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Abstract: In this paper, we focus on the redesign of the output layer for the weighted regularized
extreme learning machine (WRELM). For multi-classification problems, the conventional method of
the output layer setting, named “one-hot method”, is as follows: Let the class of samples be r; then, the
output layer node number is r and the ideal output of s-th class is denoted by the s-th unit vector
in Rr (1 ≤ s ≤ r). Here, in this article, we propose a “binary method” to optimize the output layer
structure: Let 2p−1 < r ≤ 2p, where p ≥ 2, and p output nodes are utilized and, simultaneously,
the ideal outputs are encoded in binary numbers. In this paper, the binary method is employed in
WRELM. The weights are updated through iterative calculation, which is the most important process
in general neural networks. While in the extreme learning machine, the weight matrix is calculated in
least square method. That is, the coefficient matrix of the linear equations we solved is symmetric.
For WRELM, we continue this idea. And the main part of the weight-solving process is a symmetry
matrix. Compared with the one-hot method, the binary method requires fewer output layer nodes,
especially when the number of sample categories is high. Thus, some memory space can be saved
when storing data. In addition, the number of weights connecting the hidden and the output layer
will also be greatly reduced, which will directly reduce the calculation time in the process of training
the network. Numerical experiments are conducted to prove that compared with the one-hot method,
the binary method can reduce the output nodes and hidden-output weights without damaging the
learning precision.

Keywords: weighted regularized extreme learning machine (WRELM); multi-class classification
problems; binary method; output nodes; hidden-output weights

1. Introduction

In the past few decades, the theory and application of artificial neural networks has
developed rapidly because of their excellent approximation ability [1,2]. When training the
network with the back propagation algorithm, it is very likely to fall into a local extremum
and iteration is a time-consuming process. To avoid these shortcomings, Huang proposed
the extreme learning machine (ELM) [3–5], and the weight matrix was calculated in least
square method as an alternative to iterative computation. ELM was widely applied in many
fields and achieved excellent results [6–9]. Based on the original ELM, some researchers
added a weight factor and a regularization parameter to build the weighted regularized
extreme learning machine (WRELM) [10,11]. The novel network can decrease the error
caused by class-imbalanced samples in classification problems.

For the multi-classification problem, the common designs of output layer are one-versus-all
(OVA) [12], one-versus-one (OVO) [13] and error-correcting output coding (ECOC) [14].
OVA transforms an r-classification problem into r parity problems, and the i-th classifier
employs the i-th class samples as the positive samples and all the others as the negative
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samples. For OVO, two classes are in turn chosen to make a parity problem. Therefore,
r(r− 1)/2 classifiers are required for an r-classification problem. ECOC firstly designs a
coding matrix M, and then decomposes the multi-classification problem into several parity
problems; finally, it compares the hamming distance with the codes of each class to obtain
the predicted value.

According to the OVA classification scheme, the conventional output layer design is
one-hot method [15–18]: When solving r-classification problems (r ≥ 3), let the class of
samples be r; then, the output layer node number is r and the ideal output of s-th class is
denoted by s-th unit vector in Rr (1 ≤ s ≤ r). For instance, when solving a 4-classification
problem, the output node number is 4, and the samples of these four classes are labeled by
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. Obviously, the one-hot method
requires too many output nodes, which leads to an excessive number of weights connecting
the hidden and the output layers. And it seems too clumsy in terms of information storage.
In the process of training the network, too many weights will inevitably consume too much
computational time. The root of all these problems is the question of how to reduce the
number of output nodes. We can derive some inspiration from the following two examples:

As we all know, for a parity problem [19], no one follows the one-hot method: no
one prefers labeling the first class by (1, 0) and the second class by (0, 1). Instead of the
one-hot method in this case, only one output node is employed, the first class is labeled
by 1 and the second class is labeled by 0. Therefore, it seems that the one-hot method has
some apparent shortages to be improved. Then, consider a general r-classification problem.
Besides the one-hot method, we can also set the ideal output by the following process:
Delete r-th output node; For the first r− 1 classes of samples, we treat the problem as an
(r− 1)-classification problem and set the ideal outputs in one-hot method; Finally, for the
last r-th class, set the ideal output to be (0, · · · , 0)∈ Rr−1. This output layer design method
can also solve the r-classification problem. Therefore, the one-hot method must not be
the best.

