a 6=b 6=c

D8(a, b, c)

+
N−1

∑
a,b,c=0

(2a+2b+4c) mod N≡0
a 6=b 6=c

D9(a, b, c)
2

+
N−1

∑
a,b,c=0

(3a+2b+3c) mod N≡0
a 6=b 6=c

D10(a, b, c)
2

+
N−1

∑
a,b,c,d=0

(a+b+2c+4d) mod N≡0
a 6=b 6=c 6=d

D11(a, b, c, d)
2

+
N−1

∑
a,b,c,d=0

2(a+b+c+d) mod N≡0
a 6=b 6=c 6=d

D12(a, b, c, d)
24

+
N−1

∑
a,b,c,d=0

(a+2b+2c+3d) mod N≡0
a 6=b 6=c 6=d

D13(a, b, c, d)
2

+
N−1

∑
a,b,c,d=0

(a+b+c+5d) mod N≡0
a 6=b 6=c 6=d

D14(a, b, c, d)
6

+
N−1

∑
a,b,c,d=0

(a+b+3c+3d) mod N≡0
a 6=b 6=c 6=d

D15(a, b, c, d)
4

+
N−1

∑
a,b,c,d,e=0

a+b+2(c+d+e) mod N≡0
a 6=b 6=c 6=d 6=e

D16(a, b, c, d, e)
12

+
N−1

∑
a,b,c,d,e=0

(a+b+c+2d+3e) mod N≡0
a 6=b 6=c 6=d 6=e

D17(a, b, c, d, e)
6

+
N−1

∑
a,b,c,d,e=0

(a+b+c+d+4e) mod N≡0
a 6=b 6=c 6=d 6=e

D18(a, b, c, d, e)
24

+
N−1

∑
a,b,c,d,e, f=0
(a+b+c+d+e
+3 f ) mod N≡0

a 6=b 6=c 6=d 6=e 6= f

D19(a, b, c, d, e, f )
5!

+
N−1

∑
a,b,c,d,e, f=0

(a+b+c+d+2e
+2 f ) mod N≡0

a 6=b 6=c 6=d 6=e 6= f

D20(a, b, c, d, e, f )
48

+
N−1

∑
a,b,c,d,e, f ,g=0

(a+b+c+d+e+ f
+2g) mod N≡0

a 6=b 6=c 6=d 6=e 6= f 6=g

D21(a, b, c, d, e, f , g)
6!

+
N−1

∑
a,b,c,d,e,

f ,g,h=0
(a+b+c+d+e+ f
+g+h) mod N≡0

a 6=b 6=c 6=d 6=e
6= f 6=g 6=h

D22(a, b, c, d, e, f , g, h)
8!

]

(58)

The terms D1, D2, D3 . . . D22 are given in the Table 3.
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Table 3. Expression for the terms D1, D2, D3 . . . D22.

Expression for Di Coefficients

D1 [
875

128ω̃5
a
− 105x2

b
16ω̃4

a
− 35x4

a
16ω̃3

a
− 7x6

a
12ω̃2

a
− x8

a
8ω̃a

]

D2
8!

2!6!

[
5(36ω̃4

a+66ω̃3
aω̃b+121ω̃2

aω̃2
b+66ω̃aω̃3

b+11ω̃4
b)

64ω̃4
aω̃2

b(ω̃a+ω̃b)(2ω̃a+ω̃b)(3ω̃a+ω̃b)
− 15(11ω̃2

a+6ω̃aω̃b+ω̃2
b)x2

a

16ω̃3
a(ω̃a+ω̃b)(2ω̃a+ω̃b)(3ω̃a+ω̃b)

− 45x2
b

8ω̃b(ω̃a+ω̃b)(2ω̃a+ω̃b)(3ω̃a+ω̃b)
− 5(5ω̃a+ω̃b)x4

a
16ω̃2

a(2ω̃a+ω̃b)(3ω̃a+ω̃b)
− 45x2

ax2
b

4(ω̃a+ω̃b)(2ω̃a+ω̃b)(3ω̃a+ω̃b)

− x6
b

12ω̃a(3ω̃a+ω̃b)
− 15x4

bx2
b

4(2ω̃a+ω̃b)(3ω̃a+ω̃b)
− x6

ax2
b

2(3ω̃b+ω̃a)

]

D3
8!

3!5!

[
− 30(23ω̃a+13ω̃b)xaxb

(ω̃a+ω̃b)(3ω̃a+ω̃b)(5ω̃a+ω̃b)(ω̃a+3ω̃b)(5ω̃a+3ω̃b)
− 10xax3

b
(ω̃a+ω̃b)(ω̃a+3ω̃b)(5ω̃a+3ω̃b)

− 40(2ω̃a+ω̃b)x3
axb

(ω̃a+ω̃b)(3ω̃a+ω̃b)(5ω̃a+ω̃b)(5ω̃a+3ω̃b)
− 10x3

ax3
b

3(ω̃a+ω̃b)(5ω̃a+3ω̃b)
− 3x5

axb
(5ω̃a+ω̃b)(5ω̃a+3ω̃b)

− x5
ax3

b
5ω̃a+3ω̃b

]

D4
8!

4!4!

[
27(2ω̃4

a+7ω̃3
aω̃b+7ω̃2

aω̃2
b+7ω̃aω̃3

b+2ω̃4
b)

64ω̃3
aω̃3

b(ω̃a+ω̃b)(2ω̃a+ω̃b)(ω̃a+2ω̃b)
− 9(7ω̃a+2ω̃b)x2

a
16ω̃2

a(ω̃a+ω̃b)(2ω̃a+ω̃b)(ω̃a+2ω̃b)

− 9(2ω̃a+7ω̃b)x2
b

16ω̃2
b(ω̃a+ω̃b)(2ω̃a+ω̃b)(ω̃a+2ω̃b)

− 3x4
b

16ω̃b(ω̃a+ω̃b)(ω̃a+2ω̃b)
− 3x4

b
16ω̃b(ω̃b+ω̃b)(ω̃a+2ω̃b)

− 27x2
ax2

b
4(ω̃a+ω̃b)(2ω̃a+ω̃b)(ω̃a+2ω̃b)

− 3x2
ax4

b
4(ω̃a+ω̃b)(ω̃a+2ω̃b)

− 3x4
ax2

b
4(ω̃a+ω̃b)(2ω̃a+ω̃b)

− x4
bx4

b
4(ω̃a+ω̃b)

]

D5
8!
7!

