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Abstract: The discovery of numerous close-in planets has updated our knowledge of planet formation.
The tidal interaction between planets and host stars has a significant impact on the orbital and
rotational evolution of the close planets. Tidal evolution usually takes a long time and requires
reliable numerical methods. The manifold correction method, which strictly satisfies the integrals
dissipative quasiintegrals of the system, exhibits good numerical accuracy and stability in the
quasi-Kepler problem. Different manifold correction methods adopt different integrals or integral
invariant relations to correct the numerical solutions. We apply the uncorrected five- and six-order
Runge–Kutta–Fehlberg algorithm [RKF5(6)], as well as corrected by the velocity scaling method and
Fukushima’s linear transformation method to solve the tidal evolution of exoplanet systems. The
results show that Fukushima’s linear transformation method exhibits the best performance in the
accuracy of the semimajor axis and eccentricity. In addition, we predict the tidal timescale of several
current close exoplanetary systems by using this method.

Keywords: manifold correction; exoplanet tides; exoplanet evolution

1. Introduction

A key breakthrough in the field of exoplanet study is the discovery of 51Peg b, which
orbited a sun-like star in 1995 [1]. As of 16 August 2022, 5071 exoplanets have been certified
(https://exoplanetarchive.ipac.caltech.edu/). Some exoplanets have a small, semimajor
axis, and the distribution of eccentricity is related to the distribution of the semimajor axis.
When the semimajor axis is small (a < 0.02 au), the eccentricity of most planets approaches
zero. When the semimajor axis is large (a >1 au), the distribution range of eccentricity is
relatively large, mainly ranging from 0–0.9. These phenomena can be explained by tide
theory [2–4]. Tidal models have been widely used to study the tidal effects in solar and
exoplanetary systems [2,3,5–8]. Tidal dissipation disrupts the time displacement symmetry
and space rotational symmetry, leading to the nonconservation of energy and angular
momentum. It is generally believed that the rotation of a planet at its natal formation
stage is much quicker than the mean motion of its orbit [9,10]. According to the tidal
theory, when the angular rotation velocity of the planet is not equal to the mean motion,
the transformation between the rotation momentum to the orbital angular momentum
will emerge. Consequently, the angular velocity of rotation and orbit tend to be equal,
resulting in orbit circularization [2–4,11–16]. Therefore, it is an important problem to study
the influence of tidal effects on the orbital and rotational evolution of exoplanets.

In 1908, Darwin pointed out that if energy is dissipated by the tides caused by the moon
on Earth, then the Earth’s axial rotation must be slowing down and the moon is moving
further away from the Earth. Darwin reconstructed the possible evolutionary history of the

Symmetry 2023, 15, 253. https://doi.org/10.3390/sym15010253 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15010253
https://doi.org/10.3390/sym15010253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://exoplanetarchive.ipac.caltech.edu/
https://doi.org/10.3390/sym15010253
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010253?type=check_update&version=2


Symmetry 2023, 15, 253 2 of 15

Earth–moon system by assuming a specific mathematical model of tidal dissipation [17]. Af-
ter Darwin, Macdonald made numerical calculations of the Earth–moon–sun system assuming
that the Moon was in a circular orbit. The change in the rotational angular momentum density
of the moon, the distance between the Earth and the moon, and the period with time are
obtained [18]. Kaula transformed the disturbing function into an expression of the Keplerian
elements and examined the effects of the dissipation factor with amplitude and frequency [19].
Goldreich used the fourth-order Runge–Kutta (RK4) method to integrate the tidal dissipative
two-body system and the criterion of whether the final state is synchronous rotation is de-
rived [20]. Later, some authors studied the tidal effects on the multiplanet systems consisting
of more than two planets [13,16,21–23]. Mardling [13] investigated the long-term evolution
of the planetary system with two planets. They uncovered that the outer planet excites the
eccentricity of the inner planet, which accelerates the orbital inward migration caused by tidal
dissipation. Wu et al. [21] studied the influence of the tidal effect of the HD 83443 system on
the orbital dynamics. The eccentricity of other planets whose semimajor axis is similar to HD
83443b is very close to zero, whereas HD 83443b has a substantial eccentricity (e = 0.079). The
transformation of the orbital angular momentum occurs from the inner planet to the outer one
because of the long-term interaction with HD 83443c, resulting in a decrease in the efficiency
of orbital circularization of the inner planet. The intensification of tidal interaction between
the host star and the planet is responsible for the rapid decline in the eccentricity when the
orbital radius is relativity small [2,3]. Tidal evolution in two-body systems ultimately has two
outcomes, one leading to a stable equilibrium state and the other resulting in orbital decay to
the Roche limit [24]. In 1996, Rasio et al. first completed such an exoplanet system study. He
revealed that the close-in planet 51 Peg b is Darwinian instability [2].

