

Article A Study on k-Hyperideals in Ordered Semihyperrings

Zheng Kou¹, Mehdi Gheisari^{2,*} and Saber Omidi³

- ¹ Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
- ² Department of Cognitive Computing, Institute of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
- ³ Ministry of Education Iran, Department of Education, Tehran 1511943943, Iran
- * Correspondence: gheisarim@mail.sustech.edu.cn

Abstract: In this study, we propose the concept of left extension of a hyperideal by generalizing the concept of *k*-hyperideals in ordered semihyperrings with symmetrical hyper-operation \oplus . By using the notion of extension of a *k*-hyperideal, we prove some results in ordered semihyperrings. The results of this paper can be viewed as a generalization for *k*-ideals of semirings.

Keywords: ordered hyperstructure; k-hyperideal; left extension

MSC: 16Y99

1. Introduction

The notion of ordered semihypergroup was pioneered by Heidari and Davvaz [1] in 2011. In Ref. [2], Shi et al. attempted to study factorizable ordered hypergroupoids. In Ref. [3], Davvaz et al. initiated the study of pseudoorders in ordered semihypergroups. Gu and Tang in Ref. [4] and Tang et al. in Ref. [5] constructed the ordered semihypergroup from an ordered semihypergroup by using ordered regular relations.

The concept of hyperstructure was introduced by Marty [6] in 1934. In 1990, Vougiouklis [7] defined the notion of semihyperrings and discussed some of its properties. The theory of hyperideals in LA-hyperrings was studied by Rehman et al. in Ref. [8]. Many notions of algebraic geometry were extended to hyperrings in Ref. [9].

Some recent studies on ordered semihyperrings are on left *k*-bi-quasi hyperideals and right pure (bi-quasi-)hyperideals done by Rao et al. in Ref. [10] and Shao et al. in Ref. [11]. A study on w-pseudo-orders in ordered (semi)hyperrings was done in Ref. [12]. In Ref. [13], Kou et al. discussed the relationship between ordered semihyperrings by using homomorphisms and homo-derivations. Moreover, the connection between the ordered semihyperrings is explained by Omidi and Davvaz in Ref. [14].

In Ref. [15], Hedayati investigated some results in semihyperrings using *k*-hyperideals. In 2007, Ameri and Hedayati [16] introduced the notion of *k*-hyperideals in ordered semihyperrings. In this paper, we first define the left extension of a left hyperideal in an ordered semihyperring. The concept of extension of a *k*-ideal on a semiring *R* was introduced and studied by Chaudhari et al. in Refs. [17,18]. In the results of Chaudhari et al. [18], we replace the condition of extension of a *k*-ideal in semirings by extension of a *k*-hyperideal in ordered semihyperrings. By using the notion of extension of a *k*-hyperideal instead of *k*-hyperideal, we prove some results in ordered semihyperrings. Left extension of hyperideals are discovered to be a generalization of *k*-hyperideals. Let *Q*, *W* be hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W$. Then

$$\overline{W_O} = \{ r \in R \mid r \oplus P \subseteq W, \exists P \subseteq Q, 0 \in P \}$$

is the smallest left extension of Q containing W. Moreover, we proved that $\overline{W_Q} = W$ if and only if W is a left extension of Q. Some conclusions on extension of a k-hyperideal are gathered in the last section of the study.

Citation: Kou, Z.; Gheisari, M.; Omidi, S. A Study on *k*-Hyperideals in Ordered Semihyperrings. *Symmetry* **2023**, *15*, 240. https://doi.org/ 10.3390/sym15010240

Academic Editors: Manuel Gadella and Sergei D. Odintsov

Received: 30 November 2022 Revised: 23 December 2022 Accepted: 13 January 2023 Published: 16 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

2. Preliminaries

A mapping \odot : $R \times R \to \mathcal{P}^*(R)$ is called a *hyperoperation* on R. If $\emptyset \neq L, L' \subseteq R$ and $x \in R$, then

$$L \odot L' = \bigcup_{\substack{l \in L \\ l' \in L'}} l \odot l', x \odot L = \{x\} \odot L \text{ and } L' \odot x = L' \odot \{x\}.$$

 (R, \odot) is called a *semihypergroup* if for every l, l', x in R,

$$l \odot (l' \odot x) = (l \odot l') \odot x.$$

Definition 1. [7] A semihyperring is a triple (R, \oplus, \odot) such that for each $x, y, z \in R$,

- (1) (R, \oplus) is a commutative semihypergroup;
- (2) (R, \odot) is a semihypergroup;
- (3) $x \odot (y \oplus z) = x \odot y \oplus x \odot z$ and $(x \oplus y) \odot z = x \odot z \oplus y \odot z$;
- (4) There exists an element $0 \in R$ such that $x \oplus 0 = 0 \oplus x = \{x\}$ and $x \odot 0 = 0 \odot x = \{0\}$ for all x in R.