[
− 630xaxb

(ω̃a+ω̃b)(ω̃a+3ω̃b)(ω̃a+5ω̃b)(ω̃a+7ω̃b)
− 210xax3

b
(ω̃a+3ω̃b)(ω̃a+5ω̃b)(ω̃a+7ω̃b)

− 21xax5
b

(ω̃a+5ω̃b)(ω̃a+7ω̃b)

− xax7
b

ω̃a+7ω̃b

]

D6
8!
6!

[
− 90xaxb

(ω̃a+ω̃b)(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)(ω̃a+ω̃b+6ω̃c)
− 90xaxbx2

c
(ω̃c+ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)(ω̃a+ω̃b+6ω̃c)

− 15xaxbx4
c

(ω̃a+ω̃b+4ω̃c)(ω̃a+ω̃b+6ω̃c)
− xaxbx6

c
ω̃a+ω̃b+6ω̃c

]

D7
8!

2!5!

[
− 20xax3

c (ω̃a+ω̃b+4ω̃c)
(ω̃a+3ω̃c)(ω̃a+2ω̃b+3ω̃c)(ω̃a+5ω̃c)(ω̃a+2ω̃b+5ω̃c)

− xax2
bxc

(ω̃a+2ω̃b+ω̃c)(ω̃a+2ω̃b+3ω̃c)(ω̃a+2ω̃b+5ω̃c)

− xax5
c

(ω̃a+5ω̃c)(ω̃a+2ω̃b+5ω̃c)
− 10xax3

bx3
c

(ω̃a+2ω̃b+3ω̃c)(ω̃a+2ω̃b+5ω̃c)
− xax2

bx5
c

ω̃a+2ω̃b+5ω̃c

− 30xaxc(3ω̃2
a+6ω̃aω̃b+4ω̃2

b+18ω̃aω̃c+18ω̃bω̃c+23ω̃2
c)

(ω̃a+ω̃c)(ω̃a+2ω̃b+ω̃c)(ω̃a+3ω̃c)(ω̃a+2ω̃b+3ω̃c)(ω̃a+5ω̃c)(ω̃a+2ω̃b+5ω̃c)

]
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Table 3. Cont.

Expression for Di Coefficients

D8
8!

3!4!

[
− 6xax3

b
(ω̃a+3ω̃b)(ω̃a+3ω̃b+2ω̃c)(ω̃a+3ω̃b+4ω̃c)

− 36xaxbx2
c (ω̃a+2ω̃b+3ω̃c)

(ω̃a+ω̃b+2ω̃c)(ω̃a+3ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)(ω̃a+3ω̃b+4ω̃c)

− 3xaxbx4
c

(ω̃a+ω̃b+4ω̃c)(ω̃a+3ω̃b+4ω̃c)
− 6xax3

bx2
c

(ω̃a+3ω̃b+2ω̃c)(ω̃a+3ω̃b+4ω̃c)
− xax3

bx4
c

ω̃a+3ω̃b+4ω̃c

− 18xaxb(3ω̃2
a+13ω̃2

b+24ω̃bω̃c+8ω̃2
c+12ω̃a(ω̃b+ω̃c))

(ω̃a+ω̃b)(ω̃a+3ω̃b)(ω̃a+ω̃b+2ω̃c)(ω̃a+3ω̃b+2ω̃c)(ω̃a+ω̃b+4ω̃c)(ω̃a+3ω̃b+4ω̃c)

]

D9
8!

2!2!4!

[
9

64ω̃aω̃bω̃3
c
+ 3

32ω̃aω̃2
bω̃2

c
+ 3

32ω̃2
aω̃bω̃2

c
− 3

32ω̃aω̃b(ω̃a+ω̃b)ω̃
2
c
− 3

16ω̃aω̃bω̃2
c (ω̃a+ω̃c)

− 3
16ω̃aω̃bω̃2

c (ω̃b+ω̃c)
+ 3

16ω̃aω̃bω̃2
c (ω̃a+ω̃b+ω̃c)

+ 3
32ω̃aω̃bω̃2

c (ω̃a+2ω̃c)
+ 3

32ω̃aω̃bω̃2
c (ω̃b+2ω̃c)

− 3
32ω̃aω̃bω̃2

c (ω̃a+ω̃b+2ω̃c)
− 3x2

a
16ω̃aω̃bω̃2

c
− 3x2

a(3ω̃2
a+ω̃2

b+3ω̃bω̃c+2ω̃2
c+3ω̃a(ω̃b+2ω̃c))

8ω̃a(ω̃a+ω̃b)(ω̃a+ω̃c)(ω̃a+ω̃b+ω̃c)(ω̃a+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− 3x2
b(ω̃2

a+3ω̃2
b+6ω̃bω̃c+2ω̃2

c+3ω̃a(ω̃b+ω̃c))
8ω̃b(ω̃a+ω̃b)(ω̃b+ω̃c)(ω̃a+ω̃b+ω̃c)(ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− 3x2
c

16ω̃aω̃bω̃2
c
+ 3x2

c
8ω̃aω̃b(ω̃b+ω̃c)(ω̃b+2ω̃c)

+ 3x2
c

8ω̃aω̃b(ω̃a+ω̃c)(ω̃a+2ω̃c)
− x4

c (ω̃a+ω̃b+4ω̃c)
16ω̃c(ω̃a+2ω̃c)(ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− 3x2
ax2

b
4(ω̃a+ω̃b)(ω̃a+ω̃b+ω̃c)(ω̃a+ω̃b+2ω̃c)

− x2
ax2

c (2ω̃a+ω̃b+3ω̃c)
4(ω̃a+ω̃c)(ω̃a+ω̃b+ω̃c)(ω̃a+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− 3x2
bx2

c (ω̃a+2ω̃b+3ω̃c)

4(ω̃b+ω̃c)(ω̃a+ω̃b+ω̃c)(ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− x2
ax4

c
4(ω̃a+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− x2
bx4

c
4(ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c)

− 3x2
ax2

bx2
c

2(ω̃a+ω̃b+ω̃c)(ω̃a+ω̃b+2ω̃c)
− x2

ax2
bx4

c
2(ω̃a+ω̃b+2ω̃c)

]

D10
8!

2!3!3!