Numerical integration is an important research method to study the long-term evolu-
tion of exoplanets with tidal dissipations. Because the semimajor axis and the eccentricity
are coupled to each other, reliable numerical simulations can numerically study the tidal
evolution of the two coupled orbital elements. Geometric integrators preserve the properties
of the system, such as symplectic structure, phase-space volume, symmetry, and integrals
of motion [25]. Feng [26] and Ruth [27] independently proposed the symplectic integrators,
which can maintain the symplectic structure of the system. The explicit symplectic integra-
tors cannot be applied directly in general relativity because coordinates and momentum
cannot be separated. To solve this problem, Wang et al. constructed a series of explicit
symplectic integrators by splitting the Hamiltonian into multiple integrable parts and
taking the analytic solution as explicit functions of proper time [28–30]. Wu et al. intro-
duced the time transformation function into the Hamiltonian of Kerr geometry and split
the Hamiltonian into five parts. This idea of constructing explicit symplectic integrators
applies to much relativistic space-time [31,32]. For the scenario with no analytical solutions
in the sub-Hamilton of the system, the extended phase space method can work well [33–35].
The energy-conserving integrators have no truncation error during the calculation of each
step, satisfying the strict conservation of the Hamiltonian [36–38]. Although the energy-
conserving integrators can keep the energy constant, they cost much more in terms of
computational resources than the traditional algorithms [37]. The mixed symplectic algo-
rithm divides the Hamilton system into an integrable part and an inseparable part [39–43].
The former part is integrated by the explicit symplectic method, whereas the latter part
can be solved by the second-order midpoint rule [39]. In addition, the mixed symplectic
methods can be simply extended to high order by the Yoshida triplet method [40]. Thus,
the mixed symplectic methods improve the efficiency and accelerate the convergence of
iteration [40,41]. The accuracy of the solution computed by manifold correction methods
can be improved significantly with little extra computation [44–49]. For the prototype of
the manifold correction method proposed by Nacozy [50], the correction terms are added
to the numerical solutions to satisfy the integrals of the system, avoiding the difficulty of
the selection of the correction parameters [51]. The two-factor scaling method extending
Nacozy’s method proposed by Liu & Liao [52,53], corrects the numerical solutions to satisfy
the energy integral of the Hamiltonian system, improving the accuracy of the semimajor
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axis of the orbit significantly. As an extension of Nacozy’s method, Fukushima [54] per-
formed the same transformation on the position and velocity. The correction solutions
strictly satisfy the Kepler energy. In addition, Ma et al. found that the constant adjustment
of the velocity can achieve the same effect [55]. Fukushima introduced the Laplace vector as
the second auxiliary quantity to improve the accuracy of eccentricity and argument of peri-
helion [56]. Wu et al. proposed the steepest descending method for the two-body problems
to suppress the fast increase of the numerical error in the semimajor axis [57]. To improve
the accuracy of orbital inclination and longitude of ascending nodes, Fukushima combined
single-axis rotation and the dual scaling method to decrease the numerical error of the
angular momentum [58]. Following the appeal method, Fukushima [59] proposed a linear
transformation method, which satisfies Kepler energy, Laplace vector, and angular momen-
tum vector at the same time, significantly improving the accuracy of all orbital elements in
the quasi-Kepler problem. Very recently, Deng et al. proposed a new manifold correction
method by slightly modifying the Kepler solver, which can improve the numerical accuracy
of all orbital elements and have almost the same performance as Fukushima’s method [25].

