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Abstract: The use of a single-valued neutrosophic set (svns) makes it much easier to manage situations
in which one must deal with incorrect, unexpected, susceptible, faulty, vulnerable, and complicated
information. This is a result of the fact that the specific forms of material being discussed here are
more likely to include errors. This new theory has directly contributed to the expansion of both
the concept of fuzzy sets and intuitionistic fuzzy sets, both of which have experienced additional
development as a direct consequence of the creation of this new theory. In svns, indeterminacy is
correctly assessed in a way that is both subtle and unambiguous. Furthermore, membership in the
truth, indeterminacy, and falsity are all completely independent of one another. In the context of
algebraic analysis, certain binary operations may be regarded as interacting with algebraic modules.
These modules have pervasive and complicated designs. Modules may be put to use in a wide variety
of different applications. Modules have applications in a diverse range of industries and market
subsets due to their adaptability and versatility. Under the umbrella of the triplet (µ, ν, ω) structure,
we investigate the concept of svns and establish a relationship between it and the single-valued
neutrosophic module and the single-valued neutrosophic submodule, respectively. The purpose
of this study is to gain an understanding of the algebraic structures of single-valued neutrosophic
submodules under the triplet structure of a classical module and to improve the validity of this
method by analyzing a variety of important facets. In this article, numerous symmetrical features of
modules are also investigated, which demonstrates the usefulness and practicality of these qualities.
The results of this research will allow for the successful completion of both of these objectives. The
tactics that we have devised for use in this article are more applicable to a wide variety of situations
than those that have been used in the past. Fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets
are some of the tactics that fall under this category.

Keywords: (µ, ν, ω)-single-valued neutrosophic set; (µ, ν, ω)-single-valued neutrosophic module;
(µ, ν, ω)-single-valued neutrosophic submodule; risk analysis; modeling; sensitivity analysis;
efficiency analysis

1. Introduction

The application of a newly suggested fuzzy algebraic structure has the effect of elim-
inating the limits that were previously imposed on previously developed fuzzy algebra
structures. Due to the abundance of ambiguity and uncertainty in many parts of day-to-day
life, the application of regular mathematics is not always practicable and may not even
be possible at all in certain situations. In the process of resolving issues of this nature,
the application of a wide range of fuzzy algebraic structures, such as fuzzy subgroups,
fuzzy rings, fuzzy sub-fields, and fuzzy submodules, amongst others, has the potential to
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be of tremendous guidance. This is because these fuzzy algebraic structures are capable of
representing a number of different types of information. The use of svns, which is a robust
and all-encompassing formal framework, leads to the extension of both the fuzzy set and
the intuitionistic fuzzy set, which are both categories of fuzzy sets.

1980 is the year in which Smarandache is credited with establishing neutrosophy as a
distinct topic within the study of philosophy. It serves as the foundation upon which other
academic disciplines such as philosophical logic, probability, set theory, and statistical anal-
ysis are constructed. As a consequence of this, he came up with the theory of neutrosophic
logic and set, which provides an approximation of every statement of neutrosophic logic
with the benefits of truth in the subcategory T, indeterminacy value in the subcategory I,
and falsehood in the subcategory F. In light of the fact that the fuzzy set theory can only be
used to depict situations in which there is uncertainty, the neutrosophic theory is the only
viable option for describing scenarios in which there is indeterminacy. In [1], Smarandache
provided an explanation of the neutrosophic idea, and in [2] Wang provided additional
information on single-valued neutrosophic sets.

Researchers have already done extensive research on fuzzy and intuitionistic fuzzy
sets [3–6], fuzzy logics [7–9], paraconsistent sets [10,11], fuzzy groups [12–15], com-
plex fuzzy sets [16–18], fuzzy subrings and ideals [19–25], single-valued neutrosophic
graphs and lattices [26–28], single-valued neutrosophic algebras [29,30] and many more
interesting fields.

The neutrosophic theory ultimately led to the development of the algebraic neutro-
sophic structural principle. Kandasamy and Smarandache described shifts in the paradigm
of algebraic structure theory in their paper, which may be found in [1,2]. The term “svns”
is used to characterize them in addition to the terms “algebraic structures” and “topo-
logical structures” [31–33]. This concept was utilized by Çetkin, Aygün, and Çetkin in
the context of neutrosophic subgroups [34], neutrosophic subrings [35], and neutrosophic
submodules [36,37] of a certain classical group, ring, and module. Several recent research
works on the process of group decision making with a variety of different characteristics
are described in [38–41].

The motivation of the proposed concept is explained as follows: To present a more
generalized concept, i.e., (1) (µ, ν, ω)-single-valued neutrosophic set; (2) (µ, ν, ω)-single-
valued neutrosophic submodules; (3) Under triplet structure, the intersection of a finite
number of svnsm is also (µ, ν, ω)-svnsm, but union may not be; (4) Several fundamental
examples are provided for the superiority of this article.

Note that, clearly, PX̃ = P̃, P∅̃ = ∅̃, which shows that our proposed definition can be
converted into a single-valued neutrosophic set. The purpose of this paper is to present the
study of single-valued neutrosophic submodules under triplet structure as a generalization
of submodules, as a powerful extension of single-valued neutrosophic sets, as we know that
modules are among the most basic and extensive algebraic structures that are researched in
terms of a number of different binary operations.

Within the scope of this study, we analyze the idea of single-valued neutrosophic sub-
modules under a triplet structure, as well as the noteworthy notions and characterizations
offered in relation to this issue. In addition, we investigate the fundamental aspects of the
ideas that are being presented.

We also demonstrate that svnsm must be (µ, ν, ω)-svnsm of module M, but (µ, ν, ω)-
svnsm may not be a svnsm of module M. The article is organized as follows: in Section 2,
we explain several basic ideas for svns. Section 3 explains the concept of (µ, ν, ω)-svnsm
and some idealistic findings.

2. Preliminaries

This section covers basic definitions related to svns. In this section, we also present
fundamental properties and relationships between svnss.
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Definition 1 ([1]). On the universe set X a svns P is defined as:

P = {〈m, TP(m), IP(m), FP(m)〉, m ∈ X},

where T, I, F : X → [0, 1], and 0 ≤ TP(m) + IP(m) + FP(m) ≤ 3, ∀ m ∈ X, TP(m), IP(m),
FP(m) ∈ [0, 1].

TP, IP and FP represent the functions of truth, indeterminacy, and falsity-membership, respectively.

Definition 2 ([34]). Let P be a svns on X and α ∈ [0, 1]. The α-level sets on P can be determined:

(TP)α = {m ∈ X | TP(m) ≥ α},
(IP)α = {m ∈ X | IP(m) ≥ α}, and

(FP)
α = {m ∈ X | FP(m) ≤ α}.

Definition 3 ([2]). Let P and Q be two single-valued neutrosophic sets (svnss) on X. Then

1. P ⊆ Q, if and only if P(m) ≤ Q(m).
That is,

TP(m) ≤ TQ(m), IP(m) ≤ IQ(m), and FP(m) ≥ FQ(m).

Also P = Q if and only if P ⊆ Q and Q ⊆ P.
2. P ∪Q = {〈max{TP(m), TQ(m)}, max{IP(m), IQ(m)}, min{FP(m), FQ(m)}〉,

∀ m ∈ X}.
3. P ∩Q = {〈min{TP(m), TQ(m)}, min{IP(m), IQ(m)}, max{FP(m), FQ(m)}〉,

∀ m ∈ X}.
4. (P\Q) = {〈min{TP(m), TQ(m)}, min{IP(m), IQ(m)}, max{FP(m), FQ(m)〉, ∀ m ∈ X}.
5. c(P) = {〈FP(m), 1− IP(m), TP(m), ∀ m ∈ X〉}. Here c(c(P)) = P.

