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Abstract: We develop a systematic approach to deriving rational solutions and obtaining classification
of their parameters for dressing chains of even N periodicity or equivalent Painlevé equations
invariant under A(1)

N−1 symmetry. This formalism identifies rational solutions (as well as special

function solutions) with points on orbits of fundamental shift operators of A(1)
N−1 affine Weyl groups

acting on seed configurations defined as first-order polynomial solutions of the underlying dressing
chains. This approach clarifies the structure of rational solutions and establishes an explicit and
systematic method towards their construction. For the special case of the N = 4 dressing chain
equations, the method yields all the known rational (and special function) solutions of the Painlevé V
equation. The formalism naturally extends to N = 6 and beyond as shown in the paper.

Keywords: Painlevé equations; affine Weyl symmetries; Bäcklund transformations; dressing chain
equations; Hamilton equations

1. Introduction and Background Information

Painlevé equations form a class of second-order nonlinear differential equations with
solutions that have no movable critical singularities in the complex plane, see, e.g., [1].
Although this mathematical property motivated the discovery of Painlevé equations, these
equations had an astonishing impact on several fields inside and outside mathematics in
a relatively short time. A long and incomplete list of affected topics and models includes
correlation functions of the Ising model, random matrix theory, plasma physics, nonlinear
waves, quantum gravity, quantum field theory, general relativity, nonlinear and fiber optics,
and Bose–Einstein condensation. Special solutions, such as rational solutions, turned out
to be important in these applications, and various methods were applied in their study.
To provide a systematic approach to the study of rational solutions, we here utilize the
dressing chain and its connection to Painlevé equations. The dressing chain was derived
by applying Darboux transformations to the spectral problem of second order differential
equations [2]. Specifically, let us consider a sequence of second order differential operators
Ln connected via first order Darboux transformations: (∂z − jn)Ln = (Ln−1 + αn)(∂z − jn),
where αn is a constant. Such symmetry is realized for

Ln = (∂z + jn)(∂z − jn) + αn = (∂z − jn+1)(∂z + jn+1) , (1)

with Ln defined by products of two first order differential operators with their orders being
interchanged when going from n to n + 1. Comparing the two alternative expressions for
Ln in Equation (1), we obtain the nonlinear lattice equations [2]:

(jn + jn+1)z = −j2n + j2n+1 + αn, n = 1, . . ., N, jN+i = ji , (2)

made finite by imposing the periodic boundary condition jN+i = ji. We refer to system (2)
as a system of dressing chain equations of N-periodicity. Such a system possesses many
important properties. For N = 3, it has been shown [2] that it passes the Kovalevskaya–
Painlevé test, and its equivalence to the Painlevé IV equation has also been established [2,3].
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For higher N, the system is equivalent to A(1)
N−1 invariant Painlevé equations [3,4], and

this equivalence will be utilized in this paper to construct and study rational solutions of
Painlevé equations in the context of underlying periodic dressing chains. Quite recently
the N cyclic dressing chain was also obtained in the self-similarity limit of the second flow
of sl(N) mKdV hierarchy [5].

As we will now show, the system (2) requires different treatments depending on
whether N is odd or even. This becomes evident when we consider a regular sum
∑N

n=1(jn + jn+1)z and an alternating sum ∑N
n=1(−1)n(jn + jn+1)z of derivatives of jn + jn+1.

Calculating a regular sum using the dressing Equation (2) we obtain the same expression
for both even and odd N

N

∑
n=1

(jn + jn+1)z = 2
N

∑
n=1

(jn)z =
N

∑
n=1

αn , (3)

for the integration constant on the right hand side. As long as N is odd, calculating an
alternating sum ∑N

n=1(−1)n(jn + jn+1)z using the dressing Equation (2) will reproduce
the same condition as in (3). For even N, the alternating sum ∑N

n=1(−1)n(jn + jn+1)z is
identically zero (positive and negative terms simply cancel). However the same expression
calculated by plugging the right hand side of dressing Equation (2) yields for, e.g., N = 4,
the expression

(
j21 + j23 − j22 − j24

)
+ 1

2 (−α1 + α2 − α3 + α4) . Thus, the dressing chains of
even periodicity require imposition of a new quadratic constraint or modification of the
dressing chain formulation. Such modification was proposed in [6], where the authors put
forward a system of dressing chain equations of even N = 4, 6, 8, . . . periodicity defined as:

(ji + ji+1)z = −j2i + j2i+1 + αi + (−1)i+1 (ji + ji+1)Ψ
Φ

, i = 1, 2, . . ., N, jN+i = ji , (4)

where

Ψ =
N

∑
k=1

(−1)k+1
(

j2k −
1
2

αk

)
, Φ =

N

∑
k=1

jk . (5)

This structure is such that both regular and alternating sums of derivatives of ji + ji+1
give consistent answers when applied to the system (4):

N

∑
i=1

(ji + ji+1)z = 2Φz =
N

∑
i=1

αi ,

N

∑
i=1

(−1)i(ji + ji+1)z = 2
N

∑
k=1

(−1)k+1 j2k +
N

∑
k=1

(−1)kαk − 2
Φ
Φ

Ψ = 0 .

As shown in [6], such a system can be obtained by Dirac reduction from N + 1 dressing
chain (2) of odd periodicity.

The above equations as well as quantities Ψ and Φ are invariant under A(1)
N−1 Bäcklund

transformations si, i = 1, . . ., N [3]:

ji
si−→ ji −

αi
ji + ji+1

, ji+1
si−→ ji+1 +

αi
ji + ji+1

, jk
si−→ jk, k 6= i, k 6= i + 1 , (6)

when transformations (6) are accompanied by transformations of coefficients

αi → −αi, αi±1 → αi±1 + αi. (7)

There are also two automorphisms π, ρ:

π : ji → ji−1, αi → αi−1, π(Φ) = Φ, π(Ψ) = −Ψ

ρ : z→ −z, ji → −ji+2, αi → αi+2, ρ(Φ) = −Φ, ρ(Ψ) = Ψ ,
(8)
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that keep the dressing Equation (4) invariant.
For the redefined quantities

j̄n = jn +
(−1)n

2
Ψ
Φ

, (9)

it holds that the corresponding sum fn = jn + jn+1 = j̄n + j̄n+1 is unchanged. Such
redefinition leads to a formal absorption of Ψ terms so that they are no longer explicit
in the dressing equations rewritten in terms of j̄n that satisfy Equation (2) [6]. However,
such a process introduces potential extra divergencies into an associated Sturm–Liouville
problem. Throughout this paper we will work with (4) with a constant non-zero Ψ so that
the polynomial seed solutions we will construct below will be free of divergencies.

We present the construction of rational and special function solutions for dressing
chains of even periodicity. In this work, rational solutions are identified with points on
the orbits of fundamental shift operators (sometimes also referred to in the literature as
translations) of the extended affine Weyl group A(1)

N−1 acting on the first-order polynomial
seed solutions. In particular, for the seed solutions with all components being equal to each
other, the construction yields rational solutions being ratios of Umemura polynomials [7].
The reduction procedure that yields special function solutions is outlined and is shown to
reproduce rational solutions for appropriate values of the parameters of the underlying
Riccati equations.

The presentation is organized as follows. In Section 2, we obtain the first-order
polynomial solutions of the dressing chain Equation (4) with parameters αi, i = 1, . . ., N
depending on one arbitrary variable and with a constant non-zero Ψ that ensures that the
solution is polynomial.

In Section 3, we establish a connection between the dressing chain Equation (4) and
Hamiltonian formalism for N = 4, 6 that can easily be generalized to arbitrary even N
values. Essential for establishing this connection is the ability to cast the dressing chain
Equation (4) as symmetric A(1)

N−1-invariant Painlevé equations, such as as those given in
Equations (18) and (A1) for N = 4, 6, respectively. We should point out that translating the
system of equations depending on ji into formalism that is expressed entirely in terms of
fi = ji + jj+1 is possible for even N thanks to the presence of Ψ terms on the right hand
side of Equation (4). This is in contrast to odd N dressing chains where ji and fi are always
fully interchangeable. For N = 4 the Hamiltonian formalism of Section 3 gives rise to the
Painlevé V equation as briefly reviewed in Section 3.2. The first-order polynomial solutions
in the setting of Hamiltonian formalism become the algebraic solutions of [8].

We are able to present power series expansions of Hamiltonian variables p and q in
Section 3.4. We show how potential divergencies of power series solutions (that cannot be
absorbed in Ψ) can be removed by appropriate Bäcklund transformations. After removing
the eventual simple poles from rational solutions by acting with the Bäcklund transforma-
tions, we obtain rational solutions that are expandable in a series of positive powers of z
and can be reproduced by actions of the shift operators as shown in the next section.

In Section 4, we derive rational solutions for N = 4 by acting with shift operators
on the first-polynomial solutions (11) and (12) to obtain all known cases listed in ref. [9]
that presented necessary and sufficient conditions for rational solutions of the Painlevé V
equation. Ref. [10] showed how to act with shift operators on solutions (11) (expressed by
tau functions) to obtain some of the cases of [9] (items I + II in Section (4.1)).

For the first-order polynomial seed solutions (11) (with all the components ji equal
to z/N), the action of shift operators yields rational solutions expressed by Umemura
polynomials [7,11] and we use the shift operators to derive the recurrence relations that
determine these polynomials. Extending structure of seed solutions to include solutions (12)
(where ji + ji+1 = 0 for some i) requires exclusion of those shift operators that are ill-defined
when acting on such solutions as discussed in Section 4.5. Those of the shift operators that
are well-defined generate the remaining rational solutions from solutions (12), see item
III in Section 4.1. This new approach leads to a systematic and unified way to derive all
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rational Painlevé V solutions. Based on results for N = 4 we conjecture that for all even N
values all rational solutions are obtainable through actions of shift operators on first-order
polynomial solutions.

In Section 5, we provide explicit construction of special function solutions and rational
solutions for N = 6. The rational solutions are always identified with orbits of the funda-
mental shift operators. For the seed solution with all components being equal or only one of
the components being negative, we are able to express the corresponding rational solutions
by Umemura-type polynomials. Existence of special function solutions is established for
the remaining cases, with a sufficient number of constraints imposed on αi parameters to
insure reduction of Hamiltonian equations to one single Riccati equation. For N = 6 this
happens for three independent constraints. However we also encounter hybrid situations
with one single Riccati equation and one coupled quadratic (in qi, pi) equations for some
cases with two constraints. In such cases there exists a special function solution for only
one of the variables. Interestingly, when αi parameters are associated with orbits of the
shift operators, we obtain closed expressions in terms of Whittaker functions that describe
rational solutions for all underlying variables of the reduced system.

2. Preliminaries. The Seed Solutions as the First-Order Polynomial Solutions of
Even Chains

For simplicity, we first carry out the discussion for N = 4 before proceeding to the
case of N = 6 and making general comments about higher N cases.

We are looking for the first-order polynomial solutions to Equation (4) of the type

ji = ciz,
4

∑
i=1

ci = 1 ,

that satisfy the Φ = z condition. With such ansatz, the quantity Ψ defined in (5) can only
contain terms with z2 or a constant. The terms quadratic in z can be absorbed in ji via (9)
transformation. Thus, without losing any generality we can assume that

Ψ =
1
2
(−α1 + α2 − α3 + α4) = 1− α1 − α3 , (10)

where we used that ∑4
i=1 αi = 2.

One can easily see that the condition for Ψ not to contain z2 for the polynomial
solutions of the first-order amounts to j2n+1 − j2n = 0 on the right hand side of the dressing
equations. Thus, the solution must be ji = zc(ε1, ε2, ε3, ε4) with εi = ±1 and c a non-zero
constant. Since Φ = z 6= 0 we must also have ε1 + ε2 + ε3 + ε4 6= 0. This argument
eliminates the case of two epsilons being negative, εi = −1, εj = −1, i 6= j, as this would
violate Φ 6= 0. Therefore the only two independent (up to π) polynomial solutions are:

ji =
z
4
(1, 1, 1, 1) (α1, α2, α3, α4) = (a, 1− a, a, 1− a) Φ = z, Ψ = 1− 2a , (11)

ji =
z
2
(1, 1,−1, 1) (α1, α2, α3, α4) = (a, 0, 0, 2− a) Φ = z, Ψ = 1− a . (12)

Both solutions depend on only one free parameter a. The remaining first order poly-
nomial solutions can be obtained by acting with π, π2, and π3 on solution (12) (recall that
π4 = 1 for N = 4 cyclicity and so π3 = π−1). Note that in case of solution (12), the action
of automorphism π is such that it simply moves the −1 term in expression for ji and zeros
in expression for αi to the right. It is important to point out that there could be other
potential solutions of the first-order polynomial type like for example ji = (z/2)(1, 0, 1, 0).
However, such solutions would involve z2 terms in Ψ and could be transformed by the
transformation (9) involving the z2 part of Ψ to the solution (12) or its π variants.
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One can easily extend this analysis to higher N with Ψ and Φ defined in the definition (5).
For the N = 6 first-order polynomial solutions we take:

Ψ =
1
2
(−α1 + α2 − α3 + α4 − α5 + α6) = 1− α1 − α3 − α5 ,

and obtain five different first-order polynomial solutions:

ji =
z
6
(1, 1, 1, 1, 1, 1), αi = (a,

2
3
− a, a,

2
3
− a, a,

2
3
− a) , (13)

ji =
z
4
(1, 1, 1, 1, 1,−1), αi = (a, 1− a, a, 1− a, 0, 0) , (14)

ji =
z
2
(1, 1, 1, 1,−1,−1), αi = (a, 2− a, a, 0,−a, 0) , (15)

ji =
z
2
(1, 1, 1,−1, 1,−1), αi = (2− a, a, 0, 0, 0, 0) , (16)

ji =
z
2
(1, 1,−1, 1, 1,−1), αi = (2− a, 0, 0, a, 0, 0) , (17)

since all these configurations seems to be distinct and can not be connected by permutation
generated by π or multiples of π’s. All the above solutions depend on one arbitrary
parameter a. Note that ji = z(1, 1, 1,−1,−1,−1) is not a solution because it would violate
the Φ 6= 0 condition. Thus the number of configurations is equal to 1 + 1 + p(6− 2, 2) = 5,
where p(6− 2, 2) = p(4, 2) = 3 is a number of partitions of 4 in two parts (of positive
integers and zero): 4 = 4+ 0 = 3+ 1 = 2+ 2. For N = 8 we find a number of the first-order
polynomial solutions to be 1 + 1 + p(8− 2, 2) + p(8− 3, 3) with p(8− 2, 2) = p(6, 2) = 4
and p(8− 3, 3) = p(5, 3) = 5. Generally a number of the first-order polynomial solutions is
given by 1 + 1 + ∑N/2−1

k=2 p(N − k, k), where p(N − k, k) is a number of distinct partitions
of N − k in k parts consisting of positive integers and zero.