This paper mainly explores the application of the manifold correction algorithm in
the tidal evolution of exoplanets. The article is organized as follows: In Section 2, we
describe the tidal model of the two-body problem. In Section 3, the manifold correction
methods used in this paper are given out, namely the velocity scaling method and the
Fukushima linear transformation method. In Section 4, the tidal model of the two-body
problem, the performances of these algorithms are tested in the numerical integration of
tidal evolution, and the correlation error is analyzed. Then, numerical simulation with the
best-performing algorithms proceeded to investigate how the tidal forces and gravitational
forces caused by asymmetric deformation affect the long-term orbital evolution of the
planets. A series of super-Earth evolutions under the action of tides were numerically sim-
ulated, and the timescale from the current state to the synchronous rotation was calculated
and compared with the theoretical values. Finally, the results are briefly summarized and
discussed in Section 5.

2. Physical Model

The model describes a close planet orbiting a host star with a period of a few days [60].
By considering the torque caused by the equatorial deformation of the planet and tidal
torque, the evolution bout angular rotation velocity Ω should be included in the dynami-
cal equations:

r̈ =
−G(M + m)

r3 r +
(M + m)

Mm
(Ftide + F22),

θ̈ = Ω̇ =
1
C
(Ttide + T22). (1)

Here, m and M are the masses of the planet and the star, G is the gravitational constant, Ω
is the planet’s angular rotation velocity, θ is the planet’s rotation angle, Ftide represents the
tidal dissipation force, and Ttide is the corresponding torque. F22 represents the gravitational
force generated by the asymmetric deformation of the planet, and T22 is the corresponding
torque. The perturbative forces Ftide and F22 disturb the planet’s Kepler orbit. In the
invariance plane of the system, because the torques are perpendicular to the orbital plane,
the second equation can be expressed in scalar form. The expressions of Ftide and Ttide
are [60,61]

Ftide = −3k2∆t
GM2R5

r10 [2r(r · ν) + r2(r×Ω) + ν], (2)

Ttide = −3k2∆t
GM2R5

r8 [−r2Ω + r× ν]. (3)

Here ν = ṙ and k2 is the second degree Love number.
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The quality factor related to the most important frequency is achieved by Q =
1/(|2Ω − 2n|) before the synchronous spin-orbit resonances. Because both Q and k2
are related to the internal components of the celestial bodies and are not measurable for
exoplanets currently, by using the modified parameter Q′ = 3Q/2k2, we can get [8,62]

k2∆t =
3

4Q′(Ω− n)
. (4)

The rotating planet is approximated as a homogeneous three-axis ellipsoid with equa-
torial axes â and b̂, and the rotation axis ĉ is normal on the orbital plane. The gravitational
potential U22 of a planet at a distance r from its center is given by [63]

U22 = 3
GmR2

r3 C22 cos( f − θ), (5)

C22 = (ξ/4)(B− A)/C, (6)

where C22 represents the equatorial ellipticity of the planet’s gravity field [19,64], and (B−
A)/C = (15/4)(M/m)(R/r)3 [60]. f is the true anomaly of the planet. The parameter C22
is related to the planet’s three principal moments of inertia A, B, and C where ξ = C/(mR2)
is the structure constant (ξ ≈ 0.2 for a gas giant, and ξ ≈ 0.25 for a solid planet) [65].

From the gravitational potential, we have

F22 = M∇U22 = M
∂U22

∂r
r̂ +

M
r

∂U22

∂ f
f̂ , (7)

T22 = −r× F22 = −M(∂U22/∂ f )k̂, (8)

∂U22

∂r
= −9

GmR2

r4 C22 cos( f − θ), (9)

∂U22

∂ f
= −6

GmR2

r3 C22 sin( f − θ), (10)

T22 = 6
GmMR2

r3 C22 sin 2( f − θ)k̂, (11)

where r̂ is the unit vector with the star as the origin. Here, f̂ = r̂ × k̂, and k̂ is a unit
vector in the normal direction of the orbital plane. The force F22 produced by the planet’s
asymmetric deformation changes the orbital component of angular momentum, and the
reaction force creates a torque on the planet to control the evolution of the spin.