The optimization of network structure can be mainly carried out from the follow-
ing several aspects: input, hidden, output layers and weights. As an effective input
layer optimization method, feature selection [20,21] is to select a subset of features that
can represent the original data. Therefore, the dataset can be converted from high-
dimensional to low dimensional space. For the hidden layer, regularization and its im-
proved algorithm [22,23] are widely used to optimize the hidden layer of the network.
Binarized neural network (BNN) [24,25] is a network that only uses −1 and +1 to represent
the weights and activations. Based on the BNN, lots of researchers optimize the original
network, mainly from the following aspects: minimizing the quantization [26,27], improv-
ing network loss function [28,29], and reducing the gradient error [30,31]. And in terms of
application, BNN has also achieved good results [32–34]. Obviously, BNN can minimize
the storage and the calculation of the model through binarizing the weights and activations
into values −1 and +1.

Inspired by the above examples and binarized neural networks, the binary method
is proposed instead of the one-hot method in this paper. The specific description of the
binary method is as follows: Suppose 2p−1 < r ≤ 2p with p ≥ 2, and p output nodes are
utilized and, simultaneously, the ideal outputs are encoded into binary numbers. Take the
4-classification problem as an example; two output nodes are needed, and these four classes
are labeled by (0, 0), (0, 1), (1, 0) and (1, 1), respectively. It can be seen that when the class
number is higher, the output node number that the binary method can reduce is greater. In
the binary method, the output node number has been significantly reduced, which leads to
a reduction in the number of hidden-output weights. In the storage process, lots of storage
space will be saved. Moreover, in numerical experiments, the computational speed will also
be improved because of the reduction of the weight number. The experiment part proves
that compared with the conventional one-hot method, the binary method can reduce the
output nodes and hidden-output weights without damaging the learning precision.
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The remaining chapters are organized as follows: The description of the WRELM is
given in Section 2. In the next section, the output layer designs under the one-hot and
binary methods are introduced in detail. In Section 4, numerical experiments on six datasets
are carried out after we show the experiment settings. Finally, the conclusion is presented
in Section 5.

Throughout this paper, common notations for neural networks will be used. Some
other symbols and their corresponding meanings are listed in Table 1.

Table 1. Main symbols and their corresponding meanings.

Sign Meaning Sign Meaning

Rn n-dimensional vector space Φ data set
H output matrix of hidden layer HT transpose of matrix H
H† generalized inverse of matrix H H−1 inverse of matrix H
I identity matrix C regularization parameter
|| · || 2-norm g sigmoid function

2. Brief Review of WRELM

Huang has proposed the ELM in [35–37], which is a type of single-layer feedforward
neural network. In ELM, the basic idea is that the weights between input and hidden
layers are randomly generated instead of iterative computational methods, and the weights
between hidden and output layers are computed in the least square method.

Exhaustively, suppose that the input, hidden and output node numbers are n, L and
m, respectively, which is demonstrated in Figure 1. The input x ∈ Rn is transformed into
the hidden layer through random feature mapping; And the output value of the network is
expressed by a linear combination of the mapped features. The specific formula is:

y =
L

∑
i=1

βigi(x) =
L

∑
i=1

βig(wi · x + bi), (1)

where y ∈ Rm represents the actual output, βi = (βi1, βi2, . . . , βim)
T ∈ Rm is the weight

vector connecting the i-th hidden node and the output nodes, wi = (ωi1, ωi2, . . . , ωin)
T is

the weight vector connecting the input nodes and the i-th hidden node, bi is the bias of i-th
hidden node and g(·) is an activation function.
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Figure 1. Structural framework of the ELM: n-dimensional vector x is the network input; L denotes
the hidden node number; m-dimensional vector y represents the network actual output.