Definition 2. [10] Take a semihyperring (R, \oplus, \odot) and a partial order relation \leq . Then (R, \oplus, \odot, \leq) is called an ordered semihyperring if for any $q, q', x \in R$,

(1) $q \leq q' \Rightarrow q \oplus x \preceq q' \oplus x;$ (2)

$$q \leq q' \Rightarrow \begin{cases} q \odot x \leq q' \odot x, \\ \\ x \odot q \leq x \odot q'. \end{cases}$$

For every $\emptyset \neq L, L' \subseteq R, L \preceq L'$ is defined by $\forall l \in L, \exists l' \in L'$ such that $l \leq l'$. Clearly, $L \subseteq L'$ implies $L \preceq L'$, but the converse is not valid in general. In this definition, two types of relation are defined, one is between elements of R, which is denoted by \leq , and second one between subsets of R, which is \preceq .

Example 1. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Consider the semiring $(\mathbb{N}_0, +, \cdot)$ where + and \cdot are usual addition and multiplication. Define

$$l \oplus l' = \{l, l'\}$$
 and $l \odot l' = \{ll', cll'\}$, where $c \in \mathbb{N}_0$.

If \leq *is the natural ordering on* \mathbb{N}_0 *, then* $(\mathbb{N}_0, \oplus, \odot, \leq)$ *is an ordered semihyperring.*

Definition 3. We will say that $\emptyset \neq K \subseteq R$ is a left (resp. right) hyperideal of *R* if

- (1) for all $a, b \in K$, $a \oplus b \subseteq K$;
- (2) $R \odot K \subseteq K$ (resp. $K \odot R \subseteq K$);
- (3) $(K] \subseteq K$.

The set (K] is given by

$$(K] := \{ r \in R \mid r \le x \text{ for some } x \in K \}.$$

Definition 4. We will say that a left hyperideal $\emptyset \neq W \subseteq R$ is a left k-hyperideal of R, if

$$\forall w \in W, \forall q \in R, (w \oplus q) \cap W \neq \emptyset \Rightarrow q \in W.$$

Remark 1. Clearly, every left k-hyperideal of R is a left hyperideal of R. The converse is not true, in general, that is, a left hyperideal may not be a left k-hyperideal of R (see Example 2).

3. Main Results

Now, we study the extension of a *k*-hyperideal in an ordered semihyperring.

Definition 5. Assume that K, L are left hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) and $L \subseteq K$. Then K is said to be a left extension of L if

$$\forall l \in L, \forall q \in R, l \oplus q \subseteq K \Rightarrow q \in K,$$

or

$$\forall l \in L, \forall q \in R, (l \oplus q) \cap K \neq \emptyset \Rightarrow q \in K.$$

Remark 2. Every *k*-hyperideal *K* of (R, \oplus, \odot, \leq) with $K \supseteq L$ is a left extension of *L*, where *L* is a hyperideal of *R*.

Example 2. Let $R = \{0, p, q\}$ and define the symmetrical hyper-operations \oplus and \odot as follows:

Then, (R, \oplus, \odot, \leq) *is an ordered semihyperring. Clearly,* $L = \{0, p\}$ *is a hyperideal of* R*, but it is not a k-hyperideal. Indeed:*

$$R = (p \oplus q) \cap L \neq \emptyset$$
 and $p \in L$ but $q \notin L$.

Obviously, L is a k-extension of $L' = \{0\}$ *,*

Example 3. Consider the ordered semihyperring (R, \oplus, \odot, \leq) with the symmetrical hyper-operation \oplus and hyper-operation \odot :

$$\leq := \{(0,0), (0,p), (0,q), (0,r), (p,p), (q,p), (q,q), (r,p), (r,r)\}.$$

Clearly, $K = \{0, q, r\}$ *is a left extension of* $L = \{0, q\}$ *. In addition,* L *is a left extension of* $\{0\}$ *, but it is not a k-hyperideal of* R*. Indeed:*

$$(r \oplus q) \cap L \neq \emptyset$$
 and $q \in L$ but $r \notin L$.