3. Manifold Correction Methods

The quasiintegrals derived from the integral invariant relations have higher accuracy
than the corresponding values calculated by the phase variables. The manifold methods
correct the phase variables to satisfy these quasiintegrals at each step so that they can
significantly improve the performance of the basic integrator. In this paper, we make
manifold corrections based on RKF5(6) with a fixed time step. Next, we introduce the
manifold correction methods used in this paper.

3.1. Velocity Scaling Method

For the perturbed two-body problem in the heliocentric coordinate system, the equa-
tions of motion can be defined as

r̈ =
−µ

r3 r + a. (12)
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Here, a is the perturbing acceleration, r is the position, and µ = G(M + m). The Kepler
energy of the problem can be expressed as

K =
ν2

2
− µ

r
. (13)

In the presence of perturbations, the Kepler energy is not constant, but evolves
over time:

dK
dt

= ν · a. (14)

Equation (14) is also known as the integral invariant relation of Kepler’s energy. The equa-
tions of motion and the integral invariant relations are integrated at the same time. The
Kepler energy with higher precision than the corresponding values calculated by the phase
variables can be obtained at every integration step. Furthermore,4K = K∗ − K0, K0 repre-
sents the initial Kepler energy. In order to strictly satisfy the Kepler energy relationship
between K, r, and ν, a scale transformation can be applied to the velocity [55]:

ν∗ = λν, (15)

λ =
√

2(K∗ + µ/r)/ν2. (16)

This is a way of correcting Kepler energy. Although only the velocity has been im-
proved at each step, the position has also been corrected. Because of the constant adjustment
of the velocity forces, the numerical path goes back to the true energy hypersurface.

3.2. Fukushima’s Manifold Correction Methods

Fukushima constructs a series of manifold correction methods for the quasi-Kepler
problem [54,56,58,59]. The single scaling method can maintain the semimajor axis accuracy
related to the Kepler energy during integration, whereas it cannot work well for improving
the precision of the rest orbital elements [54]. Fukushima introduced the Laplace integral
as the second correction auxiliary quantity [56], and significantly improved the accuracies
of eccentricity and argument of the pericenter based on the improvement of accuracy of the
the semimajor axis. This method is marked as the dual scaling method. Then, Fukushima
proposed the rotation method based on the dual scaling method [58]. This method corrects
the directions of position and velocity in order to make them perpendicular to to the
angular momentum.

The linear transformation method [59] was proposed by Fukushima based on the above
methods. This method combines a scale transformation with a single-axis rotation and
introduces three parameters to correct the phase variables. Numerical results indicated that
this method is suitable for long-term integration [59]. The linear transformation method
requires not only numerical integration of the equations of motion but also numerical
integration of the time development of the Kepler energy K, the Laplace integral P, and the
angular momentum vector L, which are defined as

L = r× ν, (17)

P = ν× L− (
µ

r
)r. (18)

The equations of their time development are as follows:

dL
dt

= r× a, (19)

dP
dt

= a× L + ν× dL
dt

. (20)
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The linear transformation method is mainly carried out in two steps. First, we apply a
rotation transformation to the position and velocity

(r, ν) = (Rr, Rν). (21)

The rotation matrix R is

Rb = cb + s× b + (
s · b
1 + c

) · s. (22)

Here b represents velocity or position. c and s are defined as

c =
√

1− s2,

s =
(r× ν)× L
|r× ν||L| . (23)

After this process, the position and velocity are perpendicular to the angular momentum
vector. Then the linear transformation can be performed by introducing three scaling
parameters, where the quantities with ∗ is the modified solution.

r∗ = sxr′,

ν∗ = sν(ν
′ − αr′). (24)

Making the modified solutions satisfy the following limiting relation:

K∗ =
ν∗2

2
− µ

r∗
, (25)

