symmetry MBPI|

Article

Numerical Analysis of Fractional-Order Parabolic Equation
Involving Atangana-Baleanu Derivative

Meshari Alesemi

check for
updates

Citation: Alesemi, M. Numerical
Analysis of Fractional-Order
Parabolic Equation Involving
Atangana—Baleanu Derivative.
Symmetry 2023, 15,237. https://
doi.org/10.3390/sym15010237

Academic Editor: Hiiseyin Budak

Received: 5 January 2023
Revised: 11 January 2023
Accepted: 12 January 2023
Published: 15 January 2023

Copyright: © 2023 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, College of Science, University of Bisha, Bisha 61922, Saudi Arabia;
malesemi@ub.edu.sa

Abstract: In this study, the suggested q-homotopy analysis transform method is used to compute a
numerical solution of a fractional parabolic equation, and the solution is obtained in a fast convergent
series. The leverage and efficacy of the suggested technique are demonstrated by the test examples
provided. The results that were acquired are graphically displayed. The series solution in a sizable
admissible domain is handled in an extreme way by the current method. It provides us with a simple
means of modifying the solution’s convergence zone. The effectiveness and potential of the suggested
algorithm are explicitly shown in the results using graphs.
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1. Introduction

Fractional calculus is the study of arbitrary order differential and integral equations
(FC). Newton invented FC, but it has only recently garnered the interest of a number of
specialists. Within the framework of FC, the most intriguing advances in engineering
and science applications have been produced over the past three decades. Due to the
intrinsic complexity of heterogeneous processes, the non-integer derivative concept has
been industrialized. Using fractional differential operators, one can model the behavior
of multidimensional media undergoing a diffusion process [1-3]. Fractional order dif-
ferential equations have shown to be a very useful tool, allowing for clearer and more
precise solutions to numerous situations. As a result of the rapid rise of mathematical
procedures utilizing computer software, a large number of academics began working on
extended calculus in order to express their perspectives while analyzing a vast array of
complex phenomena [4-6]. Consequently, symmetry analysis is a useful method for com-
prehending partial differential equations, particularly when examining equations generated
from accounting-related mathematical concepts. Despite the notion that symmetry is the
foundation of nature, “most” observations of the natural world lack symmetry. Creating
unexpected events that break symmetry is a creative technique to conceal symmetry. There
are two varieties of symmetry: finite and infinitesimal. Both discrete and continuous finite
symmetries exist in two distinct forms. Parity and temporal inversion are instances of "dis-
crete" natural symmetries, whereas space represents a continuous change. Mathematicians
have always been fascinated by patterns. In the seventeenth century, classification of spatial
and planar patterns gained off [7-10].

Distinguished researchers have provided a variety of ground-breaking recommen-
dations for the several FC definitions that served as the basis. [11-13]. FC has also been
associated with practical endeavors and is frequently employed in chaos soliton theory [14],
optics [15], nanotechnology [16], human diseases [17], and other fields [18-22]. Numerous
critical and nonlinear models are currently being extensively and effectively analyzed using
FC. Numerous eminent scientists, including Riemann, Liouville, Caputo, and Fabrizio,
have presented different definitions. However, these definitions have their own limitations.

Symmetry 2023, 15, 237. https:/ /doi.org/10.3390/sym15010237 https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym15010237
https://doi.org/10.3390/sym15010237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6116-3335
https://doi.org/10.3390/sym15010237
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010237?type=check_update&version=2

Symmetry 2023, 15, 237

20f19

The initial situation is not described by the Riemann-Liouville derivative; the Caputo
derivation solves this issue, but does not define the phenomenon’s singular core. Caputo
and Fabrizio overcame the aforementioned duties in 2015 [23]. Numerous academics have
utilized this derivation to analyze and solve a variety of nonlinear, challenging situations.
Non-singular kernel and non-locality, which are essential to comprehending the physical
behavior and nature of non-linear issues, were, nevertheless, cited as important obstacles
in the CF derivative. In 2016, Atangana and Baleanu devised a unique fractional derivative
and termed it AB derivative. This one of a kind derivative is defined with Mittag—Leffler
functions [24]. This fractional derivative addresses all of the aforementioned issues and
enables us to comprehend natural processes in a systematic and efficient manner.
The parabolic time FPDEs with varying coefficients

a'y+1w 4

Pw 4 4
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where A(1,¢,z), B(n,¢,z) and C(5, ¢, z) are positive real numbers, with initial conditions
(IC’s)
w(n,¢,2,0) = fo(1,6,2), we(n,¢,2,0) = Ao(n,,2), )