\oplus	()	р	q	r
0	{()}	; {p}	$\{q\}$	$\{r\}$
р	{}	<i>v</i> } {	<i>p</i> , <i>q</i> }	$\{q\}$	$\{r\}$
q	{ι] }	$\{q\}$	$\{0,q\}$	$\{r\}$
r	{1	r}	$\{r\}$	$\{r\}$	$\{0, r\}$
		0	40	~	
	\odot	0	p	9	r
	0	{0}	$\{0\}$	$\{0\}$	$\{0\}$
	р	{0}	$\{p\}$	$\{p\}$	$\{p\}$
	q	{0}	$\{q\}$	$\{q\}$	$\{q\}$
	r	{0}	$\{r\}$	$\{r\}$	$\{r\}$
$\leq := \{(x, x) \mid x \in R\}.$					

Then, (R, \oplus, \odot, \leq) *is an ordered semihyperring. Clearly,* $K = \{0, r\}$ *is a right hyperideal of* R*, but it is not a right k-hyperideal of* R*. Indeed:*

$$r \oplus p = r \in K$$
 and $r \in K$ but $p \notin K$.

Let $L = \{0\}$. Then, K is a right k-extension of L, but it is not a right k-hyperideal of R.

Remark 3. *In the following, we consider the following condition:*

$$\forall l \in L, \forall q \in R, l \oplus q \subseteq K \Rightarrow q \in K.$$

Definition 6. Assume that Q, W are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W$. Then, we denote

$$\overline{Q} = \{ r \in R \mid r \oplus P \subseteq Q, \exists P \subseteq Q, 0 \in P \},\$$
$$\overline{W_Q} = \{ r \in R \mid r \oplus P \subseteq W, \exists P \subseteq Q, 0 \in P \}.$$

 $\overline{W_O}$ will be called the k-closure of W with respect to Q.

Remark 4. We have

(1) $Q \subseteq \overline{Q} \subseteq \overline{W}_Q \subseteq \overline{W};$ (2) $\overline{W}_W = \overline{W}.$

Lemma 1. Assume that Q, W, Y are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W \subseteq Y$. Then, $\overline{Y_Q} \subseteq \overline{Y_W}$.

Proof. Let *W* be a hyperideal of *R* such that $Q \subseteq W \subseteq Y$ and $x \in \overline{Y_Q}$. Then, there exists $P \subseteq Q \subseteq W$ such that $x \oplus P \subseteq Y$. So, $x \in \overline{Y_W}$. Therefore, $\overline{Y_Q} \subseteq \overline{Y_W}$. \Box

Proposition 1. $\overline{W_Q}$ is the smallest left extension of *Q* containing *W*.

Proof. Clearly, $\overline{W_O}$ is a hyperideal of *R*.

Indeed: Let $q_1, q_2 \in \overline{W_Q}$. By definition of $\overline{W_Q}$, there exist $P_1, P_2 \subseteq Q$ such that $q_1 \oplus P_1 \subseteq W$ and $q_2 \oplus P_2 \subseteq W$. Now,

$$(q_1 \oplus q_2) \oplus (P_1 \oplus P_2) = q_1 \oplus P_1 \oplus q_2 \oplus P_2 \subseteq W \oplus W \subseteq W.$$

It means that $\underline{q_1} \oplus q_2 \subseteq \overline{W_Q}$.

Now, let $u \in \overline{W_Q}$ and $x \in \overline{R}$. Then, there exists $P \subseteq Q$ such that $u \oplus P \subseteq W$. So,

$$x \odot u \oplus x \odot P = x \odot (u \oplus P) \subseteq R \odot W \subseteq W$$

Since $x \odot P \subseteq Q$, we get $x \odot u \subseteq \overline{W_Q}$. Similarly, $u \odot x \subseteq \overline{W_Q}$. Now, let $u \in \overline{W_Q}$ and $(v, u) \in \leq$, where $v \in R$. By assumption, there exists $P \subseteq Q$ such that $u \oplus P \subseteq W$. Since R is an ordered semihyperring, we get $v \oplus p \preceq u \oplus p$ for any $p \in P$. So, for any $x \in v \oplus p$, $x \leq y$ for some $y \in u \oplus p \subseteq u \oplus P \subseteq W$. Since $(W] \subseteq W$, we obtain $x \in W$. So, $v \oplus p \subseteq W$ for each $p \in P$. Thus $v \oplus P \subseteq W$ and hence $v \in \overline{W_Q}$. Therefore, $\overline{W_Q}$ is a hyperideal of R.