L∗ = r∗ × ν∗, (26)

P∗ = ν∗ × L∗ − (
µ

r∗
)r∗. (27)

The only solution can be obtained as

sx =
L
∗2

F · r′ , α =
F · ν′
F · r′ ,

sν =

√
2K∗ + 2µ/(sxr′)

ν′2 − 2α(r · ν) + α2r′2
, (28)

where F is defined as:

F = P +
µr′

r′
. (29)

As an extension of the dual scaling method, the linear transformation method is the
first correction scheme to follow the evolution of the fully integral invariant relations of
the quasi-Keplerian problem. Compared with the previous manifold correction methods
involving incomplete integral invariant relations, the linear transformation method cor-
rects the velocity and coordinates to satisfy the analytical relations of the Kepler energy,
the orbital angular momentum, and the Laplace integral at each integration step. As a
result, the accuracy of all the orbital elements can be improved significantly. Although the
implementation of the linear transformation is fairly complicated, the integration efficiency
is improved compared with the basic integrator, which is essential for long-term orbital
integration [59].

The Runge–Kutta method is widely used in short-term numerical orbital integration
because of its high efficiency and easy implementation [66,67]. As an energy-dissipation
scheme, the total energy of the dynamical system derived from the Runge–Kutta method
increases linearly with time, resulting in a quadratic function of time for the errors of
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phase variables [25]. However, the manifold correction methods can restrain the error of
phase space variable to linear growth, exhibiting a similar performance with the symplectic
algorithms, which have been abundantly used in long-term orbital integrations [25]. Fur-
thermore, based on the Runge–Kutta method with the variable time step, the manifold
correction method can improve the accuracy of the solutions in addition to ensuring inte-
gration efficiency. A promising scheme for the high eccentricity orbit is to apply the scaling
method to the Kustaanheimo–Stiefel regularization [68]. The results of Fukushima [68]
indicated that the scaling method applied at every apocenter provides the best performance
for all perturbation types.

4. Numerical Simulation
4.1. Setting Initial Configurations

The total angular momentum of the system is composed of two parts: the orbital
component and the rotational component. The orbital angular momentum is m

√
G(m + M)√

a(1− e2). The rotational momentum is contributed by the planet and its host star
CΩ ≈ ξ1m1R2

1Ω1 + ξ0m0R2
0Ω0. In this paper, because we only consider the planetary tides,

the angular velocity of the planet Ω1 varies with time, and the angular velocity of the star
Ω0 is approximated as a constant [60]. When Ω ≈ n, it can be proven by Kepler’s third
law that the ratio of the rotational component and the orbital component is of the order
of (R/a)2 [16]. If R � a, the contribution of the rotational component can be neglected.
We get

eini '
√

1− acurrent

aini(1− e2
current)

. (30)

The subscript “ini” represents the initial orbital element, and “current” represents the
current orbital elements of the planet. Based on the angular momentum of the exoplanets
at present, the initial configurations can be derived.

4.2. Numerical Test

Before the numerical simulation, we reproduce the evolution of Kepler-10b in the study
of Rodríguez [60]. GJ486 b is a close-in planet with a period of 1.467 days. The physical
parameters and detected orbital elements of the planet are shown in Table 1. The mass and
radius of this planet are 2.82m⊕ and 1.305R⊕, respectively. The planet is rocky which can
be considered as a super-Earth.

Table 1. Parameters related to planet GJ486 b.

System M(m⊙) m(m⊕) R(R⊕) acurrent(au) ecurrent

GJ486b 0.32 2.82 1.305 0.01734 0.05
Note: m⊙ is the mass of the Sun, m⊕ is the mass of the Earth, and R⊕ is the radius of the Earth.

