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Abstract: We present a simple yet effective pipeline for absolute three-dimensional (3D) human
pose estimation from two-dimensional (2D) joint keypoints, namely, the 2D-to-3D human pose
lifting problem. Our method comprises two simple baseline networks, a 3D conversion function,
and a correction network. The former two networks predict the root distance and the root-relative
joint distance simultaneously. Given the input and predicted distances, the 3D conversion function
recovers the absolute 3D pose, and the correction network reduces 3D pose noise caused by input
uncertainties. Furthermore, to cope with input noise implicitly, we adopt a Siamese architecture
that enforces the consistency of features between two training inputs, i.e., ground truth 2D joint
keypoints and detected 2D joint keypoints. Finally, we experimentally validate the advantages of
the proposed method and demonstrate its competitive performance over state-of-the-art absolute
2D-to-3D pose-lifting methods.

Keywords: absolute 3D human pose estimation; 2D-to-3D human pose lifting; distance prediction

1. Introduction

The 3D human pose estimation is one of the most actively researched areas in computer
vision, and it plays an essential role in a broad number of applications, from AR and VR
experiences to motion pictures. However, the accurate absolute-scale 3D human pose is
conventionally and even currently obtained using marker-based vision systems [1,2] that
require various devices and sensors, including optical markers and multiple IR cameras
in a controlled environment. This complicated system makes general use burdensome. In
contrast, recent advances in deep learning have significantly improved the performance
of marker-less 3D human pose estimation methods that typically exploit video sequences,
images, two-dimensional (2D) joints [3], or noisy 3D joints [4] as inputs. Since the monocular
3D pose estimation problem inherently suffers from predicting the 3D human pose on an
absolute scale, most studies relax this problem to predict root relative distance by defining
the pelvis as the origin or root node. This is referred to as either a root-relative or person-
centric 3D human pose estimation problem, whereas the absolute 3D pose estimation
problem is referred to as a camera-centric 3D human pose problem.

Compared to the root-relative 3D human pose, the absolute 3D human pose is bene-
ficial for real-world applications, such as surveillance systems and autonomous vehicles,
where real-scale human motion and body size are crucial. For example, the groundbreaking
work of [5] solves the absolute 3D human pose estimation problem by separately predicting
the real-scale distance of a root joint and root-relative 3D human pose and then integrat-
ing them into a camera-centric 3D human pose. Similarly, several studies also estimated
real-scale 3D poses from a single image or video sequence [6–8]. Since they do not use 2D
pose information as input, we call them direct absolute 3D pose-estimation approaches.
Direct 3D pose estimation has two advantages: it is possible to use a large amount of
image information and an end-to-end trainable architecture. However, they require pairs of
images and their corresponding 3D annotations, which are expensive and time-consuming.
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In addition, a direct method is typically trained in an end-to-end manner using a single
cost function. Therefore, once the target environment changes, a new dataset that contains
a new image, and its corresponding 3D pose label is required.

Owing to recent impressive advances in 2D pose estimation [9–11], several studies
have decomposed the 3D pose estimation problem into a 2D pose estimation and 2D-to-3D
lifting problems. 2D-to-3D lifting methods [12–18] have proven their practical efficiency
and generality, and show competitive performance compared to the direct method. Many
2D-to-3D lifting methods are typically built on a simple regression network [12] and are
more flexible and easier to use than direct methods. For instance, different datasets can
be utilized for training a 2D pose prediction network and 2D-to-3D pose lifting network.
Indeed, we can easily generate pairs of labeled data by augmenting 3D joints with viewpoint
changes or various poses [19] and reprojecting them onto image coordinates. To the best of
our knowledge, compared to the root-relative methods, the absolute 2D-to-3D pose lifting
method or root depth estimation has not been received much attention except for [18,20–22].

In contrast to 2D-to-3D human pose lifting, the direct method predicts a 3D human
pose from an image without 2D joint keypoints. The direct method [23–27] is suitable for
recovering 3D human poses because it extracts both contextual and pose information from
an image. However, acquiring supervised data, that is, ground truth 2D and 3D human
pose labels aligned with images, is a demanding process in practice and is not easy to apply
to different environments universally.