Now, we prove that $\overline{W_Q}$ is a extension of Q. Let $q \in Q$ and $q \oplus r \subseteq \overline{W_Q}$, where $r \in R$. By assumption, $u \in \overline{W_Q}$ for all $u \in q \oplus r$. Hence, for any $u \in q \oplus r$, there exists $P_u \subseteq Q$ such that $u \oplus P_u \subseteq W$. Thus,

$$q \oplus r \oplus \bigcup_{u \in q \oplus r} P_u \subseteq \bigcup_{u \in q \oplus r} (u \oplus P_u) \oplus \bigcup_{u \in q \oplus r} P_u \subseteq W.$$

Since $q \oplus \bigcup_{u \in q \oplus r} P_u \subseteq Q$, it follows that $r \in \overline{W_Q}$. Therefore, $\overline{W_Q}$ is a left extension of Q.

Clearly, $W \subseteq \overline{W_Q}$. Now, let *Y* be a left extension of *Q* containing *W* and $q \in \overline{W_Q}$. Then, there exist $P \subseteq Q$ such that $q \oplus P \subseteq W \subseteq Y$. Since *Y* is a left extension of *Q*, we get $q \in Y$. Hence, $\overline{W_Q} \subseteq Y$. \Box

Theorem 1. Assume that Q, W are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W$. Then, W is a left extension of Q if and only if $\overline{W_O} = W$.

Proof. Necessity: Let *W* be a left extension of *Q*. By Proposition 1, $\overline{W_Q}$ is the smallest left extension of *Q* and $W \subseteq \overline{W_Q}$. Since *W* is a left extension of *Q*, we get $\overline{W_Q} \subseteq W$. So, $W \subseteq \overline{W_Q} \subseteq W$ and hence $\overline{W_Q} = W$.

Sufficiency: If $\overline{W_Q} = W$, then, since by Proposition 1, $\overline{W_Q}$ is a left extension of Q, it follows that W is a left extension of Q. \Box

Corollary 1. Assume that Q, W are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W$. Then, $\overline{(W_O)_O} = \overline{W_O}$.

Proof. The proof obtains from Proposition 1 and Theorem 1. \Box

Theorem 2. Assume that Q, W, Y are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W, Y$. Then,

$$\overline{(W \cap Y)_O} = \overline{W_O} \cap \overline{Y_O}.$$

Proof. Let $a \in \overline{(W \cap Y)_Q}$. Then, there exists $P \subseteq Q$ such that

So, $a \in \overline{W_Q}$. Therefore, $\overline{(W \cap Y)_Q} \subseteq \overline{W_Q}$. Similarly, $\overline{(W \cap Y)_Q} \subseteq \overline{Y_Q}$.

Hence,

$$\overline{(W \cap Y)_O} \subseteq \overline{W_O} \cap \overline{Y_O}.$$

Now, let $x \in \overline{W_Q} \cap \overline{Y_Q}$. Then, there exist $P, P' \subseteq Q$ such that $x \oplus P \subseteq W$ and $x \oplus P' \subseteq Y$. Since $P' \subseteq Q \subseteq W$ and W is a hyperideal of R, we have

$$x \oplus P \oplus P' \subseteq W \oplus W \subseteq W.$$

Similarly, $x \oplus P \oplus P' \subseteq Y$. So, $x \oplus P \oplus P' \subseteq W \cap Y$. This implies that $x \in \overline{(W \cap Y)_Q}$. Therefore, $\overline{W_Q} \cap \overline{Y_Q} \subseteq \overline{(W \cap Y)_Q}$. \Box

Theorem 3. Assume that Q, W, Y are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W, Y$. If W, Y are left extensions of Q, then $W \cap Y$ is a left extension of Q.

Proof. By Theorem 2, we have

$$\overline{(W\cap Y)_Q} = \overline{W_Q} \cap \overline{Y_Q}.$$

Since *W*, *Y* are left extensions of *Q*, then by Theorem 1, we get

$$\overline{W_O} \cap \overline{Y_O} = W \cap Y.$$

Hence,

$$\overline{(W \cap Y)_O} = W \cap Y$$

Now, by Theorem 1, $W \cap Y$ is a left extension of Q. \Box

Definition 7. Assume that K, L are left hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) and $L \subseteq K$. Then K is said to be a left *m*-extension of L if

$$\forall l \in L, \forall q \in R, l \odot q \subseteq K \Rightarrow q \in K.$$

Theorem 4. Assume that K, L are hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) and $L \subseteq K$ such that $L \oplus R \subseteq L$. If K is a m-extension of L, then K is an extension of L.