We set the initial value of the semimajor axis as aini = 0.02 au, and eini = 0.3677 can be
obtained through Equation (30). In addition, we set Ωini = 2.7nini. For rocky planets such
as super-Earths, ξ = 0.25, and Q′ = 100. The RKF5(6) with a fixed time step h being 1/200
of the orbital period is used as the basic integrator. Because there is no analytical solution
for this model, we take the solution calculated by the high-precision eighth- and ninth-
order Runge–Kutta–Fehlberg algorithm [RKF8(9)] with variable step sizes as the reference
solution for comparison. In the following, we use the high-precision reference solutions
calculated by RKF8(9) to calculate the values of4a,4e, and4(Ω/n). Figure 1 shows the
errors of the semimajor axis calculated by RKF5(6), the linear transformation method (M1),
and the velocity scaling method (M2). Compared to the basic integrator RKF5(6), M1 and
M2 significantly improve the accuracy of the semimajor axis. Before t = 103, the errors of
a are reduced by four orders of magnitude. After t = 103, unlike the previous errors that
oscillate within a certain range, 4a increases linearly. The main reason is the long-term
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accumulation of roundoff errors over time. In addition, we consider the results calculated
by RKF8(9) as reference solutions. Because its truncation error and machine roundoff error
also accumulate over time, the errors of4a we get on this basis also increase. In conclusion,
we find that the performance of M1 is much better than M2.
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Figure 1. The error map of the semimajor axis of GJ486b in the process of planetary evolution.
The algorithms involved in the figure are RKF5(6), Fukushima’s linear transformation method(M1),
and velocity scaling method(M2). (a) C22 = 0, only tidal effects exist; (b) C22 = 10−5, tidal and
deformation forces and torques exist at the same time.

The tidal force has influences on the orbital circularization. so it is very important to
select an algorithm with better eccentricity accuracy to numerically simulate the process of
the tidal evolution. In Figure 2, the performances of the RKF5(6), M1, and M2 algorithms in
eccentricity error are exhibited. Compared to the basic integrator RKF5(6), M1 significantly
improves the accuracy of eccentricity and works better than M2. M2 only corrects the semi-
major axis which is related to the Kepler energy. Because M1 corrects the Laplace integral P,
the accuracy of eccentricity is improved. Fukushima’s linear transformation method M1 is
stable until t = 104. After that, the accumulated roundoff errors are larger than the truncation
errors, and the eccentricity error calculated by M1 begins to increase linearly. The eccentricity
error of RKF5(6) without any improvement grows almost linearly with time.
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Figure 2. Eccentricity error map of GJ486 b during planetary evolution. The algorithms used are
RKF5(6), Fukushima’s linear transformation method(M1), and velocity scaling(M2). (a) C22 = 0, only
tidal effects exist; (b) C22 = 10−5, tidal and deformation forces and torques exist at the same time.
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In addition to orbital circularization, the tidal force also has an important effect on the
rotation of the planet. Figure 3 displays the errors of Ω/n for RKF5(6), M1, and M2. M1 and
M2 improve the accuracy of the semimajor axis by correcting the Kepler energy, and the
mean motion is n =

√
µ/a3. Compared to the uncorrected basic integrator RKF5(6), M1

improves the accuracy of Ω/n by approximately four orders of magnitude. Thereafter,
although the accuracy of M2 is still an order of magnitude higher than RKF5(6), M1’s
accuracy is still the best among them, higher than both M1 and RKF5(6).
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Figure 3. Error map of the ratio of the angular rotation velocity to the mean motion of GJ486 b
during planetary evolution. The algorithms used are RKF5(6), Fukushima’s linear transformation
method(M1), and velocity scaling(M2). (a) C22 = 0, only tidal effects exist; (b) C22 = 10−5, tidal and
deformation forces and torques exist at the same time.

Figure 4 shows the evolution of Ω/n over time for GJ486 b. For the presence of the
gravitational force and torque generated by the asymmetric deformation (C22 = 10−5),
the ratio of planetary angular rotation velocity to the mean motion soon dropped to
Ω/n = 3/2, at this point the planetary rotation is captured in 3/2 spin-orbit resonance.
At about 800 Kyr, the ratio drops to Ω/n = 1, and the rotation escapes from the 3/2
spin-orbit resonance, then enters into 1/1 spin-orbit resonance and synchronous motion
are captured. When only the tidal forces act (C22 = 0), numerical experiments show
that the synchronization is achieved around 2250 Kyr. It follows that the time to achieve
synchronization is shortened because of the introduction of planetary equatorial asymmetry.