Since the absolute 2D-to-3D pose-lifting method relies solely on 2D joints, the input
information is very limited compared to that of direct methods. In addition, the impact
of noise in 2D joints significantly degrades the pose-prediction accuracy, as demonstrated
in [12]. We address these two critical issues while keeping the network as compact as
possible. The contributions of our study are summarized as follows.

• The previous methods directly perceive absolute 3D joints from 2D joint keypoints
as input i.e., f : R2 → R3, but our method predicts both one-dimensional root
distance and root-relative distance of other joints using two regression networks
i.e., fR, fr : R2 → R1. Afterwards, a simple 3D conversion function computes an
initial absolute 3D pose using the input and the predicted distances. Thanks to lower-
dimensional output, we can efficiently reduce the number of network parameters
while keeping the performance competitive with state-of-the-art methods. This is
because the radial distance prediction indirectly avoids perspective projection errors
by disentangling the depth ambiguity caused by horizontal and vertical components.

• We propose to use a correction network to reduce the absolute 3D pose uncertainties,
affected by input noise. When the ground truth of 2D joint keypoints are available, we
adopt a Siamese architecture [28] that shares the network for noisy and clean inputs.
By applying the feature consistency for different inputs, we reduce the influence of
detection noise implicitly. Contrarily to our approach, the existing study [20] augments
training data using synthesized errors generated from the error statistics.

• Inspired by [29–31], we also exploit relationships between joints in loss functions to
regularize the problem. We design two loss functions, i.e., bone length symmetry and
directional consistency between adjacent joints.

2. Related Work

We review 3D pose estimation methods that use a 2D pose or RGB image as the input.
Furthermore, the methods are divided into two categories: absolute and root-relative pose
estimation approaches. Most methods solve the 3D pose estimation problem using the
root-relative method, and a handful of studies predict real-scale 3D joints.

2.1. Absolute 2D-to-3D Pose Lifting

The absolute-scale approach estimates a real-scale 3D human pose using a 2D pose
as the input. Pavllo et al. [32] used temporal information with dilated convolutions over
2D keypoint trajectories to estimate the 3D trajectory of the root joint. Chang et al. [20]
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proposed a simple cascade approach that combines a 2D pose detector and 2D-to-3D
pose lifter. They normalized the input using the principal point of the camera instead
of the real depth and rebuilt it to the canonical root depth. The root depth generates the
final absolute depth multiplied by the focal length. Furthermore, to handle the noise of
detected 2D joints, they augmented the ground truth 2D pose with synthetic errors from
the error statistics of 2D pose estimation in training. The authors of [18] decomposed the
absolute pose estimation problem into two sub-problems, root-relative pose estimation and
root localization, with decoupling camera parameter and keypoints. Additionally, they
employed temporal key-point motion information to help resolve the 3D pose ambiguity
caused by occlusion. The authors of [21] proposed MonoLoco that robustly estimates
absolute root depth using 2D joints as input. They further improved MonoLoco by solving
the problem using a spherical coordinate system [22]. This disentangles the depth ambiguity
from the horizontal and vertical components, i.e., x and y, and alleviates errors caused
by perspective projections. [18] tackles absolute pose estimation by converting pixel
space input to 3D normalized ray space, which makes it robust to changes in camera
intrinsic parameters.

2.2. Root-Relative 2D-to-3D Pose Lifting

The root-relative approach estimates the normalized-scale 3D human pose using a
2D pose or an RGB image as the input. The authors of [12] proposed a simple baseline
for 2D-to-3D pose lifting, which is the most efficient method for estimating the root-
relative depth of each joint. Furthermore, it uses only two fully connected blocks while
demonstrating good performance. The authors of [15] proposed using ordinal depth as
additional supervision for CNN training. The authors of [17] introduced static and dynamic
hyper-graphs to represent a human body for 3D pose estimation. Several studies have
used human body structures to improve 3D pose accuracy, such as universal bone lengths,
limitation of joint angles, and limb interpenetration constraints. The authors of [29] used
pose-dependent joint angle limits for 2D-3D liter through optimization problem. The
authors of [33] suggested multi-view pose augmentation from the 2D pose in the single
view and estimated 3D poses using graph convolution networks [34]. The authors of [30]
presented a distance matrix method that estimates a 3D Euclidean distance matrix from a 2D
Euclidean distance matrix using a simple regression network. The authors of [31] applied re-
parameterized pose representation, which uses the joint connection structure. The authors
of [14] enforced high-level constraints over pose using the human body grammar model.
The authors of [35] encode relative positional and temporal enhanced representations, and
this approach achieves excellent root-relative 3D pose accuracy. The authors of [36] adopt a
pure Transformer to capture human joint correlations and temporal dependencies.

