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Abstract: In this research, we provide tools to overcome the information loss limitation resulting from
the requirement to estimate the results in the discrete initial expression domain. Through the use of
2-tuples, which are made up of a linguistic term and a numerical value calculated between [0.5, 0.5),
the linguistic information will be expressed. This model supports continuous representation of the
linguistic data within its scope, permitting it to express any information counting received through an
aggregation procedure. This study provides a novel approach to develop a linguistic multi-attribute
group decision-making (MAGDM) approach with complex fractional orthotriple fuzzy 2-tuple lin-
guistic (CFOF2TL) assessment details. Initially, the concept of a complex fractional orthotriple fuzzy
2-tuple linguistic set (CFO2TLS) is proposed to convey uncertain and fuzzy information. In the mean-
time, simple aggregation operators, such as CFOF2TL weighted average and geometric operators,
are defined. In addition, the CFOF2TL Maclaurin’s symmetric mean (CFOF2TLMSM) operators
and their weighted shapes are presented, and their attractive characteristics are also discussed. A
new MAGDM approach is built using the developed aggregation operators to address managing
economic crises under COVID-19 with the CFOF2TL information. As a result, the effectiveness and
robustness of the developed method are accompanied by an empirical example, and a comparative
study is carried out by contrasting it with previous approaches.

Keywords: complex fractional orthotriple fuzzy set; fuzzy decision making; 2-tuple linguistic
representation model; Maclaurin’s symmetric mean operator

1. Introduction
1.1. Literature Review

Decision making (DM) is a particular behavior that combines intelligent and complex
activities, taking into account vagueness and uncertainty that individuals face. The fuzzy
set (FS), first proposed by Zadeh [1], is an important model in solving DM problems
in an unpredictable setting. The fuzzy set has attracted much scholarly attention and
research since it was published in 1965. However, one of the deficiencies of the fuzzy set is
that its range is bounded to [0, 1], which leads to problems in communicating assessment
information. For this reason, Ramot et al. [2] suggested a complex fuzzy set (CFS) by
approaching the membership degree (MD) from the actual value to the complex value
within the close disc. The CFS actually applies to decision theory, fuzzy logic, and other
areas of science [3]. However, the fuzzy set and the CFS have a common deficiency in that
they do not consider the non-membership degree (NMD) of an organization that is part
of the objective in question. Then, Atanassov [4] proposed a fuzzy set expansion called
an intuitionistic fuzzy set (IFS), which makes up the deficiency of the fuzzy set by adding
an NMD. IFS has garnered much attention since its introduction, such as aggregation
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operators (AOs) [5], distance calculation [6], information entropy [7], decision method [8],
and so on. Subsequently, the principle of complex IFS (CIFS), Alkouri et al. [9] identified the
undetermined and uncertain specifics of a decision in practical matters. The CIFS consists of
a complex MD and NMD value denoted by polar coordinates. Rani and Garg [10] specified
the basic operating rules of the CIFS and proposed the MADM method for a power average
and power geometric operator. Azam et al. [11] suggested a decision-making approach
for the evaluation of information security management under a CIFS environment. Garg
and Rani [12] defined the complex IVIFS structure and discussed its related operating
rules and AOs. Garg and Rani [13] introduced a range of information measurements for
information measurement theory, including similarity, entropy calculation, and so on, and
further proposed a clustering algorithm based on these measures. Garg and Rani [14]
proposed generalized Bonferroni mean (BM) operators using the Archimedean t-norm
and Archimedean s-norm for integration of the CIF setting. Garg and Rani [15] defined
some generalized CIF aggregation operators and discussed their application to MCDM.
Garg and Rani [16] proposed an exponential, logarithmic generalized AOs under CIF
environment. Garg and Rani [17] developed novel AOs and a ranking method for CIFSs
and their applications in the DM process. However, if experts define their assessment
details at (0.5, 0.7) for MD and NMD, the IFS cannot classify it as 0.5 + 0.6 = 1.1 > 1. Thus,
Yager [18] initially offered the Pythagorean fuzzy set (PyFS) to represent the undetermined
DM knowledge. It is clear that because of 0.52 + 0.72 = 0.74 < 1, the PyFS is more general
than the fuzzy set and IFS. With the PyFS in mind, Qin et al. [19] suggested some ordered
weighted distance steps for DM problems. Under the Pythagorean fuzzy environment,
Garg [20] described novel operational laws and proposed several aggregation operators.
Liang et al. [21] joined TOPSIS methodology and three-way DM theory to develop an
algorithm for DM problem solving. Khan et al. [22] extended the GRA method for the
MAGDM problem under a linguistic Pythagorean fuzzy setting with incomplete weight
information. Alaoui et al. [23] defined a novel analysis of fuzzy physical models by
generalized fractional fuzzy operators.

Ullah et al. [24] suggested some distance measurements for the complex Pythagorean
fuzzy set (CPyFS) and advanced a pattern recognition algorithm. Liu et al. [25] defined the
Pythagorean fuzzy linguistic Muirhead mean operators and their applications to MADM.

Since the PyFS has a precondition that the sum of the square of MD and NMD is
limited in the interval [0, 1], but when we come across practical situations where the
knowledge given by DMs in the form of PyFS cannot fulfill the precondition, i.e., MG
and NMG are given as (0.7, 0.8), because of 0.7 + 0.8 > 1 and 0.72 + 0.82 > 1, the IFS
and PyFS fail to communicate this effectively. On the basis of this constraint, Yager [26]
established the notion of a q-rung orthopair fuzzy set (q-ROFS) to make the number of
MG and NMG q-power lie in [0, 1]. The correct q-ROFS disposes of the above example
by 0.73 + 0.83 = 0.855 < 1. It is clear that q-ROFS has generalized more than the IFS
and PyFS, because the IFS and PyFS are the special cases of q-ROFS for f = 1 and f = 2,
respectively. Using this, Liu and Wang [27] developed several q-ROF Bonferroni mean
operators based on the Archimedean operations. Li et al. [28] extended the idea of q-
ROFS background of the EDAS method to define the DM approach. Furthermore, the
concept of the Cq-ROFS and Cq-ROF linguistic set was introduced by Liu et al. [29], and
many Cq-ROFL Heronian mean operators were advanced. Zhang et al. [30] developed an
evaluation and selection model fora community group purchase platform based on the
WEPLPA-CPT-EDAS method.

The above FSs have only represented information from a quantitative point of view,
and it is difficult to give the exact numerical values for expressing their point of view on
DM. Thus, Zadeh [31] developed a linguistic variable to define the qualitative setting in
DM problems. After that, some new ideas, such as the single-valued neutrosophic linguistic
set [32] and linguistic q-rung orthopair fuzzy sets (Lq-ROFS) [33], were proposed by joining
the linguistic variable and the FS. Pei et al. [34] defined the fuzzy linguistic multi-set TOPSIS
method and its application in linguistic decision making. Kong et al. [35] developed some
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operations on generalized hesitant fuzzy linguistic term sets. Rong et al. [36] defined
hesitant fuzzy linguistic Hamy mean AOs and discussed their application to MADM.
Further, Herrera and Martlnez [37] defined the idea of 2-tuple fuzzy linguistic variables
and a numerical one to prevent loss of knowledge of the decision-making procedure.
Some scholars [38] subsequently merged the 2-tuple linguistic variable and other FSs and
developed the idea of an intuitionistic 2-tuple linguistic label (2TLL)), 2-tuple linguistic
PyFSs [39], and so on. Su et al. [40] proposed the evaluation of online learning platforms
based on probabilistic linguistic term sets with the self-confidence MAGDM method.
Yang et al. [41] defined a decision-making structure based on Fermatean fuzzy integrated
weighted distance and the TOPSIS method for green low-carbon port evaluation.

It is well-known that the aggregation operator is a key tool in the field of information
fusion, and numerous research results on various aspects of it have been achieved. Xu [42]
introduced several geometric AOs to aggregate intuitionistic fuzzy data. Liu and Wang [43]
proposed the proven MAGDM approach to the weighted averaging and geometric opera-
tors for q-ROFS. However, these operators presume that the attributes in the integrated
system are separate; i.e., they fail to take into account the interrelationships of the criteria
addressed in the DM problems. To address this limitation, it is suggested that the Bonfer-
roni mean (BM) and Heroine mean (HM) operators find the importance of the two data
sources. However, the BM and the Heroine mean operator do not notice interconnections
between multi-input data. Maclaurin [44] initially suggested the Maclaurin symmetric
mean (MSM) operator to capture the correlation between multi-input data. Qin and Liu [45]
subsequently suggested a dual MSM operator for the IF setting. Liu and Qin [46] intro-
duced some LIMSM operators to develop an MCGDM system. Wei and Lu [47] extended
the MSM operator for the Pythagorean fuzzy environment for DM problems. Liao et al. [48]
proposed a q-rung orthopair fuzzy-GLDS method for investment evaluation of BE angel
capital in China. Khan et al. [49] defined the linguistic interval-valued q-rung orthopair
fuzzy TOPSIS method for a decision-making problem with incomplete weight.

1.2. Objective of Study

To the best of our knowledge, the MSM operator is not generalized to CFOF informa-
tion. For addressing some issues, we explore the idea of complex fractional orthotriple
fuzzy 2-tuple linguistic sets (CFOF2TLSs) with a condition that the sum of f-powers of the
real parts of the truth, abstinence, and falsity grades does not exceed the form unit interval.
So, for f = 3, the above problem is solved effectively.

Considering the intricacy in the real circumstances and maintaining the benefits of the
MSM operators and CFOF2TLSs, the goals of this research are as follows.