[
9xaxc

4ω̃bω̃c(ω̃a+2ω̃b+ω̃c)(3ω̃a+2ω̃b+ω̃c)
− 6xaxc

ω̃b(ω̃a+ω̃c)(3ω̃a+ω̃c)(ω̃a+3ω̃c)
− x3

ax2
bx3

c
3ω̃a+2ω̃b+3ω̃c

+ 9xaxc
4
√

2ω̃aω̃bω̃c(ω̃a+2ω̃b+3ω̃c)
+ 9xaxc

8ω̃aω̃bω̃c(3ω̃a+2ω̃b+3ω̃c)
− x3

axc
2ω̃b(ω̃a+ω̃c)(3ω̃c+ω̃c)

+ 3x3
axc

2ω̃b(3ω̃a+2ω̃b+ω̃c)(3ω̃a+2ω̃b+3ω̃c)
− 9xax2

bxc((3ω̃a+2ω̃b)
2+10ω̃aω̃c+4ω̃bω̃c+ω̃2

c)
4ω̃aω̃c(ω̃a+2ω̃b+ω̃c)(3ω̃a+2ω̃b+ω̃c)(3ω̃a+2ω̃b+3ω̃c)

− 3x3
c x2

bxc
(3ω̃a+2ω̃b+ω̃c)(3ω̃c+2ω̃b+3ω̃c)

− xax3
c

2ω̃b(ω̃a+ω̃c)(ω̃a+3ω̃c)
+

3xax2
bx3

c
2ω̃a(3ω̃a+2ω̃b+3ω̃c)

− 3xax3
c(ω̃a+3

√
2ω̃a+2ω̃b+2

√
2ω̃b+3ω̃c+3

√
2ω̃c)

4ω̃aω̃b(ω̃a+2ω̃b+3ω̃c)(3ω̃a+2ω̃b+3ω̃c)
− x3

c x3
c

3(ω̃a+ω̃c)(3ω̃a+2ω̃b+3ω̃c)

]

D11

8!
2!4!

[
6(−3(ω̃a+ω̃b)

2−6(ω̃a+ω̃b)ω̃c−4ω̃2
c−12(ω̃a+ω̃b+ω̃c)ω̃d−8ω̃2

d)xaxb
(ω̃a+ω̃b)(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃d)(ω̃a+ω̃b+4ω̃d)(ω̃a+ω̃b+2ω̃c+4ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))

− 6xaxbx2
c

(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c+4ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))
− xaxbx4

d
(ω̃a+ω̃b+4ω̃d)(ω̃a+ω̃b+2ω̃c+4ω̃d)

− 12(ω̃a+ω̃b+ω̃c+3ω̃d)xaxbx2
d

(ω̃a+ω̃b+2ω̃d)(ω̃a+ω̃b+4ω̃d)(ω̃a+ω̃b+2ω̃c+4ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))
− xaxbx2

c x4
d

ω̃a+ω̃b+2ω̃c+4ω̃d

− 6xaxbx2
c x2

d
(ω̃a+ω̃b+2ω̃c+4ω̃d)(ω̃a+ω̃b+2(ω̃c+ω̃d))

]
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Table 3. Cont.

Expression for Di Coefficients

D12
8!

2!2!2!2!

[
1

32ω̃aω̃bω̃cω̃d
2 +

1
32ω̃aω̃bω̃2

c ω̃d
+ 1

32ω̃aω̃2
bω̃cω̃d

+ 1
32ω̃2

aω̃bω̃cω̃d
− 1

32ω̃aω̃b(ω̃a+ω̃b)ω̃cω̃d

− 1
32ω̃aω̃bω̃c(ω̃a+ω̃c)ω̃d

− 1
32ω̃dω̃bω̃c(ω̃b+ω̃c)ω̃d

+ 1
32ω̃aω̃bω̃c(ω̃a+ω̃b+ω̃c)ω̃d

− 1
32ω̃aω̃bω̃cω̃d(ω̃a+ω̃d)

− 1
32ω̃aω̃bω̃cω̃d(ω̃b+ω̃d)

+ 1
32ω̃aω̃bω̃cω̃d(ω̃a+ω̃b+ω̃d)

− 1
32ω̃aω̃bω̃cω̃d(ω̃c+ω̃d)

+ 1
32ω̃aω̃bω̃cω̃d(ω̃a+ω̃c+ω̃c)

+ 1
32ω̃aω̃bω̃cω̃d(ω̃b+ω̃c+ω̃c)

− 1
32ω̃aω̃bω̃cω̃d(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
a

16ω̃aω̃bω̃cω̃d
+ x2

a
16ω̃b(ω̃a+ω̃b)ω̃cω̃d

+ x2
a

16ω̃bω̃c(ω̃a+ω̃c)ω̃d
− x2

a
16ω̃bω̃c(ω̃a+ω̃b+ω̃c)ω̃d

+ x2
a

16ω̃bω̃cω̃d(ω̃a+ω̃d)
− x2

a
16ω̃bω̃cω̃d(ω̃a+ω̃b+ω̃d)

− x2
a

16ω̃bω̃cω̃d(ω̃a+ω̃c+ω̃d)
+ x2

a
16ω̃bω̃cω̃d(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
b

16ω̃aω̃bω̃cω̃d
+

x2
b

16ω̃a(ω̃a+ω̃b)ω̃cω̃d

+
x2

b
16ω̃aω̃c(ω̃b+ω̃c)ω̃d

− x2
b

16ω̃aω̃c(ω̃a+ω̃b+ω̃c)ω̃d
+

x2
b

16ω̃aω̃cω̃d(ω̃b+ω̃d)
− x2

b
16ω̃aω̃cω̃d(ω̃a+ω̃b+ω̃d)

− x2
b

16ω̃aω̃cω̃d(ω̃b+ω̃c+ω̃d)
+

x2
b

16ω̃aω̃cω̃d(ω̃a+ω̃b+ω̃c+ω̃d)
− x2

ax2
b

8(ω̃a+ω̃b)ω̃cω̃d
+

x2
ax2

b
8ω̃c(ω̃a+ω̃b+ω̃c)ω̃d

+
x2

ax2
b

8ω̃cω̃d(ω̃a+ω̃b+ω̃d)
− x2

ax2
b

8ω̃cω̃d(ω̃a+ω̃b+ω̃c+ω̃d)
− x2

c
16ω̃aω̃bω̃cω̃d

+ x2
c

16ω̃aω̃b(ω̃a+ω̃c)ω̃d

+ x2
c

16ω̃aω̃b(ω̃b+ω̃c)ω̃d
− x2

c
16ω̃aω̃b(ω̃a+ω̃b+ω̃c)ω̃d

+ x2
c

16ω̃aω̃bω̃d(ω̃c+ω̃d)
− x2

c
16ω̃aω̃bω̃d(ω̃a+ω̃c+ω̃d)