Direct methods directly estimate the 3D pose from an RGB image input. Various rep-
resentations of these outputs exist, such as 3D coordinates [37], volumetric heatmaps [24],
and bone-based representations [31]. Moreover, several studies leveraged temporal infor-
mation to further improve and smooth the 3D pose from continuous video frames [38,39].
However, both direct and sequential methods, constructing images, and the corresponding
3D pose labels or sequential label data are impractical.

3. Methodology

Inspired by the simple baseline method [12], we propose a simple yet effective absolute
2D-to-3D pose lifting pipeline that effectively exploits the limited information of 2D poses.
To keep the network size compact and alleviate perspective projection errors, our method
predicts the absolute distance of joints rather than directly estimating the absolute 3D
pose from 2D joint keypoints. This section introduces the proposed 2D-to-3D pose-lifting
method and explains the loss functions in detail.
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3.1. Problem Formulation

We formulate the absolute 2D-to-3D human pose-lifting problem as

P̂ = f (p, θ), (1)

where f : R2 → R3 is a lifting function, θ indicates trainable parameters, and p = [p1, ..., pN ]
denotes the detected 2D joint keypoints as input with the number of keypoints N. The
lifting function predicts the 3D pose, P̂. To train θ, we minimize the following function:

min
θ
L( f (p, θ), P), (2)

which minimizes the discrepancy between the predicted 3D joints P̂ and the ground truth
3D joints P. A detailed description is provided in Section 3.4.

3.2. Absolute 3D Pose from Distances

Inspired by previous studies [18,21,22], we propose an absolute 3D human pose
estimation with a calibrated camera. Therefore, we normalize the input using the camera
intrinsic matrix K by

p̄ = K−1[p>, 1>N ]
>, (3)

where a vector of the 2D keypoints and its normalization are denoted by

p = [p1, ..., pN ]
>, p̄ = [ p̄1, ..., p̄N ]

>, (4)

where the ith 2D keypoint is represented by pi = [xi, yi]
> and p̄i = [x̄i, ȳi]

>, respectively.
The normalization procedure prevents the overfitting of a specific camera [21].

Other absolute 2D-to-3D human pose-lifting methods directly predict 3D human
poses based on a function f : R2 → R3 [18,20,21]. By contrast, our method predicts a
one-dimensional radial distance for each joint from a normalized 2D keypoint f : R2 → R1.
This effectively reduces the number of network parameters. The radial distance of 3D joints
is defined by

æ = [ρ1, ..., ρN ]
>, ρi =

√
X2

i + Y2
i + Z2

i , (5)

where N is the number of joints, and i-th radial distance ρi is computed by P of i-th joint,
Xi, Yi, and Zi. With the radial distances, we can recover the 3D human pose using the
normalized 2D keypoints. We can formulate the absoulte 3D human pose Pi ∈ P with the
normalized keypoints p̄i ∈ p̄ and predicted radial distance ρ̂i ∈ ρ̂ by

Pi = ψt( p̄i, ρi) = Zi[x̄i, ȳi, 1]>, Zi =
ρi√

x̄2
i + ȳ2

i + 1
, (6)

Since the normalized 2D keypoints p̄ are given, we only need to estimate the radial distance
to get the absolute 3D pose.

3.3. Proposed Pipeline

The proposed framework is built on the simple baseline [12] as the backbone. Similar
to the work of Moon et al. [5], we adopt two backbone networks in our framework, as
shown in Figure 1. They predict the root-relative distance, i.e., relative distances, of joints,
and the absolute root distance, i.e., root distances, respectively. Subsequently, the correction
network further minimizes the predicted 3D pose errors caused by the noise of the detected
2D joint keypoints. We recover the absolute 3D pose P̂ using

P̂ = P̄ + fc(P̄), (7)
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where P̄ is the initial absolute 3D pose with N joints and the correction network fc : R3 →
R3 predicts a residual to refine the initial 3D pose. We compute the initial absolute 3D pose
P̄ from a predicted radial distance vector ρ and normalized keypoints p̄ using (6).