For arbitrary even N with Φ = z, Ψ = 1− ∑N/2
k=1 α2k−1 and an arbitrary variable a,

there will always be a fully symmetric solution:

ji =
z
N

, i = 1, . . ., N, α2j−1 = a, α2j =
4
N
− a, j = 1, . . ., N/2 ,

which is a fixed point of π2 automorphism. The remaining solutions will have one and
up to N/2− 1 negative components ji = − z

N with varying distance between the negative
components. For example, for only one negative component in the last position we get

ji =
z

N − 2
, i = 1, . . ., N − 2, α2j−1 = a, α2j =

4
N − 2

− a, j = 1, . . ., N/2− 1 ,

with jk = 0, αk = 0 for k = N − 1, N, and so on for solutions with more negative components.
One needs to point out that the first-order solutions (13)–(17) appeared also as simple

rational solutions expressed in terms of fi = ji + ji+1 that give rise to other rational solutions
via Bäcklund transformations in the framework of A(1)

5 Painlevé equations (equivalent to
N = 6 dressing chain equations) in ref. [12].

3. Hamiltonian Formalism and Polynomial Solutions
3.1. Hamilton Equations and Their Algebraic Solutions

For N = 4, we will show how the first-order polynomial solutions (11) and (12)
are equivalent to all algebraic solutions found for the Painlevé V equation in [8]. These
solutions will then serve as the seeds of all rational solutions [9] of the Painlevé V equation
via shift transformations.
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Thanks to the presence of Ψ in the dressing Equation (4) they can be rewritten in terms
fi = ji + ji+1, i = 1, 2, 3, 4 as

z
d f1

dz
= f1 f3( f2 − f4) + (1− α3) f1 + α1 f3 , z

d f2

dz
= f2 f4( f3 − f1) + (1− α4) f2 + α2 f4,

z
d f3

dz
= f1 f3( f4 − f2) + (1− α1) f3 + α3 f1 , z

d f4

dz
= f4 f2( f1 − f3) + (1− α2) f4 + α4 f2 ,

(18)

after multiplication by Φ = f1 + f3 = f2 + f4 = z and use of definition of Ψ from (5). Recall
that it follows from relation (3) that α1 + α2 + α3 + α4 = 2.

The above system of equations can be cast into a Hamiltonian system with

H = −q (q− z) p (p− z) + (1− α1 − α3) pq + α1zp− α2zq , (19)

with Hamilton equations

zqz = −q(q− z)(2p− z) + (1− α1 − α3)q + α1z ,

zpz = p(p− z)(2q− z)− (1− α1 − α3)p + α2z ,
(20)

derived from
zqz =

dH
dp

, zpz = −
dH
dq

.

The Hamilton Equation (20) reproduces the N = 4 system of Equation (18) after
substitution (q, p)→ ( f1, f2, f3, f4), such that

q = f1 = z− f3, p = f2 = z− f4 .

The Bäcklund transformations (6) and automorphisms (8) are given in the setting of
Hamilton Equation (20) by

s1 : q→ q, p→ p +
α1

q
, α1 → −α1, α2 → α2 + α1, α3 → α3

s2 : q→ q− α2

p
, p→ p, α2 → −α2, α1 → α2 + α1, α3 → α3 + α2

s3 : q→ q, p→ p− α3

z− q
, α3 → −α3, α2 → α2 + α3, α4 → α3 + α4

s4 : q→ q +
α4

z− p
, p→ p, α4 → −α4, α1 → α4 + α1, α3 → α3 + α4

π : q→ z− p, p→ q, αi → αi−1,

ρ : z→ −z, q→ z− q, p→ p− z, α1 ↔ α3, α2 ↔ α4,

(21)

where α4 is understood as 2 − α1 − α2 − α3 in terms of αi, i = 1, 2, 3 appearing in the
Hamiltonian formalism.

Solutions (11) and (12) as well solutions that can be obtained from (12) by an automor-
phism π : ji → ji−1, αi → αi−1 are given in terms of q, p by

q = z/2, p = z/2, (a, 1− a, a, 1− a) , (22)

q = z, p = 0, (a, 0, 0, 2− a) , (23)

q = z, p = z, (a, 2− a, 0, 0) , (24)

q = 0, p = z, (0, a, 2− a, 0) , (25)

q = 0, p = 0, (0, 0, a, 2− a) , (26)

where (22) is derived from (11) while the remaining solutions are obtained from (12) and
its π variants. Solution (22) is a fixed point of π2 while all the remaining solutions can
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be connected to each other by the π automorphism. All these solutions coincide with a
complete set of algebraic solutions found by Watanabe [8].

For N = 6 we define the Hamiltonian formalism in terms of quantities:

q1 = j1 + j2, p1 = j2 + j3, q2 = j1 + j2 + j3 + j4, p2 = j4 + j5 , (27)

which satisfy equations

zq1, z = q1(q2 − q1)(2p1 − z) + q1(z− q2)(2p1 + 2p2 − z) + zα1 + q1(1− α1 − α3 − α5)

zq2, z = (q2 − q1)(z− q2)(2p2 − z) + q1(z− q2)(2p1 + 2p2 − z) + z(α1 + α3) + q2(1− α1 − α3 − α5) ,

zp1, z = p1 p2(2q2 − 2q1 − z) + p1(z− p1 − p2)(z− 2q1) + zα2 − p1(1− α1 − α3 − α5)

zp2, z = p1 p2(2q1 − 2q2 + z) + p2(z− p1 − p2)(z− 2q2) + zα4 − p2(1− α1 − α3 − α5) ,

(28)

that can be derived from N = 6 dressing chain (4) (explicitly given for N = 6 in the ap-
pendix in Equation (A1)). Equation (28) can be realized as Hamilton equations
zqi z = ∂H/∂pi and zpi z = −∂H/∂qi for i = 1, 2 with the Hamiltonian:

H = −
2

∑
i=1

pi(pi − z)qi(qi − z)− 2p1q1 p2(q2 − z) +
2

∑
i=1

piz
i

∑
j=1

α2i−1 −
2

∑
i=1

qizα2i

+
2

∑
i=1

qi pi(1− α1 − α3 − α5) .

One advantage of variables qi, pi, i = 1, 2 is that they make expressions for Bäcklund
transformations (6) more transparent. The actions of Bäcklund transformations on these
variables are given by

s1(p1) = p1 +
α1

q1
, s2(q1) = q1 −

α2

p1
, s3(p1) = p1 −

α3

q2 − q1
, s3(p2) = p2 +

α3

q2 − q1
,

s4(q2) = q2 −
α4

p2
, s5(p2) = p2 −

α5

z− q2
, s6(q1) = q1 +

α6

z− p1 − p2
, s6(q2) = q2 +

α6

z− p1 − p2
,

(29)

where we only listed those transformations that are not identities and each si is accompanied
by transformation (7) of αi. The automorphism π acts in this setting as follows:

π : q1 → z− p1 − p2, p1 → q1, q2 → z− p2, p2 → q2 − q1, αi → αi−1 .

The first-order polynomial solutions (13)–(17) are expressed in terms of variables
defined in relation (27) as the following solutions to Hamilton Equation (28):

q1 = p1 = p2 =
z
3

, q2 =
2z
3

, αi = (a,
2
3
− a, a,

2
3
− a, a,

2
3
− a) , (30)

q1 = p1 = p2 =
z
2

, q2 = z, αi = (a, 1− a, a, 1− a, 0, 0) , (31)

q1 = p1 = z, q2 = 2z, p2 = 0 αi = (a, 2− a, a, 0,−a, 0) , (32)

q1 = q2 = p1 = z, p2 = 0 αi = (2− a, a, 0, 0, 0, 0) , (33)

q1 = q2 = p2 = z, p1 = 0 αi = (2− a, 0, 0, a, 0, 0) , (34)

We notice that the solution (30) is a fixed point of π2 automorphism, as it is obvious
comparing with its form in expression (13).

3.2. Connection of N = 4 Formalism to Painlevé V Equation

It is well-known that Equations (18) or (20) lead to the Painlevé V equation. We will
here establish this relation explicitly in order to relate the parameters of both theories. We
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first define w = q/z. Taking a derivative of the top equation in (20) and eliminating pz and
p, we obtain the second order equation

wzz = −
wz

z
+

(
1

2w
+

1
2(w− 1)

)
w2

z +
αw

z2(w− 1)
+

β(w− 1)
z2w

+ γw(w− 1) + δz2w(w− 1)(2w− 1) , (35)

with
α = −1

2
α2

3, β =
1
2

α2
1, γ = 2− 2α2 − α1 − α3 = α4 − α2, δ =

1
2

. (36)

We need two additional steps to cast Equation (35) into a standard form of Painlevé
V equation.

First we perform a change of variables z → t where t = εz2/2 then followed by a
transformation y = w/(w− 1).

In terms of y, Equation (35) takes a form of standard Painlevé V equation

ytt = −
yt

t
+

(
1

2y
+

1
y− 1

)
y2

t +
(y− 1)2

t2

(
ᾱy + β̄

1
y

)
+

γ̄

x
y + δ̄

y(y + 1)
y− 1

, (37)

where

ᾱ =
1
8

α2
3, β̄ = −1

8
α2

1, γ̄ = − 1
2ε

(2− 2α2 − α1 − α3) =
α2 − α4

2ε
, δ̄ = −1

2
1
ε2 . (38)

For δ̄ to take a conventional value of − 1
2 we need ε2 = 1.

3.3. Riccati Solutions of Equation (18)

Let us reduce Equation (18) by setting either α2 = 0, f2 = 0, f4 = z or α3 = 0,
f3 = 0, f1 = z. Using that f3 = z− f1 in the first case and f4 = z− f2 in the second case
we can rewrite the remaining equations for Fi = fi/z, i = 1, 2 as

d
dz

Fi = −zFi(1− Fi)−
αi + αi+2

z
Fi +

αi
z

, i = 1, 2 , (39)

in which we recognize Riccati equations [13]. Without losing generality we will discuss
the solution for the case of i = 1 with the principal solution given in terms of Whittaker
functions as

F1(z) = −α1
WhittakerM(− 1

4 α3 +
1
4 α1 + 1,− 1

2 + 1
4 α1 +

1
4 α3, 1

2 z2)

z2WhittakerM(− 1
4 α3 +

1
4 α1,− 1

2 + 1
4 α1 +

1
4 α3, 1

2 z2)
+

α1

z2 . (40)

The above expression becomes a rational function for at least one of the two parameters
α1, α3 being equal to a negative even integer, and the other equal to an arbitrary integer but
not equal to the opposite of that negative even integer (α1 + α3 6= 0):

αi = −2n, αi+2 = m 6= 2n, i = 1, 3 n ∈ Z+, 0, m ∈ Z .

For the special case α1 = 0 = α3, it holds that F1 = 0. With the above conditions being
satisfied, the rational solutions occur for Painlevé parameters:

ᾱ =
1
2

n2, β̄ = −1
2
(

m
2
)2, or ᾱ =

1
2
(

m
2
)2, β̄ = −1

2
n2 .

Let us recall that since α2 = 0 then εγ̄ = −α4/2 = −(2 − α1 − α3)/2 . Thus, if
α1 = −2n, n ∈ Z+, then we can rewrite α3 as α3 = 2(1 + n + εγ̄). If α3 = −2n, n ∈ Z+ then
α1 = 2(1 + n + ε γ̄).

Riccati Equation (39) takes a more familiar look when we rewrite it in terms of a
variable x = −z2/2:

d
dx

Fi = Fi(1− Fi)−
αi + αi+2

2x
Fi +

α1

2x
.
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To linearize this equation we set Fi = wi x/wi and for brevity introduce coefficients
bi = (αi + αi+2)/2 and ai = αi/2. In this way we obtain the second-order Kummer’s
equation:

xwi xx + (bi − x)wi x − aiwi = 0 . (41)

We look for solutions of Kummer’s equation denoted as U(a, b, x) that are polynomials
in x of a finite, let us say n, degree. This occurs for a = −n and for a− b = −n− 1 for
n = 0, 1, 2, 3. . . and in the latter case it holds that [14]:

U(a, a + n + 1, x) = x−a
n

∑
r=0

(
n
r

)
(a)r x−r, (42)

where (a)r is a Porchhammer symbol.
We will connect this polynomial with the case of α3 = 0 and a = α2/2, b = (α2 + α4)/2

for αi = (α1 + 2n,−2n, 0, 2− α1), which we will revisit later in Equation (111) in Section 4.5,
where it will be obtained by an action of T−n

2 shift operator on polynomial solutions (12).
For such values of a and b we will need to calculate U(−n, 1 − n − α1

2 , x). Thanks to
Kummer’s transformation U(a, b, x) = x1−bU(a− b + 1, 2− b, x) [14] we obtain a relation

U(−n, 1− n− α1/2, x) = xn+α1/2 U(
α1

2
,+

α1

2
+ n + 1, x) , (43)

which is a polynomial of degree n according to Equation (42).
For the case of α2 = 0 we have a = α1/2 and b = α1/2 + α3/2. We will consider

αi = (α1, 0,−2n, 2− α1 + 2n), which as shown in Section 4.5 are obtained by action of
Tn

4 shift operator on the polynomial solution (12). Accordingly, we are dealing with the
Kummer function U(α1/2, α1/2− n, x). This expression is not a polynomial, as we can
verify by explicitly calculating this function for n = 1 obtaining U(α1/2, α1/2− 1, x) =
(2x + α1 − 2)ex with Ux/U being however a rational function. In Section 4.5 we will prove
that the action of Tn

4 shift operator on the polynomial solution (12) generates solutions of
the Riccati Equation (39) for αi = (α1, 0,−2n, 2− α1 + 2n) .