Proof. Let *K* be a *m*-extension of *L*. Consider $l \oplus q \subseteq K$, $l \in L$ and $q \in R$. Since *K* is a hyperideal of *R*, we get

$$(l \oplus q) \odot q \subseteq K \odot R \subseteq K$$
.

So, for any $p \in l \oplus q$, $p \odot q \subseteq K$. Since *K* is a *m*-extension of *L*, we have $q \in K$. Thus, *K* is an extension of *L*. \Box

4. Conclusions

The concept of left extension of hyperideals in ordered semihyperrings is introduced in this study. Left extension of hyperideals are discovered to be a generalization of *k*hyperideals. Let Q, W be hyperideals of an ordered semihyperring (R, \oplus, \odot, \leq) such that $Q \subseteq W$. Then

$$\overline{W_O} = \{ r \in R \mid r \oplus P \subseteq W, \exists P \subseteq Q, 0 \in P \}$$

is the smallest left extension of Q containing W. In addition, we proved that $\overline{W_Q} = W$ if and only if W is a left extension of Q. By using the concept of extension of a *k*-hyperideal, we discussed some results in ordered semihyperrings. Some further works can be done on left extension of a fuzzy hyperideal in ordered semihyperrings.

Author Contributions: Methodology, Z.K.; formal analysis, Z.K.; investigation, M.G. and S.O.; resources, M.G. and S.O.; writing—original draft preparation, M.G. and S.O.; writing—review and editing, S.O.; supervision, Z.K.; project administration, Z.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Heidari, D.; Davvaz, B. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73, 85–96.
- Shi, X.; Guan, H.; Akhoundi, M.; Omidi, S. Factorizable ordered hypergroupoids with applications. *Math. Probl. Eng.* 2021, 2021, 5. [CrossRef]
- 3. Davvaz, B.; Corsini, P.; Changphas, T. Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder. *Eur. J. Combin.* **2015**, *44*, 208–217. [CrossRef]
- 4. Gu, Z.; Tang, X. Ordered regular equivalence relations on ordered semihypergroups. J. Algebra 2016, 450, 384–397. [CrossRef]
- Tang, J.; Feng, X.; Davvaz, B.; Xie, X. A further study on ordered regular equivalence relations in ordered semihypergroups. *Open Math.* 2018, 16, 168–184. [CrossRef]
- 6. Marty, F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Congress of Scandinavian Mathematicians, Stockholm, Sweden, 14–18 August 1934; pp. 45–49.
- 7. Vougiouklis, T. On some representations of hypergroups. Ann. Sci. Univ. Clermont-Ferrand II Math. 1990, 26, 21–29.
- Rehman, I.; Yaqoob, N.; Nawaz, S. Hyperideals and hypersystems in LA-hyperrings. Songklanakarin J. Sci. Technol. 2017, 39, 651–657.
- 9. Jun, J. Algebraic geometry over hyperrings. Adv. Math. 2018, 323, 142–192. [CrossRef]
- 10. Rao, Y.; Xu, P.; Shao, Z.; Kosari, S. Left *k*-bi-quasi hyperideals in ordered semihyperrings. *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* **2021**, *83*, 125–134.
- 11. Shao, Z.; Chen, X.; Kosari, S.; Omidi, S. On some properties of right pure (bi-quasi-)hyperideals in ordered semihyperrings. *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.* **2021**, *83*, 95–104.
- 12. Qiang, X.; Guan, H.; Rashmanlou, H. A note on the w-pseudo-orders in ordered (semi)hyperrings. *Symmetry* **2021** *13*, 2371. [CrossRef]
- 13. Kou, Z.; Kosari, S.; Monemrad, M.; Akhoundi, M.; Omidi, S. A note on the connection between ordered semihyperrings. *Symmetry* **2021**, *13*, 2035. [CrossRef]
- 14. Omidi, S.; Davvaz, B. Construction of ordered regular equivalence relations on ordered semihyperrings. *Honam Math. J.* **2018**, 40, 601–610.
- 15. Hedayati, H. Closure of k-hyperideals in multiplicative semihyperrings. Southeast Asian Bull. Math. 2011, 35, 81-89.
- 16. Ameri, R.; Hedayati, H. On k-hyperideals of semihyperrings. J. Discrete Math. Sci. Cryptogr. 2007, 10, 41–54. [CrossRef]
- 17. Chaudhari, J.; Bonde, D. Ideal theory in quotient semirings. Thai J. Math. 2014, 12, 95–101.
- 18. Chaudhari, J.; Davvaz, B.; Ingale, K. Subtractive extension of ideals in semirings. Sarajevo J. Math. 2014, 10, 13–20. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.