Figure 1. Proposed framework P̂ = f (p, θ). We normalize the input 2D pose to prevent the method
from over-fitting to a specific camera. We adopt the simple baseline network [12] for the root distance
prediction fR(p̄), the relative distance prediction fr(p̄) in (9), and the correction network fc(P̄) in (7).
The 3D pose conversion in (6) computes an absolute 3D pose P̄ with the predicted distances and
corresponding 2D joints. The correction network finally predicts 3D pose residuals to reduce errors
caused by noise of the 2D joint keypoints. The bottom three blocks represent (a) Relative Distance
Prediction Network, (b) Root Distance Prediction Network, and (c) Correction Network.

To predict the radial distance vector, we first decompose the distances into root and
relative distances, as shown in Figure 1 as follows:

ρ = [ρ1, ..., ρN ]
> = 1NρR + ρr, (8)

where we use a vector of 1N ∈ RN to represent the radial distances of joints as a vector,
which is decomposed into a root distance ρR ∈ R1 and a relative distance vector ρr ∈ RN .
These are estimated using normalized keypoints as inputs by

ρR = fR(p̄), ρr = fr(p̄). (9)

where two regression networks, i.e., fR and fr, predict the root distance ρR and relative
distance vector ρr, respectively. Then, we obtain a vector of absolute radial distance based
on (8) and finally recover the absolute 3D human pose P̂ via (7).

3.4. Training via Siamese Architecture

To deal with noisy 2D joints, we adopted a Siamese architecture to train the functions
fR(·), fr(·), and fc(·) in Section 3.3 when labeled 2D poses are available, as shown in
Figure 2.

We design a loss function that combines the pose errors LP, distance errors Lρ, joint
relation constraints LC, and feature consistency LF ,

L = wρLρ + wPLP + wCLC + wFLF , (10)

where the coefficient w indicates the control parameters. Distance loss measures the errors
between the predicted joint distances ρ̂ and label distances ρ.

Lρ = ‖ρ̂− ρ‖2. (11)
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The pose loss measures errors between the predicted 3D poses P̂ and the label 3D poses P.

LP = ‖P̂− P‖2. (12)

Here, the distance and pose losses are defined in the Euclidean coordinates.
We formulate the constraint with bone length symmetry and the directional constraint

of the adjacent joints as follows:

LC = ∑
B
‖bi − bj‖2 +

8

∑
i=1
‖d̂i − di‖2, (13)

where we denote a set of joint bone length indices as (i, j) ∈ B and a set of directional
vectors of joints as di ∈ D for the ground truth and d̂i ∈ D̂ for the prediction. The details
of their representation are shown in Figure 3.

2D pose
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2D pose

(Detection)

Training

PoseLifter

PoseLifter
features

3D pose 

features

3D pose 

Feature 

Consistency

2D pose

(Detection)
3D pose 

Testing

PoseLifter

Loss

3D pose

label 

Loss

3D pose

label 

Figure 2. Siamese architecture for noise awareness. We adopt a Siamese architecture for training the
proposed pose lifting method when ground truth 2D poses, i.e., 2D joint keypoints, are available, and
in this case, we can utilize the feature consistency loss. If the ground truth 2D pose is unavailable, we
only use the upper part in this figure for the training without the feature consistency loss. For testing,
we use detected 2D poses as input.

Directional constraint of adjacent joints
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Figure 3. Examples of body length symmetry and directional constraint. Body length symmetry is
self loss term which minimizing difference between left and right bone length based on human body
symmetric characteristic. Left arm and leg, right arm and leg are used. Directional constraint limits
bone vector between prediction and ground-truth. All body parts are used.
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To understand the noise implicitly, we introduce the feature consistency formulated by

LF = ‖F d
A −F

g
A‖2 + ‖F d

R −F
g
R‖2 + ‖F d

O −F
g
O‖2, (14)

where the superscript d denotes the features generated by the detected inputs, and g
denotes the features generated by the labeled inputs. We illustrate the extraction of these
features from the networks in Figure 1. Feature FO is the output of the layer before the
last layer of the correction network. Similarly, FA and FR are the outputs of backbone
networks. The feature consistency loss forces the features of the detected noisy 2D inputs to
become similar to those of the labeled inputs. Therefore, we can achieve a similar accuracy
for 3D poses from noisy inputs over 3D poses from labeled inputs.