with boundary conditions (BCs)

w(p, ¢, z,0) =ho(¢,z,0), w(b, ¢, z,0) =mh(¢z0),

w(n, p,2,0) =80(1,2,0), w(n,b,2,0) = g1(1,2,0),

w(n, ¢, 1,0) =jo(1,€,0), w(y,&,b,0) = ji(1,€,9), 3)
ww(ﬂ &,2,0) =ho(¢,z,0), ww(b,g,Z,Q) =h1(g,z,0),
wee (1, 1,2,0) =80(1,2,0), wee(n,b,2,0) = §1(1,2,0),
wzz (11,8, 1,0) =jo(1,€,0), waz(y,&,b,60) = j1(1,8,6),

where hj, gi, ji, h;, giand j;, (i = 0,1) are continuous variables and i is the beam’s flexural
stiffness ratio in its volume per unit mass, as is mentioned in [25-31].

Many scientists and mathematicians have recently developed extremely effective and
exact methods for identifying and analyzing solutions to tough and nonlinear problems
encountered in science and engineering. In this regard, Liao Shijun, [22] a Chinese math-
ematician, considers the homotopy analysis technique (HAM). Without perturbation or
linearization, HAM has been used successfully and profitably to examine the behavior
of nonlinear situations. For computing effort, HAM, on the other hand, necessitates a
significant amount of time and computer memory. To accomplish this, an intentional
procedure is combined with well-known transform techniques.

The combination of semi-analytical techniques with a suitable transformation de-
creases the amount of time required to examine the solutions of nonlinear problems that
characterize real-world applications. In this study, we aimed to locate and explore the
behavior of fractional parabolic PDE solutions derived by g-HATM. The proposed method
enables us to evaluate a broader range of initial guesses and equation types in complex
and nonlinear scenarios, hence allowing us to directly solve challenging NDEs. Its strength
is its ability to alter two highly effective computational methods for investigating FDEs.
By selecting the suitable 71, we are able to control the convergence region of solution series
within a large acceptable domain. The future technique is distinguished by its use of a
simple algorithm to evaluate the solution and its homotopy and axillary parameters, which
enable rapid convergence in the provided solution for a nonlinear component of the given
problem. In comparison to existing methods, the method under consideration is capable of
maintaining high precision while minimizing computational time and effort.
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2. Basic Definitions

In this section, a few definitions, theorems and property that will be useful in this
article are given.

Definition 1. The Aboodh transformation (AT) of a term ©(8) with exponential-order
¢ ={@:|e(8) < Benlfl, ifo € (~1)" x [0,00),j = 1,2; (B, p1, p2 > 0) }

is written as

and expressed as
(o)) = & [ @@ 0 = M(p), 1< v <p
Obviously, the AT is linear as the Laplace transformation (LT).
Definition 2. The inverse AT of a term © (1) is expressed as
O(8) = A M(y)].
Definition 3. Let ©(9) € &, then the LT is expressed as
o(9) = /Ooo O(8)edd

The LT of ©(9) is defined as follows.

Theorem 1. If O(9) € C with the AT A[O(8)] and LT L]|O(8)], then the following is the case.

M(p) = ;)6(1;7)

Definition 4. The Mittag—Leffler term is a special functions that often occur naturally in the result
of fractional calculus, and it is expressed as

Ev(z) = i 2

=, 7,2 € C,Re(y) >0,

In generalized type, it is given as follows:

4
)y 77 Z € CR(y) =2 0,Re(y) 20,

o
oo Ty +p7)p

Yy =

Furthermore, we suppose (¢), to be the Pochhammer’s symbols.

Definition 5. Let ® € H'(0,1) and 0 < «y < 1, then the fractional AB derivative is defined as

_NO) [Py —7(8 —x)7
4ECDIO(9) = m/O ® (x)E7<H)dx
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Definition 6. Let ® € H'(0,1) and 0 < y < 1, then the fractional AB derivative is expressed in
the sense of Riemann—Liouville

N(y) d [? —(®—x)7
ABR Y —
07" DgO(8) = T8 Jo O(x)E, 1= dax,

The normalization term N () > 0 satisfies the conditions N(0) = N(1) = 1.

Theorem 2. The LT of AB fractional operator according to the sense of Caputo as follows:

_ o1
clg*pje(s)] = E’Yv) < F (Z)7 +S:”f (0)
-

7

Furthermore, the LT of AB fractional operator according to the Riemann—Liouville is defined as.