M1 performs best in the accuracy of the orbital semimajor axis. In Figure 5, we show
the orbital evolutions in two cases: one is the action of only tidal forces, and the other is the
combined action of tidal forces and the gravitational force generated by the asymmetric
deformation of the planet. When deformation forces are present (C22 = 10−5), GJ486 b is
captured by nonsynchronous resonant motion and the rate of variations of the semimajor
axis is larger than which in the case of the pure tidal (C22 = 0). The semimajor axis first
evolved in the 3/2 trapping and then the rotation toward a synchronization between the
rotation and orbital motions.

As shown above, M1 performs well in the semimajor axis and eccentricity errors. We
select the linear transformation method to numerically simulate the tidal evolution and
analyze the influences of tidal and the gravitational force generated by the asymmetric
deformation on eccentricity. In Figure 6, the rate of variations of eccentricity is larger
when deformable forces are present (C22 = 10−5). The nonsynchronous resonant motion
accelerates the rate of eccentricity dissipation when both tidal and deformation forces
are present. It is worth noting that in the case of C22 = 10−5, 1/1 spin-orbit resonance
can be captured at about 800 Kyr when e ≈ 0.05. This shows that synchronous motion
can be captured even for e 6= 0 [60]. It was also confirmed that for eccentric orbits,
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the synchronous motion can occur when there is an additional torque that can counteracts
the tidal torque [8,60,69].
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time(Kyr)
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 C22=0

Figure 4. Time variation of Ω/n for GJ486 b. Different evolutions were observed, including capturing
3/2 and 1/1 spin-orbit resonances. The dotted line corresponds to the presence of only the tidal
effect, and the solid line corresponds to the coexistence of tidal and deformation forces and torques.
These evolutionary results are calculated from M1.
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Figure 5. Evolution of the semimajor axis of GJ486 b over time. The variable rates of a are different
when the rotation is trapped in different capture. These evolutionary results are calculated from M1.
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Figure 6. Eccentricity evolution of GJ486 b over time. The rate of change of e depends on the specific
capture in which the spin is trapped. When the rotation is in resonance, the eccentricity changes
rapidly. These evolutionary results are calculated from M1.

4.3. Tidal Evolution Timescale

We filter several super-Earths (2-4R⊕, 1-10m⊕, T < 10 days) and then remove the ones
with missing datas of semimajor axis and eccentricity. Currently, there are 10 super-Earth
systems with complete data in close-in spin-orbit resonance. We use the optimal algorithm
obtained in the article to predict the timescale of a series of super-Earths from the current
state to synchronous rotation. Under the perturbation of the planetary tidal effect, the tidal
timescale is derived from the averaged equations over a period of orbital motion [22]:

τtide =
4Q′

63n
m
M

( a
R

)5
. (31)

For super-Earths, also known as mini-Neptunes, we take Neptune’s rotation rate as
the initial value of the planet’s rotation rate and the tidal quality factor Q′ = 100. Then, un-
corrected RKF5(6) and Fukushima’s linear transformation method are used to numerically
simulate the timescale of a series of super-Earths from the current state to 1/1 spin-orbit
resonances. The relevant physical parameters of these super-Earths are shown in Table 2.
The calculated results are shown in Table 3, where τ represents the results of theoretical
calculations; τ0 represents the calculation result of RKF5(6); τ1 represents the calculation
results of Fukushima’s manifold correction methods; |∆τ| represents the difference from
the theoretical calculation. The RKF5(6) and Fukushima’s manifold correction methods
are different from the theoretical values calculated by Equation (31), but in most cases
|∆τ1| < |∆τ0|. It can be seen that the numerical simulation by using the Fukushima’s
method is closer to the theoretical value, and the applicability of the manifold correction
algorithm in the two-body problem of tidal model is verified.
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Table 2. The physical parameters of super-Earths.