4. Experimental Results

In this section, we evaluate the proposed method using different experimental setups
and compare its performance with that of state-of-the-art (SOTA) methods. In particular,
we analyze the advantages of the proposed architecture in detail over previous similar
works that also use a simple baseline network as a backbone, and show the effectiveness
of noise awareness via a Siamese architecture. Finally, the ablation study highlights the
merits of feature consistency, relational constraints, and the correction network for absolute
2D-to-3D human pose lifting.

4.1. Implementation

We run the training procedure for 50 epochs using the Adam optimizer [40] and set
the learning rate and batch size to 0.001 and 2048, respectively. ReLU is selected as the
nonlinear activation function. The dropout rate is set to 0.5, except for the linear blocks
shown in Figure 1c, which is set as 0.2. The weights of the linear layers are initialized by
Kaiming normal initialization [41]. The loss weights in Section 3.4 are empirically selected,
where wρ is 1, wP is 1, wF is 0.01, and wC is 0.1. For the Human3.6M dataset, we train the
network with GT and 2D detection inputs from a Cascaded Pyramid Network (CPN) [9].
For KITTI dataset [42] for we use 2D detected inputs from OpenPifPaf [10].

4.2. Datasets

We evaluate our method qualitatively and quantitatively on four publicly available 3D
human pose datasets: Human3.6M [43], MPI-INF-3DHP [23], MuCo-3DHP, and MuPoTs-
3D [44]. Furthermore, we evaluate the root depth estimation using the KITTI dataset for
comparison with a recent study by [22]. The Human3.6M is one of the largest human
3D pose estimation datasets. It consists of 3.6 million human poses and ground truth
annotations of 2D and 3D poses and camera parameters. According to [12], we use five
subjects, i.e., 1, 5, 6, 7, and 8, for training and two subjects, i.e., 9 and 11, for testing in the
Human3.6M dataset. The MPI-INF-3DHP (3DHP) dataset is a recently released large-scale
3D pose dataset that contains 1.3 million images with various actions. The 3DHP dataset
consists of six test subjects with different indoor environments and two subjects with
in-the-wild settings. We use all samples in the test set that are captured in indoor scenes
with and without a green background to validate the accuracy of the proposed method.
The MuCo-3DHP dataset is an indoor multiperson dataset for training that is composed of
a single-person 3DHP dataset. MoPoTS-3D is a synthetic multiperson 3D pose dataset for
evaluation. It consists of 8000 frames covering five indoor and 15 outdoor settings. The
ground-truth 3D poses are captured using a multi-view markerless motion capture system.
The KITTI dataset contains 7481 training images along with camera calibration files, and
5000 instances provided by [22] are used for training and testing.

4.3. Evaluation Metrics

We adopt two evaluation metrics for quantitative evaluations: the Absolute Mean Per
Joint Position Error (Abs-MPJPE) in millimeters and Mean Root Position Error (MRPE) [18].
For ablation study, we use Mean Per Joint Position Error (MPJPE) and Procrustes Aligned
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MPJPE (P-MPJPE), which computes MPJPE after rigid-body alignment of the estimated
pose and the ground truth pose. For MPI-3DHP and MuPoTS-3D, we apply the percentage
of correct keypoints (PCK) with a threshold of 150 mm and the area under curve (AUC)
for a range of PCK thresholds, as provided by [23]. For the KITTI dataset, we also adopt
the absolute average localization precision (ALP) proposed in [21]. Similar to PCK, ALP
represents the percentage of correctness by computing the ratio of distance errors below a
certain threshold. For Abs-MPJPE, MRPE, MPJPE, and P-MPJPE, a lower value is better,
and vice versa for PCK, AUC, and ALP. Abs-MPJPE and MRPE are absolute distance
evaluation metrics, whereas the others are root-relative distance evaluation metrics.