1. To investigate the interesting concept of CFOF2TLS and define their laws of operation
2. To define the score function, accuracy function, and comparative analysis of CFOF2TLNs.
3. To present the concept of the CFOF2TL weighted average (CFOF2TLWA) operator

and CFOF2TL weighted geometric (CFOF2TLWG) operator.
4. To define several MSM operators, such as CFOF2TLMSM and CFOF2TL weighted

Maclaurin symmetric mean (CFOF2TLWMSM) operators, and study the fundamental
characteristics in detail.

5. To propose a MAGDM approach based on the defined aggregation operators.
6. To explain the feasibility and effectiveness of the method established by a numerical

example for evaluating emergency projects.

The overall structure of the article is as follows. In Section 2, we briefly look back
on some basic concepts and meanings, including the 2-tuple linguistic model, the CFOFS,
and the MSM operator. In Section 3, we define the concept of CTSF2TLS, fundamental
rules of operation, methodology of comparison, and fundamental operations. In Section 4,
we develop the CFOF2TLA, CFOF2TLWA operator and discuss several features and their
particular cases. In Section 5, we develop the CFOF2TLMSM, CFOF2TLWMSM operator
and discuss several features and their particular cases. Section 6 concerns the novel
MAGDM approach based on the CFOF2TLWMSM operators. In Section 7, an assessment
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problem of an emergency system is used to illustrate the efficiency, and a comparative
study is carried out to point out the merits of the defined approach. At the end, concluding
remarks are included in Section 8.

2. Preliminaries

This section concisely discusses a variety of basic information, such as the 2-tuple
linguistic variable, CFOFS, and the MSM operator.

2.1. 2-Tuple Linguistic Term Set

Definition 1 ([37]). Let S = {s0, s1, ..., sg} be a defined linguistic term set, and the cardinality of
S is g + 1. For any si, sj ∈ S, the following properties should be satisfied:

1. If i > j, then si > sj;
2. If si ≥ sj, then max

(
si, sj

)
= si;

3. If si ≤ sj, then min
(
si, sj

)
= si;

4. Neg(si) = sg−i.

Generally, the cardinality of the linguistic label set S is an odd number, and more than
nine or less than five are both difficult for DMs to evaluate. Therefore, the cardinalities of
the linguistic label set S are usually 5, 7, or 9. If S is defined with five cardinalities, then it is
shown as S = {s0 =none, s1 =very poor, s2 =poor, s3 =medium, s4 =good}. In order to
express linguistic information more exactly, the 2-tuple linguistic term (si, α) is defined by
Herrera and Martinez [37], where si is a linguistic term involved in set S, andα is a numeric
number denoted the deviation from si. Some related notations of 2-tuple linguistics are
provided as follows:

Definition 2 ([37]). Let S = {s0, s1, ..., sg} be a pre-defined linguistic term set and β ∈ [0, g] be a
value denoting the result of aggregation operation. The 2-tuple linguistic (si, α) is equivalent to β
through the mapping Λ as follows:

Λ : [0, g]→ Ś× [−0.5, 0.5), (1)

Λ(β) =


si, i = round(β)

α = β− i, α ∈ [−0.5, 0.5),
(2)

where round is the usual round operation.
Obviously, Λ is a one-to-one mapping, Λ has an inverse function Λ−1 that Λ−1 : S ×

[−0.5, 0.5)→ [0, g], and Λ−1(si, α) = α + i = β.

Definition 3. Let (si, αi) and
(
sj, αj

)
be two 2-tuple linguistic terms; the relations to compare

them can be given as follows:

1. If i > j, then (si, αi) >
(
sj, αj

)
;

2. If i = j, then
(a). (si, αi) >

(
sj, αj

)
for αi > αj;

(b). (si, αi) <
(
sj, αj

)
for αi < αj;

(c). (si, αi) =
(
sj, αj

)
for αi = αj.

Definition 4 ([2]). A CFS C on universal set X is defined as C = {〈x, σC(x)〉|x ∈ X}, where
σC : X → {z : z ∈ C, |z| ≤ 1} and σC(x) = a1 + ib1 = κC(x).e2πizC(x). Here, κC(x) =√

a2
1 + b2

1 ∈ R and κC(x),zC(x) ∈ [0, 1], where i =
√
−1.

Definition 5 ([9]). A CIFS I on universal set X is defined as I = {〈x, σI(x), υI(x)〉|x ∈ X},
where σI : X → {z1 : z1 ∈ I, |z1| ≤ 1}, υi : X → {z2 : z2 ∈ i, |z2| ≤ 1} such that
σi(x) = z1 = a1 + ib1 and υi(x) = z2 = a2 + ib2 provided that 0 ≤ |z1| + |z2| ≤ 1 or
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σI(x) = κI(x).e2πizκI (x) and υI(x) = ξ I(x).e2πizξ I (x) satisfying the conditions; 0 ≤ κI(x) +
ξ I(x) ≤ 1 and 0 ≤ zκI(x) +zξ I(x) ≤ 1. The term HI(x) = R.e2πizR , such that R = 1−
(|z1|+ |z2|) and zR(x) = 1−

(
zκI(x) +zξ I(x)

)
is called the hesitancy grade of x. Furthermore,

I =
(

κ.e2πizκ , ξ.e2πizξ

)
is referred to as the complex intuitionistic fuzzy number (CIFN).

Definition 6 ([50]). A CPFS P on universal set X is defined as P = {〈x, σP(x), ηP(x), υP(x)〉|
x ∈ X}, where σP : X → {z1 : z1 ∈ P, |z1| ≤ 1}, ηP : X → {z2 : z2 ∈ P, |z2| ≤ 1}, υP : X →
{z3 : z3 ∈ P, |z3| ≤ 1}, such that σP(x) = z1 = a1 + ib1, ηP(x) = z2 = a2 + ib2 and υP(x) =
z3 = a3 + ib3 provided that 0 ≤ |z1|+ |z2|+ |z3| ≤ 1 or σP(x) = κP(x).e2πizκP(x) , ηP(x) =

δP(x).e2πizδP(x) and υP(x) = ξP(x).e2πizξP(x) satisfying the conditions; 0 ≤ κP(x) + δP(x) +
ξP(x) ≤ 1 and 0 ≤ zκP(x) +zδP(x) +zξP(x) ≤ 1. The term HP(x) = R.e2πizR , such that R =

1− (|z1|+ |z2|+ |z3|) and zR(x) = 1−
(
zκP(x) +zδP(x) +zξP(x)

)
is called the hesitancy

grade of x. Furthermore, P =
(

κ.e2πizκ , δ.e2πizδ , ξ.e2πizξ

)
is referred to as a complex picture

fuzzy number (CPFN).

Definition 7 ([24]). A CPyFS P on universal set X is defined as; P = {〈x, σP(x), υP(x)〉|
x ∈ X}, where σP : X → {z1 : z1 ∈ P, |z1| ≤ 1}, υP : X → {z2 : z2 ∈ P, |z2| ≤ 1},
such that σP(x) = z1 = a1 + ib1 and υP(x) = z2 = a2 + ib2 provided that 0 ≤ |z1|2 +
|z2|2 ≤ 1 or σP(x) = κP(x).e2πizκP(x) and υP(x) = ξP(x).e2πizξP(x) satisfying the conditions;
0 ≤ κ2

P(x) + ξ2
P(x) ≤ 1 and 0 ≤ z2

κP(x) +z2
ξP(x) ≤ 1. The term HP(x) = R.e2πizR , such that

R =
√

1− (|z1|2 + |z2|2) and zR(x) =
√

1−
(
z2

κP(x) +z2
ξP(x)

)
is called the hesitancy grade

of X. Furthermore, P =
(

κ.e2πizκ , ξ.e2πizξ

)
is referred to as complex a Pythagorean fuzzy number

(CPyFN).

Definition 8 ([51]). A CSFS S on universal set X is defined as S = {〈x, σS(x), ηS(x), υS(x)〉|x ∈ X},
where σS : X → {z1 : z1 ∈ S, |z1| ≤ 1}, ηS : X → {z2 : z2 ∈ S, |z2| ≤ 1}, υS : X → {z3 :
z3 ∈ S, |z3| ≤ 1}, such that σS(x) = z1 = a1 + ib1, ηS(x) = z2 = a2 + ib2 and υS(x) =

z3 = a3 + ib3 provided that 0 ≤ |z1|2 + |z2|2 + |z3|2 ≤ 1 or σS(x) = κS(x).e2πizκS(x) , ηS(x) =
δS(x).e2πizδS(x) and υS(x) = ξS(x).e2πizξS(x) satisfying the conditions; 0 ≤ κ2

S(x) + δ2
S(x) +

ξ2
S(x) ≤ 1 and 0 ≤ z2

κS(x) +z2
δS(x) +z2

ξS(x) ≤ 1. The term HS(x) = R.e2πizR , such that

R =
√

1− (|z1|2 + |z2|2 + |z3|2) and zR(x) =
√

1−
(
z2

κS(x) +z2
δS(x) +z2

ξS(x)

)
are called

the hesitancy grade of X. Furthermore, S =
(

κ.e2πizκ , δ.e2πizδ , ξ.e2πizξ

)
is referred to as a

complex spherical fuzzy number (CSFN).