− x2
c

16ω̃aω̃bω̃d(ω̃b+ω̃c+ω̃d)
+ x2

c
16ω̃aω̃bω̃d(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
ax2

c
8ω̃b(ω̃a+ω̃c)ω̃d

+ x2
ax2

c
8ω̃b(ω̃a+ω̃b+ω̃c)ω̃d

+ x2
ax2

c
8ω̃bω̃d(ω̃a+ω̃c+ω̃d)

− x2
ax2

c
8ω̃bω̃d(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
bx2

c
8ω̃a(ω̃b+ω̃c)ω̃d

+
x2

bx2
c

8ω̃a(ω̃a+ω̃b+ω̃c)ω̃d

+
x2

bx2
c

8ω̃aω̃d(ω̃b+ω̃c+ω̃d)
− x2

bx2
c

8ω̃aω̃d(ω̃a+ω̃b+ω̃c+ω̃d)
− x2

ax2
bx2

c
4(ω̃a+ω̃b+ω̃c)ω̃d

+
x2

ax2
bx2

c
4ω̃d(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
d

16ω̃aω̃bω̃cω̃d

+
x2

d
16ω̃aω̃bω̃c(ω̃a+ω̃d)

+
x2

d
16ω̃aω̃bω̃c(ω̃b+ω̃d)

− x2
d

16ω̃aω̃bω̃c(ω̃a+ω̃b+ω̃d)
+

x2
d

16ω̃aω̃bω̃c(ω̃c+ω̃d)

− x2
d

16ω̃aω̃bω̃c(ω̃a+ω̃c+ω̃d)
− x2

d
16ω̃aω̃bω̃c(ω̃b+ω̃c+ω̃d)

+
x2

d
16ω̃aω̃bω̃c(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
ax2

d
8ω̃bω̃c(ω̃a+ω̃d)

+
x2

ax2
d

8ω̃bω̃c(ω̃a+ω̃b+ω̃d)
+

x2
ax2

d
8ω̃bω̃c(ω̃a+ω̃c+ω̃d)

− x2
ax2

d
8ω̃bω̃c(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
bx2

d
8ω̃aω̃c(ω̃b+ω̃d)

+
x2

bx2
d

8ω̃aω̃c(ω̃a+ω̃b+ω̃d)

+
x2

bx2
d

8ω̃aω̃c(ω̃b+ω̃c+ω̃d)
− x2

bx2
d

8ω̃aω̃c(ω̃a+ω̃b+ω̃c+ω̃d)
− x2

ax2
bx2

d
4ω̃c(ω̃a+ω̃b+ω̃d)

+
x2

ax2
bx2

d
4ω̃c(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
c x2

d
8ω̃aω̃b(ω̃c+ω̃d)

+
x2

c x2
d

8ω̃aω̃b(ω̃a+ω̃c+ω̃d)
+

x2
c x2

d
8ω̃aω̃b(ω̃b+ω̃c+ω̃d)

− x2
c x2

d
8ω̃aω̃b(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
ax2

c x2
d

4ω̃b(ω̃c+ω̃c+ω̃d)

+
x2

ax2
c x2

d
4ω̃b(ω̃a+ω̃b+ω̃c+ω̃d)

− x2
bx2

c x2
d

4ω̃a(ω̃b+ω̃c+ω̃d)
+

x2
bx2

c x2
d

4ω̃a(ω̃a+ω̃b+ω̃c+ω̃d)
− x2

ax2
bx2

c x2
d

2(ω̃a+ω̃b+ω̃c+ω̃d)

]

D13
8!

2!2!3!

[
xaxd

8ω̃bω̃cω̃d(ω̃a+ω̃d)
+ 3xaxd

8ω̃bω̃cω̃d(ω̃a+2ω̃b+ω̃d)
+ 3xaxd

8ω̃bω̃cω̃d(ω̃a+2ω̃c+ω̃d)

− 3xaxd
8ω̃bω̃cω̃d(ω̃a+2(ω̃b+ω̃c)+ω̃d)

+ 3xaxd
8ω̃bω̃cω̃d(ω̃a+3ω̃d)

− 3xaxd
8ω̃bω̃cω̃d(ω̃a+2ω̃b+3ω̃d)

− 3xaxd
8ω̃bω̃cω̃d(ω̃a+2ω̃c+3ω̃d)

+ 3xaxd
8ω̃bω̃cω̃d(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

− 6(ω̃a+2ω̃b+ω̃c+2ω̃d)ax2
bxd

(ω̃a+2ω̃b+ω̃d)(ω̃a+2(ω̃b+ω̃c)+ω̃d)(ω̃a+2ω̃b+3ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

− 6(ω̃a+ω̃b+2(ω̃c+ω̃d))xax2
c xd

(ω̃a+2ω̃c+ω̃d)(ω̃a+2(ω̃b+ω̃c)+ω̃d)(ω̃a+2ω̃c+3ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)
− xax2

bx2
c x3

d
ω̃a+2(ω̃b+ω̃c)+3ω̃d

− 3xax2
bx2

c xd
(ω̃a+2(ω̃b+ω̃c)+ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

− 2(ω̃d+ω̃b+ω̃c+3ω̃d)xax3
d

(ω̃d+3ω̃d)(ω̃a+2ω̃b+3ω̃d)(ω̃a+2ω̃c+3ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

− xax2
bx3

d
(ω̃a+2ω̃b+3ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

− xax2
c x3

d
(ω̃a+2ω̃c+3ω̃d)(ω̃a+2(ω̃b+ω̃c)+3ω̃d)

]

D14
8!
5!

[
− 30xaxbxcxd

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+3ω̃d)(ω̃a+ω̃b+ω̃c+5ω̃d)
− 10xaxbxcx3

d
(ω̃a+ω̃b+ω̃c+3ω̃d)(ω̃a+ω̃b+ω̃c+5ω̃d)

− xaxbxcx5
d

ω̃a+ω̃b+ω̃c+5ω̃d

]
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Table 3. Cont.

Expression for Di Coefficients

D15
8!

3!3!

[
− 18(ω̃a+ω̃b+2(ω̃c+ω̃d))xaxbxcxd

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+3ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+3ω̃d)(ω̃a+ω̃b+3(ω̃c+ω̃d))
− xaxbx3

c x3
d

ω̃a+ω̃b+3(ω̃c+ω̃d)

− 3xaxbx3
c xd

(ω̃a+ω̃b+3ω̃c+ω̃d)(ω̃a+ω̃b+3(ω̃c+ω̃d))
− 3xaxbxcx3

d
(ω̃a+ω̃b+ω̃c+3ω̃d)(ω̃a+ω̃b+3(ω̃c+ω̃d))

]

D16
8!