4.4. Ablation Study

We evaluated the proposed method with various configurations and summarized the
results in Table 1 to analyze the impact of different losses, network architecture, and input
noise. In Table 1, the latter “B” represents the proposed method without the correction
network trained with only the distance and pose losses in (11) and (12). Relational con-
straints improve root-relative accuracy. Feature consistency improves the performance of
root distance accuracy more than the relational constraints because it implicitly reduces the
detection noise with a Siamese architecture. When we use feature consistency and relational
constraints together, both the root-relative and root distances are enhanced. Moreover, if
we also use the correction network, we can improve MRPE by 4.0 mm, MPJPE by 2.1 mm,
and P-MPJPE by 2.1 mm compare to without correction network. We can observe that the
correction network accurately estimates the noise of the predicted 3D pose according to the
results of the full configurations.

Table 1. An ablation study: “B” the proposed method without the correction network and other
constraints. “RC” relational constraints. “F” feature consistency. “C” correction network. Here, we
use the detected 2D joint keypoints as input, obtained by CPN.

Conf. Input MRPE MPJPE P-MPJPE

B CPN 109.4 64.4 48.9
+RC CPN 109.3 59.3 45.7
+F CPN 107.3 60.6 46.3
+RC+F CPN 107.2 58.8 45.2
+RC+F+C CPN 103.2 56.7 43.1

4.5. Evaluation on Different Parameter Sizes

Similar to our method, [20] used the simple baseline method [12] as the backbone.
The difference is that they directly estimate the absolute 3D pose P̂ based on the function
f : R2 → R3 from the detected 2D joints. However, our method separately estimates the
root distance ρR and root-relative joint distances ρr using two networks fR : R2 → R1 and
fr : R2 → R1, respectively, which significantly reduces the number of parameters and the
output solution space. The number of parameters in [20] is approximately 67 × 106. By
contrast, that of our best full model is approximately 13.75 × 106 as shown in Table 2. Fur-
thermore, our method is more accurate in terms of MRPE. This implies that our noise-aware
distance prediction accurately predicts the absolute 3D pose while maintaining network size
efficiency. Specifically, we adopt a backbone network of root distance prediction from [21]
and relative distance prediction from [12] with the same number of parameters, which is
approximately 5.16 × 106. In the experiments, we test different correction networks by
changing the size of the linear layers by 512, 1024, and 2048, and obtain the best accuracy
with a size of 2048.
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Table 2. MRPE along different number of network parameters on Human3.6M. “Root” root distance
prediction network. “Relative” relative distance prediction network. "Correct” correction network.
“Full” full model. The best performance is highlighted in Bold. PoseLifter [20], PoseFormer [36], and
Ray3D [18]. All MRPE results of other methods are obtained from [18].

Method MRPE
# of Parameters (M = ×106)

Root Relative Correct Full

PoseLifter 135.1 - - - 67.0M

PoseFormer 127.7 - - - 18.2M

Ray3D 105.0 - - - 45.8M

Ours w/o C 107.2 0.24M 4.92M - 5.2M

Ours (L = 512) 105.8 0.24M 4.92M 0.57M 5.8M

Ours (L = 1024) 104.5 0.24M 4.92M 2.20M 7.4M

Ours (L = 2048) 103.2 0.24M 4.92M 8.59M 13.8M

4.6. Quantitative and Qualitative Results

We explain the quantitative evaluation results of the proposed method using the
various evaluation metrics mentioned in Section 4.3. In the experiments, we use the
detected 2D joints as input, obtained by the CPN detector [9] as in other studies [18,21].
Furthermore, to demonstrate our absolute 2D-to-3D human pose-lifting performance more
intuitively, we show some qualitative results in Figures 4 and 5.

Figure 4. Absolute 2D-to-3D animated example output on the Human3.6M test set. Cam(2D): 2D
CPN input from each camera-view. Cam(Abs3D): Absolute 3D lifting output, red and blue denote
ground truth and prediction results.
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Figure 5. Results of absolute 2D-to-3D human pose lifting on KITTI. The values in the graphs are in
meters.