N(7v) sTF(s)
L|IBRDIOY)| = X .
{ ? } 1—y " sy+ %

Theorem 3. If ),y € C, with Re(vy) > 0, then the AT of E,(Q97) is defined as:

-1
M(E,(Q87)) = 4}2<1 - 53,)

where |Qp~7| < 1

Theorem 4. Let v,y € C, with Re(y) > 0,Re(7y) > 0, the AT ofﬂW’lEg,g(QﬁV) is expressed
as.
I - 1 —a\—C _
$TES (Q97) = T (1-Qp™ )", |Qyp 7| <1
Theorem 5. If M(1) is the AT of ®(8) € C and O(s) is the LT of ©(8) € C, then the AT of
fractional AB derivative according to the sense of Caputo is expressed as.

N(7v)(M(y) — y~20(0))
L—y+p7 '

M (éBCDgca(ﬂ)) -

Theorem 6. Suppose that M () is the AT of ©(9) € C and O(s) is the LT of ©(9) € C, then
the AT of fractional AB derivative according to the sense Riemann—Liouville is expressed as.

N(y)M(yp
3. Methodology

In order to present the main process of -HATM [32,33],we take a NFDE, which is
written below:

ABDIO(1,0) + AO(1,0) + HO(y,0) = B(1,0),n —1 <y <m, (4)
with initial condition

A(n,0) = f(1,0). (5)

where ;‘BCD(}@(U, 6) symbolise the AB derivative of ©(#,0), B(y,0) signifies the source
term, A and H represents the linear and nonlinear differential operator, respectively. On
applying the AT to Equation (4), we obtain after simplifying

A0t 0)] - L (FZXET) e, 0) + HOG,0) - B0 =0 ©
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The non-linear operator is defined as follows

Mgt i) - L2 4 (AT ) dalagtn, 6500 + Holn, i) - Blro)). - @

Here, ¢(17,6;q) is the real-value term with respect to 77, 6 and g € [0, 1]. Now, a homotopy
is given as

(1= nq)Aglg(,6;9) = Oo(1,6)] = hgN'[p (1, 6; )] ®)
where A is signifying AT, g € [0, 1] (n > 1) is the embedding parameter and /i = 0 is an
auxiliary parameters. For ¢ = 0 and g = 1, the results are defined as

1
¢(1,6;,0) = ©o(11,6), ¢(1,6; ) =©O(1,0). ©)

Thus, by intensifying g from 0 to 1, the solution ¢(1,6;q) varies from ®(1, 0) to ®(1, 6).
By using the Taylor theorem near to g, we defining ¢(7, 6; q) in series form and then we
obtain

¢(17,0;9) = Oo(17,0) + Y Oul(1,0)q™. (10)
m=1
where 1 9", 6:4)
_ "(1,0;9

On = ETM:O- (11)

The series (8) converges at g = 1 for the proper chaise of ®(1, ), n and /. Then:
[ee] 1 m
©(1,6) = @01, + 1. 0n(n)(;,) - 12
m=1

Now, m-times differentiating Equation (9) with g and later dividing by m! and then putting
g = 0, we obtain R
Ag[©(17,0) = kin®pi1(1,0)] = R (O 1), (13)

where the vectors are defined as
_>
On applying inverse AT on Equation (13), one can obtain
_ —
O(1,0) = ku®y—1(1,0) +hA9 1[%m(®m71)]/ (15)

where

Ro (8 1) =Aal@na(7,0)] - (1= 52 ) (L2 (12260 (bt 0)))

N
R s () (16)
—Yts
+ | ——— | As[AOy—1 + Hy1],
( N(’)/) > 9[ m—1 m 1]
and
<
km:{o, m<1, -
n, m>1.
In Equation (16), H;, signifies homotopy polynomials is given as
1 [9"p(n,0;
Hy = L PPRED] and (,0:0) = go+an + 422+ (18)
m! g 4=0

By the aid of Equations (15) and (16), one can obtain
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O, 0) (s +1)0,101,6) ~ (1= 2 ) (L2 (12T (a0

n s
1—9y+9s™7
+ -

( N(7)

(19)
) -AG [A®m71 + Hmfl]/

Using Equation (19), one can obtain the series of ®,,(7,6). Lastly, the series -HATM

solution is defined as
(e}

©(1,0) = ) Ou(y,). (20)

m=0

4. Numerical Problems

In order to present the solution procedure and efficiency of the future scheme, in this
subsection of the paper, a few numerical problems are presented.
4.1. Problem

Consider the fractional order one dimensional parabolic equation [34]:

4 4
ABC yY+1 1, 77\0°0 _
D - = <1 21
0 *(17+120>a;74 0, 0<a<1 0>0, (21)
with initial conditions 5
. _ Ui
©(7,0) =0, ©(1,0) =1+ 755, (22)

with boundary conditions

5
o(L,0) = <1+ (11/2? >sin(9), O(1,6) — %sin(@),

1 1/1\° 1 >

Using Aboodh transform on Equation (21) and then applying Equation (22), we obtain

1+L5 1— - 1 4\ 2o
woan- (8L ()l (1 5)58] -0 oo

The nonlinear term N is represented with the aid of the given method, as below

5
(1 * %) L—y+qs? 1 gt )\ 9*(y,6:9)
Np(n,0;9)] = Aglo(n,6;q)] — ) + ( N )AG (17 + 120) 8174] (25)
The deformation equation of m-th order with the aid of § — HATM at H(n,0) = 1, is
defined by .
Ap[O(17,0) — km©@m—1(1,0)] = hRu[© 1], (26)
where
5
— km <1+1%> 1—y49s™7 1 7*)\o*e
o [B-1] = A0, 0)] — (1 = 1) %+ (F3 T ) £+ 1 ) 5t |- @)

Using inverse Aboodh transform on Equation (26), it reduces to

O (17,0) = kn@p1(7,0) + Ay [ [ 1] (28)
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Using initial conditions to simplify the above equation, we can find the terms of the series
solution as

5

Oo(1,6) =1+ 15,
o n(r(- 1200 + UEHEORTEY o (—0® + 1 +120)9)
1(7,0) = 120N [7] ’
120)07+2
o (7( 1zoe+%) (—7;75+175+120)9)
21,9 120N 7]
h2(72< rloery +0) (20 + WHEZE2EE) 4 (— (0 — 1) [9] +1)8) (7 + 120)
120N [7]? ’
(7 (1200 + CHZUTEY o (—ip® 45 4 120)0)
©3(1,0) =n( 120N 7] @9)
+h2<72( riy + ) + (20 + WHLZEDEEY 4 ( (0~ 1)N]y] +1)8) (1 +120)
120N ]2
1 5 0273y (2h+n)  (4h+2n+ N[y](h+n) —29(2h +n))e7+2
+h(120/\/'[')/]2 (n((r° +120)7( (20 +4) T(a +3) )
5 2 1 a 2 3hy?6% 3
+0(n° +120)(a —1 )(2h+n))>+m(< (2= 1) (NP0 + ) + r(MH))

+h(W +v3(r<§:++45> =0)+0(37* =37+ 1) ) +120)1) ),

The series solution is given by

1 1 1

Putting the values of ®,,(1,6) (m =0,1,2,- - - ) in Equation (30), we have



Symmetry 2023, 15, 237 8 of 19

5 1>h(7(—1209+W) + (= + 1 +120)6)

120N [7]
(7°+120)07+2
1\ (7(~1200 + PO 4 (= + 5 +120)9)
2 120N 1]

« _ x+2
. (1) 12 (7 (o +0) +7( 20+ WHZEDED) 4 (— (0 = 1)A[7] +1)0) (5 + 120)

120N 72

1y (7 (—1200 + U2 (B 45 4-120)6)

) (n( 120N [y (31)
It _ +2

(7 (ploegy +0) + (20 + LII2EREEN 4 (— (0 — 1)V 3] +1)6) (° +120)

120N [y]?

1 02713y (2h +n) (44 2n+ N[y](h+n) — 292k +n))o7+?2
+h(120N[’y]2 (n(0° + 12009 (20 +4) T(a +3) )

2n20+3
+9(;75+120)(0<12)(2h+n))>+m(((“1)(N[,Y]29(h+n)+%>

+h(W+¢<% —0) +6(3y* 37 +1))) (" +120)1) ) )

Substitutingn = 1,7 = —1 and v = 1, we obtain

5 193 4 20) (15 + 120 5 5 4120)(4-6° + 163 + 46
o(1,0) :(1+17 10— (g0° +20)(n> +120)  296(n +120)+(17 +120) (1350° + ¢6° +46)
120 30 30 40
(5o +608)(° +120)  (° +120)6° N 6° N 17°6° 07(p° +120)
60 7200 362880 ' 43545600 604800 ’
5 5 5 5 5
Ui -7 1.3 1 Ui 5 -1 1 7 1 U
LV + (= — )0 — 0 — 0
120) + 720 6) + (120 + 14400) + (604800 5040) + (362880 * 13545600

5
_ U 1 s 1 g L g9,
_<1+1zo) (9 6% T 120" " 50a0° T3ease’ T )

(32)