3.4. Power Series Representation of p and q Variables

For N = 4 we will show that q = j1 + j2, p = j2 + j3 can be represented by power
series in odd powers of z and the results are (up to an action with π automorphism and
its powers)

q =
2

∑
i=1

(ciz + eiz3 + . . .), p =
2

∑
i=1

(ciz + eiz3 + . . .) ,

or

q =
2

∑
i=1

(ciz + eiz3 + . . .), p =
α3 − α1

z
+

2

∑
i=1

(ciz + eiz3 + . . .) .

The second case can be transformed by s1 Bäcklund transformation to the previous case.
Consider power series expansion ji = kiz−m + . . . with the first term being lowest

power in z. Comparing both sides of Equation (4), we notice that the lowest terms on the
left and the right sides will be of the order

z−m−1 ∼ z−2m + z−m−1(Ψ(−2m)z
−2m + . . . + Ψ(0)) , (44)

where we use the expansion of Ψ in (5) in powers of z:

Ψ = . . . +
Ψ(−2)

z2 +
Ψ(−1)

z
+ Ψ(0) + Ψ(+1)z

1 + . . . .

For the terms on both sides of (44) to match and cancel each other we need to take
m = 1 and set all Ψ(k) = 0, k < 0. In such case only Ψ0 contributes to the above equation.
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Without losing generality we therefore adopt the expansion

ji(z) =
ai
z
+ bi + ciz + diz2 + eiz3 + . . . . (45)

For expansion in (45), it follows that

Ψ(−2) = a2
1 + a2

3 − a2
2 − a2

4 = −2(a1 + a2)(a2 + a3) ,

Ψ(−1) = 2(a1b1 + a3b3 − a2b2 − a4b4) = −2((a1 + a2)(b2 + b3) + (a2 + a3)(b1 + b2)) ,
(46)

after we used that a4 = −a1 − a2 − a3 and b4 = −b1 − b2 − b3.
Next, we will effectively work with the dressing Equation (2) without Ψ to see whether

solutions for ji = ai/z + bi + ciz will be such that the divergent terms can be absorbed in Ψ
of Equation (4) via transformation (9):

ji → ji + (−1)i 1
2z

Ψ = ji + (−1)i 1
2z

Ψ(0) + (−1)i 1
2z

Ψ(1)z + . . . .

On the z−2 level of such dressing equations one finds the following expressions:

−(ai + ai+1) = a2
i+1 − a2

i = (ai+1 + ai)(ai+1 − ai), i = 1, . . ., N , (47)

which imposes that
ai + ai+1 = 0 or ai+1 − ai = −1 ,

for each i = 1, 2, 3, 4. There are two independent solutions of the above equations:

ai = (1,−1, 1,−1) a , (48)

ai = (a,−a,−1− a, 1 + a) , (49)

that all satisfy ∑i ai = 0. There are other similar solutions that one can obtain from (49)
by acting with π, π2, π3 transformations to obtain other solutions, such as ai = (a, a− 1,
1− a,−a) and ai = (−1 + a, 1− a,−a, a). It therefore suffices to use the solution (49). The
top Equation (48) is such that ai + ai+1 = 0 for every i = 1, 2, 3, 4. Such divergence can be
absorbed by the transformation (9) with Ψ = 2a. In addition, the divergent terms will be
absent from expressions for p and q.

The other solution (49) is such that either a1 + a2 = 0 or a2 + a3 = 0, ensuring Ψ−2 = 0
according to relation (46). However the divergent terms are such that they cannot be
removed the transformation (9) and the divergent terms will be present in expressions for p.
Let us illustrate this by applying the transformation (9) with Ψ = −2(1 + a). This results in
ai = (1 + 2a,−(1 + 2a), 0, 0). As we will show below, such divergent terms can be removed
by a Bäcklund transformation. The calculations done for N = 4 and N = 6 suggest that
this is a general feature for all N values.

Now for solution (48) we obtain that the condition (46) for Ψ(−1) = −2((a1 + a2)(b2 +
b3) + (a2 + a3)(b1 + b2)) = 0 is satisfied automatically and accordingly bi can be chosen
arbitrarily. For (49) and the other configurations that can be obtained from (49) by π, we
obtain conditions (−1− 2a)(b1 + b2) = 0, (−1+ 2a)(b2 + b3) = 0 and (1− 2a)(b1 + b2) = 0.
Accordingly, bi can be chosen arbitrarily if a = ±1/2 or we will have a b2 = −b3 or b2 = −b1
condition imposing one condition on bi.

Now consider the z−1 level of Equation (4) without Ψ. With such a redefined system
one obtains on the z−1 level 0 = ai+1bi+1 − aibi. For the solutions in (48) and (49) we find
that we can write bi = b(1,−1, 1,−1) and we can set b = 0 without losing any generality as
the terms can be added or removed by the transformation (9). A similar conclusion can be
obtained for other coefficients of terms with z to the even power: z2k. Such terms will not
contribute to q = j1 + j2, p = j2 + j3 and we don’t need to consider them in what follows.
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Now consider z0 levels of the Equation (2):

(1 + 2ai)ci + (1− 2ai+1)ci+1 = αi, i = 1, . . ., N , (50)

using b2
i = b2

i+1.
We first enter values for ai from (48) into the above equation to obtain

a =
1
2
(−1 + α1 + α3) ,

using that ∑i ci = 1. For ai given in (49) we find

a =
1
2
(−1 + α1 − α3) , (51)

and
c1 + c2 =

α1

α1 − α3
. (52)

We will now apply our results to q = j1 + j2, p = j2 + j3 variables. For ai = (a,−a,
−1− a, 1 + a) and a given in (51) it holds that −(1 + 2a) = α3 − α1 and

q = c12z + e12z3 + . . ., p =
α3 − α1

z
+ c23z + e23z3 + . . . . (53)

Here, for brevity, we introduced c12 = c1 + c2 given in Equation (52). Explicit calcula-
tion gives

c23 =
α2

3 + α3α2 − 2α3 + α2
1 + α2

1 + α2α1 − 2α2 − 2α1

α2
3 − 2α3α− 1− 4 + α2

1
.

It follows that the singular term in p in (53) can be removed by s1 transformation:
q→ q, p→ p + α1/q with

α1

q
=

1
1
α1
(− α1

α3−α1
z + e12z3 + . . .)

=
1

−z
α3−α1

(1− z2e12(α3−α1)
α1

+ . . .)
,

= −α3 − α1

z
(1 +

z2e12(α3 − α1)

α1
+ z4. . .) = −α3 − α1

z
− z

e12(α3 − α1)

α1
+ z3. . .) ,

(54)

which shows that the transformed p given by p + α1/q will no longer contain a singular
term. Its power expansion will start with the term proportional to z and will only contain
odd powers of z.

The initial position of the pole can be obviously moved from p to q by the π auto-
morphism. This will lead to s1 being transformed by π to other si, which will remove the
divergent terms. With this understanding we continue to consider the above configuration
without any loss of generality. One can therefore effectively only consider the case of
ai = a(1,−1, 1,−1) from (48) with

q = c12z + e12z3 + . . ., p = c23z + e23z3 + . . . ,

with
c12 =

α1

α1 + α3
, c23 =

α2

2− α1 − α3
.

Amazingly, the first terms of a general expression for q, p agree with a general formula

q =
α1

α1 + α3
z, p =

α2

2− α1 − α3
z, (55)

that reproduces all the cases of (22)–(26) for the corresponding values of αi.
Let us illustrate all this by the following example.
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Example 1. The solution

q =
z(−468 + z4)

2(z4 − 324)
, p =

z2 − 18
2z

, α1 =
13
2

, α2 = −1, α3 = −5
2

, (56)

is taken from ref. [15], where it was obtained using Maya diagram techniques. Clearly
p = z/2− 9/z contains a singularity. Note that indeed −9/z = (α3 − α1)/z in agreement
with relation (53). Applying s1, we obtain:

q =
z(−468 + z4)

2(z4 − 324)
, p =

z(z4 + 8z2 − 468)
2(z4 − 468)

, α1 = −13
2

, α2 =
11
2

, α3 = −5
2

, (57)

with polynomial expansions:

q(z) =
13
18

z +
1

1458
z5 +

1
472,392

z9 + . . ., p(z) =
1
2

z− 1
117

z3 − 1
54,756

z7 + . . . .

Note that 13/18 = α1/(α1 + α3). We will show below how to derive the rational solution (57)
from the seed solutions (11)–(12) (or (22)–(26)) by the shift operators.

Applying Equations (47) and (50) to N = 6, we find that the number of solutions
increased from two to three (up to an action of π automorphism) and they are given by:

ai = a (1,−1, 1,−1, 1,−1), a = −1
2
(1− α1 − α3 − α5) , (58)

ai = (a,−a,−1− a, 1 + a,−1− a, 1 + a), a = −1
2
(1 + α1 − α3 − α5) , (59)

ai = (a,−a,−1− a, 1 + a, a,−a), a = −1
2
(1 + α1 − α3 + α5) , (60)

for expansions ji(z) = ai/z + ciz + . . ., i = 1, . . ., 6. For solutions (59) and (60) there will be
poles in expansions of pi, i = 1, 2.

Note that from Equation (50) we find c1 + c2 = α1/(1 + 2a) and c3 + c4 = −α3/(1 +
2a), where a is given in relations (59) and (60), respectively.

In the case of solution (59) the expansion of p1 starts with a pole p1 = −(α1 − α3 −
α5)/z + . . . while the expansion of q1 is q1 = (c1 + c2)z + . . . = α1z/(α1 − α3 − α5) + . . ..
Consequently, the action of s1 on p1 removes the pole similarly to what we have seen for
the N = 4 case in expression (54).

In the case of solution (60), both expansions of pi, i = 1, 2 will start with divergent
terms: p1 = −(α1 − α3 + α5)/z + . . . and p2 = (α1 − α3 + α5)/z + . . .. Since q1 = (c1 +
c2)z + . . . and q2 = (c1 + c2 + c3 + c4)z + . . ., we easily find that q1 − q2 = α3z/(α1 − α3 +
α5) + . . .. Consequently, the action of s3 from Equation (29) on p1 and p2 will remove these
divergencies. For those solutions that are obtained from solutions (59) or (60) by acting with
automorphism π or its powers, the divergencies will be removed by appropriate Bäcklund
transformations that are conjugations of s1, s3, e.g., πs1π−1, πs3π−1, etc.

4. Construction of Rational Solutions

In this section, we will describe a method to derive all rational solutions that are ob-
tainable from the first-order polynomial solutions of dressing Equation (4) via the combined
actions of fundamental shift operators Ti, i = 1, . . ., N from (68).

4.1. Summary of the Results for N = 4

For N = 4 the seeds solutions (11) and (12) of dressing Equation (4) are equivalent
to Watanabe’s algebraic solutions (22)–(26) in the setting of Hamilton Equation (20). It is
convenient to give the classification of solutions in terms of parameters α1, α3, (α2− α4)/2 of
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the dressing chain equations that define the Painlevé V parameters ᾱ, β̄, γ̄ via relations (38)
with δ̄ parameter being non-zero and here equal to δ̄ = −1/2 (for ε2 = 1).

The rational solutions obtained by acting with the shift operators fall into three classes
of parameters α1, α3, (α2 − α4)/2, and ᾱ, β̄, γ̄ depending on whether the fundamental shift
operators act on solutions

• ji = (z/4)(1, 1, 1, 1) from (11) (items (Ia,Ib) and item (II)). In case of item (II) an
intermediary step of acting with s1 in addition to the shift operators is involved, see
f.i. Equation (53).

• ji = (z/2)(1, 1,−1, 1) from (12) (items (IIIa,IIIb)).

These three cases are as follows:

(I)

α1 = A + 2n1 − 2n2, α3 = A + 2n3 − 2n4,
α2 − α4

2
= n2 − n3 − n4 + n1,

with ni ∈ Z, i = 1, . . ., 4 and A arbitrary. The above implies either (Ia) or (Ib):
(Ia) ᾱ = 1

2 (a)2, β̄ = − 1
2 (a + n)2 and γ̄ = εm where m + n is even and equal to 2(n1 − n3)

and a = A/2 + n3 − n4 arbitrary,
(Ib) ᾱ = 1

2 (b + n)2, β̄ = − 1
2 (b)

2 and γ̄ = εm where m + n is even and equal to 2(n2 − n4)
and b = A/2 + n1 − n2 arbitrary

(II)

α1 = 1 + 2n1 − 2n2, α2 = −A + 2n2 − 2n3,

α3 = 1 + 2n3 − 2n4, α4 = A + 2n4 − 2n1 ,

which imply

ᾱ =
1
2

(
1
2
+ m

)2
, β̄ = −1

2

(
1
2
+ n

)2
, γ̄ = (−A + n + m)ε ,

where A is arbitrary and n, m are integers.
(IIIa)

α1 = A + 2n1 + 2n2, α3 = −2n4,
α2 − α4

2
= − α4

2
=

A
2
− 1− n4 + n1 − n2, n2, n4 ∈ Z+, n1 ∈ Z ,

with A arbitrary and Z+ that includes positive integers and zero. Accordingly, elimi-
nating the arbitrary number A from the above equations, we can write

ᾱ =
1
8

α2
3 =

1
2
(n)2, β̄ = −1

8
α2

1 = −1
2
(εγ̄ + 1 + m)2,

where n = n4, m = n4 + 2n2 ∈ Z+ and with n + m being an even integer.
(IIIb)

α1 = −2n2, α3 = A + 2n3 + 2n4,
α2 − α4

2
= 1− A

2
+ n2 − n3 + n4, n2, n4 ∈ Z+, n3 ∈ Z ,

with A arbitrary. Z+ includes positive integers and zero. Accordingly, eliminating the
arbitrary number A from the above equations, we can write

ᾱ =
1
8

α2
3 =

1
2
(−εγ̄ + 1 + m)2, β̄ = −1

8
α2

1 = −1
2
(n)2,

where n = n2, m = n2 + 2n4 ∈ Z+, and with n + m being an even integer.

