
Citation: Alesemi, M.; Shahrani,

J.S.A.; Iqbal, N.; Shah, R.; Nonlaopon,

K. Analysis and Numerical

Simulation of System of Fractional

Partial Differential Equations with

Non-Singular Kernel Operators.

Symmetry 2023, 15, 233. https://

doi.org/10.3390/sym15010233

Academic Editor: Theodore E. Simos

Received: 11 December 2022

Revised: 31 December 2022

Accepted: 3 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Analysis and Numerical Simulation of System of Fractional
Partial Differential Equations with Non-Singular
Kernel Operators
Meshari Alesemi 1 , Jameelah S. Al Shahrani 2, Naveed Iqbal 3 , Rasool Shah 4 and Kamsing Nonlaopon 5,*

1 Department of Mathematics, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
2 Mathematics Department, College of Science, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia
3 Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
4 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
5 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
* Correspondence: nkamsi@kku.ac.th

Abstract: The exact solution to fractional-order partial differential equations is usually quite difficult
to achieve. Semi-analytical or numerical methods are thought to be suitable options for dealing with
such complex problems. To elaborate on this concept, we used the decomposition method along with
natural transformation to discover the solution to a system of fractional-order partial differential
equations. Using certain examples, the efficacy of the proposed technique is demonstrated. The exact
and approximate solutions were shown to be in close contact in the graphical representation of the
obtained results. We also examine whether the proposed method can achieve a quick convergence
with a minimal number of calculations. The present approaches are also used to calculate solutions in
various fractional orders. It has been proven that fractional-order solutions converge to integer-order
solutions to problems. The current technique can be modified for various fractional-order problems
due to its simple and straightforward implementation.

Keywords: Adomian decomposition method; natural transform; Caputo–Fabrizio (CF) and Atangana–
Baleanu Caputo operator (ABC); fractional-order coupled systems

1. Introduction

Fractional analysis has been found to have numerous applications in many fields of
science over the last few decades. Experiments have shown that fractional-order derivatives
have good agreement with experimental data or real phenomena in many physical phenom-
ena compared to derivatives with integer order. For example, the fractional-order derivative
better distinguishes memory, understands the impacts of genetics on material characteris-
tics, and processes internal friction [1–4]. Fractional calculus is currently an essential tool
for describing numerous processes in physics, chemistry, engineering, and other sciences.
Recent applications of fractional calculus in several fields have gained the attention of nu-
merous scholars, and many discoveries have been made [5–7]. These facts have influenced
many disciplines of science, with numerous applications in a variety of fields, such as the
fractional-order time-delay system [8], the fractional Drinfeld–Sokolov–Wilson equation [9],
time-fractional Swift–Hohenberg equations [10], the time-fractional Newell–Whitehead–
Segel equation [11], fractional diffusion and the fractional Buck master’s equation [12],
fractal vehicular traffic flow [13], the time-fractional Belousov–Zhabotinskii reaction [14],
fractional calculus and the dynamic system [15,16], the fractional model for the dynamics
of Hepatitis B virus [17], the fractional model for tuberculosis [18], anomalous transport in
disordered systems [19], the diffusion of biological populations [20], the fractional-order
sliding mode-based extremum seeking control of a class of nonlinear systems [21], per-
colation in porous media [22], fractional-order regularized long-wave models [23], the
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fractional-order pine wilt disease model [24], time-fractional Klein–Gordon equations [25],
fractional-order diffusion equations in a plasma and fluids [26], the time-fractional Burgers
equation [27], the time-fractional Schrödinger equation [28], and so on [29–32].

Fractional partial differential equations (FPDEs) are the most common mathematical
tools used to model numerous physical aspects in fields such as engineering, physics, and
other social sciences. Many applications of engineering and science, such as fluid dynamics,
biology, material sciences, chemical kinetics, chemistry, and many other physical processes,
use simulations in the form of FPDE systems [33–37]. In biomechanics and engineering,
coupled systems of fractional-order partial differential equations (PDEs) are frequently used.
When describing the electrical activity of the heart in biomechanics, many implementations
of coupled PDEs may develop [38–40]. Modeling other biological and physical engineering
issues, such as a system with a continuous stirring boiler container and a series plug flow
container [41,42], yields comparable results. Different applications can be employed in
physics; for example, coupled fractional-order partial differential equations can be used to
model the dynamic forces of multi-deformable objects coupled with typical light fractional-
order discrete continuous surfaces [43]. Coupled PDE techniques are also used in the
simulation of a number of important gravitational and electromagnetic problems [44,45].
The fractional differential equation is a helpful tool for representing nonlinear events
in scientific and engineering models. In applied mathematics and engineering, partial
differential equations, particularly nonlinear ones, have been utilized to simulate a wide
range of scientific phenomena.