Definition 9. A CFOFS z on universal set X is defined as z = {〈x, σz(x), ηz(x), υz(x)〉|
x ∈ X}, where σz : X → {z1 : z1 ∈ z, |z1| ≤ 1}, ηz : X → {z2 : z2 ∈ z, |z2| ≤ 1}, υz : X →
{z3 : z3 ∈ z, |z3| ≤ 1}, such that σz(x) = z1 = a1 + ib1, ηz(x) = z2 = a2 + ib2 and υz(x) =
z3 = a3 + ib3 provided that 0 ≤ |z1| f + |z2| f + |z3| f ≤ 1 or σz(x) = κz(x).e2πizκz(x) , ηz(x) =
δz(x).e2πizδz(x) and υz(x) = ξz(x).e2πizξz(x) satisfy the conditions: 0 ≤ κ

f
z(x) + δ

f
z(x) +

ξ
f
z(x) ≤ 1 and 0 ≤ z f

κz(x) +z f
δz(x) +z f

ξz(x) ≤ 1. The term Hz(x) = R.e2πizR , such that

R =
f
√

1− (|z1| f + |z2| f + |z3| f ) and zR(x) = f

√
1−

(
z f

κz(x) +z f
δz(x) +z f

ξz(x)

)
are called

the hesitancy grade of X. Furthermore, z =
(

κ.e2πizκ , δ.e2πizδ , ξ.e2πizξ

)
is referred as a complex

fractional orthotriple fuzzy number (CFOFN).
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Definition 10. Let z1 =
{

κ1(x)e2πizκ1(x) , δ1(x)e2πizδ1(x) , ξ1(x)e2πizξ1(x)
}

and

z2 =
{

κ2(x)e2πizκ2(x) , δ2(x)e2πizδ2(x) , ξ2(x)e2πizξ2(x)
}

be the two CFOFNs with λ ≥ 0. Then,
the operational laws are described as:

1. z1 ⊕z2 =

 (
κ

f
1 (x) + κ

f
2 (x)− κ

f
1 (x)κ f

2 (x)
) 1

f e
2πi
(
z f

κ1(x)+z f
κ2(x)−z

f
κ1(x)z

f
κ2(x)

) 1
f

,

δ1(x).δ2(x)e2πizδ1(x)zδ2(x) , ξ1(x)ξ2(x)e2πizξ1(x)zξ2(x)

;

2. z1 ⊗z2 =


κ1(x)κ2(x)e2πizκ1(x)zκ2(x) ,(

δ
f
1 (x) + δ

f
2 (x)− δ

f
1 (x)δ f

2 (x)
) 1

f e
2πi
(
z f

δ1(x)+z f
δ2(x)−z

f
δ1(x)z

f
δ2(x)

) 1
f

,(
v f

1(x) + ξ
f
2 (x)− ξ

f
1 (x)ξ f

2 (x)
) 1

f e
2πi
(
z f

ξ1(x)+z f
ξ2(x)−z

f
ξ1(x)z

f
ξ2(x)

) 1
f

;

3. λz1 =

(1−
(

1− κ
f
1 (x)

)λ
) 1

f

e
2πi
(

1−
(

1−z f
κ1(x)

)λ
) 1

f

, δλ
1 (x)e

2πizλ
δz1

(x) , ξλ
1 (x)e2πizλ

ξ1(x)

;

4. zλ
1 =


κλ

1 (x)e2πizλ
κ1(x) ,

(
1−

(
1− δ

f
1 (x)

)λ
) 1

f
e

2πi
(

1−
(

1−z f
δ1(x)

)λ
) 1

f

,

(
1−

(
1− ξ

f
1 (x)

)λ
) 1

f
e

2πi
(

1−
(

1−z f
ξ1(x)

)λ
) 1

f

;

Definition 11. Let z1 =
{

κ1(x)e2πizκ1(x) , δ1(x)e2πizδ1(x) , ξ1(x)e2πizξ1(x)
}

be a CFOFN. Then,
the score and accuracy functions are defined as:

Sc∗(z1) =
(

κ f − δ f − ξ f
)
+
(
z f

κ −z f
δ −z f

ξ

)
, (3)

and
Hc∗(z1) =

(
κ f + δ f + ξ f

)
+
(
z f

κ +z f
δ +z f

ξ

)
, (4)

where Sc∗(z1) ∈ [−2, 2], and Hc∗(z1) ∈ [0, 2].

Definition 12. The following comparison rules between two CFOFNs z1 and z2 are satisfied:

1. If Sc∗(z1) > Sc∗(z2), then z1 > z2;
2. If Sc∗(z1) = Sc∗(z2), then

(a). If Hc∗(z1) > Hc∗(z2), then z1 > z2;
(b). If Hc∗(z1) = Hc∗(z2), then z1 = z2.

2.2. Maclaurin Symmetric Mean (MSM) Operator

Definition 13 ([44]). The MSM operator is mathematically defined as follows:

MSM(k)(e1, ..., en) =


∑

1≤r1<...<rk≤n

(
k

∏
j=1

erj

)
Ck

n


1
k

, (5)

where k represents a parameter of r1, ..., rk(k = 1, ..., n), and the values k integer is obtained from
the set of (1, ..., n) of n integer values. Ck

n represents the binomial coefficient, and Ck
n = n!

k!(n−k)! .

The below properties must be satisfied by the MSM operator:

1. MSM(k)(0, ..., 0) = 0;
2. MSM(k)(e1, ..., en) = e, if ei = e, (i = 1, ..., n);
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3. MSM(k)(e1, ..., en) ≤ MSM(k)(ẽ1, ..., ẽn), if ei ≤ ẽi, for all i;
4. min

i
{ei} ≤ MSM(k)(e1, ..., en) ≤ max

i
{ei}.

3. Complex Fractional Orthotriple Fuzzy 2-Tuple Linguistic Set

Basic definitions, score, accuracy functions, and some operators on CFOF2TLS are
defined in this section.

Definition 14. Let X be a fixed set. Then, the CFOF2TLS is expressed as:

z1 =
{〈(

sθ1(x), `1

)
, σ1(x), η1(x), υ1(x)

〉
|x ∈ X

}
, (6)

where sθ(x) ∈ S, ` ∈ [−0.5, 0.5), σ1(x) = κ1(x).e2πizκ1 (x) , η1(x) = δ1(x).e2πizδ1 (x) and υ1(x) =

ξ1(x).e2πizξ1 (x) indicate complex-valued positive, neutral, and negative grade of the element

x belongs to the linguistic variable
(

sθ(x), `
)

, correspondingly. Also satisfy the characteristic

0 ≤ σ
f

1 (x), η
f
1 (x), υ

f
1 (x) ≤ 1 and 0 ≤ z f

κS(x) + z f
δS(x) + z f

ξS(x) ≤ 1. The term Hz(x) =

R.e2πizR , such that R =
f
√

1− (|z1| f + |z2| f + |z3| f ) and zR(x) =

f

√
1−

(
z f

κz(x) +z f
δz(x) +z f

ξz(x)

)
is considered as a hesitancy grade of X. Furthermore,

z =
((

sθ(x), `
)(

κ.e2πizκ , δ.e2πizδ , ξ.e2πizξ

))
is referred to as a complex fractional or-

thotriple fuzzy 2-tuple linguistic number (CFOF2TLN).

Definition 15. Let z1 =
{(

sθ1(x), `1

)(
κ1(x)e2πizκ1 (x) , δ1(x)e

2πizδz1
(x) , ξ1(x)e2πizξ1 (x)

)}
be

a CFOF2TLN. Then, the score index and accuracy index are defined as:

Sc∗(z1) =
(

κ
f
1 − δ

f
1 − ξ

f
1 +z f

κ1 −z f
δ1
−z f

ξ1

)
Λ−1

(
sθ1(x), `1

)
, (7)

and
Hc∗(z1) =

(
κ

f
1 + δ

f
1 + ξ

f
1 +z f

κ1 +z f
δ1
+z f

ξ1

)
Λ−1

(
sθ1(x), `1

)
. (8)

Definition 16. The following comparison rules between two CFOF2TLNs z1 and z2 are satisfied:

1. If Sc∗(z1) > Sc∗(z2), then z1 > z2;
2. If Sc∗(z1) = Sc∗(z2), then

(a). If Hc∗(z1) > Hc∗(z2), then z1 > z2;
(b). If Hc∗(z1) = Hc∗(z2), then z1 = z2.

Definition 17. Let z1 =
{(

sθ1(x), `1

)(
κ1(x)e2πizκ1 (x) , δ1(x)e2πizδ1 (x) , ξ1(x)e2πizξ1 (x)

)}
and

z2 =
{(

sθ2(x), `2

)(
κ2(x)e2πizκ2 (x) , δ2(x)e2πizδ2 (x) , ξ2(x)e2πizξ2 (x)

)}
be the CFOF2TLNs

with λ ≥ 0. Then, the operation laws are defined as:

1. z1 ⊕z2 =


Λ
(

Λ−1
(

sθ1(x), `1

)
+
(

sθ2(x), `2

))
, (

κ
f
1 (x) + κ

f
2 (x)− κ

f
1 (x)κ f

2 (x)
) 1

f e2πi
(
z f

κ1(x)+z f
κ2(x)−z

f
κ1(x)z

f
κ2(x)

) 1
f

,

δ1(x).δ2(x)e2πizδ1(x)zδ2(x) , ξ1(x)ξ2(x)e2πizξ1(x)zξ2(x)


;

2. z1 ⊗z2 =



Λ
(

Λ−1
(

sθ1(x), `1

)
×
(

sθ2(x), `2

))
,

κz1 (x)κ2 (x).e2πizκz1
(x)zκ2 (x) ,

(
δ

f
1 (x) + δ

f
2 (x)− δ

f
z1
(x)δ f

2 (x)
) 1

f

e
2πi
(
z f

δ1 (x)+z f
δ2 (x)−z

f
δz1

(x)z
f
δ2 (x)

) 1
f

,
(

v f
z1
(x) + ξ

f
2 (x)− ξ

f
z1
(x)ξ f

2 (x)
) 1

f

e
2πi
(
z f

ξ1 (x)+z f
ξ2 (x)−z

f
ξ1 (x)z

f
ξ2 (x)

) 1
f




;
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3. λz1 =

Λ
(

λΛ−1
(

sθ1(x), `1

))
,


(

1−
(

1− κ
f
1 (x)

)λ
) 1

f
e

2πi

(
1−
(

1−z f
κ1 (x)

)λ
) 1

f

,

δλ
1
(x)e

2πizλ
δz1

(x) , ξλ
1
(x)e

2πizλ
ξ1 (x)


;

4. zλ
1 =


Λ
(

Λ−1
(

sθ1(x), `1

)λ
)

,



κλ
1
(x)e

2πizλ
κ1 (x) ,

(
1−

(
1− δ

f
1 (x)

)λ
) 1

f

e
2πi

(
1−
(

1−z f
δz1

(x)

)λ
) 1

f

,(
1−

(
1− ξ

f
1 (x)

)λ
) 1

f
e

2πi

(
1−
(

1−z f
ξ1 (x)

)λ
) 1

f




.