5

O(1,0) = (1 + 1’720) sin(6). (33)

which is the exact solution [34] of Equation (21).
Figure 1, three dimensional graphs of Section 4.1 at (a) y = 0.5, (b) v = 0.6, (c) ¥ = 0.7,
(d) ¥y =109, (e) ¥ =1, and (f) Exact. Figure 2, two dimensional plots of the Section 4.1 for

various values of «. Table 1, absolute error (AE) at n = 1, i = —1 and various fractional
order absolute error (AE) at n = 1, i = —1 and various fractional order.
Table 1. Absolute error (AE) at n = 1, i = —1 and various fractional orders.
0 7 AE (y = 0.6) AE (v = 0.7) AE (v = 0.9) AE (y=1)
0.1 1 0.01012218412 0.03251045834  0.01102023356 1.0 x 10710
2 0.0127154723 0.04083958402 0.0138435992 1.0 x 10710
3 0.0303665632 0.0975313750 0.0330607006 1.0 x 10710
4 0.0957006955 0.3073716060 0.1041912988 3.0 x 10710
5 0.271458714 0.871871383 0.295542627 1.0 x 10~?
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Figure 1. 3D graphs of Section 4.1 at (a) v = 0.5, (b) ¥y = 0.6, (¢) vy = 0.7, (d) y = 0.9, (e) ¥ = 1, and

(f) Exact.

0.8 v
0.7

06+ e

0 T T T T |

0 0.2 04 9 0.6 08 1

[—o=08 — a=085 —a=09 o=1—"— Exact|

Figure 2. Tow dimensional plots of the Section 4.1 for various values of .

4.2. Problem

Consider the fractional-order two-dimensional parabolic equation [34]:

4N o4 AN o4
ABC yY+1 1 7*\d"© 1, ¢"\00
D} ®+2<172+6!>8174 +2(§2+6! S =0 0<as<1, 050

with initial conditions

6 6
8(77’6’0) = OI 89(7]’5/0) :2+%+ %1

(34)

(35)
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with boundary conditions

@(%,g,e): (2+< 6!> ‘36>sm( ), O(L,E,0) = < +6|+§)sm(6)

6
@(;7,%,9) <2+’é (12!2) >sm( ), ©(1,1,0) = <2—0—Z,+;’>sin(9),
(3)* 1
@,7,7( ,E,0) = —sm( ), Oy (1,8,0) = ﬂsm(e)
1 (%)4 . 1
O (11, 5,0) = =~ sin(0), Ogg (17, 1,6) = 5, sin(6).

(36)

Taking AT on Equation (34) and then using Equation (35), we obtain

2+'7—?+5—? _ - 4 4N\ H4
wonsor- 5T (g b (R (3 502 0 o

The non-linear operator N is presented with the help of future algorithm as below

+5+%)

Nlp(n,,6;9)] =Aalp(1,¢,6;9)] = 2 8)
1—y+7ys? 1 *¢(1,8,6;9) 1 &N\ *(1,8,6,9)
+< N(7) )A9{2<’72+6'> o A\@Te) o |
The deformation equation of m-th order with the help of g — HATM at H(y,0) = 1, is
given by N
A9[®m(77; 619) _km®m—1(77/€/9)] = h%m[@)m—l]/ (39)
where
6 gé
— K (2 +ar+ H)
Rin[© 1] =Ag[O(1,¢,0)] — (1 - n)524 L (40)
1—')/+'ysV> [<1 17>8® < @)8@}
() A |2( & + = +2( =+
< N(7) ARVE ot T\ a¢?
Using inverse Aboodh transform on Equation (39), it reduces to
1 =
Ou(11,8,0) = kn®p1(17,8,6) + Ay [1%:s[6 1] (41)

Using initial conditions to simplify the above equation, we can find the terms of the series
solution as
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§6
®0(77r‘:r9) +a+ 6|,
h( 7(39 + % +0(n2 +2)) (76 + &6 + 1440))
®l (77/ ‘:/ 9) = (720,)/) ’
nh(— (39+%+9(7 +2)) (5 + ¢ + 1440))
P 2 (i (((_2 +920 3 (24 9)(20° -5y + 472y
720 \ oy T(2y +4) T(y+3)
50(1° 4 £© + 1440)(v* — 2y + 2
v
nh(—’y(39 + % +0(n2 +2)) (76 + 26 + 1440))
©3(17,¢,6) :n( (7207)
W2 /1 (=24 9)20271392 (=2 292 — 5y 4 4)t7+2
+7(7((( +7) v (2492 5+ 4y 42)
720 \ vy I(2y+4) I'(y+3)
2, N2 a2 6 , 6 50(° 4 8° +1440) (+* — 27 +2)
+0((17+2)2 = 497) ) (4 + ¢+ 1440) ) . )
5 (=24 9%)(Bhy? — Thy + ny + 671)9%7+3 B
+h(72073 ((( T(27 +4) +20(22h — 5n))
(2493037
+ (10n0 T(37+5) )
N ( (=34 + 14931 — 29%n — 28921 + 5v9*n + 28yh — dyn — 12h) (—2 + )07 +2
I'(a+3)
—0n(59° - 4)) (150 — 795h + 90 + 8h)9) (n + 25+ 144o)h)
(17 + 0 +1440) (119° — 2012 — )h29>
36072 ’
The series solution is given by
1 1 1
©(17,0) = ©o(17,0) + - ©1(11,0) + —50a(,0) + —50(17,6) +-- - . (43)