Given a sample set {(xj, oj)}N
j=1, where xj = (xj1, xj2, . . . , xjn)

T ∈ Rn and oj =

(oj1, oj2, . . . , ojm)
T ∈ Rm, the corresponding j-th output node is:
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yj =
L

∑
i=1

βig(wi · xj + bi), for j = 1, . . . , N. (2)

Its purpose is to build a neural network that meets the conditions

N

∑
j=1
||yj − oj|| = 0, (3)

which means finding wi, βi and bi to satisfy
L

∑
i=1

βig(wi · xj + bi) = oj, for j = 1, . . . , N. (4)

These N equations mentioned above can be simplified to:

Hβ = O, (5)

where
H(w1, w2, . . . , wL, b1, b2, . . . , bL, x1, x2, . . . , xN)

=


g(w1 · x1 + b1) g(w2 · x1 + b2) · · · g(wL · x1 + bL)
g(w1 · x2 + b1) g(w2 · x2 + b2) · · · g(wL · x2 + bL)

... · · ·
...

g(w1 · xN + b1) g(w2 · xN + b2) · · · g(wL · xN + bL)


N×L

,
(6)

β =

βT
1
...

βT
L


L×m

and O =

oT
1
...

oT
N


N×m

. (7)

In this paper, H denotes the output matrix of the hidden layer. In the model of ELM, wi
and βi (i = 1, . . . , L) are randomly generated instead of iterative computational methods.
Therefore, the least square method is applied:

β =

{
(HT HHT)−1O, if L ≤ N,

(HT H)−1O, if L > N.
(8)

In [36], Huang has proved the required hidden node number L must be less than or
equal to the training sample number N. Therefore, for Equation (8), we take the case of
L ≤ N. Obviously, HT HHT is a symmetric matrix from a mathematical point of view. To
simplify the formula, we write it as follows:

β = H†O, (9)

where O = [o1, . . . , oN ]
T , and H† stands for the Moore-Penrose generalized inverse of

hidden layer output matrix H [38,39].
Subsequently, in order to avoid the structure risk, some researchers proposed regu-

larized extreme learning machine (RELM) [18,40,41] with a regularization parameter. The
RELM can be expressed as

min :
1
2
||β||2 + C

2
||ε||2, (10)

where C denotes the regularization parameter, ε j = ∑L
i=1 g(wj · xj + bj)− oj is the sum of

the training error; ||ε||2 and ||β||2 are experience risk and structure risk, respectively. The
output weight matrix is calculated by:

β = (HT H +
I
C
)−1HTO, (11)
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where I denotes the identity matrix.
However, lots of imbalance classification problems actually exist. In other words,

when solving a classification problem, it is not clear whether the data is class-balanced.
If we treat the problem as class-balanced data, it may cause a large error. Therefore, we
must use some measures to balance those classes with fewer samples. Based on the original
RELM, we add a weight factor to build the WRELM [10,11]. As the process of RELM, the
output weight matrix of WRELM is as follows:

β = (HTW2H +
I
C
)−1HTW2O, (12)

where W is an N × N diagonal matrix. In order to decrease the role of I played in (12),
the value of C must be a big constant. The main part of (12) is a matrix with symmetry.
Each main diagonal element of the diagonal matrix corresponds to its sample, and different
classes of samples are automatically assigned different weights. Usually, we take an
automatic weighting scheme [42]:

Wii =
1

Count(oi)
, (13)

where Wii is the i-th main diagonal element of W, Count(oi) denotes the sample number of
class oi.

With the above theory, the basic algorithm of WRELM is to calculate the output weight
in the least square. The specific steps are as follows:

Step 1: Select the training set Φ = {(xj, oj)|xj ∈ Rn, oj ∈ Rm, j = 1, . . . , N}. Choose
the hidden node number L, regularization parameter C and the activation function g(·);

Step 2: Randomly generate input weight wi and bias bi, i = 1, . . . , L;
Step 3: Compute the output matrix H of hidden layer;
Step 4: Compute the output weight matrix β by (12).

3. Output Layer Settings

In this section, two output layer settings are introduced: the conventional one-hot
method and the novel proposed binary method.

3.1. One-Hot Method

When the conventional one-hot method is employed for an r-classification problem, if
an input xj is a sample of s-th class, the ideal output oj will be

oj = (oj1, oj2, . . . , oj(s−1), ojs, oj(s+1), . . . , ojr)
T

= (0, 0, . . . , 0, 1, 0, . . . , 0)T .
(14)

In other words, an input xj ∈ Rn can be assigned to the s-th class, if the final actual
output (2) of the network satisfies:

yj = (yj1, yj2, . . . , yj(s−1), yjs, yj(s+1), . . . , yjr)
T

≈ (0, 0, . . . , 0, 1, 0, . . . , 0)T .
(15)

The one-hot method is considered to effectively solve a classification problem if the
input sample belonging to the s-th class satisfies Equation (15) for each s = 1, . . . , r. If the
input sample satisfies Equation (15) for each s = 1, . . . , r, then it belongs to the s-th class.