Comments: Integers n, m in (IIIa) and (IIIb) have been derived as positive integers.
However they both enter quadratic expressions in which their overall sign can be reversed.
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4.2. Applying the Shift Operators to Obtain Rational Solutions

For N = 4 we will show how to reproduce items (I)–(III) listed in Section (4.1) in the
setting of Painlevé V equation using the following construction:

• The seeds of all rational solutions are the first-order polynomial solutions (11), (12)
and its π variants. Note that these seed solutions all depend on an arbitrary real
parameter, customarily chosen here as a.

• A class of rational solutions that can be obtained by successive operation by shift
operators Ti, defined in the next Section 4.3, of the form:

Tn1
1 Tn2

2 Tn3
3 Tn4

4 , ni ∈ Z , (61)

on polynomial solutions, (11) can be expanded in positive power series in z and does
not contain a pole singularity and, if necessary (as in the case of Equation (53)), having
this singularity removed by s1 Bäcklund transformation. These two cases are described
by the parameters presented in the above items I and II, respectively.

• A class of rational solutions obtained from the seed polynomial solutions (12) will be
derived by successive operation with shift operators Ti of the type

Tni
i T

nj
j T−nk

k , nj, nk ∈ Z+, ni ∈ Z , (62)

for distinct i, j, k and Z+ containing positive integers and zero as only actions with
shift operators given in Equation (62) that are not causing divergencies. The results
are summarized in item III in Section (4.1).

We conclude that the well known fundamental results on classification of rational
solutions of the Painlevé V equation first presented in [9] are here obtained by acting with
the operators (61) on the first-order polynomial solutions (11) and (12). In the latter case,
we will encounter restrictions on those values of ni for which the operators (61) are well
defined, as indicated in Equation (62). See also [10], which derived the rational solutions
described above in items (Ia,Ib) and (II) via shift operators acting on solutions expressed by
τ functions and corresponding to (11). The results of ref. [9] were summarized succinctly
in [1].

4.3. The Fundamental Shift Operators for A(1)
N−1

To analyze transformations under the shift operators which we will introduce in this
subsection it is convenient to first introduce the following representation of αi parameters
for the N = 4 case:

α1 = 2(v2 − v1), α2 = 2(v3 − v2), α3 = 2(v4 − v3), α4 = 2 + 2(v1 − v4) . (63)

One checks that

α1 + α2 + α3 + α4 = 2 + 2(v2 − v1 + v3 − v2 + v4 − v3 + v1 − v4) = 2 ,

is satisfied automatically without imposing any condition on v’s.
Obviously, adding a constant term to all vi will not change the final result in (63) and

thus we have an equivalence:

(v1, v2, v3, v4) ∼ (v1 + c, v2 + c, v3 + c, v4 + c). (64)

The Bäcklund transformations si, i = 1, 2, 3 act in terms of vi simply as permutations
between vi and vi+1: si : vi ↔ vi+1, while si(vj) = vj, j 6= i, i + 1. The automorphism π acts
as follows: π(vi) = vi−1, i = 2, 3, 4 and π(v1) = v4 − 1.

Next, we introduce the shift operators

T1 = πs3s2s1, T2 = s1πs3s2, T3 = s2s1πs3, T4 = s3s2s1π, (65)
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that act as simple translations on the vi variables: Ti(vj) = vj − δi,j leading to:

Ti(vi) = vi − 1, Ti(vj) = vj −→
{

Ti(αi) = αi + 2,
Ti(αi−1) = αi−1 − 2

, (66)

or

T1(α1, α2, α3, α4) = (α1 + 2, α2, α3, α4 − 2) ,

T2(α1, α2, α3, α4) = (α1 − 2, α2 + 2, α3, α4) ,

T3(α1, α2, α3, α4) = (α1, α2 − 2, α3 + 2, α4) ,

T4(α1, α2, α3, α4) = (α1, α2, α3 − 2, α4 + 2) .

(67)

Comparing expressions (67) and (66) we see that in the vi representation it is very
convenient to study how the parameter space of solutions of the dressing equation is being
formed under actions of the shift operators. Generally the orbit of vi = (v1, v2, v3, v4)
under an action with Tn1

1 Tn2
2 Tn3

3 Tn4
4 from Equation (61) will be described by vi = (v1 − n1,

v2 − n2, v3 − n3, v4 − n4). We are then able to associate a rational solution to each point of
the orbit following the approach of Section 4.2.

It is easy to extend the definition of the fundamental shift operators to arbitrary N [4,10,16]:

T1 = πsN−1 · · · s2s1, T2 = s1πsN−1 · · · s2, . . ., TN = sN−1 · · · s2s1π , (68)

that for every N, the weight lattice of A(1)
N−1 is generated. The shift operators commute with

each other
TiTj = TjTi ,

and satisfy T1T2 · · · TN = 1, where we used that πN = 1 and that πsi = si+1π. These
operators act on parameters αi as

Ti(αi−1) = αi−1 − 2, Ti(αi) = αi + 2, Ti(αj) = αj (j 6= i− 1, i), (69)

and further satisfy πTi = Ti+1π, Ti(Φ) = Φ, Ti(Ψ) = −Ψ. The inverse shift operators for
N = 4 are:

T−1
1 = s1s2s3π3, T−1

2 = s2s3π3s1, T−1
3 = s3π3s1s2, T−1

4 = π3s1s2s3 . (70)

For convenience, we also list the shift operators for N = 6:

T1 = πs5s4s3s2s1, T2 = s1πs5s4s3s2, T3 = s2s1πs5s4s3, T4 = s3s2s1πs5s4

T5 = s4s3s2s1πs5, T6 = s5s4s3s2s1π ,
(71)

and their inverse

T−1
1 = s1s2s3s4s5π−1, T−1

2 = s2s3s4s5π−1s1, T−1
3 = s3s4s5π−1s1s2, T−1

4 = s4s5π−1s1s2s3,

T−1
5 = s5π−1s1s2s3s4, T−1

6 = π−1s1s2s3s4s5
. (72)

Within the framework of dressing chain equations with Bäcklund transformations (6)
it is actually possible to establish general transformation rules for the shift operator
Ti acting on ji+1, ji+2, . . . for i = 1., . . ., N, which applies to N = 4, 6 and the initial
configurations (11), (13):
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ji+1, n+1 = Ti(ji+1, n) = ji n −
a+ 2n

ji, n + ji+1, n

ji+2, n+1 = Ti(ji+2, n) = ji+1, n +
a+ 2n

ji, n + ji+1, n

− 4/N + 2n
ji+1, n + ji+2, n + ji+3, n − Ti(ji+1, n)

ji+3, n+1 = Ti(ji+3, n) = ji+2, n +
4/N + 2n

ji, n + ji+1, n + ji+2, n − Ti(ji+1, n)

− 4/N + a + 2n
ji, n + ji+1, n + ji+2, n + ji+3, n − Ti(ji+1, n + ji+2, n)

(73)

etc., where ji+k, n = Tn
i (ji+k, 0) with ji+k, 0 = z/N and k = 1, 2. . .. The above equations

lead to

ji+1, n+1 + ji+2, n+1 = Ti(ji+1, n + ji+2, n) = ji n + ji+1, n

− (1 +
N
2

n)
4
N

ji, n + ji+1, n

(ji, n + ji+1, n)(ji+1, n + ji+2, n) + a+ 2n
(74)

which for i = 1 will lead to recurrence relations for p = j2 + j3 in case of N = 4 and
for p1 = j2 + j3 in case of N = 6. These recurrence relations will establish Umemura
polynomial solutions as will be shown below.

4.4. Shift Operators Acting on the Solution ji = z
4 (1, 1, 1, 1) in Equation (11)

4.4.1. Parameters of the Solutions Obtained from the Seed Solution ji = z
4 (1, 1, 1, 1) by

Action of the Shift Operators

Consider solution (11) such that (α1, α2, α3, α4) = (a, 1− a, a, 1− a) with an arbitrary
parameter a and q = p = z/2. According to relation (67), these solutions under action
of (61) will have the following final parameters α1, α2, α3, α4:

α1 = a+ 2n1 − 2n2, α3 = a+ 2n3 − 2n4, α2 = 1− a+ 2n2 − 2n3, α4 = 1− a+ 2n4 − 2n1 . (75)

Thus, in agreement with item I in Section 4.1 we find

α1 − α3

2
= n1 − n2 − n3 + n4 = k1 − k2 = 2k−

α2 − α4

2
= n1 − n3 + n2 − n4 = k1 + k2 = 2k+ ,

(76)

where we introduced

k1 = n1 − n3, k2 = n2 − n4, k± =
1
2
(k1 ± k2) . (77)

In terms of these parameters, we can decompose Tn1
1 Tn2

2 Tn3
3 Tn4

4 into a product of
different factors

Tn1
1 Tn2

2 Tn3
3 Tn4

4 = Tk1
1 Tk2

2 (T1T3)
n3(T2T4)

n4 = (T1T2)
k+(T1T−1

2 )k−(T1T3)
n3(T2T4)

n4 , (78)

with each factor acting independently of the others on parameters in Equation (76). Their
action on expression (11) with (a, 1− a, a, 1− a) induces the following transformations:

1. (T1T3)
n3 increases arbitrary parameter a: a → a+ 2n3 but leaves q = p = z/2 of

equation (22) unchanged.
2. (T2T4)

n4 decreases arbitrary parameter a: a → a− 2n4 but leaves q = p = z/2 of
Equation (22) unchanged.
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3. (T1T2)
k+ increases 1

2 (α2 − α4)→ 1
2 (α2 − α4) + 2k+

4. (T1T−1
2 )k− increases 1

2 (α1 − α3)→ 1
2 (α1 − α3) + 2k−

The conclusion in point 1 follows easily from the transformation rule:

(T1T3)
k(ji) = (T2T4)

−k(ji) =
z
4
+ (−1)i+1 2k

z
(79)

where ji = z/4 is one of the components of solution (11). A similar argument applies
to point 2 since T1T2T3T4 = 1. The first two top transformations in points 1 and 2 do
not induce any change in 1

2 (α2 − α4) nor in 1
2 (α1 − α3), thus the shift operators (T1T3)

n3

and (T2T4)
n4 equally increase Painlevé V parameters ᾱ and β̄ and are not changing the εγ

parameter. The above discussion shows that the two seed configurations (a, 1− a, a, 1− a)
and (b, 1− b, b, 1− b), both corresponding to the solution (22) with parameters a and b
such that b = a+ 2m, with m being an integer, can be connected by the transformation
(T1T3)

n3(T2T4)
n4 with m = n3− n4, leaving q = p = z/2 of equation (22) unchanged. Thus,

they both can give rise to an identical solution y, (α, β, γ, δ) of the Painlevé V equation via
actions of different fundamental shift operators. However, this ambiguity disappears when
the two seed solutions are considered as solutions (11) of the dressing chain since their ji(z)
components will transform non-trivially under (T1T3)

n3(T2T4)
n4 according to relation (79)

as long as n3 6= n4.
The shift operator (T1T2)

k+ increases εγ by 2k+, while (T1T−1
2 )k− changes a difference

between ᾱ and β̄ of Painlevé V parameters. To illustrate how the Painlevé V parameters
ᾱ, β̄, γ̄ transform under the above combinations of shift operators, we recall expressions (38)
and take into account expressions (75) to obtain:

ᾱ =
(a/2 + n3 − n4)

2

2
, β̄ = − (a/2 + n1 − n2)

2

2
, γ̄ = ε(n2 − n3 − n4 + n1) . (80)

In terms of integers k±, the above expressions can be rewritten succinctly as:

ᾱ =
1
2

(√
−2β̄ + n2 − n1 + n3 − n4

)2
=

1
2

(√
−2β̄− 2k−

)2
, γ̄ = 2εk+ .

Sometimes one encounters a pole in an initial expression for p as was the case in
solution (56), where s1 was used to remove the pole from p. To cover such a case, we
apply s1 Bäcklund transformation to obtain a configuration (−a, 1, a, 1). Then, applying π
automorphism we arrive at

(1,−a, 1, a) .

Acting with Tn1
1 Tn2

2 Tn3
3 Tn4

4 from (61) will yield:

α1 = 1 + 2n1 − 2n2, α2 = −a+ 2n2 − 2n3,

α3 = 1 + 2n3 − 2n4, ᾱ4 = +a+ 2n4 − 2n1,
(81)

with

ᾱ =
1
2

(
1
2
+ n3 − n4

)2
, β̄ = −1

2

(
1
2
+ n1 − n2

)2
, γ̄ = ε(−a+ n2 − n3 − n4 + n1),

setting a = A, n3 = 0, n4 = −m, n1 = n, n2 = 0 we get item (II) in Section (4.1), in agreement
with [9], see also [10].

Example 2. Consider again the case of solution (56) with

α1 =
13
2

, α2 = −1, α3 = −5
2

, α4 = −1 ,
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and p = z/2− 9/z that contains a pole that can be removed by s1. Fitting the above α’s into
relation (75) does not work since the method works for p being expandable in a positive series in z.
We therefore try to fit it into a structure obtained from Ti’s acting on configuration (−a, 1, a, 1):

ᾱ1 = −a+ 2n1 − 2n2, ᾱ2 = 1 + 2n2 − 2n3,

ᾱ3 = a+ 2n3 − 2n4, ᾱ4 = 1 + 2n4 − 2n1,
(82)

For ᾱ1 = 13
2 , ᾱ2 = −1, ᾱ3 = − 5

2 , ᾱ4 = −1, it is now easy to find a class of solutions

n2 = −1 + n3, n1 = 1 + n4, a = −5
2
− 2n3 + 2n4

with n3, n4 being arbitrary integers. If we set f.i. n3 = n4 = 1, then n2 = 0 and a = −5/2 from
the solution.

Note that relations (82) are equivalent with

ᾱ =
1
2
(a/2 + n3 − n4)

2, β̄ = −1
2
(−a/2 + n1 − n2)

2, γ̄ = ε (n2 − n3 − n4 + n1), (83)

Setting a = −(a/2 + n3 − n4) = a/2− n1 + n2, we can rewrite the above as

ᾱ =
1
2
(a + m)2, β̄ = −1

2
(a)2, γ̄ = ε k ,

with m = n1 − n2 + n3 − n4, k = n2 − n3 − n4 + n1 and k + m = 2n1 − 2n4 being an even
number (see also [9] or (I) in Section 4.1.