Putting the values of ®,,(1,6) (m =0,1,2,- - - ) in Equation (43), we have
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-2 gr+2
(1,2,6) —2+’76+§6+1<h(_7(39+(rm3)+9(72+2))(;76+§6+1440))>
_ 2
1 nh(—7(39 + % + 6(+2 +2))(,76 Loy 1440))
ﬁ( (7207)

+0((17+2)2 = 497) ) (1 + ¢+ 1440) )

| 50(1° + &° +1440) (1* — 27 +2)))
v
1 (n(”h(_7(39 + RIS 46042 +2)) (1 + £ +1440))
7207)

W2 01 (—249)2027392  (—249)(292 — 57 + 4)11+2y

(e - T(7+3)
6 . 6 -

+9((72+2)2—472))(176+§6+1440))_59(’7 +¢°+1440) (1 27+2)))

%

(( 9 ( (=2 +9?) (3hy?* — Thy + ny + 6h)9*7+3
r'(2y+4)

h(=2479)%6374

I'(3y+5) )
N ( (=374 + 14931 — 2931 — 2892h + 59n + 28yh — 4yn — 120) (=2 + )07
I'(a+3)
—0n(59° - 4))7 + (Y% — 795h + 450 + Sh)e) (n + 25+ 1440)h)

170 + 0 4 1440) (1193 — 2092 — 14)?129)) N
36072

s

(44)

+h(72073 +20(22h —5n))

+ (10n9 —

L

Substitutingn = 1, = —1 and v = 1, we obtain

6 6 3(,6 | %6 1.6° 4 163 64 ¢g°
ot & P+ +1440) | (73p° + §6° +56) (1° + E° + 1440)
©(1,8,0) =2+ 55 + 755) 1440 360
0(1°+8° +1440) (8 — 460 — 558 (1°+8° +1440)
50 720 '
6 6 —pb 6 6 °
& AR SO Y S 6 L5

pr— 2 — —_— —
©01,6,6) =2+ 720 + 720)9 + (4320 4320 3 86400 + 86400 + 60
)97 4,

+

(45)
-° ¢
3628300 3628800 2520

6 6 3 5 7
mmmqﬂ”+5%w0+9 9+m>

+ (

720 720 6 120 5040
e

which is the exact solution of Equation (34).

Figure 3, three dimensional graphs of g-HATM solution at (a) 9 = 1 and (b) exact
Section 4.2. Figure 4, three dimensional graphs of Section 4.2 for different values of 1.
Figure 5, two dimensional plots of the Section 4.2 for various values of oy and Exact solution.
Table 2, absolute error (AE) at n = 1, i = —1 and various fractional order of Section 4.2.
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Figure 3. 3D graphs of g-HATM solution at (a) y = 1 and (b) exact Section 4.2.

[ =05 0= 0.6 W o =07 W o =08 NN o =00 WM g=]|

—— =05 ——a=06 — a=07 0=08 —— =09
a=1 ="' Exact

Figure 5. 2D plots of the Section 4.2 for various values of v and Exact solution.
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Table 2. Absolute error (AE) at n = 1, i = —1 and various fractional order of Section 4.2.
0 i AE (y = 0.6) AE (y = 0.7) AE (y = 0.9) AE(y=1)
0.1 0.1 0.1781757909 0.0847577008 0.0220435308 2.0 x 10710
0.2 0.1781757987 0.0847577046 0.0220435318 2.0 x 10°10
0.3 0.1781758810 0.0847577437 0.0220435419 2.0 x 10710
0.4 0.1781762972 0.0847579415 0.0220435931 2.0 x 10°10
0.5 0.1781777226 0.0847586190 0.0220437685 2.0 x 10710
4.3. Problem
Consider the fractional-order two-dimensional parabolic equation [34]:
4 4 4
D, ©® -1 )= —1 )=+ —1]=—=0,0<9<1,06>0, 46
0 + <2cos17 > ont + 2co0s¢ o4 2c0sz oz T= (46)