3.2. Binary Method

Now, we proceed to introduce the new binary method: Let 2p−1 < r ≤ 2p with p ≥ 2.
Thus, the number of output nodes will be reduced to p. And for each class of samples, the
binary manner is applied to encode the ideal outputs: The ideal output of the s-th class is

oj(s) = (oj1, oj2, . . . , ojp)
T , (16)
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where
oj1oj2 · · · ojp = (s− 1)2. (17)

In Equation (17), (s − 1)2 represents the binary number of (s − 1), where ojk = 1 or 0,
1 ≤ k ≤ p. Analogously, we claim that the binary method successfully solves a classification
problem if the input sample belonging to the s-th class satisfies for s = 1, . . . , r:

(yj1, yj2, . . . , yjq)
T ≈ oj(s). (18)

The above binary method indeed needs a smaller amount of output nodes than the
one-hot method. In order to visualize the advantages of the binary method, we take the
eight-classification problem as an example. There should be eight output nodes in the
one-hot method (cf. Figure 2a), while only three output nodes are needed in the binary
method (cf. Figure 2b). Moreover, the number of hidden-output weights is also reduced,
which will result in a significant reduction in computational time.

(a) (b)

Figure 2. WRELM Structural framework for eight-classification problem in two methods. (a) One-hot
method: eight output nodes. (b) Binary method: only three output nodes.

Remark 1. In the one-hot method, an input xj ∈ Rn can be assigned to the s-th class, if the final
actual output of the network satisfies [43]:

yjs = max{yj}. (19)

However, the one-hot method has an obvious disadvantage. This method may fail to classify
the sample if the actual output has another node equal or approximate to the maximum value:

yjs′ = yjs or yjs′ ≈ yjs, s 6= s′. (20)

For example, when solving a two-class classification problem, we will classify a sample into the
second class if its actual output is (0.92, 0.93). However, the possibility that this sample belongs to
the first class is also especially high.

Another criterion to classify a sample is as follows: Evaluate the value of each output
node, and then transform each output node to value 0 or 1. (In next section, we will give a
criterion about the transformation.) Under this criterion, we cannot say the sample belongs
to the first or the second class if the actual output is (0.92, 0.93).

One way of circumventing these difficulties is to replace the one-hot method with
the binary method. When solving a four-classification problem, we can easily classify the
sample into the fourth class if the actual output is (0.92, 0.93). When the actual output has
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another node equal or nearly equal to the maximum value, the one-hot method fails to
classify this sample accurately, but the binary method succeeds.

4. Numerical Experiments

To verify the validity of the binary method, we compare it with the one-hot method
on six real multi-classification problems: Wine [44], Car [45], image segmentation (IS) [46],
four-class sensorless drive diagnosis (FSDD) [47], crowdsourced mapping (CM) [48], and
letter recognition (LR) [49]. All the experiments below are conducted in Matlab 2014a, and
the computer is a Macbook pro 2015.

4.1. Experiment Settings

In our experiments, five-fold cross validation technology will be used [50–53] in both
the one-hot and binary methods. For details, the dataset is equally divided into five parts,
and the learning process is conducted twenty times. For each time the training process
is run, each part takes turns as the test set, while the rest are used as the training sets.
The above processes are repeated 20 times. After adding them all together, one hundred
classification results are achieved for each method-data pair.

We evaluate the class of a sample according to the actual output by the standards: If
the actual output is less than 0.50, then we regard it as approximately equal to 0; And if the
actual output is more than 0.50, then we regard it as approximately equal to 1. Here, the
sigmoidal function is employed as an activation function:

g(x) =
1

1 + e−x . (21)

For WRELM, the input-hidden weights are stochastically generated and fixed in the
subsequent learning procedure; then, the hidden-output weights are calculated in least
square method rather than iterative methods. Therefore, there are two parameters in
WRELM: hidden node number L and regularization parameter C. In [36], Huang provided
the theorem that the required hidden node number L must be less than or equal to the
training sample number N. Moreover in [35], Huang gave the explanation that L � N
under normal circumstances.