Definition 4 ([34]). Let us define a function g : X1 −→ X2 and let P, Q be the svnss of X1 and
X2, respectively. Then, the image of a svns P is also a svns of X2 and as described below:

g(P)(n) = (Tg(P)(n), Ig(P)(n), Fg(P)(n)

= (g(TP)(n), g(IP)(n), g(FP)(n)), ∀ n ∈ X2.

where

g(TP)(n) =
{ ∨

TP(m), if m ∈ g−1(n),
0, otherwise.

g(IP)(n) =
{ ∨

IP(m), if m ∈ g−1(n),
0, otherwise.

g(FP)(n) =
{ ∧

FP(m), if m ∈ g−1(n),
1, otherwise.

The preimage of a svns Q is a svns of X1 and defined as:

g−1(Q)(m) = (Tg−1(Q)(m), Ig−1(Q)(m), Fg−1(Q)(m)

= (TQ(g(m)), IQ(g(m)), FQ(g(m)))

= B(g(m)), ∀ m ∈ X1.

3. Single-Valued Neutrosophic Submodules under Triplet Structure

We define and investigate the basic properties and characterizations of a (µ, ν, ω)-svnm
and (µ, ν, ω)-svnsm of a given classical module over a ring in this section. We typically
start with some introductory (µ, ν, ω)-svns, the α-level set on (µ, ν, ω)-svns, operations
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and properties of (µ, ν, ω)-svns, and then study crucial results, propositions, theorems and
several examples related to (µ, ν, ω)-svnm and (µ, ν, ω)-svnsm of a given classical module
over a ring R. In addition, we present various homomorphism theorems for the validity of
(µ, ν, ω)-svnsm.

Definition 5. If P is a single-valued neutrosophic subset of X then (µ, ν, ω)-single-valued neutro-
sophic subset P of X is categorize as:

P(µ,ν,ω) =
{
〈m, Tµ

P (m), Iν
P(m), Fω

P (m)〉 | m ∈ X
}

,

where

Tµ
P (m) = ∨{TP(m), µ},

Iν
P(m) = ∨{IP(m), ν},

Fω
P (m) = ∧{FP(m), ω},

such that
0 ≤ Tµ

P (m) + Iν
P(m) + Fω

P (m) ≤ 3.

where µ, ν, ω ∈ [0, 1], also T, I, F : X → [0, 1], such that Tµ
P , Iν

P and Fω
P represent the functions of

truth, indeterminacy, and falsity-membership, respectively.

Definition 6. Let X be a space of objects, with m denoting a generic entity belong to X. A (µ, ν, ω)-
svns P on X is symbolized by truth Tµ

P , indeterminacy Tµ
P and falsity-membership function Fω

P ,
respectively. For every m in X, Tµ

P (m), Iν
P(m), Fω

P (m) ∈ [0, 1], write a (µ, ν, ω)-svns P accord-
ingly as:

P(µ,ν,ω) =
n

∑
i
〈Tµ(mi), Iν(mi), Fω(mi)〉/mi, mi ∈ X.

Definition 7. Let P and Q be two (µ, ν, ω)-svnss on X. Then

1. P(µ,ν,ω) ⊆ Q(µ,ν,ω) ⇔ P(µ,ν,ω)(m) ≤ Q(µ,ν,ω)(m).
That is,

Tµ
P (m) ≤ Tµ

Q(m),

Iν
P(m) ≤ Iν

Q(m),

Fω
P (m) ≥ Fω

Q (m),

and

P(µ,ν,ω) = Q(µ,ν,ω) ⇔ P(µ,ν,ω) ⊆ Q(µ,ν,ω) and Q(µ,ν,ω) ⊆ P(µ,ν,ω).

2. The union of P(µ,ν,ω) and Q(µ,ν,ω) is denoted by

S(µ,ν,ω) = P(µ,ν,ω) ∪ Q(µ,ν,ω),

and defined as
S(µ,ν,ω)(m) = P(µ,ν,ω)(m) ∨ Q(µ,ν,ω)(m),

where

P(µ,ν,ω)(m) ∨Q(µ,ν,ω)(m) = {〈Tµ
P (m) ∨ Tµ

Q(m), Iν
P(m) ∨ Iν

Q(m), Fω
P (m) ∧ Fω

Q (m)〉, ∀ m ∈ X}.
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That is,

Tµ
S (m) = max{Tµ

P (m), Tµ
Q(m)},

Iν
S(m) = max{Iν

P(m), Iν
Q(m)},

Fω
S (m) = min{Fω

P (m), Fω
Q (m)}.

3. The intersection of P(µ,ν,ω) and Q(µ,ν,ω) is denoted by

S(µ,ν,ω) = P(µ,ν,ω) ∩Q(µ,ν,ω),

and defined as
S(µ,ν,ω)(m) = P(µ,ν,ω)(m) ∧Q(µ,ν,ω)(m),

where

P(µ,ν,ω)(m) ∧Q(µ,ν,ω)(m) = {〈Tµ
P (m) ∧ Tµ

Q(m), Iν
P(m) ∧ Iν

Q(m), Fω
P (m) ∨ Fω

Q (m)〉, ∀ m ∈ X}.

That is,

Tµ
S (m) = min{Tµ

P (m), Tµ
Q(m)},

Iν
S(m) = min{Iν

P(m), Iν
Q(m)},

Fω
S (m) = max{Fω

P (m), Fω
Q (m)}.

4. (P(µ,ν,ω)\Q(µ,ν,ω)) = {〈min{Tµ
P (m), Tµ

Q(m)}, min{Iν
P(m), Iν

Q(m)}, max{Fω
P (m),

Fω
Q (m)〉, ∀ m ∈ X}.

5. c(P(µ,ν,ω)) = {〈(Fω
P (m), 1− Iν

P(m), Tµ
P (m)), 〉, ∀ m ∈ X}. Here, c(c(P(µ,ν,ω)) = P(µ,ν,ω).

Definition 8. Let P be a (µ, ν, ω)-svns on X and α ∈ [0, 1]. The α-level sets on P can be
determined as:

(Tµ
P )α = {m ∈ X | Tµ

P (m) ≥ α},
(Iν

P)α = {m ∈ X | Iν
P(m) ≥ α},

(Fω
P )α = {m ∈ X | Fω

P (m) ≤ α}.

Definition 9. Suppose a function g : X1 −→ X2 and P, Q are the two (µ, ν, ω)-svnss of X1 and
X2, respectively. Then, the image of a (µ, ν, ω)-svns P(µ,ν,ω) is a (µ, ν, ω)-svns of X2 and it is
defined as follows:

g(P(µ,ν,ω))(n) = (Tµ

g(P)(n), Iν
g(P)(n), Fω

g(P)(n))

= (g(Tµ
P )(n), g(Iν

P)(n), g(Fω
P )(n)), ∀ n ∈ X2.

where

g(Tµ
P )(n) =

{ ∨
Tµ

P (m), if m ∈ g−1(n),
0, otherwise.

g(Iν
P)(n) =

{ ∨
Iν
P(m), if m ∈ g−1(n),

0, otherwise.

g(Fω
P )(n) =

{ ∧
Fω

P (m), if m ∈ g−1(n),
1, otherwise.
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The preimage of a (µ, ν, ω)-svns Q is a (µ, ν, ω)-svns of X1 and defined as follows:

g−1(Q(µ,ν,ω))(m) = (Tµ

g−1(Q)
(m), Iν

g−1(Q)(m), Fω
g−1(Q)(m))

= (Tµ
Q(g(m)), Iν

Q(g(m)), Fω
Q (g(m)))

= Q(µ,ν,ω)(g(m)), ∀ m ∈ X1.