4. Aggregation Operators on Complex Fractional Orthotriple Fuzzy 2-Tuple
Linguistic Numbers

Definition 18. Let zi =
{(

sθi(x), `i

)(
κi (x)e

2πizκi (x) , δi (x)e
2πizδi (x) , ξ i (x)e

2πizξi (x)
)}

(i = 1, ..., n) be a family of CFOF2TLNs. A function Φn → Φ is said to be CFOF2TLWA
operator and is defined as:

CFOF2TLWA(z1, ...,zn) =
n

∑
i=1

wizi, (9)

where Φ represents the family of CFOF2TLNs, wi is the weight vector, such that wi ∈ [0, 1] and
∑n

i=1 wi = 1.

Theorem 1. Let zi =
{(

sθi(x), `i

)(
κi(x)e

2πizκi (x) , δi(x)e
2πizδi (x) , ξi(x)e

2πizξi (x)
)}

(i = 1, ..., n)
be a family of CFOF2TLNs, and wi be the weight, such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then, the
result obtained from the CFOF2TLWA operator is still a CFOF2TLN, and‘

CFOF2TLWA(z1, ...,zn) (10)

=


Λ

(
n

∏
i=1

(
wiΛ−1

(
sθi(x), `i

)))
,



(
1−

n
∏
i=1

(
1− κ

f
i (x)

)wi
) 1

f

e
2πi
(

1−
n
∏

i=1

(
1−z f

κi (x)

)wi
) 1

f

,
n
∏
i=1

δwi
i
(x)e

2πi
n
∏

i=1
z

wi
δi (x) ,

n
∏
i=1

ξwi
i
(x)e

2πi
n
∏

i=1
z

wi
ξi (x)




.

Theorem 2. Let zi =
{(

sθi(x), `i

)(
κi(x)e

2πizκi (x) , δi(x)e
2πizδi (x) , ξi(x)e

2πizξi (x)
)}

(i = 1, ..., n)
be a family of CFOF2TLNs. Then, the CFOF2TLWA operator has the below properties:

1. (Idempotency). If all CFOF2TLNs are equal, i.e., zi = z for all i, then

CFOF2TLWA(z1, ...,zn) = z. (11)

2. (Monotonicity). For zi and z̃i(i = 1, ..., n), if zi ≤ z̃i, for all i. Then,

CFOF2TLWA(z1, ...,zn) ≤ CFOF2TLWA(z̃1, ..., z̃n). (12)
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3. (Boundedness). Let zi(i = 1, ..., n) be a family of CFOF2TLNs, and z−i = min
i
{zi},z+

i =

max
i
{zi}. Then,

z−i ≤ CFOF2TLWA(z1, ...,zn) ≤ z+
i . (13)

Definition 19. Let zi =
{(

sθi(x), `i

)(
κi (x)e

2πizκi (x) , δi (x)e
2πizδi (x) , ξ i (x)e

2πizξi (x)
)}

(i =

1, ..., n) be a family of CFOF2TLNs. A function Φn → Φ is said to be a CFOF2TLWG operator and
defined as:

CFOF2TLWG(z1, ...,zn) =
n

∑
i=1

(zi)
wi , (14)

where Φ represent the family of CFOF2TLNs, wi are the weights, such that wi ∈ [0, 1] and
∑n

i=1 wi = 1.

Theorem 3. Let zi =
{(

sθi(x), `i

)(
κi(x)e

2πizκi (x) , δi(x)e
2πizδi (x) , ξi(x)e

2πizξi (x)
)}

(i = 1, ..., n)
be a family of CFOF2TLNs, and wi are the weights, such that wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then,
the value obtained from the CFOF2TLWG operator is still a CFOF2TLNs, and

CFOF2TLWG(z1, ...,zn) (15)

=



Λ

(
n

∏
i=1

(
Λ−1

(
sθi(x), `i

))wi

)
,



n
∏
i=1

κwi
i
(x)e

2πi
n
∏

i=1
z

wi
κi (x) ,(

1−
n
∏
i=1

(
1− δ

f
i (x)

)wi
) 1

f

e
2πi
(

1−
n
∏

i=1

(
1−z f

δi (x)

)wi
) 1

f

,(
1−

n
∏
i=1

(
1− ξ

f
i (x)

)wi
) 1

f

e
2πi
(

1−
n
∏

i=1

(
1−z f

ξi (x)

)wi
) 1

f





.

Theorem 4. Let zi =
{(

sθi(x), `i

)(
κzi (x)e

2πizκzi
(x) , δzi (x)e

2πizδzi
(x) , ξzi (x)e

2πizξzi
(x)
)}

(i = 1, ..., n) be a family of CFOF2TLNs. Then, the CFOF2TLWG operator possesses the following fea-
tures:

1. (Idempotency). If all CFOF2TLNs are equal, i.e., zi = z for all i, then

CFOF2TLWG(z1, ...,zn) = z. (16)

2. (Monotonicity). For zi and z̃i(i = 1, ..., n), if zi ≤ z̃i, for all i. Then,

CFOF2TLWG(z1, ...,zn) ≤ CFOF2TLWG(z̃1, ..., z̃n). (17)

3. (Boundedness). Let zi(i = 1, ..., n) be the family of CFOF2TLNs, and z−i = min
i
{zi},

z+
i = max

i
{zi}. Then,

z−i ≤ CFOF2TLWG(z1, ...,zn) ≤ z+
i . (18)

5. The Complex Fractional Orthotriple Fuzzy 2-Tuple Linguistic Maclaurin’s
Symmetric Mean Operators

In this portion, we generalize the MSM operator to the proposed CFOF2TL envi-
ronment to build up the CFOF2TLMSM operator. Further, we define their weighted
CFOF2TLWMSM operator.
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5.1. The CFOF2TLMSM Operator

Definition 20. Let zi =
{(

sθi(x), `i

)(
κi (x)e

2πizκi (x) , δi (x)e
2πizδi (x) , ξ i (x)e

2πizξi (x)
)}

(i = 1, ..., n) be a family of CFOF2TLNs. A function Φn → Φ known as a CFOF2TLMSM
operator is:

CFOF2TLMSM(k)(z1, ...,zn) =


∑

1≤r1<...<rk≤n

(
k

∏
i=1

zri

)
Ck

n


1
k

, (19)

where Φ stands for the family of CFOF2TLNs, k(1, ..., n) is a parameter, (r1, ..., rk) are the k
integer values obtained from the family (1, ..., n) of the n integer values, Ck

n represents the binomial
coefficient, and Ck

n = n!
k!(n−k)! .

Theorem 5. Let zi =
{(

sθi(x), `i

)(
κi(x)e

2πizκi (x) , δi(x)e
2πizδi (x) , ξi(x)e

2πizξi (x)
)}

(i = 1, ..., n)
be a family of CFOF2TLNs, the result of (z1, ...,zn) is obtained by utilizing the CFOF2TLMSM
operator described as:

CFOF2TLMSM(k)(z1, ...,zn) (20)

=



Λ



(

∑
ψ

n
∏

i=1

(
Λ−1

(
sθri (x),`ri

)))
Ck

n


1
k
,




1−

(
∏
ψ

(
1−

(
k

∏
i=1

κri
(x)
) f)) 1

Ck
n


1
f


1
k

e

2πi


1−

(
∏
ψ

(
1−
(

k
∏

i=1
zκri

(x)

) f)) 1
Ck

n


1
f


1
k

,1−

1−
(

∏
ψ

(
1−

k
∏
i=1

(
1−

(
δri

(x)
) f
))) 1

Ck
n


1
k


1
f

e

2πi

1−

1−
(

∏
ψ

(
1−

k
∏

i=1

(
1−
(
zδri

(x)

) f
))) 1

Ck
n


1
k


1
f

1−

1−
(

∏
ψ

(
1−

k
∏
i=1

(
1−

(
ξri

(x)
) f
))) 1

Ck
n


1
k


1
f

e

2πi

1−

1−
(

∏
ψ

(
1−

k
∏

i=1

(
1−
(
zξri

(x)

) f
))) 1

Ck
n


1
k


1
f





,

where ψ represents the subscript (1 ≤ r1 < ... < rk ≤ n).

Proof. For proof, see Appendix A.
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Theorem 6. (Idempotency). Let zi = {
(

sθi(x), `i

)
, κi (x)e

2πizκi (x) , δzi (x)e
2πizδi (x) ,

ξ i (x)e
2πizξi (x)}(i = 1, ..., n) be a family of CFOF2TLNs. If all CFOF2TLNs are equal, i.e.,

zi = z, ∀i, then
CFOF2TLMSM(z1, ...,zn) = z. (21)

Proof. For proof, see Appendix B.

Theorem 7. (Monotonicity). Let zi = {
(

sθi(x), `i

)
, κi (x)e

2πizκi (x) , δzi (x)e
2πizδi (x) ,

ξ i (x)e
2πizξi (x)}(i = 1, ..., n) be a family of CFOF2TLNs. iIf zi ≤ z̃i, for all i, then

CFOF2TLMSM(z1, ...,zn) ≤ CFOF2TLMSM(z̃1, ..., z̃n). (22)

Proof. For proof, see Appendix C.