Fractional-order partial differential equations (FPDEs) allowed researchers to recog-
nize and model a wide range of significant and real-world physical issues in parallel with
their work in the physical sciences. It has always been claimed how important it is to
obtain approximations for them using either numerical or analytical methods. Because of
this, symmetry analysis is a fantastic tool for comprehending partial differential equations,
especially when looking at equations generated from mathematical concepts connected
to accounting. Despite the notion that symmetry is the foundation of nature, the bulk of
observations in the natural world lacks it. A clever technique for disguising symmetry
is to provide unanticipated symmetry-breaking events. The two categories are finite and
infinitesimal symmetry. There are two types of discrete and continuous finite symme-
tries. Natural symmetries like parity and temporal inversion are discrete, while space is a
continuous transformation. Mathematicians have always been fascinated by patterns.

Many mathematicians and physicists have recently introduced and developed new
numerical and analytical approaches to obtain solutions and describe the physical behavior
of a variety of differential and integral equations with integer or fractional-order charac-
terizing real-world processes. Furthermore, various approaches have been presented in
the literature, with the Adomian decomposition method (ADM) being the most popular
due to its efficiency and accuracy [46]. ADM has been successfully and effectively used to
investigate problems that have occurred in science and technology without linearization
or perturbation. ADM also consumes more time and a large amount of computer mem-
ory for computational effort. As a result, the combination of this method with existing
transform methods is certain. To meet these needs, Rawashdeh and Maitama developed
the FNDM [47,48], which is a combination of the ADM and the natural transform tech-
nique (NTM). Because FNDM is an improved form of ADM, and it will save time and
effort by reducing computations. It also does not require linearization, discretization, or
perturbation.

Many authors have recently examined the projected technique to interpret solutions
to various nonlinear problems due to its efficacy and reliability [49–51]. Because the
considered approach allows us to consider an initial guess and the equation type of linear
sub-problems, complex nonlinear differential equations can be investigated using a simple
procedure. The unique feature of FNDM is that it uses a simple algorithm to discover the
solution described by the Adomian polynomial, and it enables rapid convergence in the
achieved solution for the nonlinear part. To solve fractional dynamical systems, we use the
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natural transform decomposition method (NTDM) in combination with two alternative
fractional derivatives. The current approach is found to be very effective for the solution of
systems of fractional differential equations. The numerical results of the suggested method
are compared with the exact solutions to the problems. The comparisons show a sufficient
degree of accuracy.

2. Basic Definitions

In this section, we present some main definitions and notations that will be used in
this study.

Definition 1. [52] The fractional Riemann–Liouville integral operator is defined as:

Iκ j(ϕ) =
1

Γ(κ)

∫ ϕ

0
(ϕ− ν)κ−1 j(ν)dν, κ > 0, ϕ > 0 (1)

and I0 j(ϕ) = j(ϕ).

Definition 2. [52] The fractional Caputo’s derivative of j(ϕ) is given as:

Dκ
ϕ j(ϕ) = Im−κ Dm j(ϕ) =

1
m− κ

∫ ϕ

0
(ϕ− ν)m−κ−1 j(m)(ν)dν (2)

for m− 1 < κ ≤ m, m ∈ N, ϕ > 0, j ∈ Cm
ν and ν ≥ −1.

Definition 3. [52] The fractional CF derivative of j(ϕ) is defined as:

Dκ
ϕ j(ϕ) =

F(κ)
1− κ

∫ ϕ

0
exp

(
−κ(ϕ− ν)

1− κ

)
D(j(ν))dν (3)

with 0 < κ < 1 and F(κ) is a normalization function with F(0) = F(1) = 1.

Definition 4. [52] The fractional ABC derivative of j(ϕ) is defined as:

Dκ
ϕ j(ϕ) =

B(κ)
1− κ

∫ ϕ

0
Eκ

(
−κ(ϕ− ν)

1− κ

)
D(j(ν))dν (4)

with 0 < κ < 1, B(κ) is normalization function and

Eκ(z) =
∞

∑
m=0

zm

Γ(mκ + 1)

represents the Mittag–Leffler function.