2!2!2!

[
− xaxb

8ω̃cω̃d(ω̃a+ω̃b+2(ω̃c+ω̃d))ω̃e
+ xaxb

8ω̃cω̃dω̃e(ω̃a+ω̃b+2ω̃e)
− xaxb

8ω̃cω̃dω̃e(ω̃a+ω̃b+2(ω̃c+ω̃e))

− xaxb
8ω̃cω̃dω̃e(ω̃a+ω̃b+2(ω̃d+ω̃e))

+ xaxb
8ω̃cω̃dω̃e(ω̃a+ω̃b+2(ω̃c+ω̃d+ω̃e))

− xaxbx2
c x2

dx2
e

ω̃a+ω̃b+2(ω̃c+ω̃d+ω̃e)

− 2xaxbx2
c (ω̃a+ω̃b+2ω̃c+ω̃d+ω̃e)

(ω̃a+ω̃b+2ω̃c)(ω̃a+ω̃b+2ω̃c+2ω̃d)(ω̃a+ω̃b+2ω̃c+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)
+ xaxb

8ω̃c(ω̃a+ω̃b+2ω̃c)ω̃dω̃e

− 2xaxbx2
d(ω̃a+ω̃b+ω̃c+2ω̃d+ω̃e)

(ω̃a+ω̃b+2ω̃d)(ω̃a+ω̃b+2ω̃c+2ω̃d)(ω̃a+ω̃b+2ω̃d+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)
+ xaxb

8ω̃cω̃d(ω̃a+ω̃b+2ω̃d)ω̃e

− 2xaxbx2
e (ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)

(ω̃a+ω̃b+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃e)(ω̃a+ω̃b+2ω̃d+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)
− xaxb

8(ω̃a+ω̃b)ω̃cω̃dω̃e

− xaxbx2
c x2

d
(ω̃a+ω̃b+2ω̃c+2ω̃d)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)

− xaxbx2
dx2

e
(ω̃a+ω̃b+2ω̃d+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)

− xaxbx2
c x2

e
(ω̃a+ω̃b+2ω̃c+2ω̃e)(ω̃a+ω̃b+2ω̃c+2ω̃d+2ω̃e)

]

D17
8!

2!3!

[
−6xaxbxcxe(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)

(ω̃a+ω̃b+ω̃c+ω̃e)(ω̃a+ω̃b+ω̃c+2ω̃d+ω̃e)(ω̃a+ω̃b+ω̃c+3ω̃e)(ω̃a+ω̃b+ω̃c+2ω̃d+3ω̃e)

− 3xaxbxcx2
dxe

(ω̃a+ω̃b+ω̃c+2ω̃d+ω̃e)(ω̃a+ω̃b+ω̃c+2ω̃d+3ω̃e)
− xaxbxcx3

e
(ω̃a+ω̃b+ω̃c+3ω̃e)(ω̃a+ω̃b+ω̃c+2ω̃d+3ω̃e)

− xaxbxcx2
dx3

e
ω̃a+ω̃b+ω̃c+2ω̃d+3ω̃e

]

D18
8!
4!

[
− 6xaxbxcxd

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)(ω̃a+ω̃b+ω̃c+ω̃d+4ω̃e)
− xaxbxcxdx4

e
ω̃a+ω̃b+ω̃c+ω̃d+4ω̃e

− 6xaxbxcxdx2
e

(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)(ω̃a+ω̃b+ω̃c+ω̃d+4ω̃e)

]

D19
8!
3!

[
− 3xaxbxcxdxex f

(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f )(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+3ω̃ f )
−

xaxbxcxdxex3
f

ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+3ω̃ f

]

D20
8!

2!2!

[
− 2(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f )xaxbxcxd

(ω̃a+ω̃b+ω̃c+ω̃d)(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃ f )(ω̃a+ω̃b+ω̃c+ω̃d+2(ω̃e+ω̃ f ))

− xaxbxcxdx2
e

(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃e)(ω̃a+ω̃b+ω̃c+ω̃d+2(ω̃e+ω̃ f ))
−

xaxbxcxdx2
f

(ω̃a+ω̃b+ω̃c+ω̃d+2ω̃ f )(ω̃a+ω̃b+ω̃c+ω̃d+2(ω̃e+ω̃ f ))

−
xaxbxcxdx2

e x2
f

(ω̃a+ω̃b+ω̃c+ω̃d+2(ω̃e+ω̃ f ))

]

D21
8!
2!

[
− xaxbxcxdxex f

(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f )(ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f +2ω̃g)
− xaxbxcxdxex f x2

g
ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f +2ω̃g

]

D22 − 8! xaxbxcxdxex f xgxh
ω̃a+ω̃b+ω̃c+ω̃d+ω̃e+ω̃ f +ω̃g+ω̃h
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Now, for finding the complexity, we represent the N oscillator wavefunction in the
following way:

ψs=0
0,0,···0(x̃0, · · · , x̃N−1) ≈ exp

[
−1

2
va As=1

ab vb

]
(59)

Once again, we have to choose a particular basis. Now, there are many choices for
bases, but we consider the choice of bases in the following way:

~v = {x̃0, · · · x̃N−1, x̃2
0, · · · , x̃2

N−1, · · · , x̃a x̃b, · · · , x̃3
0, · · · , x̃3

N−1, · · · , x̃a x̃b x̃c, · · · , x̃4
0, · · · , x̃4

N−1, · · · ,

x̃a x̃b x̃c x̃d, · · · , x̃2
a x̃2

b · · · , x̃5
0, · · · , x̃5

N−1, x̃6
0, · · · , x̃6

N−1, · · · , x̃a x̃b x̃c x̃d x̃e x̃ f , · · · , x̃3
a x̃3

b , · · · ,

x̃a x̃b x̃c x̃d x̃e x̃ f x̃g x̃h, · · · , x̃1/2
a x̃b x̃1/2

c , · · · } (60)

Here, a, b, c, d, e, f , g, and h are indices that can have any value in the range from 0 to
N − 1 and must not be equal to each other. In the last term in ~v, we mention a term that
can be used to kill off-diagonal entries just as we did for the two-oscillator case. There will
be many more terms like this on this basis. Expressing them explicitly is not necessary for
our current work, and so we have not mentioned them.