The experiment process is given in the following Algorithm 1:

Algorithm 1 Experiment process

Step 1: Input the dataset Φ = {(xj, oj)|xj ∈ Rn, oj ∈ Rm, j = 1, . . . , N} and regular-
ization parameter C. For each class, input the ideal outputs in both the one-hot and
binary methods.
Step 2: Five-fold cross validation technology: Φ = {(xj, oj)|xj ∈ Rn, oj ∈ Rm, j =
1, . . . , N} is equally divided into five parts: Φ1, . . ., Φ5.
Step 3: For i = 1 to i = 5, do Step 3 to Step 7. Let Φi be the test samples, while Φ \Φi is
the training samples.
Step 4: Compute the hidden layer output matrix H by Equation (6); next, calculate the
output weight β (cf. Equation (12)) according to the training samples.
Step 5: Compute the actual outputs (cf. Equation (2)) of the test samples.
Step 6: For each sample, calculate the approximate value of the actual output according
to the approximation criteria given before, and calculate the classification accuracies.
Step 7: Repeat the above procedure twenty times.
Step 8: Let L = L + L0, where L0 is the step and the initial value of L is a small positive
integer. Repeat Step 3 to Step 7 until L attains half of the training sample number.
Step 9: For each value of L, choose the optimal accuracies and calculate the average
accuracies.
Step 10: Draw figures and tables according to the one hundred experimental results
obtained in Step 9, and then compare the performances of one-hot and binary methods.
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4.2. Classification Accuracies and Computational Time

In Table 2, we choose the optimal accuracy (OA) and calculate the average accu-
racy (AA) according to the one hundred results in support vector machine (SVM), asso-
ciative pulsing neural network (APNN), ELM and WRELM. Make a longitudinal con-
trast to the classification accuracies in Table 2. The sequence of these four classifiers is:
WRELM > ELM > APNN > SVM.

Table 2. Test accuracies for six different datasets.

Dataset Class Attribute Case
O-H Binary

AA OA AA OA

Wine

SVM 94.16% 97.42% 95.53% 98.28%
APNN 94.30% 98.28% 96.06% 100.00%
ELM 94.71% 100.00% 96.19% 100.00%

4 13 WELM, C = 0 95.04% 98.28% 97.16% 100.00%
WRELM, C = 500 95.00% 100.00% 98.28% 100.00%
WRELM, C = 1000 96.03% 98.28% 97.16% 100.00%
WRELM, C = 2000 95.26% 100.00% 97.16% 100.00%

Car

SVM 93.59% 94.07% 93.46% 94.05%
APNN 94.27% 95.62% 94.78% 96.11%
ELM 96.54% 97.90% 94.86% 96.73%

4 6 WELM, C = 0 97.03% 98.11% 97.12% 98.04%
WRELM, C = 500 97.27% 97.90% 94.94% 96.50%
WRELM, C = 1000 95.56% 96.03% 96.34% 96.96%
WRELM, C = 2000 97.12% 97.66% 96.94% 97.66%

IS

SVM 93.54% 93.91% 94.70% 95.26%
APNN 94.02% 94.35% 95.39% 96.71%
ELM 94.69% 95.43% 96.12% 97.04%

7 18 WELM, C = 0 95.37% 95.91% 96.49% 97.17%
WRELM, C = 500 94.38% 94.59% 95.70% 96.44%
WRELM, C = 1000 96.11% 96.31% 96.93% 97.30%
WRELM, C = 2000 95.90% 96.34% 96.89% 97.43%

FSDD

SVM 96.78% 97.51% 97.03% 97.84%
APNN 97.28% 97.90% 97.50% 98.21%
ELM 98.80% 99.03% 98.91% 99.09%

4 48 WELM, C = 0 98.80% 99.01% 98.82% 99.06%
WRELM, C = 500 98.73% 98.90% 99.01% 99.12%
WRELM, C = 1000 98.82% 98.95% 98.80% 99.03%
WRELM, C = 2000 98.83% 99.09% 99.02% 99.12%

CM

SVM 91.04% 91.60% 92.86% 93.37%
APNN 91.90% 92.35% 93.67% 94.02%
ELM 92.67% 93.18% 94.58% 95.15%

6 28 WELM, C = 0 92.81% 93.76% 94.97% 95.28%
WRELM, C = 500 92.66% 92.93% 95.35% 95.61%
WRELM, C = 1000 93.96% 94.20% 95.48% 95.75%
WRELM, C = 2000 93.71% 93.92% 95.05% 95.43%