Definition 5. The natural transform (NT) of a function X(δ) is stated as:

N{X(δ)} = U (ξ, ϑ) =
∫ ∞

−∞
e−ξδX(ϑδ)dδ, ξ, ϑ ∈ (−∞, ∞) (5)

and, for δ ∈ (0, ∞), the NT of X(δ) is defined as:

N{X(δ)H(δ)} = N+{X(δ)} = U+(ξ, ϑ) =
∫ ∞

0
e−ξδX(ϑδ)dδ, ξ, ϑ ∈ (0, ∞), (6)

where H(δ) is the Heaviside function.

Definition 6. The inverse NT of a function X(ξ, ϑ) is stated as:

N−1{U (ξ, ϑ)} = X(δ) (7)
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for all δ ≥ 0.

Lemma 1. Suppose U1(ξ, ϑ) and U2(ξ, ϑ) are NT of X1(δ) and X2(δ), then

N{c1X1(δ) + c2X2(δ)} = c1N{X1(δ)}+ c2N{X2(δ)}
= c1U1(ξ, ϑ) + c2U2(ξ, ϑ) (8)

with c1 and c2 are constants.

Lemma 2. Suppose X1(ξ, ϑ) and X2(ξ, ϑ) are the inverse NT of X1(δ) and X2(δ), then

N−1{c1U1(ξ, ϑ) + c2U2(ξ, ϑ)} = c1N−1{U1(ξ, ϑ)}+ c2N−1{U2(ξ, ϑ)}
= c1X1(δ) + c2X2(δ) (9)

with c1 and c2 constants.

Definition 7. [52] In the Caputo manner, the NT of Dκ
δX(δ) is defined as:

N{Dκ
δX(δ)} =

(
ξ

ϑ

)κ(
N{X(δ)} −

(
1
ξ

)
X(0)

)
. (10)

Definition 8. [52] In the CF manner, the NT of Dκ
δX(δ) is defined as:

N{Dκ
δX(δ)} =

1

1− κ + κ
(

ϑ
ξ

)(N{X(δ)} −
(

1
ξ

)
X(0)

)
. (11)

Definition 9. [52] In ABC manner, the NT of Dκ
δX(δ) is defined as:

N{Dκ
δX(δ)} =

M[κ]

1− κ + κ
(

ϑ
ξ

)κ

(
N{X(δ)} −

(
1
ξ

)
X(0)

)
(12)

with M[κ] representing a normalization function.

Definition 10. The inverse natural transform N−1 is stated as

N−1{U (ξ, ϑ)} = X(δ) = lim
T→∞

1
2πı

∫ σ+ıT

σ−ıT
e

ξδ
ϑ U (ξ, ϑ)dξ. (13)

3. Methodology

In this part, we give some background about the nature of the proposed technique.

Dκ
δX(℘, δ) = L(X(℘, δ)) + N(X(℘, δ)) + h(℘, δ) = M(℘, δ) (14)

with the initial condition
X(℘, 0) = φ(℘) (15)

where L, N are the linear and nonlinear differential operators and h(℘, δ) is the source term.

3.1. Case I (NTDMCF)

By applying the CF fractional derivative in connection with the NT, (14) may be
expressed as

1
p(κ, ϑ, ξ)

(
N{X(℘, δ)} − φ(℘)

ξ

)
= N{M(℘, δ)} (16)
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with

p(κ, ϑ, ξ) = 1− κ + κ

(
ϑ

ξ

)
. (17)

After we use the inverse natural transform, then we have

X(℘, δ) = N−1
{

φ(℘)

ξ
+ p(κ, ϑ, ξ)N{M(℘, δ)}

}
. (18)

Assume that the unknown function X(℘, δ) has the following solution in the infinite series
form:

X(℘, δ) =
∞

∑
i=0

Xi(℘, δ) (19)

and the decomposition of N(X(℘, δ)) is stated as

N(X(℘, δ)) =
∞

∑
i=0

Ai(X0, . . . ,Xi). (20)

By means of the Adomian polynomials, the nonlinear terms are calculated as

An =
1
n!

dn

dεn N

(
t,

n

∑
k=0

εkXk

)∣∣∣∣∣
ε=0

.

Substituting (19) and (20) into (18) gives

∞

∑
i=0

Xi(℘, δ) = N−1
{

φ(℘)

ξ
+ p(κ, ϑ, ξ)N{h(℘, δ)}

}

+ N−1

{
p(κ, ϑ, ξ)N

{
∞

∑
i=0
L(Xi(℘, δ)) + Aδ

}}
. (21)

From (21), we have

XCF
0 (℘, δ) = N−1

{
φ(℘)

ξ
+ p(κ, ϑ, ξ)N{h(℘, δ)}

}
,

XCF
1 (℘, δ) = N−1{p(κ, ϑ, ξ)N{L(X0(℘, δ)) + A0}},

...