Example 3. In this example, instead of connecting the solution (56) to the seed solution with
(−α1, 1, α1, 1) we will rather take the polynomial solution (57) with α1 = − 13

2 , α2 = 11
2 , α3 =

− 5
2 , α4 = 11

2 obtained by acting with s1 on solution (56) from [15] and show that it can be obtained
from polynomial solution (11) with

(α1, α2, α3, α4) = (a, 1− a, a, 1− a) ,

by successive operations of translation operations Ti, each acting ni times. Recalling the actions of
Ti (67), we obtain the following 4 conditions for the solution (57) to be obtained from the solution (11)
by Ti’s each acting ni times:

a+ 2n1 − 2n2 = −13
2

, (1− a) + 2n2 − 2n3 =
11
2

a+ 2n3 − 2n4 = −5
2

, (1− a) + 2n4 − 2n1 =
11
2

,

with a general solution given in terms of arbitrary n3, n4:

n1 = n3 − 1, n2 = n4 + 1, a = −5
2
+ 2n4 − 2n3,

that involves action by the shift operators equal to

T−1+n3
1 T1+n4

2 Tn3
3 Tn4

4 = (T1T3)
−1+n3(T2T4)

1+n4 T3T−1
4 .

The above expression shows that there is no ambiguity related to the choice of n3 and n4 as
(T1T3)

−1+n3 and (T2T4)
1+n4 do not change the form of the solution. Therefore, for simplicity we

eliminate the first two factors of the above expression by choosing:

n3 − 1 = n4 + 1 = 0 → n1 = n2 = 0, a = −13
2

,
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and thus the action of shift operators (61) becomes that of T3T−1
4 . The action of the inverse operator

T−1
4 = π−1s1s2s3 on p = q = z/2, (a, 1− a, a, 1− a) is well defined and yields

q =
1
2

z
(z2 − 4a)

(z2 − 4a− 4)
, p =

1
2

z
(z2 − 4a+ 4)
(z2 − 4a)

, (a, 1− a, 2 + a,−1− a) .

Applying T3 on the above expressions we get:

q =
z(16a2 + 32a− z4)

2(4a+ 8 + z2)(−z2 + 4a+ 8)
, p =

z(16a2 + 32a− 8z2 − z4)

2(16a2 + 32a− z4)

(a,−1− a, 4 + a,−1− a) ,

which for a = − 13
2 reproduces expression (57).

4.4.2. Umemura Polynomial Solutions Obtained from ji = z
4 (1, 1, 1, 1) Seed Solution

through Action of the Shift Operators

As follows from relations (73) applied to the N = 4 case, we have the following
recurrence relations

j4, n+1 = T3(j4, n) = j3 n −
a+ 2n

j3, n + j4, n

j1, n+1 = T3(j1, n) = j4, n +
a+ 2n

j3, n + j4, n
− (1 + 2n)

j3, n + j4, n

(j3, n + j4, n)(j4, n + j1, n) + a+ 2n
,

(84)

for transformations induced by T3.
Since ∑4

i=1 j4, n = z and ∑4
i=1 j4, n+1 = z, we find for T3(j2 n + j3, n) = z− T3(j1 n + j4, n)

T3(j2 n + j3, n) = j1 n + j2, n + (1 + 2n)
j3, n + j4, n

(j3, n + j4, n)(j4, n + j1, n) + a+ 2n

= j1 n + j2, n + (1 + 2n)
z− (j1, n + j2, n)

(z− j1, n − j2, n)(z− (j2, n + j3, n)) + a+ 2n
,

which can be rewritten as

pn+1 = qn + (2n + 1)
(z− qn)

dn
, (85)

where for q = j1 + j2, p = j2 + j3 we introduced the following notation

qn(z; a) = Tn
3 (q0), pn(z; a) = Tn

3 (p0), q0 = p0 =
z
2

, (86)

and
dn(z; a) = (z− qn)(z− pn) + 2n + a . (87)

Similarly from Equation (73) we find

T3(j1 n + j2, n) = j1 n + j4, n +
(a+ 2n)

(z− j1, n − j2, n)
− (a+ 2n + 1)

z− T3(z− j2, n − j3, n)
,

that can be rewritten as

qn+1 = z− pn +
a+ 2n
z− qn

− a+ 2n + 1
pn+1

=
dn

z− qn
− a+ 2n + 1

pn+1
, (88)
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and together with Equation (85) form two recurrence relations for the canonical quantities
qn, pn. One finds from relations (85) and (88) that

qn

z− qn
dn = qn+1 pn+1 + a ,

which shows that the quantity dn is useful in describing transition from pn, qn to pn+1, qn+1.
Indeed, we will be able below to formulate the recurrence relation for Umemura polynomi-
als based on the existence of alternative expressions (94) for dn.

It is convenient to introduce the polynomials Un(z; a) to which we will refer as
Umemura polynomials [7,11] defined for n = 0, 1, 2, 3 by

U0(z; a) = 1, U1(z; a) = 1 , (89)

U2(z; a) = z2 + 4a , (90)

U3(z; a) = z6 + 12z4a+ 12z4 + 48z2a2 + 96z2a+ 192a2 + 128a+ 64a3 . (91)

Note that Un(z; a) = zn(n−1) + . . . is a polynomial of the n(n− 1)-th order. In terms of
the above polynomials, we can express q1, p1, d1 in the following way

q1(z; a) =
z
2

U2(z; a)U1(z; a+ 3)
U2(z; a+ 1)U1(z; a+ 2)

, p1(z; a) =
z
2

U2(z; a+ 1)U1(z; a)
U2(z; a)U1(z; a + 1)

,

d1(z; a) =
z2

4
U2(z; a+ 2)U2(z; a− 1)

U2(z; a+ 1)U2(z; a)
+ 2 + a =

1
4

U3(z; a)U1(z; a+ 1)
U2(z; a)U2(z; a + 1)

.
(92)

The repeating action of T3 operator on expressions (92) gives rise to:

qn(z; a) =
z
2

Un(z; a+ 3)Un+1(z; a)
Un(z; a+ 2)Un+1(z; a+ 1)

, pn(z; a) =
z
2

Un(z; a)Un+1(z; a+ 1)
Un(z; a+ 1)Un+1(z; a)

dn(z; a) =
z2

4
Un+1(z; a+ 2)Un+1(z; a− 1)

Un+1(z; a+ 1)Un+1(z; a)
+ 2n + a .

(93)

Using the recurrence relations (85), (88) one can alternatively express the quantity
dn = (z− qn)(z− pn) + 2n + a as

dn(z; a) =
1
4

Un(z; a+ 1)Un+2(z; a)
Un+1(z; a)Un+1(z; a+ 1)

=
1
4

Un(z; a+ 2)Un+2(z; a− 1)
Un+1(z; a)Un+1(z; a+ 1)

+ (2n + 1) .
(94)

Comparing the bottom of expressions (93) with the two expressions in Equation (94),
we obtain two alternative recurrence relations for the Umemura polynomials which inde-
pendently can be used to generate higher level Umemura polynomials.

It is convenient at this point to introduce the variable x = z2

4 and polynomials

Wn(x; a) = 2−n(n−1)Un(z; a) , (95)

which satisfy two recurrence relations that follow from comparing expressions (93) with (94):
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Wn−1(x; a+ 1)Wn+1(x; a) = xWn(x; a+ 2)Wn(x; a− 1)

+ (2n− 2 + a)Wn(x; a)Wn(x; a+ 1) (96)

Wn−1(x; a+ 3)Wn+1(x; a) = xWn(x; a+ 3)Wn(x; a) + aWn(x; a+ 2)Wn(x; a+ 1) . (97)

Such redefined Umemura polynomials Wn(x; a) are given for n = 0, 1, 2, 3, 5 by

W0(x; a) = 1, W1(x; a) = 1 , (98)

W2(x; a) = x + a , (99)

W3(x; a) = x3 + 3x2a+ 3x2 + 3xa2 + 6xa+ 3a2 + 2a+ a3 (100)

= (x + a)3 + 3(x + a)2 + 2a ,

W4(x; a) = 48 a+ 60 x3 + x6 + 12 x5 + 45 x4 + 144 x a+ 240 x2 a+ 300 x a2 + 6 x5 a+ 15 x4 a2

+ 60 x4 a+ 20 x3 a3 + 120 x3 a2 + 190 x3 a+ 15 x2 a4 + 120 x2 a3 + 300 x2 a2 + 60 x a4

+ 210 x a3 + 6 x a5 + 124 a2 + 120 a3 + 12 a5 + a6 + 55 a4 , (101)

from which higher polynomials can be obtained using recurrence relations (96) or (97). In
addition, the polynomials Wn(x; a) satisfy the identity

2Wn+1(x, a)Wn(x; a+ 1)−Wn+1(x, a+ 1)Wn(x; a) = Wn+1(x; a− 1)Wn(x; a+ 2) , (102)

established on the basis of consistency of the shift operator approach with various operators
Ti connected via π. Although we have chosen arbitrarily to generate the recurrence relations
by acting with T3, we could take any other shift operator as a starting point and be able
to transfer from one formalism to another by applying the automorphism π through
relation πTi = Ti+1π. The identity (102) ensures that acting with any of the shift operators
Ti, i = 1, 2, 3, 4 on expressions (92) will give rise to solutions that are still expressible in
terms of Umemura polynomials Un(z; a). For example, the repeating action of T1 operator
on expressions (92) yields:

q(1)n (z; a) =
z
2

Un(z, a+ 1)Un+1(z, a+ 2)
Un(z, a+ 2)Un+1(z, a+ 1)

, (103)

p(1)n (z; a) =
z
2

Un(z, a+ 2)Un+1(z, a− 1)
Un(z, a+ 1)Un+1(z, a)

. (104)

Consider again equation (93) for qn(z; a) and plug qn into expression y = (q/z)
(q/z − 1)−1 for solution of the Painlevé V equation derived in Section 3.2. After some
simple algebra we find:

y =
Wn(x; a+ 3)Wn+1(x; a)

Wn(x; a+ 3)Wn+1(x; a)− 2Wn(x; a+ 2)Wn+1(x; a+ 1)
.

Using the identity (102) to rewrite the denominator, we obtain

y = − Wn(x; a+ 3)Wn+1(x; a)
Wn(x; a+ 1)Wn+1(x; a+ 2)

, (105)

for (a, 1− a− 2n, a+ 2n, 1− a) with the Painlevé parameters:

ᾱ =
1
2
(
a

2
+ n)2, β̄ = −1

2
(
a

2
)2, γ̄ = −1

ε
n ,

agreeing with the solution (Ib) given at the beginning of Section 4.
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Consider now solution (103), generated by acting n times with the shift operator T1.
The parameters αi for this solution are equal to (a+ 2n, 1− a, a, 1− a− 2n). Plugging the
above q(z) into expression y = (q/z)(q/z− 1)−1 and using the identity (102) we get

y = −Wn(x; a+ 1)Wn+1(x; a+ 2)
Wn(x; a+ 3)Wn+1(x; a)

, (106)

with the Painlevé V parameters

ᾱ =
1
2
(
a

2
)2, β̄ = −1

2
(
a

2
+ n)2, γ̄ = n, δ̄ = −1

2
,

that agree with the solution (Ia) given at the beginning of section 4 for the Painlevé V
variable t = 2x.

The fact that the above y satisfies the Painlevé V equation is equivalent to the Umemura
polynomials Wn(x, a) satisfying the σ-type of relation, which can be given a form of a Toda-
like equation:

Wn−1(x; a)Wn+1(x; a)
W2

n(x; a)
= x + a+ 3(n− 1) + 2

d
dx

x
d

dx
ln Wn(x; a) .

Next we define quantity:

ωa =
Wn(x; a)Wn+1(x; a+ 1)
Wn(x; a+ 1)Wn+1(x; a)

− 1, (107)

where we suppressed dependence on n on the left hand side. It is interesting to notice that,
as follows from applications of all three identities (96), (97) and (102), ωa satisfies a discrete
Painlevé II equation [11]:

ωa−1 + ωa+1 =
2
x

1
1−ω2

a
(n + (1− n− a)ωa) . (108)

See [17] for an early observation that Bäcklund transformations of continuous models
can give rise to a discrete structure.

4.5. Action of the Shift Operators on ji = z
2 (1, 1,−1, 1) Solution in (12)

By acting with Tn1
1 Tn2

2 Tn3
3 Tn4

4 on ji = (z/2)(1, 1,−1, 1) from Equation (12) with
αi = (a, 0, 0, 2 − a) we will arrive, in principle, at the following parameters of the
final configuration

α1 = a+ 2n1 − 2n2, α2 = 2n2 − 2n3,

α3 = 2n3 − 2n4, α4 = 2− a+ 2n4 − 2n1 ,

or

α1 = a+ 2n1− 2n2, α3 = 2n3− 2n4,
α2 − α4

2
=

a

2
− 1+ n2− n3− n4 + n1, ni ∈ Z . (109)

However not all of the shift transformations are well defined when acting on
ji = (z/2)(1, 1,−1, 1). Since j2 + j3 = 0 and j3 + j4 = 0 we see from the definition (6)
that actions of s2, s3 involve divisions by zero and therefore are not allowed. Recalling
the definitions (65) and (70), we accordingly need to exclude T2, T3 and T−1

3 , T−1
4 , as these

operators contain s3 and s2 transformations at the positions to the right. Because the shift
operators in (65) and (70) contain ordered products of neighboring Bäcklund transforma-
tions of the type si+1si the divergence is only generated by the si located to the right. If
the result of acting by si is not divergent, then acting with si+1 would not be divergent, as
follows from the definition (6).
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Accordingly, to avoid divergencies, we will only consider the operators Tn1
1 Tn4

4 T−n2
2

with n2, n4 ∈ Z+ and n1 ∈ Z.
Indeed, one can verify that T−1

2 = s2s3π−1s1 is permissible and generates

T−1
2 : q = z, p = 0→ q = z, p =

2z
a− z2 , (2 + a,−2, 0, 2− a)

T−n
2 : q = z, p = 0→ qn = z, pn =

2nzRn−1(a; z)
Rn(a; z)

, (2n + a,−2n, 0, 2− a) ,
(110)

where Rn(a; z) is found to satisfy the recurrence relation:

Rn+1(a; z) = 2nz2Rn−1(a; z) + (−z2 + 2n + a)Rn(a; z), n = 1, 2, . . . ,

with R0(a; z) = 1. The solution to this recurrence relation is given by

Rn(α1; z) =
n

∑
r=0

(
n
r

)
(a)r,2 (−z2)n−r, n = 0, 1, 2, . . . , (111)

where we used the Pochhammer k-symbol (x)n,k defined as (x)n,k = x(x + 2)(x + 2k) · · ·
(x + (n − 1)k). We notice that Rn(a; z) can be expressed as a function of x = −z2/2
and in terms of x it holds that dRn(a; x)/dx = 2nRn−1(a; x). Thus we find that pn from
Equation (110) satisfies pn/z = f2/z = d(ln Rn(a; x))/dx. Based on discussion around
Equation (43) from Section 3.3, we expect that Rn(a; x) is related to Kummer’s poly-
nomial U(−n, 1− n − a/2, x). Indeed an explicit calculation of expression (111) yields
Rn(a; x) = 2nxn+a/2 U( a2 , a2 + n + 1,− z2

2 ), which according to relation (43) is equal (up to
an overall constant) to U(−n, 1− n− a/2, x), a solution to the Kummer’s Equation (41)
with a = α2/2 = −n, b = (α2 + α4)/2 = −n + 1− a/2. Here, we obtained this solution
through acting n-th times with T−1

2 on the first-order solution (12). Since the Kummer’s
functions found many applications in, e.g., solvable quantum mechanics, atomic physics,
and critical phenomena, among other fields, the fact that, as shown above, their form can
be reproduced by action of the shift operators should be of potential interest for these
applications and efforts to expand them.