Now, we will represent the matrix A(s = 1) for N oscillators in a block diagonal
fashion. In this format, the matrix will look like this:

As=1
ab =

A1 0

0 A2

 (61)

where A1 and A2 are the so-called unambiguous and ambiguous blocks. Once we fix the
target or reference stats, the coefficients in the unambiguous blocks are fixed. However, this
is not the case for the ambiguous block, as it contains numerous parameters which are not
fixed beforehand.

In the unambiguous block A1, we have all of the coefficients of terms such as x2
a and

xaxb in Equation (54) multiplied by −2. On the other hand, the coefficients (multiplied by
−2) for terms such as

x2
a x2

b , x2
a x2

bx2
c , xaxbxcxd (62)

are there on the A2 block.
To compute the complexity, we choose a particular non-entangled reference state for

arbitrary N oscillators:

ψs=0(x1, x2, . . . ., xn) = N s=0 exp
[
−

N−1

∑
i=0

ω̃re f

2
(
x2

i + λ0
4x4

i + λ0
6x6

i + λ0
8x8

i

)]
(63)

which can be represented as follows: S

ψs=0(x̃1, x̃2, . . . ., x̃n) = N s=0 exp
[
− 1

2

(
va As=0

ab vb

)]
(64)

where the matrix As=0
ab can be written as in the normal mode basis:

As=0
ab =

ω̃re f IN×N 0

0 As=0
2

 (65)

Here, IN×N is the N dimensional unit matrix. We are assuming that all the natural
frequencies are (i.e., for all xi it is true that ω0 = ω̃re f ). However, As=0

2 cannot be represented
as easily as the first block because there are many undetermined parameters. Nevertheless,
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we can choose these parameters in such a way that the As=0
2 block becomes diagonal, just

as we did for the two-oscillator case.
The complexity functional depends on the particular cost function that we choose. For

the different cost functions mentioned in Equation (5), we find a different expression for
the complexity functional. However, we will work with the following cost function for the
rest of the paper:

Fκ(s) = ∑
I

pI |Y I |κ (66)

With respect to this particular choice for the cost function, the complexity functional
becomes

Cκ =
∫ 1

s=0
Fκ ds (67)

Here, we set all the pI variables to be one to put all directions in the circuit space on
equal footing. Now, if we choose the parameters of As=0

2 such that As=0 is diagonal, then
obviously, As=1 and As=0 will commute. If this is the case, then all Cκ can be written in a
single equation as mentioned in [18]:

Cκ = C(1)κ + C(2)κ

=
1
2κ

N−1

∑
i=0

∣∣∣ log
( λ

(1)
i

ω̃re f

)∣∣∣κ + C(2)κ

(68)

Here, λ
(1)
i represents the eigenvalues of the unambiguous block of the As=1 matrix and

C(1)κ and C(2)κ denote the contributions to the complexity functional for the unambiguous
and ambiguous blocks, respectively. From here on, we will use the C1 complexity functional.

Commenting on C(2)1 and the Ambiguous Block

Here, we comment on the difficulties and issues with defining the ambiguous block
A2, as has also been discussed in [18] for the φ4 interaction theory. One of the reasons for
calling the A2 matrix ambiguous is that there is a lot of arbitrariness in defining this block
of the matrix; that is, there are many possible choices for defining the coefficients of the
A2 block, such as some terms which can be defined in the diagonal entries as well as in
the off-diagonal entries and several higher-order cross terms, including x̃a x̃b x̃c x̃d x̃e x̃ f x̃g x̃h,
which can be defined in several forms. One possible solution to this is to try to define the A2
matrix with the most general entries in which the coefficients are placed among all possible
places in the A2 block so that the determinant of the matrix should be positive definite. For
the ambiguous block, the complexity C(2)1 can be defined with eigenvalues λ

(2)
j , and the

total complexity will be given by Equation (68). However, due to the great arbitrariness
or ambiguities in defining the A2 block, we cannot easily define the complexity C(2)1 . One

could think of using the renormalization approach to find the general form of C(2)1 , as was
performed in [18] for the φ4 interaction, but the theory in our case is non-renormalizable
beyond the φ4 term, so it is also not possible to use the standard renormalization procedure
for our case.

Here, we calculate the complexity of the unambiguous block, which is easy to analyze.
We use this expression to evaluate the complexity functional in the next section.

6. Numerical Evaluation of the Complexity Functional

Up to this point, we have always set the value of M = 1 in the two-oscillator Hamil-
tonian and N oscillator Hamiltonian. However, for a generic analysis and also for the
continuum limit, we need to put the M factor back in H. If we reinstate the factor of M in
the Hamiltonian, we obtain the following expression for the Hamiltonian:
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H =
1
M ∑

~n

{P(~n)2

2
+

1
2

M2
[
ω2X(~n)2 + Ω2 ∑

i
(X(~n)− X(~n− x̂i))

2 + 2
{

λ4X(~n)4 + λ6X(~n)6 + λ8X(~n)8}]} (69)

The overall factor in front of the Hamiltonian does not have any effect on the structure
of the eigenfunctions of this Hamiltonian. However, some of the factors need to be rescaled
in presence of the M factor, which are given below:

ω → ω

δ
Ω→ Ω

δ
λ4 →

λ4

δ2 λ6 →
λ6

δ2 λ8 →
λ8

δ2 ω̃re f →
ω̃re f

δ
λ0

4 →
λ0

4
δ

λ0
6 →

λ0
6

δ
λ0

8 →
λ0

8
δ

Here, we would like to mention again that M = 1
δ . Using these rescaled parame-

ters, we assume that the general form of the eigenvalues of A1 represent the N oscillator
Hamiltonian with first-order perturbative correction:

Λik = Λ4ik
+ λ6 fik

(
N, ω̃ip

)
+ λ8gik

(
N, ω̃ip

)
, N: Even

= Λ4ik
+ λ6 f ′ik

(
N, ω̃ip

)
+ λ8g′ik

(
N, ω̃ip

)
, N: Odd

(70)

where N denotes the number of lattice points in each spatial dimension and the ik indices
run from 0 to N − 1 for each dimension. Then, the d − 1 dimensional spatial volume
becomes Ld−1 = (Nδ)d−1.