XCF
l+1(℘, δ) = N−1{p(κ, ϑ, ξ)N{L(Xl(℘, δ)) + Al}}

(22)

for l ∈ N.
In this manner, the solution of (14), in terms of NTDMCF, is obtained by putting (22)

into (19)
XCF(℘, δ) = XCF

0 (℘, δ) +XCF
1 (℘, δ) +XCF

2 (℘, δ) + · · · . (23)

3.2. Case II (NTDMABC)

By applying the CF fractional derivative in connection with the NT, (14) may be
expressed as

1
q(κ, ϑ, ξ)

(
N{X(℘, δ)} − φ(℘)

ξ

)
= N{M(℘, δ)} (24)

with

q(κ, ϑ, ξ) =
1− κ + κ

(
ϑ
ξ

)κ

B(κ)
. (25)
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After we use the inverse natural transform, then

X(℘, δ) = N−1
{

φ(℘)

ξ
+ q(κ, ϑ, ξ)N{M(℘, δ)}

}
. (26)

In terms of the Adomian decomposition, we obtain

∞

∑
i=0

Xi(℘, δ) = N−1
{

φ(℘)

ξ
+ q(κ, ϑ, ξ)N{h(℘, δ)}

}

+ N−1

{
q(κ, ϑ, ξ)N

{
∞

∑
i=0
L(Xi(℘, δ)) + Aδ

}}
. (27)

From (21), we have

XABC
0 (℘, δ) = N−1

{
φ(℘)

ξ
+ q(κ, ϑ, ξ)N{h(℘, δ)}

}
,

XABC
1 (℘, δ) = N−1{q(κ, ϑ, ξ)N{L(X0(℘, δ)) + A0}},

...

XABC
l+1 (℘, δ) = N−1{q(κ, ϑ, ξ)N{L(Xl(℘, δ)) + Al}}

(28)

for l ∈ N.
In this manner, the solution of (14), in terms of NTDMABC, is

XABC(℘, δ) = XABC
0 (℘, δ) +XABC

1 (℘, δ) +XABC
2 (℘, δ) + · · · . (29)

4. Convergence Analysis

In this section, we discuss the uniqueness and convergence of the NTDMCF and
NTDMABC.

The proof of the following Theorems are given in [53].

Theorem 1. Suppose that |L(X)−L(X∗)| < γ1|X−X∗| and |N(X)−N(X∗)| < γ2|X−X∗|,
where X := X(µ, δ) and X∗ := X∗(µ, δ) are two different function values, γ1, γ2 are Lipschitz
constants and L, N are the operators defined in (14). Then, the problem (14) has a unique solution
for NTDMCF, when 0 < (γ1 + γ2)(1− κ + κδ) < 1 for all δ.

Theorem 2. Under the same hypothesis as in Theorem 1, the problem (14) has a unique solution
for NTDMABC, when 0 < (γ1 + γ2)

(
1− κ + κ δκ

Γ(κ+1)

)
< 1 for all δ.

Theorem 3. Suppose L and N are Lipschitz functions as in Theorem 1, then the NTDMCF result
of (14) is convergent.

Theorem 4. Suppose L and N are Lipschitz functions as in Theorem 1, then the NTDMABC
result of (14) is convergent.

5. Applications

Example 1. Let us consider the fractional PDE system

Dκ
δX−Y℘ +Y+X = 0,

Dκ
δY−X℘ +Y+X = 0, 0 < κ ≤ 1

(30)

with the initial conditions

X(℘, 0) = sinh(℘),

Y(℘, 0) = cosh(℘).
(31)
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Applying the NT, we have

N{Dκ
δX(℘, δ)} = N{Y℘ −Y−X},

N{Dκ
δY(℘, δ)]} = N{X℘ −Y−X}.