The shift operator T1 essentially acts as an identity

T1 : q = z, p = 0, αi = (a, 0, 0, 2− a) −→ q = z, p = 0, αi = (2 + a, 0, 0,−a) ,

its only action is to increase a→ a+ 2.
Let us now take a closer look at the action of T4 on q = z, p = 0. Acting once with

T4 yields:

q1 = z− 2z
z2 − a+ 2

= T4(q0), p1 = 0, (a, 0,−2, 4− a) , (112)

Acting n times with T4 on q0 = z, p = 0 we get qn = Tn
4 (q0) that satisfies the recurrence

relation
qn = z− 2nz

zqn−1 + 2n− a
, (a, 0,−2n, 2(n + 1)− a) , (113)

the corresponding expression for pn is

pn = qn−1 +
2n− a

z
− 2n

z− qn
= 0 ,

where the zero on the right hand side follows from the recurrence relation (113) connecting
qn, qn−1.

It we assume that Fn−1 = qn−1/z satisfies the Riccati Equation (39) for i = 1 and
α3 = −2(n− 1), then it follows that Fn = qn/z with qn determined through the recurrence
relation (113) will satisfy the same Riccati Equation (39) for α3 = −2n. Since for q0 = z
the function F0 = q0/z = 1 satisfies the Riccati Equation (39) for α3 = 0 this concludes the
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induction proof for qn being equal to zFa,α3=−2n, where Fa,α3 is given by expression (40) in
terms of Whittaker functions.

Based on the above discussion, we can rewrite Equation (109) as

α1 = a+ 2n1 + 2n2, α3 = −2n4,
α2 − α4

2
=

a

2
− 1− n2− n4 + n1, n2, n4 ∈ Z+, n1 ∈ Z , (114)

after making a transformation n2 → −n2.
Accordingly, Equation (114) gives rise to

ᾱ =
1
2
(−n4)

2, β̄ = −1
2
(a/2 + n1 + n2)

2, γ̄ = ε(
a

2
− 1− n4 − n2 + n1), (115)

or after elimination of an arbitrary constant a:

ᾱ =
1
2
(−n4)

2, β̄ = −1
2
(εγ̄ + 1 + n4 + 2n2)

2, (116)

After learning how solution (12) transforms under a product of fundamental shift
operators we turn our attention to the action of these operators on solutions that can
be obtained from (12) by an automorphism π. Acting with π and π2 on (12) we obtain,
respectively, ji = (z/2)(1, 1, 1,−1) with (2 − a, a, 0, 0) and ji = (z/2)(−1, 1, 1, 1) with
(0, 2− a, a, 0) as seeds configurations.

For ji = (z/2)(1, 1, 1,−1), we see that j3 + j4 = 0 and j4 + j1 = 0. Thus, comparing
with relations (6) we recognize that the Bäcklund transformations s3, s3π−1, s4, s1π would
involve divisions by zero. Accordingly, among the eight shift operators listed in (65)
and (70), we need to discard T4, T3, T−1

4 , T−1
1 that contain the above-mentioned Bäcklund

transformations in the positions to the right. Accordingly, we will only act with Tn1
1 T−n3

3 Tn2
2

with n1, n3 ∈ Z+, n2 ∈ Z, generating the following transformations of (2− a, a, 0, 0):

α1 = 2− a+ 2n1 − 2n2, α2 = a+ 2n2 + 2n3,

α3 = −2n3, α4 = −2n1, n1, n3 ∈ Z+, n2 ∈ Z ,
(117)

The Painlevé parameters corresponding to (117) are:

ᾱ =
1
2
(n3)

2, β̄ = −1
2
(1− a/2 + n1 − n2)

2, γ̄ = ε(
a

2
+ n2 + n1 − n3),

or
ᾱ =

1
2
(n3)

2, β̄ = −1
2
(εγ̄− 1− 2n1 + n3)

2,

with n1, n3 being positive integers or zero. The above equation is similar to relation (116).
For ji = (z/2)(−1, 1, 1, 1) we see that j1 + j4 = 0 and j1 + j2 = 0. We conclude

from relations (6) that the Bäcklund transformations s1, s3π−1, s4, s1π, s2π would involve
divisions by zero. We therefore need to exclude T4, T1, T−1

2 , T−1
1 among the eight shift

operators listed in (65) and (70). The action with the remaining shift operators Tn2
2 T−n4

4 Tn3
3

with n2, n4 ∈ Z+, n3 ∈ Z generates the following transformation of (0, 2− a, a, 0):

α1 = −2n2, α2 = 2− a+ 2n2 − 2n3,

α3 = a+ 2n3 + 2n4, α4 = −2n4, n2, n4 ∈ Z+, n3 ∈ Z ,
(118)

The Painlevé parameters corresponding to (118) are:

ᾱ =
1
2

(a
2
+ n3 + n4

)2
, β̄ = −1

2
(−n2)

2, γ̄ = ε (1− a

2
+ n2 − n3 + n4),

or
ᾱ =

1
2
(ε γ̄− 1− n2 − 2n4)

2, β̄ = −1
2
(n2)

2, (119)
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with n2, n4 being positive integers or zero. Relations (116) and (119) constitute item (III) in
Section (4.1).

Example 4. Let us now consider the following example with solution taken from [15]:

q =
z(z4 − 14z2 + 63)

z4 − 18z2 + 99
, p =

z6 − 21z4 + 189z2 − 693
z(z4 − 14z2 + 63)

, α1 = 7, α2 = 6, α3 = −4 (120)

Expression for p has a pole which can be removed by applying s1. Applying s1 we get

q =
z(z4 − 14z2 + 63)

z4 − 18z2 + 99
, p = z, α1 = −7, α2 = 13, α3 = −4, α4 = 0 . (121)

We will match it with the initial configuration of (24) with p = z, q = z and (2− a, a, 0, 0)
on which we can act with Tn2

2 , T−n3
3 , Tn1

1 (but not T+1
3 ) to get:

α1 = −7 = 2− a+ 2n1 − 2n2, α2 = 13 = a+ 2n2 + 2n3,

α3 = −4 = −2n3, α4 = 0 = −2n1, n1, n3 ∈ Z+, n2 ∈ Z .

We choose a = 9, n1 = n2 = 0, n3 = 2 to get the desired result. One can show for
the corresponding combination of shift operators that T−2

3 = π2s1s2s3s4s1s2 and acting with
such operator on p = z, q = z and αi = (−7, 9, 0, 0) one easily reproduces the solution (121).
Alternatively, we can obtain this solution as a special function solution when we recognize that
for the condition α4 = 0 from Equation (121), the Hamilton Equation (20) is solved by p = z,
which when inserted in the first equation in (20) reduces this equation to the Riccati equation
zqz = −zq(q− z) + (1− α1 − α3)q + α1z, solved by

q =
α3

z
WhittakerM( α3

4 −
α1
4 + 1,− 1

2 + α1
4 + α3

4 , z2

2 )

WhittakerM( α3
4 −

α1
4 ,− 1

2 + α1
4 + α3

4 , z2

2 )
+

z2 − α3

z
.

Inserting α1 = −7, α3 = −4, we recover from the above expression the rational solution (121).

By comparing with results in [9], we conclude that acting with shift operators on the
first-order polynomial solutions of N = 4 dressing chain produces all rational solutions
of the associated Painlevé system. We therefore conjecture that the same technique will
produce all rational solutions for higher even N values and discuss realization of this
statement for N = 6 in the next section.

5. Special Function and Rational Solutions of N = 6N = 6N = 6 Equations
5.1. Reductions of N = 6 Hamilton Equation (28)

Recall that in Section 3.3 we considered N = 4 solutions (22) with αi = (a, 0, 0, 2− a).
Having the parameters α2 or α3 set to zero resulted in the N = 4 Hamilton Equation (20) be-
ing reduced to a single Riccati equation. For example, for α3 = 0 the Hamilton Equation (20)
is solved by q = z and a solution of the Riccati equation zpz = zp(p− z)− (1− α1)p + α2z.
Similarly for α2 = 0 the Hamilton Equation (20) is solved by p = 0 and a solution of the
Riccati equation zqz = zq(q− z) + (1− α1 − α3)q + α1z. Accordingly, we determined a
class of special function solutions to the Painlevé V equation that became rational solutions
when the αi parameters coincided with orbits of (a, 0, 0, 2− a) obtained by an action of
appropriate shift operators.

In this subsection we will carry out a similar discussion for the N = 6 case, investigat-
ing conditions for the presence of special function solutions to the Hamilton Equation (28).
The Hamilton Equation (28) represents four coupled non-linear third-order differential
equations. Setting various components of αi to zero introduces connections between
qi, pi, i = 1, 2 and accordingly reduces a number of coupled non-linear equations. Imposing
three constraints on parameters of an N = 6 Hamilton system (28) reduces the system to
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only one solvable second-order Riccati equation with a special function solution. The three
constraints emerge when the two of ji are negative, as in solutions (14)–(17).

When the reduced systems are realized on orbits of shift operators Tni
i acting on seed

solutions (14)–(17) all these Riccati solutions become rational solutions parameterized by
integers ni.

5.1.1. One-Constraint Reductions of N = 6 Hamilton Equations

We will proceed by listing possible conditions on αi parameters together with expres-
sions for those qi, pi, i = 1, 2 that solve the reduced Equation (28) obtained as a result of
imposing constraints. For example, the formula:

α6 = 0 −→ p2 = z− p1 , (122)

means that inserting the condition α6 = 0 into the last two equations for p1, p2 in (28) causes
each of them to reduce to one identical equation for p1:

zp1, z = p1(z− p1)(2q2 − 2q1 − z) + zα2 − p1(1− α1 − α3 − α5) ,

with p2 = z− p1. The reduced system of the remaining three Hamilton equations only
depends on three variables q1, q2, p1 after imposition of one single constraint.

We list below other single constraints and the corresponding simple solutions for
quantities entering Equation (28):

α5 = 0 −→ q2 = z , (123)

α4 = 0 −→ p2 = 0 , (124)

α3 = 0 −→ q1 = q2 , (125)

α2 = 0 −→ p1 = 0 , (126)

α1 = 0 −→ q1 = 0 . (127)

5.1.2. Multi-Constraint Reductions of N = 6 Hamilton Equations

One can combine the above single constraints of αi parameters into a set of two and
more constraints. As we will see below, the set of three constraints leads to the constrained
system described by a single Riccati equation.

Imposing two constraints leads as a rule to two coupled non-linear equations but not
always equations that are quadratic in their underlying variables.

Let us first consider the following example of two constraints:

α6 = 0 & α5 = 0 −→ p1 + p2 = z, q2 = z , (128)

that combines p1 + p2 = z that follows from α6 = 0 and relation q2 = z that follows from
α5 = 0. Imposing these two relations, we can rewrite the Hamiltonian equations only in
terms of, e.g., p2, q1 entering cubic non-linear equations:

zp2, z = (z− p2)p2(2q1 − z) + zα4 − p2(1− α1 − α3) ,

zq1, z = q1(z− q1)(z− 2p2) + zα1 + q1(1− α1 − α3) .
(129)

For the two constraints:

α4 = 0 & α3 + α5 = 0 −→ p2 = 0, q1 = z , (130)

the remaining variables p1, q2 enter two coupled second-order equations:

zp1 z = −zp1(z− p1) + zα2 − p1(1− α1) ,

zq2 z = z(z− q2)(2p1 − q2) + z(α1 + α3) + q2(1− α1) .
(131)



Symmetry 2023, 15, 249 27 of 36

Only the first equation is a Riccati equation solvable in terms of Kummer/
Whittaker functions.

Next consider the two constraints

α6 = 0 & α1 + α5 = 0 −→ p2 = z− p1, q2 = q1 + z . (132)

The two remaining equations for q1, p1 are found to be

zq1, z = zq1(2p1 − z)− zq2
1 + zα1 + q1(1− α3) ,

zp1, z = zp1(z− p1) + zα2 − p1(1− α3) .
(133)

The second equation among Equation (133) is a regular Riccati equation but the first
one is a coupled Riccati equation. We will see below in Example 7 that the coupled
Equations (131) and (133) become fully solvable on orbits of the shift operators.

Combining together conditions into three conditions yields one single second-order
Riccati equation emerging from such a reduction process.