Note: We define and explore the notion of a (µ, ν, ω)-svnsm of a given classical module
M over a ring R. R is used throughout this article to represent a commutative ring with
unity 1.

Definition 10. Let M be a module over a ring R. A (µ, ν, ω)-svns P on M is called a (µ, ν, ω)-
svnsm of M if the following conditions are satisfied:

M1: P(µ,ν,ω)(0) = X̃. That is

Tµ
P (0) = 1, Iν

P(0) = 1, Fω
P (0) = 0.

M2:
P(µ,ν,ω)(m + n) ≥ P(µ,ν,ω)(m) ∧ P(µ,ν,ω)(n), ∀ m, n ∈ M.

That is,

Tµ
P (m + n) ≥ Tµ

P (m) ∧ Tµ
P (n),

Iν
P(m + n) ≥ Iν

P(m) ∧ Iν
P(n),

Fω
P (m + n) ≤ Fω

P (m) ∨ Fω
P (n).

M3:
P(µ,ν,ω)(rm) ≥ P(µ,ν,ω)(m), ∀ m ∈ M, r ∈ R.

That is,

Tµ
P (rm) ≥ Tµ

P (m),

Iν
P(rm) ≥ Iν

P(m),

Fω
P (rm) ≤ Fω

P (m).

(µ, ν, ω)-svnsm(M) denotes the set of all (µ, ν, ω)-single-valued neutrosophic submodules of M.

Definition 11. Let P be a (µ, ν, ω)-svns on M, then −P(µ,ν,ω) is a (µ, ν, ω)-svns on M, defined
as follows:

Tµ
−P(m) = Tµ

P (−m),

Iν
−P(m) = Iν

P(−m),

Fω
−P(m) = Fω

P (−m), ∀ m ∈ M.

Proposition 1. If P is a (µ, ν, ω)-svnsm of an R-module M, then (−1)P(µ,ν,ω) = −P(µ,ν,ω).

Example 1. Take, for example, classical ring R = Z4 = {0̄, 1̄, 2̄, 3̄}. Since each ring is a module in
itself, we consider M = Z4 as a classical module. Define svns P as follows:

P = {〈1, 1, 0〉 /0̄ + 〈0.3, 0.2, 0.8〉 /1̄ + 〈0.8, 0.5, 0.4〉 /2̄ + 〈0.2, 0.1, 0.7〉 /3̄}.

It is clear that the svns P is a not a svnsm of the module M.
Let µ = 0.6, ν = 0.3 and ω = 0.6, So (µ, ν, ω)-svns become

P = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.3, 0.6〉 /1̄ + 〈0.8, 0.5, 0.4〉 /2̄ + 〈0.6, 0.3, 0.6〉 /3̄}.
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It is clear that the (µ, ν, ω)-svns P is a (µ, ν, ω)-svnsm of the module M = Z4.

Proof. Let m ∈ M be an arbitrary element

Tµ

(−1)P(m) =
∨

m=(−1)n

Tµ
P (n)

=
∨

n=−m
Tµ

P (m) = Tµ
P (−m)

= Tµ
−P(m).

Iν
(−1)P(m) =

∨
m=(−1)n

Iν
P(n)

=
∨

n=−m
Iν
P(m) = Iν

P(−m)

= Iν
−P(m)

Fω
(−1)P(m) =

∧
m=(−1)n

Fω
P (n)

=
∧

n=−m
Fω

P (m) = Fω
P (−m)

= Fω
−P(m).

This shows that Tµ

(−1)P(m) = Tµ
−P(m), Iν

(−1)P(m) = Iµ
−P(m) and Fω

(−1)P(m) = Fω
−P(m).

Thus, this holds true for each m ∈ M,

(−1)P(µ,ν,ω) = (Tµ

(−1)P, Iν
(−1)P, Fω

(−1)P) = (Tµ
−P, Iν

−P, Fω
−P) = −P(µ,ν,ω).

Definition 12. Let P be a (µ, ν, ω)-svns on an R-module M with r ∈ R. Set rP as a neutrosophic
set to M, define as:

Tµ
rP(m) = ∨{Tµ

P (n) | n ∈ M, m = rn},
Iν
rP(m) = ∨{Iν

P(n) | n ∈ M, m = rn},
Fω

rP(m) = ∧{Fω
P (n) | n ∈ M, m = rn}.

Definition 13. Let P, Q be (µ, ν, ω)-svnss on M. Then, their sum
P(µ,ν,ω) + Q(µ,ν,ω) is a (µ, ν, ω)-svns on M, defined as follows:

Tµ
P+Q(m) = ∨{Tµ

P (n) ∧ Tµ
Q(o) | m = n + o, n, o ∈ M},

Iν
P+Q(m) = ∨{Iν

P(n) ∧ Iν
Q(o) | m = n + o, n, o ∈ M},

Fω
P+Q(m) = ∧{Fω

P (n) ∨ Fω
Q (o) | m = n + o, n, o ∈ M}.

Proposition 2. If P and Q are (µ, ν, ω)-svnss on M with P(µ,ν,ω) ⊆ Q(µ,ν,ω), then rP(µ,ν,ω) ⊆
rQ(µ,ν,ω) for each r ∈ R.

Proof. By definition, it is obvious.



Symmetry 2023, 15, 247 8 of 20

Proposition 3. If P is (µ, ν, ω)-svns on M, then Tµ
rP(rm) ≥ Tµ

P (m), Iν
rP(rm) ≥ Iν

P(m) and
Fω

rP(rm) ≤ Fω
P (m).

Proof. By definition, it is obvious.

Proposition 4. If P is a (µ, ν, ω)-svns on M, then r(sP(µ,ν,ω)) = (rs)P(µ,ν,ω), ∀ r, s ∈ R.

Proof. Consider r, s ∈ R to be arbitrary, whereas m ∈ M.

Tµ

r(sP)(m) =
∨

m=rn
Tµ

sP(n)

=
∨

m=rn

∨
n=st

Tµ
P (t) =

∨
m=r(st)

Tµ
P (t)

= Tµ

(rs)P(m).

Iν
r(sP)(m) =

∨
m=rn

Iν
sP(n)

=
∨

m=rn

∨
n=st

Iν
P(t) =

∨
m=r(st)

Iν
P(t)

= Iν
(rs)P(m).

Fω
r(sP)(m) =

∧
m=rn

Fω
sP(n)

=
∧

m=rn

∧
n=st

Fω
P (t) =

∧
m=r(st)

Fω
P (t)

= Fω
(rs)P(m).

Therefore, we have the following equalities

Tµ

r(sP)(m) = Tµ

(rs)P(m),

Iν
r(sP)(m) = Iν

(rs)P(m),

Fω
r(sP)(m) = Fω

(rs)P(m).

Therefore,

r(sP(µ,ν,ω)) = (Tµ

r(sP), Iν
r(sP), Fω

r(sP)),

⇒ r(sP(µ,ν,ω)) = (Tµ

(rs)P, Iν
(rs)P, Fω

(rs)P) = (rs)P(µ,ν,ω).