with initial conditions

O(1,8,2,0) =1+ & +z— (cosny + cos¢ + cosz),

47
@g(17,&,2,0) = cosy + cos¢ + cosz — (7 + & + z), (47)
with boundary conditions
) 7T 2mr—3 o
0(0,¢,2,0) = (—1+ &4z — cos¢ — cosz)e™?, ®(§’€’Z’6) - — &+ 2 — cos¢ — cosz |e?,
©(1,0,2z,0) = (n —1+z— cosy — 6052)679, O(y, g,z,g) = <2n6_ 3 1+ 2z — cosy — cosz> et
Q(1,&,0,0) = (=145 + & — cosyy — cos¢)e”?, O(y, ¢, g,g) = (2n6_ 3 41+ & — cosyp — cos§> et us)
©,(0,8,2,0) = Og(1,0,2,0) = ©:(1,£,0,0) = ™%, ©,(3,&,2,6) = O, 5,2,6) = (*/5; 2) e

®.(1,¢, g,e) _ <\/§2+2>e9.

Using Aboodh tranform on Equation (46) and then applying Equation (47), we obtain

Agl©(y,8,2,0)] — m+C+z— (cossiy + cos¢ + cosz)) B (cosn + cos¢ + CZ§Z —(+&+2))

(Lo (G PO ez \@e  (grE \ae] @
N(7) 7\ 2cosy ont 2c0s¢ o4 2cosz ozt |
The nonlinear function V is represented with the aid of future method as below
+ ¢ +z — (cosy + cosg + cosz
901,62, 0:)) = Aolgln, &, 2,0;q)) - UHEFEZ (oM T cost 4 coz)
~ (cosn + cosg +cosz — (1 +§ +2)) 1 B ¥ {+z
s? + Nv] (1 v S’Y+1)A9 { 2cosy ! (50)
L Oe(n,8,2,0:q) (17 +z 1) '9(1,6,2,6;q) (§+ ¢ 1) 844)(77,6,2;11)}
ant 2cos¢ ag4 2cosz dz4 ’

The deformation equation of m-th order with the help of § — HATM at H(y,0) = 1, is
given by

Aol O (11,8,2,0) — kn®p_1(11,8,2,0)] = 1R [© 1], (51)

where
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15 0f 19
= + ¢ +z — (cosy + cos¢ + cosz cost + cos¢ +cosz — (1 + ¢ +z
(B ] = A0, 2,8) — (I comwcostcos)) _ (com - st +coss = (144 +2)

N 1—y+ys7 Al(erz 847®+ n+z a4@+ C+e 4 2'e 2)

N(y) 7\ 2cosy ant 2cos¢ ag4 2cosz az4 |’

Applying inverse AT on Equation (51), it reduces to
1 =

On(1,8,2,0) = kn®p1(1,8,2,0) + Ay [1R[ 6, 1] . (53)

@0(77/512;9)
®:1(17,,2,6) :Nlm(h(—n—é—z+7(77+é‘+z+ (- T

©2(11,8,2,6) Ijvlm(h(ﬂé(2+v(ﬂ+€+z+ (- (

Using initial conditions to simplify the above equation, we can find the terms of the series
solution as

=(n+ G+ 2z — (cosy + cos¢ + cosz)) + (cosy + cos¢ + cosz — (1 + ¢ + z))0,

t'y+2 t’y+1

a3 r(a+2)>

x (cos(17) + cos(&) + cos(z) —n — & —z) + (0 — 1) (cos(n) + cos() + cos(z))

—0(y +€+z)) +0(n+¢+2z)— (6 —1)(cos(y7) + cos(¢) +cos(z)))),

t'y+2

tv-&-l )

T(a+3)  T(a+2)

x (cos(n) +cos(¢) +cos(z) — 1 — & —z) + (0 —1)(cos(n) + cos(¢) + cos(z)) -
- 9(;7 +E+2)) + 007 +&+2) — (6~ 1)(cos() +cos(&) +cos(2)) ) )
Y+2 gr+1
NM ( *((-e+ (- r(ry+3)+9+r(7+2))7)’vm_”9
’ 920{—!—3 29a+1 290(+2 920<+2
+97(-1 T(2y +4)+9+r(7+2)‘r(7+3)_r(27+3))
gu+2 gu+1
+2'y(1—|— T 73 m))(cos(n)+cos(§)+cos(z)—17—5—2)),
The series solution is given by
O1,6) = Oo(1,6) + O1(1,0) + 5021, ) + -5O(1,0) + 65