Theorem 8. (Boundedness). Let zi = {
(

sθi(x), `i

)
, κi (x)e

2πizκi (x) , δzi (x)e
2πizδi (x) ,

ξ i (x)e
2πizξi (x)}(i = 1, ..., n) be a family of CFOF2TLNs, and z−i = min

i
{zi},z+

i = max
i
{zi}.

Then,
z−i ≤ CFOF2TLMSM(z1, ...,zn) ≤ z+

i . (23)

Proof. For proof, see Appendix D.

A number of novel operators will be calculated in the next step by assigning various
values of k.

1. If k = 1, the CFOF2TLMSM operator is reduced to a CFOF2TL arithmetic average
(CFOF2TLAA) operator, defined as follows:

CFOF2TLMSM(1)(z1, ...,zn) (24)

=
1
n

(
∑

1≤r1≤n
zri

)
=

1
n

(
n

∑
r=1

zr

)
(let r1 = r)

=



Λ
(

1
n

(
n
∑

r=1

(
Λ−1

(
sθr(x), `r

))))
,

(
1−

n
∏

r=1

(
1− κ f

r (x)
) 1

n
) 1

f

e
2πi

1−
(

n
∏

r=1

(
1−z f

ξr (x)

)) 1
n
 1

f

,

n
∏

r=1
δ

1
n
zr
(x)e

2πi
(

n
∏

r=1
z

1
n
δr (x)

)
,

n
∏

r=1
ξ

1
n
r (x)e

2πi
(

n
∏

r=1
z

1
n
ξr (x)

)


.

2. If k = 2, the CFOF2TLMSM operator is reduced to a CFOF2TL Bonferroni mean
(CFOF2TLBM) operator, defined as follows:



Symmetry 2023, 15, 251 12 of 38

CFOF2TLMSM(2)(z1, ...,zn) (25)

=


∑

1≤r1<r2≤n

(
2

∏
i=1

zri

)
C3

n


1
2

=
1

n(n− 1)

 k

∑
r1,r2=1

r1 6=r2

(
z1

r1
z1

r2

)
1
2

=



Λ

 1
n(n−1)

 k
∑

r1,r2=1
r1 6=r2

(
Λ−1

(
sθr1 (x), `r1

))(
Λ−1

(
sθr1 (x), `r1

))
1
2
,


1−

k
∏

r1,r2=1
r1 6=r2

(
1− κ

f
zr1

(x)κ f
r2
(x)
) 2

n(n−1)


1
f


1
2

e

2πi


1−

 k
∏

r1,r2=1
r1 6=r2

(
1−z f

ξr1
(x)z

f
ξr2

(x)

)
1

n(n−1)


1
f


1
2

,1−

1−

 k
∏

r1,r2=1
r1 6=r2

(
1−

(
1− δ f

r1
(x)
)(

1− δ f
r2
(x)
))

1
n(n−1)


1
2


1
f

e

2πi

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−
(

1−z f
δr1

(x)

)(
1−z f

δr2
(x)

))
1

n(n−1)


1
2


1
f

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−

(
1− ξ f

r1
(x)
)(

1− ξ f
r2
(x)
))

1
n(n−1)


1
2


1
f

e

2πi

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−
(

1−z f
ξr1

(x)

)(
1−z f

ξr2
(x)

))
1

n(n−1)


1
2


1
f



.

3. If k = 3, the CFOF2TLMSM operator becomes a CFOF2TL generalized Bonferroni
mean (CFOF2TLGBM) operator, defined as follows:

CFOF2TLMSM(3)(z1, ...,zn) (26)

=


∑

1≤r1<r2≤n

(
3

∏
i=1

zri

)
C3

n


1
3

=
1

n(n− 1)(n− 2)

 k

∑
r1,r2,r3=1

ri 6=rj 6=rp

(
z1

r1
z1

r2
z1

r3

)
1
3

.
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4. If k = n, the CFOF2TLMSM operator is reduced to a CFOF2TL geometric mean
(CFOF2TLGM) operator, defined as follows:

CFOF2TLMSM(n)(z1, ...,zn) =
1
n

(
n

∏
i=1

zr

) 1
n

(27)

=



Λ

((
n
∑

r=1

(
Λ−1

(
sθr(x), `r

))) 1
n
)

,

(
n
∏

r=1
(κr (x))

) 1
n

e
2πi
(

n
∏

r=1
z f

ξr (x)

) 1
n

,

(
1−

(
n
∏

r=1

(
1− δ f

r (x)
)) 1

n
) 1

f

e
2πi

1−
(

n
∏

r=1

(
1−z f

δr (x)

)) 1
n
 1

f

,

(
1−

(
n
∏

r=1

(
1− ξ f

r (x)
)) 1

n
) 1

f

e
2πi

1−
(

n
∏

r=1

(
1−z f

ξr (x)

)) 1
n
 1

f



.

5.2. The CFOF2TLWMSM Operator

The attribute weight is an important predictor in practical decision problems. We
propose the CFOF2TLWMSM operators compensate for the defectiveness of the operator
of CFOF2TLMSM as follows:

Definition 21. Let zi =
{(

sθi(x), `i

)(
κi (x)e

2πizκi (x) , δi (x)e
2πizδi (x) , ξ i (x)e

2πizξi (x)
)}

(i = 1, ..., n) be a family of CFOF2TLNs and wi be the weights of zi, where wi ∈ [0, 1] and
n
∑

i=1
wi = 1. A function Φn → Φ known as a CFOF2TLMSM operator defined as:

CFOF2TLWMSM(k)(z1, ...,zn) =


∑

1≤r1<...<rk≤n

(
k

∏
i=1

zri

)wi

Ck
n


1
k

, (28)

where Φ stands for the family of CFOF2TLNs, k is a parameter and k(1, ..., n), r1, ..., rk are the k
integer values obtained from the family (1, ..., n) of the n integer values, Ck

n represents the binomial
coefficient, and Ck

n = n!
k!(n−k)! .

Theorem 9. Let zi =
{(

sθi(x), `i

)(
κi(x)e

2πizκi (x) , δi(x)e
2πizδi (x) , ξi(x)e

2πizξi (x)
)}

(i = 1, ..., n)
be a family of CFOF2TLNs, the result of (z1, ...,zn) is obtained by using a CFOF2TLWMSM
operator expressed as:
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CFOF2TLWMSM(k)(z1, ...,zn) (29)

=



Λ



(

∑
ψ

k
∏

i=1

(
Λ−1

(
sθri (x),`ri

))wri

)
Ck

n


1
k
,




1−

(
∏
ψ

(
1−

(
k

∏
i=1

(
κri

(x)
)wri

) f)) 1
Ck

n


1
f


1
k

e

2πi


1−

(
∏
ψ

(
1−
(

k
∏

i=1

(
zκri

(x)

)wri
) f)) 1

Ck
n


1
f


1
k

,1−

1−
(

∏
ψ

(
1−

k
∏
i=1

(
1−

(
δri

(x)
) f
)wri

)) 1
Ck

n


1
k


1
f

e

2πi

1−

1−
(

∏
ψ

(
1−

k
∏

i=1

(
1−
(
zδri

(x)

) f
)wri

)) 1
Ck

n


1
k


1
f

1−

1−
(

∏
ψ

(
1−

k
∏
i=1

(
1−

(
ξri

(x)
) f
)wri

)) 1
Ck

n


1
k


1
f

e

2πi

1−

1−
(

∏
ψ

(
1−

k
∏

i=1

(
1−
(
zξri

(x)

) f
)wri

)) 1
Ck

n


1
k


1
f





,

where ψ represents the subscript (1 ≤ r1 < ... < rk ≤ n).

Proof. For proof, see Appendix E.

A number of novel operators will be calculated in the next step by assigning various
values of k.

1. If k = 1, the CFOF2TLWMSM operator is reduced to a CFOF2TL weighted average
(CFOF2TLWA) operator, defined as follows:

CFOF2TLWMSM(1)(z1, ...,zn) =
1
n

(
∑

1≤r1≤n
(zri )

wri

)
=

1
n

(
n

∑
r=1

(zr)
wri

)
(30)

=



Λ
(

1
n

(
n
∑

r=1

(
Λ−1

(
sθr(x), `r

))wri

))
,

(
1−

n
∏

r=1

(
1−

(
κ f

r (x)
)wri

) 1
n

) 1
f

e
2πi

1−
(

n
∏

r=1

(
1−
(
z f

ξr (x)

)wri
)) 1

n
 1

f

,

n
∏

r=1
δ

f
zr
(x)e

2πi
(

n
∏

r=1
z

1
n
δr (x)

)
,

n
∏

r=1
ξ f

r (x)e
2πi
(

n
∏

r=1
z

1
n
ξr (x)

)


.
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2. If k = 2, the CFOF2TLWMSM operator is reduced to a CFOF2TL weighted Bonferroni
mean (CFOF2TLWBM) operator, defined as follows:

CFOF2TLWMSM(2)(z1, ...,zn) (31)

=


∑

1≤r1<r2≤n

(
2

∏
i=1

(zri )
wri

)
C2

n


1
2

=
1

n(n− 1)

 k

∑
r1,r2=1

r1 6=r2

(
z

wr1
r1 z

wr2
r2

)
1
2

=



Λ

 1
n(n−1)

 k
∑

r1,r2=1
r1 6=r2

(
Λ−1

(
sθr1 (x), `r1

))wr1
(

Λ−1
(

sθr1 (x), `r1

))wr2


1
2
,


1−

k
∏

r1,r2=1
r1 6=r2

(
1−

((
κzr1

(x)
)wr1

(
κr2

(x)
)wr2

) f
) 2

n(n−1)


1
f


1
2

e

2πi


1−

 k
∏

r1,r2=1
r1 6=r2

(
1−
(
zξr1

(x)