Proposition 5. If P and Q are (µ, ν, ω)-svnss on M, then

1. Tµ
Q(rm) ≥ Tµ

P (m), for each m ∈ M, if and only if Tµ
rP ≤ Tµ

Q.
2. Iν

Q(rm) ≥ Iν
P(m), for each m ∈ M, if and only if Iν

rP ≤ Iν
Q.

3. Fω
Q (rm) ≤ Fω

P (m), for each m ∈ M, if and only if Fω
rP ≥ Fω

Q .

Proof. (1) Suppose Tµ
Q(rm) ≥ Tµ

P (m), for each m ∈ M, then

Tµ
rP(m) =

∨
m=rn,n∈M

Tµ
P (n).
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Therefore,
Tµ

rP ≤ Tµ
Q.

Conversely, suppose Tµ
rP ≤ Tµ

Q. Then, Tµ
rP(m) = Tµ

Q(m), for each m ∈ M.
Hence,

Tµ
Q(rm) ≥ Tµ

rP(rm) ≥ Tµ
P (m), ∀ m ∈ M (from Proposition 3).

(2) Suppose Iν
Q(rm) ≥ Iν

P(m), for each m ∈ M, then

Iν
rP(m) =

∨
m=rn,n∈M

Iν
P(n).

Therefore,
Iν
rP ≤ Iν

Q.

Conversely, suppose Iν
rP ≤ Iν

Q. Then, Iν
rP(m) = Iν

Q(m), for each m ∈ M.
Hence,

Iν
Q(rm) ≥ Iν

rP(rm) ≥ Iν
P(m), ∀ m ∈ M (from Proposition 3).

(3) Suppose Fω
Q (rm) ≤ Iω

P (m), for each m ∈ M, then

Fω
rP(m) =

∧
m=rn,n∈M

Fω
P (n).

Therefore,
Fω

rP ≥ Fω
Q .

Conversely, suppose Fω
rP ≥ Fω

Q . Then Fω
rP(m) = Fω

Q (m), for each m ∈ M.
Hence,

Fω
Q (rm) ≤ Fω

rP(rm) ≤ Fω
P (m), ∀ m ∈ M (using Proposition 3).

Proposition 6. If P and Q are (µ, ν, ω)-svnss on M, then r(P(µ,ν,ω) + Q(µ,ν,ω)) = rP(µ,ν,ω) +
rQ(µ,ν,ω), ∀ r ∈ R.

Proof. Let P and Q be (µ, ν, ω)-svnss on M, m ∈ M and r ∈ R.

Tµ

r(P+Q)
(m) =

∨
m=rn

Tµ

(P+Q)
(n)

=
∨

m=rn

∨
n=t1+t2

(Tµ
P (t1) ∧ Tµ

Q(t2))

=
∨

m=rt1+rt2

(Tµ
P (t1) ∧ Tµ

Q(t2))

=
∨

m=m1+m2

(
∨

m1=rt1

(Tµ
P (t1) ∧

∨
m2=rt2

Tµ
Q(t2)))

=
∨

m=m1+m2

(Tµ
rP(m1) ∧ Tµ

rQ(m2))

= Tµ
rP+rQ(m).
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Iν
r(P+Q)(m) =

∨
m=rn

Iν
(P+Q)(n)

=
∨

m=rn

∨
n=t1+t2

(Iν
P(t1) ∧ Iν

Q(t2))

=
∨

m=rt1+rt2

(Iν
P(t1) ∧ Iν

Q(t2))

=
∨

m=m1+m2

(
∨

m1=rt1

(Iν
P(t1) ∧

∨
m2=rt2

Iν
Q(t2)))

=
∨

m=m1+m2

(Iν
rP(m1) ∧ Iν

rQ(m2))

= Iν
rP+rQ(m).

Fω
r(P+Q)(m) =

∧
m=rn

Fω
(P+Q)(n)

=
∧

m=rn

∧
n=t1+t2

(Fω
P (t1) ∨ Fω

Q (t2))

=
∧

m=rt1+rt2

(Fω
P (t1) ∨ Fω

Q (t2))

=
∧

m=m1+m2

(
∧

m1=rt1

(Fω
P (t1) ∨

∧
m2=rt2

Fω
Q (t2)))

=
∧

m=m1+m2

(Fω
rP(m1) ∨ Fω

rQ(m2))

= Fω
rP+rQ(m).

Therefore, we have the equalities

Tµ

r(P+Q)
(m) = Tµ

rP+rQ(m),

Iν
r(P+Q)(m) = Iν

rP+rQ(m),

Fω
r(P+Q)(m) = Fω

rP+rQ(m).

Hence,

r(P(µ,ν,ω) + Q(µ,ν,ω)) = (Tµ

r(P+Q)
, Iν

r(P+Q), Fω
r(P+Q))

= (Tµ
rP+rQ, Iν

rP+rQ, Fω
rP+rQ)

= rP(µ,ν,ω) + rQ(µ,ν,ω).

Proposition 7. If P and Q are (µ, ν, ω)-svnss on M, then

1. Tµ
rP+sQ(rm + sn) ≥ Tµ

P (m) ∧ Tµ
Q(n),

2. Iν
rP+sQ(rm + sn) ≥ Iν

P(m) ∧ Iν
Q(n),

3. Fω
rP+sQ(rm + sn) ≤ Fω

P (m) ∨ Fω
Q (n), for each m, n ∈ M, r, s ∈ R.

Proof. It is easy to prove with the help of Definitions 12 and 13 and Proposition 3.
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Proposition 8. If P, Q, S are (µ, ν, ω)-svnss on M, then, for each r, s ∈ R, the following are satisfied;

1. Tµ
S (rm + sn) ≥ Tµ

P (m) ∧ Tµ
Q(n), for all m, n ∈ M if and only if Tµ

rP+sQ ≤ Tµ
S .

2. Iν
S(rm + sn) ≥ Iν

P(m) ∧ Iν
Q(n), for all m, n ∈ M if and only if Iν

rP+sQ ≤ Iν
S .

3. Fω
S (rm + sn) ≤ Fω

P (m) ∨ Fω
Q (n), for all m, n ∈ M if and only if Fω

rP+sQ ≥ Fω
S .

Proof. It is easy to prove with the help of Proposition 7.

Example 2. Take an example for the above Proposition 7, classical ring R = Z2 = {0̄, 1̄}. Since
each ring is a module in itself, we consider M = Z2 as a classical module. Define svnss P and Q
as follows:

P = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.3, 0.6〉 /1̄ and Q = {〈1, 1, 0〉 /0̄ + 〈0.8, 0.1, 0.4〉 /1̄}.

Let µ = 0.6, ν = 0.3 and ω = 0.6, So (µ, ν, ω)-svnss P and Q becomes

P = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.3, 0.6〉 /1̄ and Q = {〈1, 1, 0〉 /0̄ + 〈0.8, 0.3, 0.4〉 /1̄}.

We can examine that for truth-membership
Tµ

P (0) = 1, Tµ
P (1) = 0.6, Tµ

Q(0) = 1, Tµ
Q(1) = 0.8 and

Tµ
P (0) ∧ Tµ

Q(0) = 1, Tµ
P (0) ∧ Tµ

Q(1) = 0.8, Tµ
P (1) ∧ Tµ

Q(0) = 0.6, and Tµ
P (1) ∧ Tµ

Q(1) = 0.6.