LR

SVM 81.36% 82.13% 81.71% 82.64%
APNN 82.72% 83.41% 82.94% 83.79%
ELM 81.57% 82.60% 87.60% 87.96%

26 16 WELM, C = 0 81.83% 82.35% 87.32% 87.81%
WRELM, C = 500 82.30% 83.04% 87.44% 87.68%
WRELM, C = 1000 82.75% 83.46% 87.78% 88.14%
WRELM, C = 2000 81.79% 82.08% 87.24% 87.60%

After verifying the role of the weighted matrix, we turn to compare the classification
accuracies of one-hot and binary methods. Obviously, the binary method outperforms
the one-hot (O-H) method in four (Wine, IS, CM and LR) out of the six test datasets no
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matter which regularization parameter is chosen. More precisely, in terms of the OA, only
when the binary reaches 100% accuracy may the one-hot method have the same excellent
performances. For the Car problem, the one-hot method outperforms the binary method in
eight out of the fourteen classification accuracies (AA and OA in seven network models).
Moreover, for the FSDD problem, the binary method is absolutely better than the one-hot
method in thirteen cases; only in the case C = 1000, the AA of the one-hot method is
just 0.02% higher than that of the binary method; And on the aspect of OA, the one-hot
method is 0.08% lower than the binary method. From the overall experimental results, the
performances of the binary method are slightly worse than the one-hot method in only one
dataset (car), while the performances are far better than the one-hot method in the other
five datasets of the experiments.

Figure 3 exhibits the OA and AA with different hidden-node numbers and regular-
ization parameters. Overall, eighteen-pair experiment results are obtained: The binary
method can achieve obviously higher accuracies than the one-hot method in thirteen (case:
a, b, c, g, h, i, j, m, n, o, p, q, r) out of the eighteen cases, while the binary method performs
worse only in case d; And for the rest of the four cases (case: e, f, k, l), the accuracies of
these two methods are similar, one is never better than the other.

Experimental results reveal that, on the aspect of classification accuracy, the binary
method performs significantly better than the one-hot method.
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Figure 3. Accuracies of WRELM based on the one-hot and binary methods. C denotes the regular-
ization parameter; The horizontal axis of the image represents the hidden node number, and the
vertical axis represents the classification accuracy; Red solid line denotes the average accuracy of
binary method, The red dotted line represents the optimal accuracy of the binary method; The blue
line represents the one-hot method, respectively.

Moreover, the binary method indeed requires less output nodes than the one-hot
method especially when the class number is high. Therefore, the WRELM in the binary
approach has a faster computational speed than the one-hot method. Since this result is
obvious, we only selected CM and LR datasets as examples. And the computational time
comparison of these two methods is shown in Figure 4.
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Figure 4. Computational time on two datasets of binary (red line) and one-hot (blue line) methods.

4.3. Comparison on Several Evaluation Criteria

For the purpose of evaluating the error in the learning process of these two methods,
besides the classification accuracy, we also compare the following five criteria: prediction
rate (PR), recalling rate (RR) [54], and F1-measure [55], the standard deviation (σ) [56] and
the root mean square error (RMSE) [57]. Since the prediction and recall rate are defined for
parity problems, while dealing with multi-classification problems, we extend the original
definition: For an r-classification problem, i ∈ {1, 2, · · · , r}, we regard the samples of i-th
class as a positive set while the remaining one is classified as negative; Compute PRi and
RRi; Repeat r times and calculate the average PR and RR. S is the number of the training
samples. The specific calculation formulas are as follows:

σ :=

√√√√ 1
S− 1

S−1

∑
i=1

1
r

r

∑
j=1

(yij − yij)2;

RMSE :=

√√√√ 1
S

S

∑
i=1

1
r

r

∑
j=1

(yij − oij)2;

PR :=
1
r

r

∑
i=1

TPi
TPi + FPi

;

RR :=
1
r

r

∑
i=1

TPi
TPi + FNi

;

F1 :=
2× PR× RR

PR + RR
.