4.6.1. Human3.6M

Table 3 shows the Abs-MPJPE and MRPE results for Human3.6M and Figure 4 shows
the absolute 2D-to-3D lifting visual results from each camera. We use the detected 2D
joints obtained from the CPN detector as input and separate the results based on the
number of input frames i.e., f = 1 and f = 9. The results of other methods are obtained
from [18]. We observe that our method achieves competitive performance over SOTA
methods. Specifically, Abs-MPJPE and MRPE surpass [20] by 28.8 mm and 31.9 mm,
respectively. Furthermore, compared with the method proposed in a recent study [18], our
method has a 2.5 mm gap in Abs-MPJPE and 2.8 mm better performance in MRPE with a
single frame case. Our method can achieve competitive accuracy because it estimates the
root joint distance and root-relative joint distances with a more reduced solution space than
the solution space that directly 2D-to-3D human pose lifting methods solve. In addition,
the correction network effectively reduces the uncertainties of the initial absolute 3D pose
caused by the noise of 2D joint keypoints in the 3D conversion, as shown in Table 1.
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Table 3. Quantitative evaluation results under Abs-MPJPE and MRPE on Human3.6M: the best (red) and the second best (blue).

Abs-MPJPE Direct Discuss Eating Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait Walk WalkD. WalkT. Avg

[35]
(f = 9) 143.2 133.2 143.9 142.7 110.9 151.4 125.9 98.4 136.4 273.4 127.5 138.9 126.8 107.3 116.0 138.4

[36]
(f = 9) 112.6 137.1 117.6 145.8 113.0 166.0 125.5 113.8 128.8 245.7 122.7 144.8 125.0 118.9 129.3 136.5

[32]
(f = 9) 128.9 125.4 124.4 138.2 108.2 155.5 116.6 101.1 135.8 287.6 128.6 130.9 122.1 101.6 110.7 134.4

[18]
(f = 9) 92.9 97.4 139.8 118.6 113.8 105.9 84.5 74.9 148.6 165.7 116.6 113.9 98.2 83.6 87.9 109.5

[20]
(f = 1) 140.9 113.2 139.9 148.2 122.0 155.3 121.5 121.1 170.0 267.6 139.2 142.9 146.4 132.1 135.2 146.4

[18]
(f = 1) 80.1 100.8 123.8 125.5 110.7 111.8 96.1 99.3 129.4 176.3 106.8 129.2 120.4 109.1 106.6 115.1

Ours (f = 1) 105.4 114.6 99.1 123.1 100.9 145.0 106.8 96.7 115.5 193.7 113.9 121.2 104.1 118.1 106.2 117.6

MRPE Direct Discuss Eating Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait Walk WalkD. WalkT. Avg

[35]
(f = 9) 139.1 124.5 129.9 133.1 99.2 141.4 116.3 93.5 124.0 265.9 118.4 131.3 117.1 100.4 109.2 129.6

[36]
(f = 9) 104.7 134.7 103.9 137.4 99.6 154.6 119.8 108.9 108.2 233.7 111.1 141.1 116.2 117.9 123.8 127.7

[32]
(f = 9) 124.2 115.9 111.0 127.3 97.6 141.9 105.7 96.4 122.0 276.5 119.6 123.3 111.3 94.0 101.6 124.6

[18]
(f = 9) 83.7 86.8 128.9 104.8 109.3 91.6 75.0 65.2 143.9 150.5 108.6 105.7 88.4 73.9 77.8 99.6

[20]
(f = 1) 134.7 102.3 126.9 135.7 109.9 138.5 110.7 110.9 170.0 252.4 128.4 133.9 139.4 121.6 124.4 135.1

[18]
(f = 1) 67.3 91.7 113.6 111.8 104.5 96.3 85.8 94.6 124.4 161.7 97.6 119.5 110.9 100.9 94.8 105.0

Ours (f = 1) 86.7 100.1 82.9 107.3 91.2 126.6 89.1 91.4 97.6 172.0 101.3 109.2 93.9 103.9 94.0 103.2
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4.6.2. MPI-3DHP

Table 4 describes the PCK, AUC, and MRPE performance on the 3DHP dataset. Our
method and [20] estimate the absolute-scale 3D pose, whereas other methods predict
the root-relative 3D pose. Similar to the results for Human3.6M, our method shows
competitive accuracy compared to the SOTA methods and achieves the best performance
in cross-validation evaluation, for which we used Human3.6M for training and MPI for
testing. This result indicates that our method is suitable for various applications as long as
2D joint keypoints are given as input. Generality is a distinct benefit of keypoint-based 3D
pose prediction, which is less sensitive to environmental changes and camera specifications
than image-based 3D pose prediction.