Additionally, we can see that

Tµ
rP(0) = 1, Tµ

rP(1) = 0.6, Tµ
sQ(0) = 1, Tµ

sQ(1) = 0.8 and Tµ
rP+sQ(0) = 1, Tµ

rP+sQ(1) = 0.8.

Case 1: Let m = 0, n = 0 and r, s ∈ R = Z2, clearly Tµ
rP+sQ(r0 + s0) = 1 ≥

Tµ
P (0) ∧ Tµ

Q(0) = 1.
Case 2: Let m = 0, n = 1 and r, s ∈ R = Z2, clearly Tµ

rP+sQ(r0 + s1) = 1 or 0.8 ≥
Tµ

P (0) ∧ Tµ
Q(1) = 0.8.

Case 3: Let m = 1, n = 0 and r, s ∈ R = Z2, clearly Tµ
rP+sQ(r1 + s0) = 1 or 0.8 ≥

Tµ
P (1) ∧ Tµ

Q(0) = 0.6.
Case 4: Let m = 1, n = 1 and r, s ∈ R = Z2, clearly Tµ

rP+sQ(r1 + s1) = 1 or 0.8 ≥
Tµ

P (1) ∧ Tµ
Q(0) = 0.6.

⇒ (µ, ν, ω)-svnss P and Q satisfy the condition
(1) Tµ

rP+sQ(rm + sn) ≥ Tµ
P (m) ∧ Tµ

Q(n),

Similarly, we can show that for indeterminacy membership

(2) Iν
rP+sQ(rm + sn) ≥ Iν

P(m) ∧ Iν
Q(n),

Now, we prove for the falsity membership

Fµ
P (0) = 0, Fµ

P (1) = 0.6, Fµ
Q(0) = 0, Fµ

Q(1) = 0.4 and
Fµ

P (0) ∨ Fµ
Q(0) = 0, Fµ

P (0) ∨ Fµ
Q(1) = 0.4, Fµ

P (1) ∨ Fµ
Q(0) = 0.6, and Fµ

P (1) ∨ Fµ
Q(1) = 0.6.

Additionally, we can see that

Fµ
rP(0) = 0, Fµ

rP(1) = 0.6, Fµ
sQ(0) = 0, Fµ

sQ(1) = 0.4 and Fµ
rP+sQ(0) = 0, Fµ

rP+sQ(1) = 0.

Case 1: Let m = 0, n = 0 and r, s ∈ R = Z2, clearly Fµ
rP+sQ(r0 + s0) = 0 ≤

Fµ
P (0) ∨ Fµ

Q(0) = 0.
Case 2: Let m = 0, n = 1 and r, s ∈ R = Z2, clearly Fµ

rP+sQ(r0 + s1) = 0 ≤
Fµ

P (0) ∨ Fµ
Q(1) = 0.4.

Case 3: Let m = 1, n = 0 and r, s ∈ R = Z2, clearly Fµ
rP+sQ(r1 + s0) = 0 ≤

Fµ
P (1) ∨ Fµ

Q(0) = 0.6.
Case 4: Let m = 1, n = 1 and r, s ∈ R = Z2, clearly Fµ

rP+sQ(r1 + s1) = 0 ≤
Fµ

P (1) ∨ Fµ
Q(0) = 0.6.
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⇒ (µ, ν, ω)-svnss P and Q satisfy the condition
(3) Fω

rP+sQ(rm + sn) ≤ Fω
P (m) ∨ Fω

Q (n), for each m, n ∈ M, r, s ∈ R.

Example 3. Take an example for the above Proposition 8. Let us take the classical ring R = Z2 =
{0̄, 1̄}. Since each ring is a module in itself, we consider M = Z2 as a classical module. Define
svnss P, Q and S as follows:

P = {〈1, 1, 0〉 /0̄ + 〈0.3, 0.2, 0.8〉 /1̄, Q = {〈1, 1, 0〉 /0̄ + 〈0.4, 0.5, 0.4〉 /1̄} and S = {〈1, 1, 0〉 /0̄ + 〈0.2, 0.1, 0.7〉 /1̄}.

Let µ = 0.6, ν = 0.3 and ω = 0.6. Therefore, (µ, ν, ω)-svnss P, Q and S become

P = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.3, 0.6〉 /1̄, Q = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.5, 0.4〉 /1̄} and S = {〈1, 1, 0〉 /0̄ + 〈0.6, 0.3, 0.6〉 /1̄}.

We can see that for truth-membership
Tµ

P (0) = 1, Tµ
P (1) = 0.6, Tµ

Q(0) = 1, Tµ
Q(1) = 0.8, Tµ

S (0) = 1, Tµ
S (1) = 0.6 and

Tµ
P (0) ∧ Tµ

Q(0) = 1, Tµ
P (0) ∧ Tµ

Q(1) = 0.6, Tµ
P (1) ∧ Tµ

Q(0) = 0.6, and Tµ
P (1) ∧ Tµ

Q(1) = 0.6.
Additionally, we can see that
Tµ

rP(0) = 1, Tµ
rP(1) = 0.6, Tµ

sQ(0) = 1, Tµ
sQ(1) = 0.6 and Tµ

rP+sQ(0) = 1, Tµ
rP+sQ(1) = 0.6.

Case 1: Let m = 0, n = 0 and r, s ∈ R = Z2, clearly Tµ
S (r0 + s0) = 1 ≥ Tµ

P (0) ∧ Tµ
Q(0) = 1.

Case 2: Let m = 0, n = 1 and r, s ∈ R = Z2, clearly Tµ
S (r0 + s1) = 1 or 0.6 ≥

Tµ
P (0) ∧ Tµ

Q(1) = 0.6.
Case 3: Let m = 1, n = 0 and r, s ∈ R = Z2, clearly Tµ

S (r1 + s0) = 1 or 0.6 ≥
Tµ

P (1) ∧ Tµ
Q(0) = 0.6.

Case 4: Let m = 1, n = 1 and r, s ∈ R = Z2, clearly Tµ
S (r1 + s1) = 1 or 0.6 ≥

Tµ
P (1) ∧ Tµ

Q(0) = 0.6.

In all cases, we can see that Tµ
S (rm + sn) ≥ Tµ

P (m) ∧ Tµ
Q(n), ∀ m, n ∈ M

⇔ Tµ
rP+sQ(0) = 1 ≤ Tµ

S (0) = 1, and Tµ
rP+sQ(1) = 0.6 ≤ Tµ

S (1) = 0.6.
⇒ (µ, ν, ω)-svnss P, Q and S satisfy the condition
(1) Tµ

S (rm + sn) ≥ Tµ
P (m) ∧ Tµ

Q(n), for all m, n ∈ M if and only if Tµ
rP+sQ ≤ Tµ

S .
Similarly, we can show for the other clauses, i.e., indeterminacy membership as well as falsity membership.

Theorem 1. Let P be a (µ, ν, ω)-svns on M and r, s ∈ R. Then, the following conditions must hold;

1. Tµ
rP ≤ Tµ

P ⇔ Tµ
P (rm) ≥ Tµ

P (m),
Iν
rP ≤ Iν

P ⇔ Iν
P(rm) ≥ Iν

P(m) and
Fω

rP ≥ Fω
P ⇔ Fω

P (rm) ≤ Fω
P (m), for each m ∈ M.

2. Tµ
rP+sP ≤ Tµ

P ⇔ Tµ
P (rm + sn) ≥ Tµ

P (m) ∧ Tµ
P (n),

Iν
rP+sP ≤ Iν

P ⇔ Iν
P(rm + sn) ≥ Iν

P(m) ∧ Iν
P(n),

Fω
rP+sP ≥ Fω

P ⇔ Fω
P (rm + sn) ≤ Fω

P (m) ∨ Fω
P (n).