Putting the values of ®,,(1,6) (m =0,1,2,- - - ) in Equation (55), we have
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O(n,8,2,0) =( + ¢ +z — (cosyy + cos¢ + cosz)) + (cosy + cos¢ + cosz — (1 + ¢ +z))0,

1 1 Y2 fr+1
+E<W(h<_’7_§_z+7<’7+‘:+z+ (_ Ta+3) I"(rx+2))
x (cos(17) + cos(&) +cos(z) =i — & —z) + (6 — 1) (cos(1) + cos(&) + cos(z))

—0(n+ C—l—z)) +0(n+C¢+2z)— (0 —1)(cos(y) + cos(¢) + cos(z)))))

1,1 $7+2 ¢+l
+?(W<h(_”_§_z+7(ﬂ+é+z+ (_ T(a+3) + F(oc—i—Z))
x (cos(n7) + cos(&) +cos(z) =1 — & —z) + (6 — 1) (cos(1) + cos(&) + cos(z)) (56)
—0(n+¢+ z)) +0(n+&+z)— (0 —1)(cos(y7) + cos(Z) + cos(z))))

Fr+2 gr+1

Nm( (ot (1 T iy )YV 1 e

) 2a+3 29a+1 29a+2 92a+2
+7(-1 )+9+F(7+2)7F(’y+3)7f(2'y+3))

zx+2 9a+1

+2'y(1 + 0 m)) (cos(n7) 4 cos(¢) + cos(z) — 17 — 6—2))) +e

Substitutingn =1, 7 = —1 and v = 1, we obtain

©(11,8,2,0) =1 + § + 2z — cos(i7) — cos(&) — cos(z) + (cos(17) + cos(&) + cos(z ) 1= é‘ —2)0

-1 1
- 3(?93 + 592)(cos(17) +cos(§) +cos(z) =y —¢—2z)+ 2( (93 + 92 + @95
1

— 594) (cos(n7) 4+ cos(¢) +cos(z) = — & —z) + <@95 ﬁ94 - %96 + ﬁy)
x (cos(n) +cos(§) +cos(z) —n—C—z)+
O(1,8,2,0) =n+&+z—cos(n) —cos(§) — cos(z) + (cos( ) + cos(&) + cos( )—(n+Z+2))6

57)
—cos(n7) cos(¢) cos(z) 1 cos( cos(g) ~ cos(z) (
+ ( 2 2 2 * 2 + + ) ( 6
NG E\g, (ZCosn) COS(é) _cos(z) g "
teteta)f (o 24 24 +24+24+24>9
—cos(n) cos(§) cos(z)  m & | Z \ys cos(n7) cos(¢) cos(z)
+ ( 120 120 120 + 120 + 120 + 120)9 + +( 720 720 720
o, & zZN\gs (—cos(n) cos(§) cos(z) 7 ¢ 7
+ 75+ 735+ 75)% + (Toom ~ sods ~ Bod * 50 + 50 T 5om)? T
6> 0> o+ e 6 ¢
O(1,8,2z,0) =(n+&+2z—cos(n) — cos(§) — cos(z ))(19+6+24120+7205040+ ) (58)

O(n,¢,2,0) =+ &+ 2z — cos(n) — cos(&) — cos(z))exp(—0).

which is the exact solution of Section 4.3.

Figure 6, three dimensional graphs of -HATM solution at (a) v = 1 and (b) exact
Section 4.3. Figure 7, three dimensional graphs of Section 4.3 for different values of 1.
Figure 8, two dimensional plots of the Section 4.3 for various values of y and Exact solution.



Symmetry 2023, 15, 237

17 of 19

Figure 6. 3D graphs of g-HATM solution at (a) v = 1 and (b) exact Section 4.3.
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Figure 8. 2D plots of the Section 4.3 for various values of v and Exact solution.
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5. Conclusions

In this study, the g-homotopy analysis transform method is successfully employed
to solve fractional parabolic equations numerically. The collected findings indicate the
method’s dependability and simplicity. The parameter / provided by the proposed ap-
proach allows us to regulate the convergence zone of the series solution. As the g-homotopy
analysis transform approach does not require linearization, tiny perturbations, or discretiza-
tion, computations are drastically reduced. Compared to other methods, the g-homotopy
analysis transform method is a competent instrument for obtaining numerical solutions to
linked nonlinear fractional partial differential equations.
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