α2 = 0 & α5 = 0 & α6 = 0 −→ q2 = z, p1 = 0, p2 = z . (134)

In this case there only remains one Riccati equation for the remaining variable q1:

zq1 z = −zq1(z− q1) + zα1 + q1(1− α1 − α3) . (135)

Replacing α2 with α4 in (134) yields

α2 = 0 & α5 = 0 & α6 = 0 −→ q2 = z, p1 = z, p2 = 0 , (136)

with a Riccati equation for q1

zq1 z = zq1(z− q1) + zα1 + q1(1− α1 − α3) . (137)

Similarly, the three constraints

α6 = 0 & α4 = 0 & α3 + α5 = 0 −→ p1 = z, p2 = 0, q1 = z , (138)

leave only one Riccati equation for q2: zq2, z = z(z − q2)
2 + z2(z − q2) + z(α1 + α3)+

q2(1− α1). Entering f3 = q2 − z, we get a simple-looking Riccati equation for f3:

z f3 z = −z2 f3 + z f 2
3 + zα3 + f3(1− α1) . (139)

A similar case is that of three constraints with α3 replaced by α1:

α6 = 0 & α4 = 0 & α1 + α5 = 0 −→ p1 = z, p2 = 0, q2 = q1 + z , (140)

which leaves only one Riccati equation for q1: zq1 z = zq1(z− q1) + zα1 + q1(1− α3).
Further we also list the three constraints:

α6 = 0 & α5 = 0 & α3 = 0 −→ q1 = z, p2 + p1 = z, q2 = z , (141)

As seen before, α6 = 0 leads to p2 = z − p1 and α5 = 0 leads to q2 = z. One of
the remaining Hamilton equations is zq1, z = q1(z− q1)(2p1 − z) + zα1 + q1(1− α1) with
the solution q1 = z, which, when inserted in the equation for p1, gives Riccati equation:
zp1, z = −zp1(z− p1) + zα2 − p1(1− α1).

Another example of three independent constraints:

α6 = 0 & α3 = 0 & α2 = 0 −→ p1 = 0, p2 = z . (142)
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For the remaining quantities q1, q2, the N = 6 Hamilton Equation (28) then gives:

zq1 z = −zq1(q2 − q1) + zq1(z− q2) + zα1 + q1(1− α1 − α5) ,

zq2 z = z(z− q2)(q2 − q1) + zq1(z− q2) + zα1 + q2(1− α1 − α5) .

Taking the difference of the above two equations yields an equation for q2 − q1 which
is solved for q2 = q1. Thus, we are left with one Riccati equation for q1: zq1 z = zq1(z−
q1) + zα1 + q1(1− α1 − α5).

Another case of three constraints

α5 = 0 & α4 = 0 & α3 = 0 −→ q1 = z, p2 = 0, q2 = z , (143)

lead to one single Riccati equation for the remaining quantity p1:

zp1, z = −zp1(z− p1) + zα2 − p1(1− α1) . (144)

As seen above, the three constraints reduce the four Hamiltonian equations in (28) to
one Riccati equation for the remaining variables. As expected, imposing all four constraints
applied on the four Hamiltonian equations in (28) leads only to trivial solutions:

α6 = 0 & α5 = 0 & α4 = 0 & α3 = 0 −→ p1 = z, p2 = 0, q1 = q2 = z . (145)

As we will see below in example 7 there are cases of two constraints with two remain-
ing Riccati equations that decouple under special circumstances when the parameters are
chosen to coincide with the orbits of the shift operators.

5.2. the Orbit Construction of Rational Solutions for N = 6

In this section we apply the technique introduced in previous sections to the case of
N = 6, for which we already found the first-order polynomial solutions in Equations (13)–(17).

As found in Section 3.4 for the N = 6 case after the appropriate actions by s1 and
s3, the variables pi, i = 1, 2 can be expanded in positive power series that do not contain
pole singularities. Such rational solutions can then be reproduced by actions of the shift
operators on solutions (13)–(17) or (30)–(34).

5.2.1. Umemura Polynomial Solutions for N = 6

In this subsection we will apply the fundamental shift operator techniques to

(I) The seed solution (13) with all components ji = z/N = z/6;
(II) The seed solution (14) with one of the components being negative and equal to

−z/(N − 2) = −z/4.

The case (I) will require a new class of Umemura polynomials (146) with the leading
order term being zn(n−p), p = 1, n/2− 1, n/2 with the last two cases being new. In case (II)
we will be able to essentially reduce the problem to that of N = 4 and express the solutions
in terms of regular Umemura polynomials with the leading order term being zn(n−1).

Case (I). Recall the relevant N = 6 shift operators from definitions (71) and (72).
For solution (13) with all ji = z/6, i = 1, 2, 3, 4, 5, 6 it holds that ji + ji+1 6= 0 for all
i = 1, 2, 3, 4, 5, 6. Thus all si transformations acting via relation (6) are well defined and
action by

Tn1
1 Tn2

2 Tn3
3 Tn4

4 Tn5
5 Tn6

6 , ni ∈ Z, i = 1, 2, 3, 4, 5, 6 ,

produces rational solutions with the transformed ᾱi:

(a+ 2n1 − 2n2,
2
3
− a+ 2n2 − 2n3, a+ 2n3 − 2n4,

2
3
− a+ 2n4 − 2n5, a+ 2n5 − 2n6,

2
3
− a+ 2n6 − 2n1) .



Symmetry 2023, 15, 249 29 of 36

We can rewrite the above action of the shift operators as follows

Tn1
1 Tn2

2 Tn3
3 Tn4

4 Tn5
5 Tn6

6 = (T1T3T5)
n1(T2T4T6)

n2 Tn3−n1
3 Tn5−n1

5 Tn4−n2
4 Tn6−n2

6

= (T1T3T5)
n1(T2T4T6)

n2(T3T4)
k+(T3T−1

4 )k−(T5T6)
m+(T5T−1

6 )m− ,

where

k+ =
1
2
(n3 − n1 + n4 − n2), k− =

1
2
(n3 − n1 − n4 + n2) ,

m+ =
1
2
(n5 − n1 + n6 − n2), m− =

1
2
(n5 − n1 − n6 + n2) .

One can easily prove that (T1T3T5)
n only shifts the parameter a: a → a− n without

changing the functional form of the solution (30). Similarly, (T2T4T6)
n only shifts the

parameter a: a→ a+ n leaving the solutions (30) unchanged.
For (T3T4)

k+ we find that it results in (α2 − α4)/2 = −2k+, (α3 − α5)/2 = 0, while for
(T3T−1

4 )k− we obtain (α2 − α4)/2 = 0, (α3 − α5)/2 = 2k−.
For (T5T6)

m+ we find that it results in (α6 − α4)/2 = 2m+, (α3 − α5)/2 = 0, while for
(T5T−1

6 )m− we obtain (α6 − α4)/2 = 0, (α3 − α5)/2 = −2m−.
For N = 6 we introduce the following notation:

Uk,n(z; a) = z(n+k)(n) + . . . , k > 0, n > 0 , (146)

which generalizes Umemura polynomials of the type U1,n−1(z; a) = zn(n−1) + . . . seen in
the previous section for N = 4. These new Umemura polynomials take the following
special values for n = 0, 1, 2:

U−1,1(z; a) = 1 , U−1,0(z; a) = U0,0(z; a) = 1 ,

U1,−1(z; a) = 1, U1,0(z; a) = 1 , (147)

U1,1(z; a) = z2 + 9a , (148)

U0,2(z; a) = U3,1(z; a) = z4 + 18 z2 a+ 24 z2 + 162 a+ 81 a2 + 72 (149)

U1,2(z; a) = 648 + 2106 a + 540 z2 a+ 2187 a2 + 252 z2 + 33 z4

+ z6 + 27 z4 a+ 243 z2 a2 + 729 a3 (150)

and enter the following expressions for solutions we obtained by acting once with the shift
operator T1 on the n = 0 configuration (13) with q1 = p1 = p2 = z/3 and q2 = 2z/3 and
αi = (a, 2/3− a, a, 2/3− a, a, 2/3− a):

q(1)1 =
z
3

U−1,1(z; a)U0,2(z; a+ 2/3)
U−1,1(z; a+ 2/3)U0,2(z; a)

=
1
3

z
(
z4 + 18 z2a+ 36 z2 + 270 a+ 81 a2 + 216

)
z4 + 18 z2a+ 24 z2 + 162 a+ 81 a2 + 72

(151)

p(1)1 =
z
3

U−1,1(z; a+ 2/3)U1,1(z; a− 2/3)
U−1,1(z; a)U1,1(z; a)

=
1
3

z
(
z2 + 9 a− 6

)
z2 + 9 a

(152)

q(1)2 =
2z
3

U1,2(z; a)
U0,2(z; a)U1,1(z; a+ 2/3)

=
2
3

z
(
648 + 2106 a+ 540 z2a + 2187 a2 + 252 z2 + 33 z4 + z6 + 27 z4a+ 243 z2a2 + 729 a3)

(z2 + 9 a+ 6)(z4 + 18 z2a+ 24 z2 + 162 a+ 81 a2 + 72)

(153)

p(1)2 =
z
3

U1,1(z; a+ 2/3)U0,2(z; a− 4/3)
U1,1(z; a)U0,2(z; a− 2/3)

=
1
3

z(z2 + 9a+ 6)(z4 + 18z2a− 54a+ 81a2)

(z4 + 18 z2a+ 12 z2 + 54 a+ 81 a2)(z2 + 9 a)

(154)
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The repeated action n-th times with the shift operator T1 on (13) with q1 = p1 = p2 = z/3
and q2 = 2z/3 can be described by generalization of (151)–(154) given by:

q(n)1 =
z
3

Un−2,n(z; a)Un−1,n+1(z; a+ 2/3)
Un−2,n(z; a+ 2/3)Un−1,n+1(z; a)

(155)

p(n)1 =
z
3

Un−2,n(z; a+ 2/3)Un,n(z; a− 2/3)
Un−2,n(z; a)Un,n(z; a)

(156)

q(n)2 =
2z
3

U1,2n(z; a)
Un−1,n+1(z; a)Un,n(z; a+ 2/3)

(157)

p(n)2 =
z
3

Un,n(z; a+ 2/3)Un−1,n+1(z; a− 4/3)
Un,n(z; a)Un−1,n+1(z; a− 2/3)

, (158)

where Uk,n(z; a) polynomials of the type shown in Equation (146).
Case (II). For the solution (14) with ji = z

4 (1, 1, 1, 1, 1,−1), it holds that j5 + j6 = 0,
j6 + j1 = 0 and that makes si, si−1π−1, si+1π with i = 5, 6 ill-defined. Accordingly,
T5, T6, T−1

1 , T−1
6 are ill-defined. Rational solutions will be produced from the seed

solution (14) by action of

Tn1
1 Tn2

2 Tn3
3 Tn4

4 T−n5
5 , n1, n5 ∈ Z+, n2, n3, n4 ∈ Z ,

that yields the orbit parameters:

(a+ 2n1 − 2n2, 1− a+ 2n2 − 2n3, a+ 2n3 − 2n4, 1− a+ 2n4 + 2n5,−2n5,−2n1) . (159)

When we set n5 = 0 in expression (159) we obtain the condition (123) with α5 = 0,
q2 = z. Inserting these conditions into N = 6 Hamilton Equation (28), we find that q1, p1
satisfy separately the N = 4 Hamilton Equation (20) although they still couple to p2, but
only in the last of Equation (28). Explicitly, we find the solutions in terms of Umemura
polynomials from Section 4.4:

q(n)1 (z; a) = Tn
1 (q

(0)
1 ) =

z
2

Un(z;−a+ 2)Un+1(z;−a+ 3)
Un(z;−a+ 3)Un+1(z;−a+ 2)

,

p(n)1 (z; a) = Tn
1 (p(0)1 ) =

z
2

Un(z;−a+ 3)Un+1(z;−a)
Un(z;−a+ 2)Un+1(z;−a+ 1)

,
(160)

with q(0)1 = p(0)1 = z/2. Given these two solutions one finds the expression for p(n)2 by
solving the corresponding equation of p2 among the N = 6 Hamilton Equation (28). Since
p(n)2 can be obtained by repeated actions of the shift operator, it is given by a ratio of
polynomials as illustrated in the Example given below.

Example 5. Let us consider an orbit generated by Tn
2 . Entering n2 = n and n1 = n3 = n4 =

n5 = 0 into expression (159), we find that α6 = α5 = 0 as in (128). The expressions for p2 found
by applying Tn

2 on solutions (14) with p2 = z/2, q1 = z/2 are:

p2(n = 1, a, z) =
z
2

4 + z2 − 4a
z2 − 4a+ 8

, p2(n = −1, a, z) =
z
2

z2 − 4a+ 4
z2 − 4a

,

q1(n = 1, a, z) =
z
2

z2 − 4a+ 8
z2 − 4a+ 4

, q1(n = −1, a, z) =
z
2
−8 + z2 − 4a
−4 + z2 − 4a

,

and one can verify that they satisfy the relevant reduced Hamilton Equation (129) for p2, q1 with
α1 = a− 2n, α2 = 1− a+ 2n, α3 = a, α4 = 1− a.

5.2.2. Riccati Solutions for N = 6

In this subsubsection we will consider solutions constructed out of the seed solu-
tions with two negative ji components. First consider the solution given in (15) with
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ji = z
2 (1, 1, 1, 1,−1,−1) and j4 + j5 = 0, j6 + j1 = 0. These conditions render si, si−1π−1,

si+1π, i = 4, 6 ill-defined. Using these arguments, we find that T4, T6, T−1
1 , T−1

5 are ill-
defined. Also, by inspection we find that T3, T5, T−1

2 , T−1
6 are ill-defined as well. Rational

solutions will be produced from the seed solution (15) by action of

Tn1
1 Tn2

2 T−n3
3 T−n4

4 , n1, n2, n3, n4 ∈ Z+,

that yields

(a3 + 2n1 − 2n2, 2− a3 − 2n2 + 2n3, a3 − 2n3 + n4,−2n4,−a3,−2n1) . (161)

Example 6. Consider an orbit generated by Tn
2 obtained by inserting n2 = n and n1 = n3 =

n4 = 0 into the above expression (161). This results in α4 = 0, α6 = 0, α3 + α5 = 0, which are the
three constraints shown in (138). The corresponding Riccati Equation (139) becomes:

zq2 z = −3z2q2 + zq2
2 + 2z3 + z(2a3 − 2n) + q2(1− a3 + 2n) ,

after inserting α1 = −2n + a3. Solving this equation for q2 we get:

q2 = z +
a3

z
+

2
z

WhittakerW( n
2 + a3

4 + 1,− 1
2 −

n
2 + a3

4 , z2

2 )

WhittakerW( n
2 + a3

4 ,− 1
2 −

n
2 + a3

4 , z2

2 )
.