Proof. It is easy to prove with the help of Propositions 5 and 8.

Theorem 2. Let P be a (µ, ν, ω)-svns on M. Then, P is a svnsm of M ⇔ P is a single-valued
neutrosophic subgroup of the additive group M, in the notion of [34], and meets the requirements
Tµ

rP ≤ Tµ
P , Iν

rP ≤ Iν
P and Fω

rP ≥ Fω
P for every r ∈ R.

Proof. From the description of a single-valued neutrosophic subgroup in [34], also using
Theorem 1, it is easy to prove.

Theorem 3. Assume that P is a (µ, ν, ω)-svns on M. Then, P ∈ svnsm(M)⇔ the characteristics
below hold:

1. P(µ,ν,ω)(0) = X̃.
2. P(µ,ν,ω)(rm + sn) ≥ P(µ,ν,ω)(m) ∧ P(µ,ν,ω)(n), for every m, n ∈ M, r, s ∈ R.
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Proof. Assume that P is a (µ, ν, ω)-svnsm of M and e, f ∈ M. It is clearly shown that
P(µ,ν,ω)(0) = X̃ by using the condition (M1) of Definition 10. The foregoing statements are
also correct based on (M2) and (M3).

Tµ
P (rm + sn) ≥ Tµ

P (rm) ∧ Tµ
P (sn) ≥ Tµ

P (m) ∧ Tµ
P (n),

Iν
P(rm + sn) ≥ Iν

P(rm) ∧ Iν
P(sn) ≥ Iν

P(m) ∧ Iν
P(n),

Fω
P (rm + sn) ≤ Tµ

P (rm) ∨ Fω
P (sn) ≤ Fω

P (m) ∨ Fω
P (n), ∀ m, n ∈ M, r, s ∈ R.

Hence,

P(µ,ν,ω)(rm + sn) = (Tµ
P (rm + sn), Iν

P(rm + sn), Fω
P (rm + sn))

≥ (Tµ
P (m) ∧ Tµ

P (n), Iν
P(m) ∧ IA(n), Fω

P (m) ∨ Fω
P (n))

= (Tµ
P (m), Iν

P(m), Fω
P (m)) ∧ (Tµ

P (n), Iν
P(n), Fω

P (n))

= P(µ,ν,ω)(m) ∧ P(µ,ν,ω)(n).

⇒ P(µ,ν,ω)(rm + sn) ≥ P(µ,ν,ω)(m) ∧ P(µ,ν,ω)(n).
Conversely, assume P(µ,ν,ω) meets the conditions (i) and (ii). Therefore, the assumption

is evident that P(µ,ν,ω)(0) = X̃.

Tµ
P (m + n) = Tµ

P (1.m + 1.n) ≥ Tµ
P (m) ∧ Tµ

P (n),

Iν
P(m + n) = Iν

P(1.m + 1.n) ≥ Iν
P(m) ∧ Iν

P(n),

Fω
P (m + n) = Fω

P (1.m + 1.m) ≤ Fω
P (m) ∨ Fω

P (n).

Therefore, P(µ,ν,ω)(m + n) ≥ P(µ,ν,ω)(m) ∧ P(µ,ν,ω)(n).
Furthermore, the requirement (M2) of Definition 10 is fulfilled. Let us now demonstrate

the condition’s legitimacy (M3). According to the hypothesis,

Tµ
P (rm) = Tµ

P (rm + r0) ≥ Tµ
P (m) ∧ Tµ

P (0) = Tµ
P (m),

Iν
P(rm) = Iν

P(rm + r0) ≥ Iν
P(m) ∧ Iν

P(0) = Iν
P(m),

Fω
P (rm) = Fω

P (rm + r0) ≤ Fω
P (m) ∨ Fω

P (0) = Fω
P (m), ∀ m, n ∈ M, r ∈ R.

As a result, (M3) of Definition 10 is achieved.

Theorem 4. Assume P and Q are (µ, ν, ω)-svnsm of a classical module M, then P ∩ Q is also a
(µ, ν, ω)-svnsm of M.

Proof. Since P, Q ∈ (µ, ν, ω)-svnsm(M), we have P(µ,ν,ω)(0) = X̃, and Q(µ,ν,ω)(0) = X̃.

Tµ
P ∩ Q(0) = Tµ

P (0) ∧ Tµ
Q(0) = 1,

Iν
P ∩ Q(0) = Iν

P(0) ∧ Iν
Q(0) = 1,

Fω
P ∩ Q(0) = Fω

P (0) ∨ Fω
Q (0) = 0.

Hence, (P(µ,ν,ω) ∩ Q(µ,ν,ω))(0) = X̃ and we find that the condition (M1) of Definition 10 is
met. Let m, n ∈ M, r, s ∈ R. According to Theorem 3, it is sufficient to demonstrate that

(P(µ,ν,ω) ∩ Q(µ,ν,ω))(rm + sn) ≥ (P(µ,ν,ω) ∩ Q(µ,ν,ω))(m) ∧ (P(µ,ν,ω) ∩ Q(µ,ν,ω))(n).

That is,

Tµ
P ∩ Q(rm + sn) ≥ Tµ

P ∩ Q(m) ∧ Tµ
P ∩ Q(n),

Iν
P ∩ Q(rm + sn) ≥ Iν

P ∩ Q(m) ∧ Iν
P ∩ Q(n),

Fω
P ∩ Q(rm + sn) ≤ Fω

P ∩ Q(m) ∨ Fω
P ∩ Q(n).
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Now, consider the truth, indeterminacy and falsity membership degree of the intersection,

Tµ
P ∩ Q(rm + sn) = Tµ

P (rm + sn) ∧ Tµ
Q(rm + sn)

≥ (Tµ
P (m) ∧ Tµ

P (n)) ∧ (Tµ
Q(m) ∧ Tµ

Q(n))

= (Tµ
P (m) ∧ Tµ

Q(m)) ∧ (Tµ
P (n) ∧ Tµ

Q(n))

= Tµ
P ∩ Q(m) ∧ Tµ

P ∩ Q(n).

⇒ Tµ
P ∩ Q(rm + sn) ≥ Tµ

P ∩ Q(m) ∧ Tµ
P ∩ Q(n)

Iν
P ∩ Q(rm + sn) = Iµ

P(rm + sn) ∧ Tν
Q(rm + sn)

≥ (Iν
P(m) ∧ Iν

P(n)) ∧ (Tν
Q(m) ∧ Iν

Q(n))

= (Iµ
P(m) ∧ Tν

Q(m)) ∧ (Iµ
P(n) ∧ Iµ

Q(n))

= Iν
P ∩ Q(m) ∧ Tµ

P ∩ Q(n).

⇒ Iν
P ∩ Q(rm + sn) ≥ Iν

P ∩ Q(m) ∧ Iν
P ∩ Q(n)

Fω
P ∩ Q(rm + sn) = Fω

P (rm + sn) ∨ Iω
Q(rm + sn)

≤ (Fω
P (m) ∨ Fω

P (n)) ∨ (Fω
Q (m) ∨ Fω

Q (n))

= (Fω
P (m) ∨ Fω

Q (m)) ∨ (Fω
P (n) ∨ Fω

Q (n))

= Fω
P ∩ Q(m) ∨ Fω

P ∩ Q(n).