)wr1
(
z f

ξr2
(x)

)wr1
)

1
n(n−1)


1
f


1
2

,1−

1−

 k
∏

r1,r2=1
r1 6=r2

(
1−

(
1− δ f

r1
(x)
)(

1− δ f
r2
(x)
))

1
n(n−1)


1
2


1
f

e

2πi

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−
(

1−z f
δr1

(x)

)wr1
(

1−z f
δr2

(x)

)wr2
) f


1

n(n−1)


1
2


1
f

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−

(
1− ξ f

r1
(x)
)wr1

(
1− ξ f

r2
(x)
)wr2

)
1

n(n−1)


1
2


1
f

e

2πi

1−

1−

 n
∏

r1,r2=1
r1 6=r2

(
1−
(

1−z f
ξr1

(x)

)wr1
(

1−z f
ξr2

(x)

)wr2
)

1
n(n−1)


1
2


1
f



.
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3. If k = 3, the CFOF2TLWMSM operator is reduced to a CFOF2TL generalized weighted
Bonferroni mean (CFOF2TLGWBM) operator, defined as follows:

CTSF2TLWMSM(3)(z1, ...,zn)

=


∑

1≤r1<r2≤n

(
3

∏
i=1

(zri )
wri

)
C3

n


1
3

=
1

n(n− 1)(n− 2)

 k

∑
r1,r2,r3=1

ri 6=rj 6=rp

(
zwr1

r1 zwr2
r2 zwr3

r3

)
1
3

. (32)

4. If k = 3, the CFOF2TLWMSM operator is reduced to a CFOF2TL weighted geometric
mean (CFOF2TLWGM) operator, defined as follows:

CFOF2TLWMSM(n)(z1, ...,zn) =

(
n

∏
i=1

(zr)
wri

) 1
n

(33)

=



Λ

((
n
∑

r=1

(
Λ−1

(
sθr(x), `r

))wri
) 1

n
)

,

(
n
∏

r=1
(κr (x))wri

) 1
n

e
2πi
(

n
∏

r=1

(
zξr (x)

)wri
) 1

n

,

(
1−

(
n
∏

r=1

(
1− δ f

r (x)
)wri

) 1
n
) 1

f

e
2πi

1−
(

n
∏

r=1

(
1−z f

δr (x)

)wri
) 1

n
 1

f

,

(
1−

(
n
∏

r=1

(
1− ξ f

r (x)
)wri

) 1
n
) 1

f

e
2πi

1−
(

n
∏

r=1

(
1−z f

ξr (x)

)wri
) 1

n
 1

f



.

6. Approach for a MAGDM Problem Based on Complex Fractional Orthotriple Fuzzy
2-Tuple Linguistic Information

This section defines an approach for MAGDM using the proposed CFOF2TLMSM
operator in the CFOF2TL information. For a classical MAGDM problem, assume that
Υ = (Υ1, ..., Υm) and Ã = (Ã1, ..., Ãn) are the collection of alternatives and attributes, respec-
tively. The associated weight vector of the attribute is denoted by wi = (w1, ..., wn)T with
∑n

i=1 wi = 1. Suppose that E = (E1, ..., Ep) is the experts set, and the weights of experts are
ω = (ω1, ..., ωp)T with ∑

p
ς=1 ωp = 1. The experts Eς(ς = 1, ..., n) provide their assessment

information for alternative Υj(j = 1, ..., m) under the attribute Ãi(i = 1, ..., n) by the form of

CFOF2TLN, defined as,zς
ji =

{(
sς

θji(x)
, `ς

ji

)(
κς

ji
(x)e

2πizς
κji (x) , δς

ji
(x)e

2πizς
δji (x) , ξς

ji
(x)e

2πizς
ξji (x)

)}
.

The decision matrices are indicated as Zς =
(
zς

ji

)
m×n

. We are designing a new MAGDM

approach to sort the alternatives based on the presented CFOF2TLMSM operator in order
to achieve the best alternative. The following steps are included in the desired procedure:

Step 1. Normalize the given DM matrices using the below formula:
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zς
ji =



((
sς

θji(x), `
ς
ji

)(
κς

ji
(x)e

2πizς
κji (x) , δς

ji
(x)e

2πizς
δji (x) , ξς

ji
(x)e

2πizς
ξ ji (x)

))
, Ãi is benefit type;((

sς
θji(x), `

ς
ji

)(
ξς

ji
(x)e

2πizς
ξ ji (x) , δς

ji
(x)e

2πizς
δji (x) , κς

ji
(x)e

2πizς
κji (x)

))
, Ãi is cost type.

(34)

Step 2. Use the CFOF2TLWMSM operators to integrate all individual DM matrices
Zς =

(
zς

ji

)
m×n

(ς = 1, ..., p) into one DM matrix Z =
(
zji
)

m×n;

zji = CFOF2TLWMSM(z1
ji, ...,zp

ji).

Step 3. Use the CFOF2TLWSMS operators to fuse linguistic evaluation informa-
tion zji(j = 1, ..., m; i = 1, ..., n) into the comprehensive assessment value of alternatives
Υj(j = 1, ..., m)

zj = CFOF2TLWMSM(zji, ...,zji).

Step 4. Find the scores Sc∗(zj) of each alteratives Υj(j = 1, ..., m) using Equation (7).
Step 5. Give ranking to alternatives Υj(j = 1, ..., m), using Definition 16 and select the

best alternative(s).

7. Application in Emergency Alternative Selection

In this section, we discuss how to recover a damaged economy from any emergency,
e.g., terrorism in Pakistan and COVID-19, etc., and define economic growth and factors of
economic growth, and we also discuss the economy of Pakistan.

ECONOMIC GROWTH

When market values of goods and services in an economy grow, economic growth is
usually determined by analyzing the gross domestic product ( GDP) of an inflation-driven
economy. Economic growth has also been calculated by economists and analysts using
the annual percentage change: (1) in %X real GDP, real GDP growth measures the annual
percentage change.in the economy (2) %Y GDP per capita, the willingness of persons in
a country to buy goods and services. This way the effect of inflation is removed from
calculating economic growth.

FACTORS OF ECONOMIC GROWTH

The four factors of economic development that follow are critical elements of an
economy. Their improvement or increase in quantity will affect economic growth.

1. Natural Resources

This changes or increases the state’s production possibility curve. More natural
resources, such as oil or mineral deposits, may fuel economic growth. Other resources
are land, water, forestry, and natural gas. Realistically, increasing the amount of natural
resources in the world is unlikely, if not difficult. In order to avoid depleting them, countries
must take steps to balance supply and demand for scarce natural resources. Improved
management of land would enhance land quality and lead to economic development.

For example, Saudi Arabia ’s economy is dependent on its oil reserves.

2. Physical Capital or Infrastructure

Increased human infrastructure investment minimizes the cost of industrial operations,
such as factories, machinery, and highways. Better factories and machines are more
productive than manual labor. This greater productivity would enhance manufacturing.
Having a comprehensive system of highways, for example, would eliminate inefficiencies
in a nation’s transportation of raw materials or goods, which will increase its GDP.

3. Population or Labor
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An increasing population suggests that there is a rise in the availability of workers or
employees, which means a larger workforce. The downside of having a large population is
that it could contribute to high unemployment.

4. Technology

Improving technology is another influential aspect. Using the same amount of labor,
technology may improve productivity, thereby accelerating growth and development. This
increase means that factories would be more productive at decreased costs. Technology is
more likely to lead to sustainable long-term growth.

Numerical Example

In this example, we used the developed method to recover a damage economy in
Pakistan during COVID-19 and also discuss the factors by which the economic growth rate
of Pakistan can increase. We have three decision makers (E1, E2, E3) to evaluate and select
the most important factor of economic developments among the four attributes: ”Natural
Resources (Ã1)”, ”Physical Capital or Infrastructure (Ã2)”, ”Population or Labor (Ã3)”,
and ”Technology (Ã4)” designated as (Υ1, Υ2, Υ3, Υ4) which are emergency decisions. We
consider that the weighted vectors are “ω1 = 0.3“, “ω2 = 0.3”, and “ω3 = 0.4” for the three
experts and w = (0.2, 0.25, 0.3, 0.25)T for the four attributes. Three decision Tables 1–3 for
complex fractional orthotriple fuzzy numbers are given by experts:

Table 1. Complex fractional orthotriple fuzzy 2-tuple linguistic information given by E1.

Ã1 Ã2

Υ1 (s3, 0),

 0.29ei.2π(0.5),
0.54ei.2π(0.3),
0.61ei.2π(0.4)

 (s2, 0),

 0.54ei.2π(0.3),
0.55ei.2π(0.4),
0.49ei.2π(0.9)


Υ2 (s1, 0)

 0.54ei.2π(0.2),
0.44ei.2π(0.6),
0.63ei.2π(0.7)

 (s4, 0)

 0.44ei.2π(0.5),
0.59ei.2π(0.3),
0.56ei.2π(0.4)


Υ3 (s2, 0),

 0.27ei.2π(0.8),
0.65ei.2π(0.2),
0.68ei.2π(0.6)

 (s3, 0),

 0.61ei.2π(0.7),
0.48ei.2π(0.6),
0.54ei.2π(0.2)


Υ4 (s1, 0),

 0.30ei.2π(0.4),
0.22ei.2π(0.7),
0.63ei.2π(0.5)

 (s1, 0),

 0.73ei.2π(0.8),
0.43ei.2π(0.2),
0.42ei.2π(0.5)


Ã3 Ã4

Υ1 (s3, 0),

 0.53ei.2π(0.3),
0.48ei.2π(0.6),
0.29ei.2π(0.3)

 (s2, 0),

 0.73ei.2π(0.4),
0.48ei.2π(0.5),
0.49ei.2π(0.5)


Υ2 (s1, 0),

 0.45ei.2π(0.7),
0.46ei.2π(0.2),
0.66ei.2π(0.5)

 (s1, 0),

 0.80ei.2π(0.5),
0.21ei.2π(0.2),
0.12ei.2π(0.6)


Υ3 (s2, 0),

 0.73ei.2π(0.4),
0.55ei.2π(0.8),
0.44ei.2π(0.3)

 (s4, 0),

 0.28ei.2π(0.2),
0.55ei.2π(0.7),
0.44ei.2π(0.4)


Υ4 (s3, 0),

 0.60ei.2π(0.6),
0.47ei.2π(0.6),
0.63ei.2π(0.2)

 (s1, 0),

 0.28ei.2π(0.8),
0.65ei.2π(0.4),
0.68ei.2π(0.3)
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Table 2. Complex fractional orthotriple fuzzy 2-tuple linguistic information given by E2.