For n = 0 we obtain q2 = 2z, and next

n = 1, q2 = 2z
(−a3 + 1 + z2)

(−a3 + 2 + z2)
,

n = 2, q2 = 2z
(−4a3 + 4 + a2

3 − 2a3z2 + 2z2 + z4)

(−6a3 + 8 + a2
3 − 2a3z2 + 4z2 + z4)

.

This is in agreement with results obtained by acting explicitly by Tn
2 , n = 0, 1, 2 on solution (32)

Similar considerations are involved in a study of an orbit generated by T−n
3 obtained by

inserting n3 = n and n1 = n2 = n4 = 0 into expression (161). This results in α4 = 0,
α6 = 0, α1 + α5 = 0, which are the three constraints shown in (140). Entering α1 = a3 and or
α3 = a3 − 2n into the Riccati equation for q1 shown below Equation (140) we find a solution:

q1(n, a3, z) = −2n
WhittakerM(− a3

4 −
n
2 + 1,− 1

2 + a3
4 −

n
2 , z2

2 )

zWhittakerM(− a3
4 −

n
2 ,− 1

2 + a3
4 −

n
2 , z2

2 )
+

(z2 + 2n)
z

, (162)

with q1(0, a3, z) = z and

q1(1, a3, z) = z
a3 + z2

a3 − 2 + z2 , q1(2, a3, z) = z
−2a3 + a2

3 + 2a3z2 + z4

a2
3 − 6a3 + 8 + 2a3z2 − 4z2 + z4

.

Example 7. The two examples we will here consider involve systems that are characterized by two
conditions imposed on the parameters αi. Such a situation leads to a system of reduced Hamilton
equations quadratic in canonical variables. In examples shown here, the reduced Hamilton equations
consist of one simple Riccati equation and one quadratic equation with coupled underlying canonical
variables. However, when αi parameters are those of an orbit (161), the coupled Hamilton equations
system separates into two independent and solvable Riccati equations.

First, we consider an Tn
1 orbit which is obtained by inserting n1 = n and n2 = n3 = n4 = 0

into the above expression (161). The orbit configuration agrees with the two constraints of (130)
and with the corresponding coupled Hamilton equations (131), of which only the first equation is a
Riccati equation, which after inserting α1 = a3 + 2n yields

zp1 z = −zp1(z− p1) + z(2− a3)− p1(1− a3 − 2n) ,
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with solution:

p1(n, a3, z) =
na3

z
WhittakerW(− 1

2 + n
2 −

a3
4 , a3

4 + n
2 , z2

2 )

WhittakerW( 1
2 + n

2 −
a3
4 , a3

4 + n
2 , z2

2 )
+

(z2 − 2n)
z

, (163)

for which we find for n = 0, 1, 2:

p1(n = 0, a3, z) = z, p1(n = 1, a3, z) = z
a3 + z2 − 2
a3 + z2

p1(n = 2, a3, z) = z
−2a3 + a2

3 + 2z2a3 + z4 − 4z2

2a3 + a2
3 + 2z2a3 + z4

.
(164)

However, for α1 = a3 + 2n it appears that Equation (131) effectively decouples. We can
namely define q1 such that

q1(n, a3, z) = q2(n, a3, z)− z ,

that satisfies the Riccati equation:

zq1 z = −zq1(z− q1) + z(−a3) + q1(1 + a3 + 2n) ,

with solution:

q1 =
2
z

WhittakerW( n
2 −

a3
4 + 1, 1

2 + a3
4 + n

2 , z2

2 )

WhittakerW( n
2 −

a3
4 , 1

2 + a3
4 + n

2 , z2

2 )
− a3

z
,

which explicitly gives the values

q1(n = 0, a3, z) = z, q1(n = 1, a3, z) = z
a3 + z2

a3 + z2 + 2

q1(n = 2, a3, z) = z
2a3 + a2

3 + 2z2a3 + z4

6a3 + 8 + a2
3 + 2z2a3 + 4z2 + z4

,

that reproduces q2(n, a3, z) after adding z.
Quite similar behavior will take place for an orbit T−n

4 obtained by inserting n4 = n and
n1 = n2 = n3 = 0 into the above expression (161). Here, αi parameters satisfy two conditions:
α6 = 0 and α1 + α5 = 0, which coincide with expression (132). The two N = 6 Hamilton
Equation (28) for remaining variables q1, p1 shown in (133) are such that the first equation contains
a coupling between these two variables. Although the second equation is a regular Riccati equation.
We consider the case of α3 = a3 + 2n and α2 = 2− a3, α1 = a3. The solution to the second equation
in (133) is:

p1(n, a3, z) = −na3

z
WhittakerW(− 1

2 + n
2 −

a3
4 , a3

4 + n
2 ,− z2

2 )

WhittakerW( 1
2 + n

2 −
a3
4 , a3

4 + n
2 ,− z2

2 )
+

(z2 + 2n)
z

, (165)

Entering n = 0, 1, 2 into (165) we get:

p1(n = 0, a3, z) = z, p1(n = 1, a3, z) = z
−a3 + z2 + 2
−a3 + z2

p1(n = 2, a3, z) = z
−2a3 + a2

3 − 2z2a3 + z4 − 4z2

2a3 + a2
3 − 2z2a3 + z4

,
(166)

It further holds for the particular values α3 = a3 + 2n and α2 = 2 − a3, α1 = a3 that
characterize the orbit, that q1 from Equation (28) solves the Riccati equation

zq1 z = zq1(z− q1)− za3 + q1(1 + a3 + 2n) , (167)
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and the solution is

q1(n, a3, z) = −2n
WhittakerM( a3

4 −
n
2 + 1,− 1

2 −
a3
4 −

n
2 , z2

2 )

zWhittakerM( a3
4 −

n
2 ,− 1

2 −
a3
4 −

n
2 , z2

2 )
+

(z2 + 2n)
z

.

For n = 0, 1, 2 the above q1(n, a3, z) is equal to

q1(n = 0, a3, z) = z, q1(n = 1, a3, z) = z
−a3 + z2

−a3 − 2 + z2 ,

q1(n = 2, a3, z) = z
2a3 + a2

3 − 2a3z2 + z4

a2
3 + 6a3 + 8− 2a3z2 − 4z2 + z4

,

which agrees with the separate calculation involving the relevant shift operator.

Next, consider the solution given in (16) ji = z
2 (1, 1, 1,−1, 1,−1) with the correspond-

ing parameters αi = (2− a2, a2, 0, 0, 0, 0) for which j3 + j4 = 0, j4 + j5 = 0, j5 + j6 = 0,
j6 + j1 = 0. With these quantities being zero, we are not permitted to act with si, si−1π−1,
si+1π with i = 3, 4, 5, 6 on ji in (16) in order to avoid division by zero. For these reasons we
can not act with the shift operators Ti, T−1

i+1, i = 3, 4, 5, 6 on the solution given in (16). We
can therefore only act with

Tn1
1 Tn2

2 T−n3
3 , n1, n3 ∈ Z+, n2 ∈ Z ,

that yields
(2− a2 + 2n1 − 2n2, a2 − n2 + 2n3, 0− 2n3, 0, 0, 0) . (168)

Example 8. The action with the shift operator Tn
1 is implemented by setting n1 = n, n2 = n3 = 0.

Then the parameters αi automatically satisfy the three conditions α5 = 0, α3 = 0, α4 = 0 as in
Equation (143). The single Riccati equation for the remaining quantity p1 is given in Equation (144).
Inserting α1 = 2n + 2− a2 into Equation (144) leads to rational solution given by:

p1(n, a2, z) =
2
z

WhittakerW( a2
4 + n

2 + 1, 1
2 + n

2 −
a2
4 , z2

2 )

WhittakerW( a2
4 + n

2 , 1
2 + n

2 −
a2
4 , z2

2 )
+

a2

z
,

for which we find for n = 0, 1, 2:

p1(n = 0, a2, z) = z, p1(n = 1, a2, z) = z
−a2 + z2

−a2 + 2 + z2

p1(n = 2, a2, z) = z
−2a2 + a2

2 − 2z2a2 + z4

8− 6a2 + a2
2 + 4z2 − 2z2a2 + z4

.
(169)

They agree with expressions obtained directly by acting with T1 on the solution given in (16).

Finally, we consider the solution given in (17)

ji =
z
2
(1, 1,−1, 1, 1,−1), αi = (2− a4, 0, 0, a4, 0, 0) ,

for which j2 + j3 = 0, j3 + j4 = 0, j5 + j6 = 0, j6 + j1 = 0. Accordingly si, si−1π−1, si+1π
with i = 2, 3, 5, 6 will involve division with zero. This observation excludes T2, T3, T5, T6, T−1

1 ,
T−1

3 , T−1
4 , T−1

6 . Thus we generate rational solutions by acting with

Tn1
1 Tn4

4 T−n2
2 T−n5

5 , n1, n2, n4, n5 ∈ Z+ ,
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that produces the parameter change

(2− a4 + 2n1 + 2n2,−2n2,−2n4, a4 + 2n4 + 2n5,−2n5,−2n1) . (170)

Example 9. Here, we discuss the case of T−n
5 , the parameters αi are those in expression (170) which

one obtains after setting n5 = n, n1 = n2 = n4 = 0 and which satisfy α2 = 0, α3 = 0, α6 = 0
as in Equation (142). As shown below (142), we are left with one Riccati equation for q1: zq1 z =
zq1(z− q2) + zα1 + q1(1− α1 − α5). Substituting α1 = 2− a4 and α5 = −2n, we obtain

zq1 z = zq1(z− q1) + zα1 + q1(1− α1 − α5) = zq1(z− q1) + z(2− a4) + q1(1− 2 + a4 + 2n) . (171)

The solution is

q1(n, a4, z) = −na4

z
WhittakerW(− 1

2 −
a4
4 + n

2 , n
2 + a4

4 ,− z2

2 ))

WhittakerW( 1
2 −

a4
4 + n

2 , n
2 + a4

4 ,− z2

2 )
+

z2 + 2n
z

, (172)

for which we find for n = 0, 1, 2:

q1(n = 0, a4, z) = z, q1(n = 1, α3, z) = z
−a4 + z2 + 2
−a4 + z2

p1(n = 2, a4, z) = z
−2a4 + a2

4 − 2z2a4 + z4 + 4z2

2a4 + a2
4 − 2z2a4 + z4

,
(173)

which are in agreement with the results of acting with T5 on the solution given in (17).

6. Summary and Comments

We identified rational solutions of the dressing chain equations of even periodicity
with points of an orbit generated by the fundamental shift operators acting on all first-
order polynomial solutions. It was described how additional Bäcklund transformation was
needed to regularize those solutions that initially contained a simple pole.

For those first-order polynomial solutions which contain neighboring ji and ji+1 such
that: ji + ji+1 = 0 for some 1 ≤ i ≤ N the action of some shift operators is not well-defined.
Accordingly, those shift operators needed to be excluded in such cases and we have
described the exclusion procedure in the paper. For orbits of the remaining well defined
shift operators, we showed how this structure for N = 4 is responsible for a separate class
of corresponding rational solutions (item III in Section 4.1) of the Painlevé V equation.
We also showed how the rational solutions generated by a single shift operator Tn

i are
expressed by Kummer/Whittaker polynomials with arguments depending on integer n.

The advantage of the formalism we presented is that it is universal, meaning that the
derivation applies to all even-cyclic dressing chain systems or equivalent A(1)

N−1 Painlevé
equations as illustrated for the case of N = 6 in addition to the N = 4 case.

It is interesting to compare the derivation of elementary seed solutions for even-
cyclic dressing chains with those encountered for odd-cyclic dressing chains. There are
fundamental differences as the αi parameters are fixed and do not depend on arbitrary
variables. Also in contrast to the even-cyclic dressing chains, the fundamental variables
ji, i = 1, ..., N of the odd-cyclic dressing chains that satisfy Equation (2) and the Painlevé
variables fi, i = 1, ..., N are fully equivalent, as the relation fi = ji + ji+1 is reversible
through expression ji = 1

2 ∑N−1
k=0 fi+k for odd values of N. For example for N = 3 one finds

two elementary seed solutions that can be written as ji = (z/2)(1, 1, 1), αi = (1, 1, 1), and
ji = (3z)/2)(−1, 1, 1), αi = 3(0, 1, 0). It is well known that the rational solutions of the
Painlevé IV equation can all be obtained by Bäcklund transformations from the above two
seed solutions [18], whether expressee in terms of Ji or fi.

The natural next step, which we plan to pursue in the future, is to apply this framework
to obtain closed determinant or special function expressions for rational solutions of all
dressing chain equations of even periodicity generated by combined shift operators.
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Appendix A. Derivation of A(1)
5A(1)
5A(1)
5 Painlevé Equations for N = 6N = 6N = 6 Dressing Chain

The dressing chain Equation (4) can be rewritten entirely in terms of fi without
any references to ji after inserting the value for Ψ. It needs to be emphasized that such
elimination of ji variables while expressing the dressing chain equations in terms of fi
requires inserting the definition of Ψ from (5) into Equation (4). Such substitution of ji by fi
would not work with Equation (2) for even values of N.

For N = 6, such a procedure yields A(1)
5 Painlevé equations:

z f1 z = f1 f3( f2 − f4 − f6) + f1 f5( f4 + f2 − f6) + zα1 + f1(1− α1 − α3 − α5) ,

z f2 z = f2 f4( f3 − f1 − f5) + f2 f6( f3 − f1 + f5) + zα2 − f2(1− α1 − α3 − α5) ,

z f3 z = f1 f3( f4 − f2 + f6) + f3 f5( f4 − f2 − f6) + zα3 + f3(1− α1 − α3 − α5) ,

z f4 z = f2 f4( f1 − f3 + f5) + f4 f6( f5 − f1 − f3) + zα4 − f4(1− α1 − α3 − α5) ,

z f5 z = f1 f5( f6 − f2 − f4) + f3 f5( f6 + f2 − f4) + zα5 + f5(1− α1 − α3 − α5) ,

z f6 z = f2 f6( f1 − f3 − f5) + f4 f6( f1 + f3 − f5) + zα6 − f6(1− α1 − α3 − α5) ,

(A1)

with z = f1 + f3 + f5 = f2 + f4 + f6.
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