⇒ Fω
P ∩ Q(rm + sn) ≤ Fω

P ∩ Q(m) ∨ Fω
P ∩ Q(n).

Hence, P ∩ Q ∈ (µ, ν, ω)-svnsm(M).

Note: Let N be a nonempty subset of M, which is a submodule of M ⇔ rm + sn ∈
N, ∀ m, n ∈ M, r, s ∈ R.

Proposition 9. Suppose M is a module over R. P ∈ (µ, ν, ω)-svnsm(M)⇔ ∀ α ∈ [0, 1], α-level
sets of P(µ,ν,ω), (Tµ

P )α, (Iν
P)α and (Fω

P )α are classical submodules of M where P(µ,ν,ω)(0) = X̃.

Proof. Let P ∈ (µ, ν, ω)-svnsm(M), α ∈ [0, 1], m, n ∈ (Tµ
P )α and r, s ∈ R can represent a

certain element. Then,

Tµ
P (m) ≥ α, Tµ

P (n) ≥ α and Tµ
P (m) ∧ Tµ

P (n) ≥ α.

By using Theorem 3, we have

Tµ
P (rm + sn) ≥ Tµ

P (m) ∧ Tµ
P (n) ≥ α.

Hence,
rm + sn ∈ (Tµ

P )α.

As a result, with each α ∈ [0, 1], (Tµ
P )α is a classical submodule of M. Similarly, for m, n ∈

(Iν
P)α, (Fω

P )α, we obtain rm+ sn ∈ (Iν
P)α, (Fω

P )α for each α ∈ [0, 1]. Consequently, (Iν
P)α, (Fω

P )α

with each α ∈ [0, 1] are classical submodules of M.
Conversely, let (Tµ

P )α with each α ∈ [0, 1] be a classical submodule of M.
Let m, n ∈ M, α = Tµ

P (m) ∧ Tµ
P (n). Then, Tµ

P (m) = α and Tµ
P (n) = α. Thus, m,

n ∈ (Tµ
P )α.

Since (Tµ
P )α is a classical submodule of M, we have rm + sn ∈ (Tµ

P )α for all r, s ∈ R.

⇒ (Tµ
P )(rm + sn) ≥ α = Tµ

P (m) ∧ Tµ
P (n).

Similarly, (Iν
P)α with each α ∈ [0, 1] is a classical submodule of M.

Let m, n ∈ M, α = Iν
P(m) ∧ Iν

P(n). Then, Iν
P(m) = α and Iν

P(n) = α. Thus, m, n ∈ (Iν
P)α.
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Since (Iν
P)α is a classical submodule of M, we have rm + sn ∈ (Iν

P)α for all r, s ∈ R.

⇒ (Iν
P)(rm + sn) ≥ α = Iν

P(m) ∧ Iν
P(n).

Now, we consider (Fω
P )α. Let m, n ∈ M, α = Fω

P (m) ∨ Fω
P (n). Then, Fω

P (m) = α, Fω
P (n) = α.

Thus, m, n ∈ (Fω
P )α. Since (Fω

P )α is a submodule of M, we have rm + sn ∈ (Fω
P )α for

all r, s ∈ R.
Thus, (Fω

P )(rm + sn) ≤ α = Fω
P (m) ∨ Fω

P (n). It is also obvious that P(µ,ν,ω)(0) = X̃.
As a result, the conditions of Theorem 3 are fulfilled.

Proposition 10. Assume that P and Q are two (µ, ν, ω)-svnss on X and Y, respectively. Then,
for the α- levels, the following equalities hold.

(Tµ
P×Q)α = (Tµ

P )α × (Tµ
Q)α,

(Iν
P×Q)α = (Iν

P)α × (Iν
Q)α,

(Fω
P×Q)

α = (Fω
P )α × (Fω

Q )α.

Proof. Let (m, n) ∈ (Tµ
P×Q)α be arbitrary.

Therefore,

Tµ
P×Q(m, n) ≥ α⇔ Tµ

P (m) ∧ Tµ
Q(n) ≥ α,

⇔ Tµ
P (m) ≥ α, Tµ

P (n) ≥ α⇔ (m, n) ∈ (Tµ
P )α × (Tµ

Q)α.

Now, let (m, n) ∈ (Iν
P×Q)α be arbitrary.

Therefore,

Iν
P×Q(m, n) ≥ α⇔ Iν

P(m) ∧ Iν
Q(n) ≥ α,

⇔ Iν
P(m) ≥ α, Iν

P(n) ≥ α,⇔ (m, n) ∈ (Iν
P)α × (Tν

Q)α.

Similarly, let (m, n) ∈ (Fω
P×Q)

α be arbitrary.
Therefore,

Fω
P×Q(m, n) ≤ α⇔ Fω

P (m) ∨ Fω
Q (n) ≤ α,

⇔ Fω
P (m) ≤ α, Fω

P (n) ≤ α⇔ (m, n) ∈ (Fω
P )α × (Fω

Q )α.

Proposition 11. Let P and Q be two (µ, ν, ω)-svnss on X and Y, respectively, and let g : X → Y
be a mapping. Therefore, the preceding must be applicable:

1.
g((Tµ

P ))α ⊆ (Tµ

g(P))α,

g((Iν
P)α) ⊆ (Iν

g(P))α,

g((Fω
P )α) ⊇ (Fω

g(P))
α.

2.
g−1((Tµ

Q)α) = (Tµ

g−1(Q)
)α,

g−1((Iν
Q)α) = (Iν

g−1(Q))α,

g−1((Fω
Q )α) = (Fω

g−1(Q))
α.

Proof. (1) Let n ∈ g((Tµ
P )α). Then, ∃ m ∈ (Tµ

P )α such that g(m) = n. Hence, Tµ
P (m) ≥ α.
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Therefore,
∨

m∈g−1(n)
Tµ

P (m) ≥ α. That is, Tµ

g(P)(n) ≥ α and n ∈ (Tµ

g(P))α. Hence,

g((Tµ
P )α) ⊆ (Tµ

g(P))α.
Similarly, n ∈ g((Iν

P)α). Then, ∃ m ∈ (Iν
P)α such that g(m) = n. Thus, Iν

P(m) ≥ α.
Therefore,

∨
m∈g−1(n)

Iν
P(m) ≥ α. That is, Iν

g(P)(n) ≥ α and n ∈ (Iν
g(P))α. Therefore,

g((Iν
P)α) ⊆ (Iν

g(P))α.
Additionally, n ∈ g((Fω

P )α). Then, ∃ m ∈ (Fω
P )α such that g(m) = n. This implies

Fω
P (m) ≤ α.

Therefore,
∧

m∈g−1(n)
Fω

P (m) ≤ α. That is, Fω
g(P)(n) ≤ α and n ∈ (Fω

g(P))
α. Hence,

g((Fω
P )α) ⊇ (Fω

g(P))α.
(2)

(Tµ

g−1(Q)
)α = {m ∈ X : Tµ

g−1(Q)
(m) ≥ α}

= {m ∈ X : Tµ
Q(g(m)) ≥ α}

= {m ∈ X : g(m) ∈ (Tµ
Q)α}

= {m ∈ X : m ∈ g−1((Tµ
Q)α)}

= g−1((Tµ
Q)α).

Similarly,

(Iν
g−1(Q))α = {m ∈ X : Iν

g−1(Q)(m) ≥ α}

= {m ∈ X : Iν
Q(g(m)) ≥ α}

= {m ∈ X : g(m) ∈ (Iν
Q)α}

= {m ∈ X : m ∈ g−1((Iν
Q)α)}

= g−1((Iν
Q)α).