Planet M(m⊙) m(m⊕) R(R⊕) T (Day) a (au) e

GJ3090 b 0.52 3.34 2.13 2.85 0.032 0.32
HD110113 b 1 4.55 2.05 2.54 0.035 0.093
TOI-2136 b 0.33 4.7 2.2 7.85 0.053 0.07
K2-146 b 0.36 5.6 2.25 2.67 0.025 0.14
TOI-125 c 0.86 6.63 2.76 9.15 0.081 0.066
K2-146 c 0.36 7.1 2.59 3.97 0.033 0.16

HD 86226 c 1.02 7.25 2.16 3.98 0.049 0.075
HD 97658 b 0.75 7.86 2.34 9.49 0.0796 0.063
TOI-269 b 0.39 8.8 2.77 3.70 0.0345 0.425
TOI-125 b 0.86 9.5 2.73 4.65 0.052 0.194

Table 3. Timescale of tidal evolution of planetary systems.

Planet τ0 (yr) |∆τ0| (yr) τ1 (yr) |∆τ1| (yr) τ (yr)

GJ3090 b 2.01× 106 1.22× 106 3.35× 105 4.60× 105 7.95× 105

HD 110113 b 1.48× 106 5.35× 105 1.27× 106 3.25× 105 9.45× 105

TOI-2136 b 8.74× 106 4.70× 107 7.25× 107 1.68× 107 5.57× 107

K2-146 b 7.69× 106 4.09× 105 7.69× 105 4.09× 105 3.60× 105

TOI-125 c 1.74× 107 7.70× 107 2.26× 107 7.18× 107 9.44× 107

K2-146 c 6.14× 106 4.78× 106 8.57× 106 7.21× 106 1.36× 106

HD 86226 c 2.87× 107 1.87× 107 1.31× 107 0.31× 107 1.00× 107

HD 97658 b 1.01× 108 1.69× 108 2.74× 108 0.04× 108 2.70× 108

TOI-269 b 1.76× 106 0.24× 106 6.16× 106 4.64× 106 1.52× 106

TOI-125 b 4.29× 106 3.38× 106 4.94× 106 2.73× 106 7.67× 106

5. Summary and Outlook

In this paper, the manifold correction methods are applied to the tidal evolution of
the exoplanet. GJ486 b, a short-period super-Earth, is used to analyze the accuracies of
the parameters of the velocity scaling method and the Fukushima’s linear transformation
method in the tidal evolution process. We also analyzed the coupled spin-orbit evolution of
GJ486 b. Numerical experiments show that, compared with the uncorrected basic integrator
RKF5(6), the velocity scaling method can improve the precision of the semimajor axis by
correcting the velocity obtained from the integral of each step. The accuracy of the linear
transformation method is better than that of RKF5(6) and the velocity scaling method in
the semimajor axis, eccentricity, and the ratio of planetary angular rotation velocity to
mean motion. Through numerical simulation, resonance can be captured during exoplanet
evolution when deformation forces and torques are present, such as 3/2 and 1/1 spin-orbit
resonances. The decrease in eccentricity caused by the tide will destabilize the current
higher-order spin-orbit resonances out of the current configuration and into the lower-order
spin-orbit resonances [70,71]. When only tidal forces are present, no resonance is captured
during the exoplanet evolution, and it takes more time to reach a tidally locked state. Tidal
force makes the planetary orbit decay and circularization. In the presence of gravitational
and tidal torques, the planet will be captured by the spin-orbit resonance, and accelerate
the evolution to reach the synchronous spin-orbit resonance.

Compared with the RKF5(6), both manifold correction methods used in the tidal
model have improved the accuracy in the semimajor axis, eccentricity, and the ratio of
planetary rotation angular velocity to the mean motion. Simulation of the evolution of
exoplanets with tides force requires a stable and high-accuracy integration to ensure the
reliability of the results. In this work, we consider the model of a single planetary system.
The research on the tidal effect of a multiplanet system with more than two planets is more
complicated [13,15,21–23] because of the coupling effect between the gravitational forces
of the planets and the tidal effects. We will pay more attention to the exoplanets of binary
planetary systems in the future.
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