And Table 3 shows the prediction rate, recall rate, F1, σ, and RMSE of these two meth-
ods. In the datasets of Wine, IS, CM and LR, the binary method has better performances
on all the five criteria than the one-hot method. Only in the dataset of Car, the one-hot
method has better performances on five criteria than our binary method. And for the rest of
the FSDD dataset, only in the criterion of recall accuracy does the one-hot method have
a slightly better performance, while the binary method performs better on all the other
four criteria.

4.4. Sensitivity Analysis

For a certain multi-classification problem, it is hard to give the optimal hidden node
number accurately. We hope that the hidden node number has as little impact on the
experimental results as possible. Therefore, we compare the sensitivity of these two
methods and the procedure is as follows: Averagely select U points from the range of the
hidden node number (see Figure 3); Next calculate the sum of the accuracy discrepancies
between any two adjacent points for the WRELM with both the one-hot and binary methods.
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Repeat the above procedure K = 100 times and average the cases C = 500, 1000, 2000.
Finally, we obtain the average accuracy discrepancy:

disc(U) =
1

K(U − 1)

K

∑
k=1

U−1

∑
u=1
|acc(n(k)

u+1)− acc(n(k)
u )|,

where n(k)
1 , · · · , n(k)

U represent the U points averagely taken from the k-th iteration, and
acc(x) represents the accuracy at the point x. From a mathematical point of view, the
smaller value of disc(U) means that the hidden node number has less influence on the
classification accuracies.

Table 3. Some criteria on six datasets.

Dataset
O-H Binary

PR RR F1 σ RMSE PR RR F1 σ RMSE

Wine 95.67% 94.89% 95.28% 0.0238 0.0167 98.48% 97.03% 97.75% 0.0202 0.0116
Car 93.97% 93.15% 93.56% 0.0210 0.0152 92.45% 91.40% 91.92% 0.0255 0.0171
IS 94.39% 94.71% 94.55% 0.0169 0.0175 96.38% 96.23% 96.30% 0.0108 0.0130
FSDD 98.56% 99.04% 98.80% 0.0123 0.0047 99.09% 98.60% 98.84% 0.0094 0.0037
CM 92.94% 84.16% 88.33% 0.0153 0.0124 94.51% 88.79% 91.56% 0.0105 0.0097
LR 84.72% 70.04% 76.68% 0.0092 0.0021 89.94% 72.61% 80.35% 0.0071 0.0015

In our experiments, each value in set {3, 4, · · · , 10} is assigned to U, respectively. As
shown in Figure 5, in terms of experimental sensitivity, the binary method performs better
than the one-hot method on all of these six datasets. Thus, compared with the one-hot
method, the choice of hidden number has a smaller effect on classification accuracy in the
binary method.

U
3 4 5 6 7 8 9 10

d
is

c

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
O-H
Binary

(a) Wine

U
3 4 5 6 7 8 9 10

d
is

c

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
O-H
Binary

(b) Car

U
3 4 5 6 7 8 9 10

d
is

c

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
O-H
Binary

(c) IS

U
3 4 5 6 7 8 9 10

d
is

c

×10
-3

1

2

3

4

5

6

7

8

9
O-H
Binary

(d) FSDD

Figure 5. Cont.
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Figure 5. Sensitivity to hidden-node number based on the binary (red line) and one-hot (blue line)
methods. The term “disc” represents the abbreviation of average accuracy discrepancy.

5. Conclusions

The binary method applied on the output layer to optimize the structure of the
network is considered in this paper. When WRELM is employed to deal with a multi-
classification problem, the common and conventional one-hot method is applied. However,
too many output nodes and hidden-output weights are needed, which will waste too much
computational time. As a remedy, we propose a binary method: let 2p−1 < r ≤ 2p, where
p ≥ 2, and p output nodes are utilized and simultaneously the ideal outputs are encoded
in binary numbers. Compared with the one-hot method, the novel binary method requires
fewer output nodes, which will result in a great decrease in the weight number. And in the
process of training the network, the binary method has a higher computational efficiency
than the one-hot method.

Experiments are conducted for solving six-real multi-classification problems. The ex-
perimental results reveal that the binary method can achieve higher classification accuracies
and faster computational speed than the traditional one-hot method. Combined with the
theory and experimental results, the binary method can not only optimize the output layer
structure, but also improve the comprehensive classification performances of WRELM.
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