Additionally,

(Fω
g−1(Q))

α = {m ∈ X : Fω
g−1(Q)(m) ≤ α}

= {m ∈ X : Fω
Q (g(m)) ≤ α}

= {m ∈ X : g(m) ∈ (Fω
Q )α}

= {m ∈ X : m ∈ g−1((Fω
Q )α)}

= g−1((Fω
Q )α).

Theorem 5. Assume g : M → N to be a homomorphism of modules, whereas M, N are the
classical modules. If P is a (µ, ν, ω)-svnsm of M, then the image g(P) is a (µ, ν, ω)-svnsm of N.

Proof. It is sufficient to prove by Proposition 9 that

(Tµ

g(P))α, (Iν
g(P))α, (Fω

g(P))
α

are (µ, ν, ω)-svnsm of N, ∀ α ∈ [0, 1].
Let n1, n2 ∈ (Tµ

g(P))α. Then, Tµ

g(P)(n1) ≥ α and Tµ

g(P)(n2) ≥ α. There exist m1, m2 ∈ M
such that

Tµ
P (m1) ≥ Tµ

g(P)(n1) ≥ α and Tµ
P (m2) ≥ Tµ

g(P)(n2) ≥ α.
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Therefore,
Tµ

P (m1) ≥ α, Tµ
P (m2) ≥ α and Tµ

P (m1) ∧ Tµ
P (m2) ≥ α.

Since P is a (µ, ν, ω)-svnsm of M, for any r, s ∈ R we have

Tµ
P (rm1 + sm2) ≥ Tµ

P (m1) ∧ Tµ
P (m2) ≥ α.

Hence,
rm1 + sm2 ∈ (Tµ

P )α.

⇒ g(rm1 + sm2) ∈ g((Tµ
P )α) ⊆ (Tg(P))α

⇒ rg(m1) + sg(m2) ∈ (Tg(P))α

⇒ rn1 + sn2 ∈ (Tµ

g(P))α.

Therefore, (Tµ

g(P))α is a submodule of N.
Similarly, ∀ α ∈ [0, 1], consider n1, n2 ∈ (Iν

g(P))α. Then, Iν
g(P)(n1) ≥ α and Iν

g(P)(n2) ≥ α.
There exist m1, m2 ∈ M, such that

Iν
P(m1) ≥ Iν

g(P)(n1) ≥ α and Iν
P(m2) ≥ Iν

g(P)(n2) ≥ α.

Therefore,
Iν
P(m1) ≥ α, Iν

P(m2) ≥ α and Iν
P(m1) ∧ Iν

P(m2) ≥ α.

Since P is a (µ, ν, ω)-svnsm of M, for any r, s ∈ R we have

Iν
P(rm1 + sm2) ≥ Iν

P(m1) ∧ Iν
P(m2) ≥ α.

Hence,
rm1 + sm2 ∈ (Iν

P)α).

⇒ g(rm1 + sm2) ∈ g((Iν
P)α) ⊆ (Ig(P))α

⇒ rg(m1) + sg(m2) ∈ (Ig(P))α

⇒ rn1 + sn2 ∈ (Iν
g(P))α.

Therefore, (Iν
g(P))α is a submodule of N.

Similarly, for all α ∈ [0, 1], consider n1, n2 ∈ (nω
g(P))

α. Then, nω
g(P)(n1) ≤ α and

nω
g(P)(n2) ≤ α. There exist m1, m2 ∈ M, such that

Fω
P (m1) ≤ Fω

g(P)(n1) ≤ α

and
Fω

P (m2) ≤ Fω
g(P)(n2) ≤ α.

Therefore, Fω
P (m1) ≤ α, Fω

P (m2) ≤ α and Fω
P (m1) ∨ Fω

P (m2) ≤ α. Since P is a (µ, ν, ω)-
svnsm of M, for any r, s ∈ R we have Fω

P (rm1 + sm2) ≤ Fω
P (m1) ∨ Fω

P (m2) ≤ α.
Hence,

rm1 + sm2 ∈ (Fω
P )α).

⇒ g(rm1 + sm2) ∈ g((Fω
P )α) ⊇ (Fg(P))

α

⇒ rg(m1) + sg(m2) ∈ (Fg(P))
α

⇒ rn1 + sn2 ∈ (Fω
g(P))

α.



Symmetry 2023, 15, 247 18 of 20

Therefore, (Fω
g(P))

α is a submodule of N. Consequently, for every α ∈ [0, 1], (Tµ

g(P))α (Iν
g(P))α,

(Fω
g(P))

α are classical submodules of N. Thus, g(P) is a (µ, ν, ω)-svnsm of N via the use of
Proposition 9.

Theorem 6. Assume g : M → N to be a homomorphism of modules, whereas M, N are the
classical modules. If Q is a (µ, ν, ω)-svnsm of N, then the preimage g−1(Q) is a (µ, ν, ω)-svnsm
of M.

Proof. Using Proposition 11 (2), we have

g−1((Tµ
Q)α) = (Tµ

g−1(Q)
)α,

g−1((Iν
Q)α) = (Iν

g−1(Q))α,

g−1((Fω
Q )α) = (Fω

g−1(Q))
α.

Since preimage of a (µ, ν, ω)-svnsm is a (µ, ν, ω)-svnsm, by Proposition 9 we arrive at
a conclusion.

Corollary 1. If g : M→ N is a surjective module homomorphism and {Pi : i ∈ I} is a family of
(µ, ν, ω)-svnsm of M, then g(∩Pi) is a (µ, ν, ω)-svnsm of N.

Corollary 2. If g : M → N is a homomorphism of modules and {Qj : j ∈ I} is a family of
(µ, ν, ω)-svnsm of N, then g−1( ∩ Qj) is a (µ, ν, ω)-svnsm of M.

4. Conclusions

A svns under triplet structure is a type of svns that can be employed to identify signif-
icant problems in the fields of research, engineering, denoising, clustering, segmentation,
and a variety of medical image-processing applications. Therefore, the study of svns under
triplet structure and their characteristics has a massive impact, both in terms of attaining
a knowledge of the basic principles of vulnerability and the applications that can benefit
from this knowledge. This is because the study focuses on the characteristics of the svns
under triplet structure rather than the structure of the svns. In this article, we defined svns
and svnsm in terms of triplet structure and provided a number of essential conclusions
related to these concepts. As a result, the objective of this work is to use a number of
various ideas in order to produce some major findings on svnsm under the triplet structure.
Since the study analyzes a wide range of symmetrical aspects of modules, it provides a
compelling illustration of the importance of the work being carried out. In the field of
algebraic structure theory, it contains an innovative concept with the potential to be used in
the future to solve a range of algebraic problems.

• This approach is frequently extended to the generators of arbitrary nonempty families
of neutrosophic submodules, as well as structure maintaining features such as the
isomorphism of neutrosophic submodules. Neutrosophic submodules give a solid
mathematical framework for clarifying related scientific issues in image processing,
control theory, and economics.

• This notion can be expanded to soft neutrosophic modules, weak soft neutrosophic
modules, strong soft neutrosophic modules, soft neutrosophic module homomor-
phism, and soft neutrosophic module isomorphism. Furthermore, scholars might
explore the homological properties of these modules.

• This study can be broadened to include the cyclic fuzzy neutrosophic normal soft
group, neutrosophic rings, and ideals.

• In the future, researchers may extend this concept to topological spaces, fields, and
vector spaces.
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