Ã1 Ã2

Υ1 (s2, 0),

 0.32ei.2π(0.4),
0.44ei.2π(0.2),
0.56ei.2π(0.6)

 (s1, 0),

 0.39ei.2π(0.5),
0.43ei.2π(0.3),
0.63ei.2π(0.5)


Υ2 (s4, 0),

 0.46ei.2π(0.3),
0.73ei.2π(0.4),
0.37ei.2π(0.5)

 (s3, 0),

 0.61ei.2π(0.3),
0.34ei.2π(0.2),
0.41ei.2π(0.6)


Υ3 (s1, 0),

 0.39ei.2π(0.5),
0.52ei.2π(0.7),
0.64ei.2π(0.3)

 (s2, 0),

 0.45ei.2π(0.4),
0.37ei.2π(0.4),
0.54ei.2π(0.4)


Υ4 (s1, 0),

 0.41ei.2π(0.6),
0.69ei.2π(0.6),
0.44ei.2π(0.4)

 (s1, 0),

 0.33ei.2π(0.6),
0.65ei.2π(0.5),
0.21ei.2π(0.2)


Ã3 Ã4

Υ1 (s3, 0),

 0.33ei.2π(0.2),
0.52ei.2π(0.4),
0.72ei.2π(0.7)

 (s4, 0),

 0.43ei.2π(0.5),
0.68ei.2π(0.3),
0.29ei.2π(0.6)


Υ2 (s4, 0),

 0.55ei.2π(0.4),
0.66ei.2π(0.5),
0.44ei.2π(0.3)

 (s1, 0),

 0.51ei.2π(0.3),
0.52ei.2π(0.6),
0.48ei.2π(0.4)


Υ3 (s3, 0),

 0.44ei.2π(0.7),
0.41ei.2π(0.3),
0.64ei.2π(0.5)

 (s2, 0),

 0.32ei.2π(0.4),
0.43ei.2π(0.5),
0.34ei.2π(0.2)


Υ4 (s2, 0),

 0.50ei.2π(0.3),
0.57ei.2π(0.2),
0.53ei.2π(0.4)

 (s4, 0),

 0.48ei.2π(0.6),
0.35ei.2π(0.4),
0.54ei.2π(0.3)


Table 3. Complex fractional orthotriple fuzzy 2-tuple linguistic information given by E3.

Ã1 Ã2

Υ1 (s4, 0),

 0.51ei.2π(0.3),
0.55ei.2π(0.2),
0.53ei.2π(0.4)

 (s2, 0),

 0.47ei.2π(0.6),
0.44ei.2π(0.4),
0.64ei.2π(0.5)


Υ2 (s1, 0),

 0.48ei.2π(0.6),
0.35ei.2π(0.4),
0.54ei.2π(0.3)

 (s3, 0),

 0.32ei.2π(0.4),
0.33ei.2π(0.6),
0.36ei.2π(0.2)


Υ3 (s2, 0),

 0.64ei.2π(0.3),
0.34ei.2π(0.2),
0.41ei.2π(0.6)

 (s4, 0),

 0.56ei.2π(0.3),
0.64ei.2π(0.5),
0.41ei.2π(0.3)


Υ4 (s1, 0),

 0.37ei.2π(0.3),
0.52ei.2π(0.6),
0.48ei.2π(0.4)

 (s1, 0),

 0.36ei.2π(0.5),
0.57ei.2π(0.7),
0.22ei.2π(0.3)


Ã3 Ã4

Υ1 (s2, 0),

 0.53ei.2π(0.5),
0.66ei.2π(0.3),
0.39ei.2π(0.6)

 (s3, 0),

 0.34ei.2π(0.2),
0.52ei.2π(0.4),
0.72ei.2π(0.7)
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Table 3. Cont.

Υ2 (s3, 0),

 0.41ei.2π(0.4),
0.37ei.2π(0.4),
0.54ei.2π(0.4)

 (s1, 0),

 0.41ei.2π(0.6),
0.39ei.2π(0.6),
0.44ei.2π(0.4)


Υ3 (s2, 0),

 0.39ei.2π(0.5),
0.43ei.2π(0.3),
0.63ei.2π(0.5)

 (s4, 0),

 0.38ei.2π(0.5),
0.52ei.2π(0.7),
0.64ei.2π(0.3)


Υ4 (s1, 0),

 0.32ei.2π(0.4),
0.57ei.2π(0.2),
0.56ei.2π(0.6)

 (s3, 0),

 0.46ei.2π(0.3),
0.73ei.2π(0.4),
0.37ei.2π(0.5)



Step 1. Since all attributes are in the same form, the normalization process is not
required.

Step 2. Use the CFOF2TLWMSM operator to integrate all individual decision-making
matrices into one decision-making matrix, which is shown in Table 4 (where k = 2 and
f = 3).

Table 4. Collective decision matrix obtained based on the CFOF2TLWMSM operator.

Ã1 Ã2

Υ1 (s2, 0.372),

 0.527ei.2π(0.682),
0.881ei.2π(0.391),
0.391ei.2π(0.417)

 (s1,−0.413),

 0.518ei.2π(0.381),
0.402ei.2π(0.174),
0.351ei.2π(0.420)



Υ2 (s1,−0.275),

 0.486ei.2π(0.518),
0.302ei.2π(0.713),
0.781ei.2π(0.371)

 (s0, 0.016),

 0.512ei.2π(0.283),
0.372ei.2π(0.513),
0.614ei.2π(0.422)



Υ3 (s0, 0.295),

 0.402ei.2π(0.281),
0.308ei.2π(0.653),
0.293ei.2π(0.391)

 (s2, 0.382),

 0.381ei.2π(0.296),
0.629ei.2π(0.382),
0.437ei.2π(0.190)



Υ4 (s2, 0.402),

 0.511ei.2π(0.303),
0.392ei.2π(0.185),
0.244ei.2π(0.621)

 (s3,−0.321),

 0.132ei.2π(0.261),
0.383ei.2π(0.289),
0.4721ei.2π(0.317)


Ã3 Ã4

Υ1 (s2,−0.431),

 0.231ei.2π(0.173),
0.329ei.2π(0.284),
0.517ei.2π(0.471)

 (s1, 0.320),

 0.383ei.2π(0.183),
0.118ei.2π(0.231),
0.741ei.2π(0.410)



Υ2 (s0, 0.481),

 0.158ei.2π(0.262),
0.361ei.2π(0.671),
0.643ei.2π(0.511)

 (s3, 0.315),

 0.211ei.2π(0.291),
0.422ei.2π(0.413),
0.354ei.2π(0.196)



Υ3 (s2,−0.072),

 0.184ei.2π(0.283),
0.371ei.2π(0.491),
0.244ei.2π(0.516)

 (s3,−0.183),

 0.431ei.2π(0.281),
0.323ei.2π(0.514),
0.654ei.2π(0.401)



Υ4 (s0, 0.281),

 0.418ei.2π(0.319),
0.197ei.2π(0.172),
0.283ei.2π(0.721)

 (s2, 0.462),

 0.481ei.2π(0.502),
0.715ei.2π(0.192),
0.194ei.2π(0.401)



Step 3. Use the CFOF2TLWMSM operator again to fuse linguistic evaluation informa-
tion zji(j = 1, ..., m; i = 1, ..., n) in Table 4 to find the comprehensive assessment value of
alternatives Υj(j = 1, ..., m), shown in Table 5, (where, k = 2 and f = 3).
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Table 5. The integrated assessment information using CFOF2TLWMSM operators.

Alternative CFOF2TLWMSM Operator

Υ1 (s1, 0.281),

(
0.719ei.2π(0.615), 0.518ei.2π(0.413),

0.614ei.2π(0.581)

)

Υ2 (s0, 0.089),

(
0.615ei.2π(0.401), 0.329ei.2π(0.618),

0.568ei.2π(0.572)

)

Υ3 (s2, 0.153),

(
0.706ei.2π(0.713), 0.574ei.2π(0.398),

0.446ei.2π(0.463)

)

Υ4 (s1, 0.275),

(
0.462ei.2π(0.541), 0.851ei.2π(0.427),

0.524ei.2π(0.725)

)

Step 4. Find the scores Sco∗(Υj)(j = 1, ..., m) using Equation (7), which is shown in
Table 6.

Table 6. Alternative score values using CFOF2TLWMSM operators.

Operators
Score Values

Sc∗(Υ1) Sc∗(Υ2) Sc∗(Υ3) Sc∗(Υ4)

CFOF2TLWMSM 0.582 0.672 0.481 0.543

Step 5. Give ranking to alternatives Υj(j = 1, ..., m), using Definition 16 and select the
best alternative(s) is given in Table 7.

Table 7. Ranking order of alternatives.