Here, Λ4ik
is the contribution from the φ4 interaction, and f , g, f ′, and g′ denote the

additional contributions to the eigenvalues in the presence of φ6 and φ8 interaction. The
form of Λ4ik

, as mentioned in [18], is

Λ4ik
=

ω̃ik
δ

+
3λ4

2N

( 2
ω̃ik (ω̃ik + ω̃N−ik )

+
2

ω̃ik (ω̃ik + ω̃ N
2 −ik

)

)
, N: Even

=
ω̃ik
δ

+
3λ4

2N

( 2
ω̃ik (ω̃ik + ω̃N−ik )

)
, N: Odd

(71)

These additional terms f , g, f ′, and g′ cannot be calculated analytically. Therefore, we
resort to numerical methods to calculate these.

The work carried out in [18] had a proper analytical expression for the eigenvalues,
which made it easier to study the RG flows. However, when we consider higher-order
interactions such as φ6 and φ8, such analytic expressions for the RG flows and complexity
cannot be found. This makes it difficult for us to study the RG flows and MERA and is
beyond the scope of our model. Instead, we will focus only on complexity. The eigenvalues
we obtained were small corrections to the one obtained in [18], so the connection they made
will not be affected by the addition of higher interacting terms. Now, we will resort to
numerical methods in the next section.

Numerical Analysis of the Complexity Functional

We will calculate the complexity for the unambiguous block first for an increasing
number of oscillators. We have found the wavefunction for the Hamiltonian in Equation
(47). As we reinserted the M term, we will just update the complexity using the rescaled
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parameters mentioned in the previous subsection. We set the following relevant parameter
values:

λ4 = 0.5 λ6 = 0.2 λ8 = 0.001 ω0 = m = 4.0

Ω = 0.25 L = 200 ω̃re f = 1.6

where L is the length of the periodic chain. We chose N and δ so that Nδ = L was always
satisfied. We will use the C(1)1 functional for the unambiguous block.

Case I: Increasing the Interactions
In Figure 2, we have plotted numerically the behavior of the complexity of the unam-

biguous block as a function of N, which is the number of oscillators in d = 2 dimensions. In
Figure 2a, we have two complexities, where the points in blue represent the complexity of
the theory, which has no interaction term, and this complexity is due to the self-interaction
between pairs of oscillators. We also see the points in orange and light orange, which
represent the complexity of the theory with λ4φ4 interaction. We notice that there is a
bump initially in the graph for small N values, but in Figure 2a–c, we can observe that the
values of the complexity with the free theory and the complexity with interactions became
the same as we increased the value of N. We see that C(1)1 grew linearly with increasing

N values, and the contributions to C(1)1 due to even interaction terms became negligible,
while the behavior of the complexity for the unambiguous block would be same as if we
were dealing only with the free theory. In Figure 2d, we have plotted C(1)1 for N being an
odd number of oscillators for even interactions of λ4φ4 + λ6φ6 + λ8φ8, and we see that the
initial values of the complexity increased as we included higher-order terms in the theory,
but when we increased N, the contribution from these perturbative terms died out, and the
graph followed a φ2 linear pattern of C(1)1 .
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Figure 2. Plot: (a–c) represents the complexity C(1)1 (from the unambiguous block) vs. the number of

oscillators (N) for d = 2 dimensions with different interactions. In plot (d), complexity C(1)1 vs. an
odd number of oscillators (even resembling the same pattern) from all the interactions are placed
together in the same plot, showing the contribution from each interaction.

Case II: Increasing the Dimension
In Figure 3, we show six different plots. In the first two plots, the complexity for

the unambiguous block (up to φ4 interaction) is plotted with respect to the number of
oscillators in dimensions d = 3 and 4. Here, we notice that as we increased the dimensions,
the contribution to C(1)1 due to the interaction term increased, and we saw a similar pattern
as we included other higher-order even terms (i.e, the third and fourth graphs have
(λ4φ4 + λ6φ6) interactions, and the fifth and sixth graphs contain (λ4φ4 + λ6φ6 + λ8φ8)
interactions). However, in higher dimensions, the contributions of these interactions to the
complexity C(1)1 also became negligible when we increased the value of N, and the behavior
of this complexity became similar to the case where we had only the φ2 term and it grew
linearly.
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Figure 3. Plot of complexity C(1)1 vs. number of oscillators in d = 3 and d = 4, respectively, is shown
in (a–f) for (λ2 φ2 + λ4 φ4 + λ6 φ6 + λ8 φ8).

Case III: C(1)1 vs. ω0

In Figure 4 , we have plotted the variation in the complexity C(1)1 versus ω0 for
a particular value of oscillators N = 15, and we also show the variation in the same
plot for different dimensions (d = 2, 3, 4). As we increased the number of dimensions,
the complexity of the unambiguous block C(1)1 increased, and in a particular dimension,
the complexity value increased as we increased the number of interactions, which was
noticeable for low values of ω0. However, as we increased the value of ω0, the behavior
became similar to the free scalar theory.
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Figure 4. Plot of complexity C(1)1 vs. ω0 (a) for d = 2, (b) for d = 3, and (c) for d = 4.

Case IV: Fractional Change in C(1)
1

We define the fractional change in complexity C1 for a particular N value as

C1(N + 2)− C1(N)

C1(N)

Here, we have an increment of two in the definition because odd and even branches
of N can possibly show different behavior, as was the case for the complexity.

For small values of N, the even and odd complexities were different from each other.
This is directly related to the fact that one can distinguish the system with an even or odd
number of oscillators, but as we went for a large number of oscillators or in the continuum
limit, the distinction between the even and odd numbers of oscillators faded away. In
Figure 5, we have plotted the complexity of the unambiguous block, and we find that,
initially, the fractional change in complexity was large for small N values, but it decreased
continuously as we moved toward a large number of oscillators.
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Figure 5. The Plot of fractional change in complexity vs. number of oscillators.

7. Conclusions and Future Prospects

This work studied the circuit complexity for weakly interacting scalar field theory
with φ4, φ6, and φ8 Wilsonian operators coupled via λ4, λ6, and λ8 to a free scalar field
theory, respectively. The values of the coupling constants were chosen in the framework
of an EEFT such that the perturbation analysis was valid. The reference state was an
unentangled, nearly Gaussian state, and the target state was an entangled, nearly Gaussian
state which was calculated using a first-order perturbation theory. First, we worked
with the case of two oscillators, where the unitary evolution U, which took us from the
reference state to the target state, was parameterized using the AdS parameters. With
this, we calculated the line element and found the complexity functional by imposing the
appropriate boundary conditions. Then, we proceeded to the N oscillator case. Here, the
circuit complexity depended on the ratio of the eigenvalues of the target to the reference
states of the N oscillators. Since we could not observe any analytical expression of the
eigenvalues of the target state of the N oscillators, we resorted to numerical analysis. The
target matrix for N oscillators had a part where the bases could be uniquely determined
(unambiguous part) and another part where the bases could not be determined (ambiguous
part). The contribution to the total complexity came from the ambiguous as well as the
unambiguous parts. In our work, we focused mainly on the computation of the complexity
for the unambiguous part, denoted by the A2 matrix. The following are the results that we
observed:
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1. From our numerical analysis, the QCC with κ = 1 for the free field theory increased
linearly with the number of oscillators. As we included the higher even Wilsonian
terms, the growth of the complexity (contribution from the unambiguous part) was no
longer linear for a small number of oscillators. For the large N limit, the contribution
to the complexity from the interacting part vanished, and the linearity was restored.