Table 4. Quantitative comparison on MPI-3DHP.

Method Training PCKrel AUCrel MRPE

Yang [45] H36M+MPII 69.0 32.0 -
Zhou [46] H36M+MPII 69.2 32.5 -

Martinez [12] H36M 42.5 17.0 -
Mehta [23] H36M 64.7 31.7 -

Luo [47] H36M 65.6 33.2 -
Habibie [27] H36M 70.4 36.0 -

Ci [48] H36M 74.0 36.7 -
Liu [17] H36M 74.9 37.5 -

Chang [20] H36M 76.5 40.2 421.3
Ours H36M 77.0 43.2 280.3

Ours MPI 92.3 61.0 192.7

4.6.3. KITTI

Table 5 summarizes the performance of the camera-to-root 3D localization results
on the KITTI dataset and Figure 5 shows the visualized results of the absolute 2D-to-
3D human pose lifting. For fair comparisons, we use 2D joint keypoints as inputs, as
provided by [22]. We use the detected 2D poses provided by [22] and calculate ALP on
three distance thresholds, <0.5 m, <1 m and <2 m, as in [22]. MonoLoco estimates the
3D location in Cartesian coordinates, whereas MonoLoco++ predicts the 3D location in
spherical coordinates. Our method predicts the camera-to-root distance, which is a scalar
value without the azimuthal and polar angles. Although we do not consider the angle
values in the prediction, our approach is more accurate than that of MonoLoco. Moreover,
as proved in [22], radial distance prediction indirectly disentangles the noise of the 2D joint
position. Similarly, MonoLoco++ shows a better performance because it effectively utilizes
the epistemic and aleatoric uncertainties in the spherical coordinate, especially for the case
of <0.5 m. However, because our network aims to predict a simple scalar value, i.e., the
radial distance, it shows a more robust performance according to ALP on <1 m and <2 m.

Table 5. Quantitative comparison on KITTI. The best results are highlighted with Bold.

Method Training
ALP [%] ↑

<0.5 m <1 m <2 m

MonoLoco [21]
(ICCV‘19) KITTI 25.3 43.4 60.5

MonoLoco++
[22] (TITS‘21) KITTI 37.4 53.2 63.6

Ours KITTI 31.3 54.7 79.6
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4.7. Limitations

One potential drawback of our approach is that the ground truth considers nonoc-
cluded situations. Therefore, occluded joints can degrade the accuracy of 3D pose pre-
diction. Although our approach can alleviate depth ambiguities compared to existing
monocular methods, it shows poorer performance than multi-view or temporal approaches.
Our network shows weakness in the case of side and rear views or complex postures, such
as sitting and sitting-down. Nevertheless, our approach shows better performance than the
existing monocular-based approaches. The human pose dataset consists mainly of a front
view, which familiarizes the network with the front position. For this reason, it is more
difficult for the network to lift the rear of the view than the front. Furthermore, the sitting
behavior involves only a small fraction of the dataset, making it difficult to determine
the optimal output. Figure 6 shows the failures of our network. In addition, the singular
case exists when a single 2D pose is given as input, for example, all joints are at the same
distance, which is a common limitation for all 2D joint-based approaches.

Figure 6. Inaccurate cases on the Human3.6M test set. In the top row, the second row shows the
sitting position action and the third row, the last row, shows the results of the photo action.

5. Conclusions

We have proposed a simple and effective absolute 2D-to-3D human pose-lifting frame-
work consisting of two baseline networks followed by a pose-correction network. The
two baseline networks predicted both the absolute root distance and root-relative distance
simultaneously, and the correction network refined the predicted results. In addition,
our framework has a Siamese architecture that imposes feature consistency between the
predicted features, which improves the robustness of our framework under noisy input.
We experimentally demonstrated the advantages of the proposed method with state-of-the-
art absolute 2D-to-3D pose-lifting methods on public benchmark datasets. Our method
achieved competitive results with fewer trainable parameters, verifying its effectiveness.
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