Operators Alternatives Ranking Best Alternative

CFOF2TLWMSM Υ2 > Υ4 > Υ1 > Υ3 Υ2

7.1. Sensitivity Analysis

From Table 8, we discover that when parameter k is taken as the risk choice of experts,
the sorting results of alternatives are slightly diverse. The different parameter values of k
represent the interrelation of different attributes during the process of DM. For example,
when we take k = 1 in the CFOF2TLWMSM operator, then the ranking order of alternatives
is Υ4 > Υ2 > Υ1 > Υ3, which differs from other situations. Since the CFOF2TLWMSM
operator transforms into a CFOF2TLWA operator when the parameter k = 1 is allocated,
the similarity of the attributes discussed will not be considered when dealing with decision
problems. When decision issues need to consider the interconnection between any input
data in the evaluation phase, evaluators should take aggregation evaluation details k =
1, 2, 3 in the CFOF2TLWMSM operator.

It is evident from Table 9 that the alternate orders for various parameters f are the
same using the CFOF2TLWMSM operator, which supports that the decision procedure is
suitable for various parameters f . The values of f reflect the evaluation information space
for experts. As the f parameter increases, further assessment data can be given by experts
according to their choice. In addition, we can easily explain that as the value of f increases,
the scores of alternatives based on the CFOF2TLWMSM operator become smaller.
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Table 8. The score value and ranking order using diverse k values.

Parameter
Score Values

Alternatives Ranking
Υ1 Υ2 Υ3 Υ4

k = 1 0.381 0.421 0.343 0.442 Υ4 > Υ2 > Υ1 > Υ3

k = 2 0.582 0.672 0.481 0.543 Υ2 > Υ4 > Υ1 > Υ3

k = 3 0.731 0.764 0.662 0.739 Υ2 > Υ4 > Υ1 > Υ3

In Figure 1, we show the rankings of Table 8 graphically.
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Figure 1. Graph of Table 8.

In Table 9, we give the score values using different values of f .

Table 9. The score value and ranking order using diverse f values.

Parameter
Score Values

Alternatives Ranking
Υ1 Υ2 Υ3 Υ4

f = 1 0.574 0.417 0.328 0.362 Υ2 > Υ4 > Υ1 > Υ3

f = 2 0.581 0.675 0.487 0.531 Υ2 > Υ4 > Υ1 > Υ3

f = 3 0.582 0.672 0.481 0.543 Υ2 > Υ4 > Υ1 > Υ3

f = 4 0.589 0.671 0.484 0.547 Υ2 > Υ4 > Υ1 > Υ3

f = 5 0.585 0.663 0.489 0.551 Υ2 > Υ4 > Υ1 > Υ3

In Figure 2, we show the rankings given in Table 9 graphically.
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Figure 2. Graph of Table 9.
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7.2. Comparative Analysis
7.2.1. Verification of Validity

In this article, we perform a series of comparative analyses with other decision methods
to illustrate the validity and practicality of the developed method. We compare our proposal
with the methodology based on complex T-spherical fuzzy AO developed by Ali et al. [52],
the Cq-ROF2TLMSM operator proposed by Rong et al. [53], and the method proposed by
Liu et al. [29] based on the complex q-rung orthopair fuzzy linguistic HM operator. The
scores and order ranking of alternatives are shown in Table 10. From this, the same sorting
results of alternatives using the existing approaches and the method designed in this paper
can be obtained, which show the efficacy of the approach proposed.

Table 10. Score values and ranking of the comparative approaches.

Approaches
Score Values

Ranking
Υ1 Υ2 Υ3 Υ4

Ali et al. [52] 0.932 0.964 0.893 0.942 Υ2 > Υ4 > Υ1 > Υ3

Rong et al. [53] 0.711 0.776 0.695 0.731 Υ2 > Υ4 > Υ1 > Υ3

Liu et al. [29] 0.643 0.689 0.561 0.667 Υ2 > Υ4 > Υ1 > Υ3

In Figure 3, we show ranking of the alternatives of Table 10.

Figure 3. Graph of Table 10 [29,52,53].

7.2.2. Contrast Analysis

In the next paragraphs , we provide more details on the comparison of our method
and existing methods. administer a thorough The method of Ali et al. [52] is based on
the CFOF aggregation operator. As a fundamental aggregation technique for integrating
complex fractional orthotriple fuzzy knowledge, the CFOF aggregation operator assumes
that the attributes considered in real-life problems are unrelated; i.e., it considers the im-
portance of attributes that resulted in uncertain and unreasonable decisions. The operator
CFOF2TLMSM will resolve the abovementioned defect and take the attribute relationship
into account. In addition, through the adjustable parameter, it can represent the individual
favorites of DM and display the dynamic pattern of the order relationship of alternatives.
The CFOF2TLMSM operator is therefore more effective and more general in processing de-
cision analysis issues. While the Cq-ROF2TLMSM operator given by Rong and Zheng [53]
can be used to aggregate complex q-rung orthopair fuzzy data, only the positive and
negative membership grades are considered. In this article, the CFOF2TLMSM operator
not only captures the association between two grades, but also decreases the computational
complexity during the process of aggregation, including the third term (neutral grade).
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In addition, our proposed approach can answer real problems from a qualitative point of
view and resolve some issues that cannot be addressed by the Cq-ROF2TLMSM operator.
Hence, to achieve a reasoned decision outcome, the presented approach is more universal
and practical.

Compared to the Cq-ROFLHM method suggested by Liu et al. [29], some aspects are
used to illustrate the difference between the Cq-ROFLHM operator and the CFOF2TLMSM
operator. Linguistic variable integration data cannot be balanced by sufficient linguistic
words. For example, z1 = (s1.36, (0.7, 0.6)). The virtual linguistic term s1.36 is used only for
comparative and computational processes in this case, but it does not have any semantics
to match it. This would contribute to the loss of data in the process of knowledge fusion.
However, since the linguistic words are continuous in 2-tuple linguistic terms, the 2-tuple
linguistic representation model can avoid data loss. The HM operator can only take
into account the interrelationship of any two characteristics, resulting in an unreasonable
decision. However, in the information integration process, the MSM operator will assume
the association between multiple input attributes. There are two parameters for the HM
operator that make the computational process more complex, and it is difficult for DMs to
evaluate two satisfied parameter values. However, there is only one parameter for the MSM
operator, which is more convenient for DMs to assign sufficient parameter value according
to real needs and their favorites. We summarize the marked features of the proposed
method with other current methods for the above detailed comparative analysis. From
it, we can see that the current approaches, such as CIFs, CPFS, Cq-ROFS, and CSPS, are
particular cases of CFOF2TLS. Based on the CFOF2TLMSM operator, the defined approach
is more efficient than other methods in fusing fuzzy information. Therefore, it is more
suitable for DMs to address realistic MAGDM problems.

8. Conclusions

The existing fuzzy models, such as picture fuzzy sets (PFSs), spherical fuzzy sets
(SFSs), and fractional orthotriple fuzzy sets (FOFSs), contain a number of tight restrictions
on the grades of satisfaction, discontent, abstention, and refusal. We presented a new
extension of fuzzy sets called the complex fractional orthotriple fuzzy 2-tuple linguistic set,
which is more effective in managing diverse uncertainties in a parametric approach to ease
these limits.

Complex fractional orthotriple fuzzy sets (CFOFSs) and 2-tuple linguistic variables
are two efficient models that can not only present complex and ambiguous evaluation
information, but also reduce the loss of information in the MAGDM problems. First, we
proposed a novel term called CFOF2TLS to express unknown and uncertain assessment
information in the sense of actual problems, which artificially consider the merits of CFOFS
and a 2-tuple linguistic variable. We defined novel operations laws of CFOF2TLS and
numerous score and accuracy functions. In addition, we presented several aggregation
operators, including CFOF2TLWA, CFOF2TLWG, CFOF2TLMSM, and CFOF2TLWMSM,
to incorporate CFOF2TL information and to explore several of its long-term characteristics.
Further, we built a new MAGDM approach based on the CFOF2TLWMSM operator, as well
as a numerical example used to illustrate the efficacy and feasibility of the defined concept.
Finally, a comparative study between the current approaches and our methodology was
conducted to show the superiority of the defined approach.

In the future, we will extend our work to other disciplines for further research, such as
symmetric operation, power operation, Hamacher operation, Dombi operation, Einstein
operation, Frank operation, etc. We hope that our research results will be helpful for
researchers working in the fields of information aggregation, information fusion, robotics,
pattern recognition, artificial intelligence, machine learning, medical diagnosis, and neu-
ral networks.
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Appendix A. Proof of Theorem 5

Proof. Using the basic operation of CFOF2TLNs, we have
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then,
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Appendix B. Proof of Theorem 6

Proof.
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Appendix C. Proof of Theorem 7
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Further, for the positive MD, as κ(x) ≤ κ̃(x), we have(
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Accordingly, we have
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Similarly, for the neutral and negative MD, we obtain
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Base on Definition 17, we have Sc∗(zi) ≤ Sc∗
(
z̃i
)
, i.e.,

CFOF2TLMSM(z1, ...,zn) ≤ CFOF2TLMS(z̃1, ..., z̃n).

Appendix D. Proof of Theorem 8

Proof. Based on both properties (idempotentency and monotonicity) of the proposed
CFOF2TLMSM operator, the below results can be obtained.
If zi ≥ z− = mini (zi), then

CFOF2TLMSM(z1, ...,zn) ≥ CFOF2TLMSM(z−1 , ...,z−n ) = z−.

If zi ≤ z+ = maxi (zi), then

CFOF2TLMSM(z1, ...,zn) ≤ CFOF2TLMSM(z+
1 , ...,z+

n ) = z+.

Thus, we can write,
z− ≤ CFOF2TLMSM(z1, ...,zn) ≤ z+.

Appendix E. Proof of Theorem 9

Proof. Using the basic operation of CFOF2TLNs, we have
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