(32)

By using the transform property, we have

1
ξκ

N{X(℘, δ)} − ξ2−κX(℘, 0) = N{Y℘ −Y−X},

1
ξκ

N{Y(℘, δ)} − ξ2−κY(℘, 0) = N{X℘ −Y−X}.
(33)

The above algorithm’s simplified form is

N{X(℘, δ)} = ξ2 sinh(℘)− κ(ξ − κ(ξ + κ))

ξ2 N{Y℘ −Y−X},

N{Y(℘, δ)} = ξ2 cosh(℘)− κ(ξ − κ(ξ + κ))

ξ2 N{X℘ −Y−X}.
(34)

Using the inverse NT, we obtain

X(℘, δ) = sinh(℘) + N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N{Y℘ −Y−X}
}

,

Y(℘, δ) = cosh(℘) + N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N{X℘ −Y−X}
}

.
(35)

Solution by Means of NDMCF

Assume that the unknown functions X(℘, δ) and Y(℘, δ) have the following solution in the
infinite series form:

X(℘, δ) =
∞

∑
l=0

Xl(℘, δ) and Y(℘, δ) =
∞

∑
l=0

Yl(℘, δ). (36)

Thus, (35) can be rewritten using certain terms as

∞

∑
l=0

Xl+1(℘, δ) = sinh(℘) + N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N{Y℘ −Y−X}
}

,

∞

∑
l=0

Yl+1(℘, δ) = cosh(℘) + N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N{X℘ −Y−X}
}

.
(37)

Thus, by comparing both sides of (37), we obtain

X0(℘, δ) = sinh(℘),

Y0(℘, δ) = cosh(℘),

X1(℘, δ) = − cosh(κ(δ− 1) + 1),

Y1(℘, δ) = − sinh(κ(δ− 1) + 1),

X2(℘, δ) = sinh
(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
,

Y2(℘, δ) = cosh
(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
.
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In the same manner, the remaining Xl and Yl (l ≥ 3) elements are easy to obtain. So, we describe
the alternative sequences as

X(℘, δ) =
∞

∑
l=0

Xl(℘, δ) = X0(℘, δ) +X1(℘, δ) +X2(℘, δ) + · · · ,

= sinh(℘)− cosh(κ(δ− 1) + 1) + sinh
(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
+ · · · .

Y(℘, δ) =
∞

∑
l=0

Yl(℘, δ) = Y0(℘, δ) +Y1(℘, δ) +Y2(℘, δ) + · · · ,

= cosh(℘)− sinh(κ(δ− 1) + 1) + cosh
(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
+ · · · .

Solution by Means of NDMABC

Assume that the unknown functions X(℘, δ) and Y(℘, δ) have the following solution in the
infinite series form:

X(℘, δ) =
∞

∑
l=0

Xl(℘, δ) and Y(℘, δ) =
∞

∑
l=0

Yl(℘, δ). (38)

Thus, (35) can be rewritten using certain terms as

∞

∑
l=0

Xl+1(℘, δ) = sinh(℘)−N−1
{

ϑκ(ξκ + κ(ϑκ − ξκ))

ξ2κ
N{Y℘ −Y−X}

}
,

∞

∑
l=0

Yl+1(℘, δ) = cosh(℘)−N−1
{

ϑκ(ξκ + κ(ϑκ − ξκ))

ξ2κ
N{X℘ −Y−X}

}
.

(39)

Thus, by comparing both sides of (39), we obtain

X0(℘, δ) = sinh(℘),

Y0(℘, δ) = cosh(℘),

X1(℘, δ) = − cosh
(

1− κ +
κδκ

Γ(κ + 1)

)
,

Y1(℘, δ) = − sinh
(

1− κ +
κδκ

Γ(κ + 1)

)
,

X2(℘, δ) = sinh
(

κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
,

Y2(℘, δ) = cosh
(

κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
.

In the same manner, the remaining Xl and Yl (l ≥ 3) elements are easy to obtain. So, we describe
the alternative sequences as:

X(℘, δ) =
∞

∑
l=0

Xl(℘, δ) = X0(℘, δ) +X1(℘, δ) +X2(℘, δ) + · · ·

= sinh(℘)− cosh
(

1− κ +
κδκ

Γ(κ + 1)

)
+ sinh

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
+ · · · ,
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Y(℘, δ) =
∞

∑
l=0

Yl(℘, δ) = Y0(℘, δ) +Y1(℘, δ) +Y2(℘, δ) + · · ·

= cosh(℘)− sinh
(

1− κ +
κδκ

Γ(κ + 1)

)
+ cosh

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
+ · · · .

At κ = 1, the exact solution of (30) is

X(℘, δ) = sinh(℘− δ),

Y(℘, δ) = cosh(℘− δ).
(40)

In Figure 1, the exact and approximate solutions, respectively, for system (30). In Figure 2, the
approximate solution of fractional-order at κ = 0.8, 0.6 for system (30). In Figure 3, approximate
solution to system (30) at various values of κ with respect to two and three dimensional. In Tables 1
and 2 show that the absolute error obtained for various values of δ of system (30).