2. From the graph of complexity vs. ω0, we see that upon fixing the dimensions and the
number of oscillators, the complexity from the unambiguous part increased with an
increasing value for ω0.

3. Another pattern inferred from our analysis is that as the dimension increases, the con-

tribution to C(1)1 due to the interaction term increases for a fixed number of oscillators.
We observed this pattern using degenerate frequencies for higher dimensions. One
would expect a similar pattern, even if the frequencies were non-degenerate.

In [18], the eigenvalues had a proper analytical expression, which makes it easier to
study RG flows. On the other hand, after adding higher-order corrections, there is no
analytical expression of the eigenvalues. This makes it very challenging to study the RG
and MERA connection. The eigenvalues we obtained were small corrections to the one
obtained in [18], so the connection they made would not be affected by the addition of
higher interacting terms. In upcoming works, we will address this issue.

In our analysis, we used κ = 1 in our complexity functional Cκ , but there are other
different and useful kinds of measures that one can explore to gain new insights into circuit
complexity.

Our approach to computing complexity is based on Nielsen’s geometric approach,
which suffers from ambiguity in choosing the elementary quantum gates and states. Recent
works have attempted to develop a new notion of complexity that is independent of these
choices. As for our future goals, we have in mind the following:

• We can calculate the circuit complexity for odd Wilsonian terms in the effective theory,
such as φ3, φ4, and φ7. We can further generalize the study by adding both even and
odd interaction terms together.

• We can study the behavior of circuit complexity in a similar theory when there is a
quantum quench in the interaction and mass. We have already performed this for a φ4

interacting theory [119].
• We can further analyze circuit complexity in fermionic field theories and gauge theories.
• We can explore this problem in the context of the Krylov complexity [95,103,120],

which is currently a melting pot in this research area.
• We can compare the Krylov complexity and circuit complexity for such theories to

know which is a better measure of information for such cases.
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Appendix A. Interacting Part of the Hamiltonian in a Fourier Basis

The interacting part in the N oscillator Hamiltonian is

H′ =
N−1

∑
a=0

λ4x4
a + λ6x6

a + λ8x8
a = H′

φ4 + H′φ6 + H′φ8 (A1)

Now, we apply the discrete Fourier transform as in Equation (48) to find the φ4

interaction:

H′
φ4 =

N−1

∑
a=0

λ4

N2

N−1

∑
k′ ,k1,k2,k3=0

exp
[

i
2πa
N

(k′ + k1 + k2 + k3)

]
x̃k′ x̃k1 x̃k2 x̃k3 (A2)

We apply the sum over index a and use the relation

N−1

∑
a=0

exp
[
− i
(2πa(k− k′)

N

)]
= Nδk,k′ (A3)

to obtain

H′
φ4 =

λ4

N

N−1

∑
k′ ,k1,k2,k3=0

δk′+k1+k2+k3,0 x̃k′ x̃k1 x̃k2 x̃k3 (A4)

Now, the Kronecker delta will reduce one of the indices, such as k′ to −k1 − k2 − k3.
Now, k′ only runs from [0, N − 1], whereas −k1 − k2 − k3 has possible values in the range
[−3N, 0]. To obtain a valid index value for k′, we use the relation x̃k+N = x̃k and write
k′ = N − k1 − k2 − k3 modN. This will return a valid index value for k′. Then, we have

H′
φ4 =

λ4

N

N−1

∑
k1,k2,k3=0

x̃α x̃k1 x̃k2 x̃k3 (A5)

Using similar arguments, we can find H′
φ6 and H′

φ8 .

Appendix B. C2 in Terms of the Ratio of the Target and Reference Matrix Eigenvalues

We claimed in Equation (46) that C2 can be expressed in terms of the ratio of eigenval-
ues of the target and reference matrix (i.e., A(s = 1) and A(s = 0), respectively). This was
due to the nature of the unitary operator U and the diagonal block structure of A(s = 1)
and A(s = 0).

To prove this, let us look at the complexity functional in Equation (44). The parameters
in the 2× 2 blocks on the U matrix have AdS parametrization, and they appear in 2[dyi(1)2 +

https://www.youtube.com/playlist?list=PLzW8AJcryManrTsG-4U4z9ip1J1dWoNgd
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dρi(1)2] in C2, where i = 1, 3, 5, 7, 9. We can find these values for yi(1) and ρi(1) from the
boundary conditions we obtained in Equation (42). These values can be represented by the
eigenvalues of A(s = 0) and A(s = 1) in the following way:

yi =
1
4

log
[

λ1λ2

Ω1Ω2

]
ρi =

1
2

cosh−1
[

λ1 + λ2

2
√

λ1λ2

] (A6)

Here, λ1 and λ2 are the eigenvalues of the 2× 2 block in the A(s = 1) matrix corre-
sponding to the block in U, whereas Ω1 and Ω2 are diagonal elements of the similar block
2× 2 in A(s = 0). We can use the relation

cosh−1(x) = ln(x +
√

x2 − 1) (A7)

to find the following for ρi:

ρi =
1
4

ln
[

λ2

λ1

]
(A8)

Then, our desired part in C2 will be

2(yi(1)2 + ρi(1))2 = 2

[
ln
[

λ1

Ω1

]2
+ ln

[
λ2

Ω2

]2
]

(A9)

Now, i = 2, 4, 6, 8, and we have a different scenario. These are the lone diagonal
parameters in the U matrix and have boundary conditions such as

yi =
1
2

ln
[

λT
ΩR

]
(A10)

Here, λT and ΩR denote the particular diagonal elements in A(s = 0) and A(s = 1),
respectively, corresponding to the parameter yi here. With these parameter values in
hand, we can find from the complexity functional in Equation (44) the expression for
Equation (46).
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