Figure 1. The exact approximate solutions, respectively, for system (30).

Figure 2. The approximate solution when κ = 0.8, 0.6 for system (30).

Figure 3. The approximate solution to system (30) at various values of κ.
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Table 1. The absolute error obtained at different values of δ for system (30).

(℘, δ) X(℘, δ) at κ = 0.4 X(℘, δ) at κ = 0.6 X(℘, δ) at κ = 0.8 (NTDMCF) at κ = 1 (NTDMABC) at κ = 1

(0.3,0.01) 2.0926431500× 10−2 1.0462803100× 10−2 1.0462464000× 10−3 1.6000000000× 10−9 1.6000000000× 10−9

(0.5,0.02) 2.2573729200× 10−2 1.1286419900× 10−2 1.1286062000× 10−3 2.6000000000× 10−9 2.6000000000× 10−9

(0.7,0.03) 2.5126989900× 10−2 1.2563000400× 10−2 1.2562610000× 10−3 3.8000000000× 10−9 3.8000000000× 10−9

(0.3,0.01) 2.0942676400× 10−2 1.0470649800× 10−2 1.0470109000× 10−3 6.1000000000× 10−9 6.1000000000× 10−9

(0.5,0.02) 2.2591255700× 10−2 1.1294887100× 10−2 1.1294338000× 10−3 1.0400000000× 10−8 1.0400000000× 10−8

(0.7,0.03) 2.5146501600× 10−2 1.2572428100× 10−2 1.2571849000× 10−3 1.5200000000× 10−8 1.5200000000× 10−8

(0.3,0.01) 2.0957665900× 10−2 1.0477912100× 10−2 1.0477241000× 10−3 1.3800000000× 10−8 1.3800000000× 10−8

(0.5,0.02) 2.2607429900× 10−2 1.1302725900× 10−2 1.1302079000× 10−3 2.3400000000× 10−8 2.3400000000× 10−8

(0.7,0.03) 2.5164509700× 10−2 1.2581158000× 10−2 1.2580512000× 10−3 3.4200000000× 10−8 3.4200000000× 10−8

(0.3,0.01) 2.0971849200× 10−2 1.0484799000× 10−2 1.0484038000× 10−3 2.4400000000× 10−8 2.4400000000× 10−8

(0.5,0.02) 2.2622736500× 10−2 1.1310161700× 10−2 1.1309479000× 10−3 4.1700000000× 10−8 4.1700000000× 10−8

(0.7,0.03) 2.5181553800× 10−2 1.2589441000× 10−2 1.2588810000× 10−3 6.0700000000× 10−8 6.0700000000× 10−8

(0.3,0.01) 2.0985436600× 10−2 1.0491407700× 10−2 1.0490603000× 10−2 3.8100000000× 10−8 3.8100000000× 10−8

(0.5,0.02) 2.2637402200× 10−2 1.1317299300× 10−2 1.1316648000× 10−3 6.5100000000× 10−8 6.5100000000× 10−8

(0.7,0.03) 2.5197886200× 10−2 1.2597393900× 10−2 1.2596870000× 10−3 9.4800000000× 10−8 9.4800000000× 10−8

Table 2. The absolute error obtained for various values of δ of system (30).

(℘, δ) X(℘, δ) at κ = 0.4 X(℘, δ) at κ = 0.6 X(℘, δ) at κ = 0.8 (NTDMCF) at κ = 1 (NTDMABC) at κ = 1

(0.3,0.01) 6.0961380000× 10−3 3.0479510000× 10−3 3.0478900000× 10−4 5.0000000000× 10−9 5.0000000000× 10−9

(0.5,0.02) 1.0431712000× 10−2 5.2156530000× 10−3 5.2155300000× 10−4 6.0000000000× 10−9 6.0000000000× 10−9

(0.7,0.03) 1.5185947000× 10−2 7.5926770000× 10−3 7.5924800000× 10−4 6.0000000000× 10−9 6.0000000000× 10−9

(0.3,0.01) 6.1008850000× 10−3 3.0502520000× 10−3 3.0502700000× 10−4 2.1000000000× 10−8 2.1000000000× 10−8

(0.5,0.02) 1.0439825000× 10−2 5.2195790000× 10−3 5.2194900000× 10−4 2.3000000000× 10−8 2.3000000000× 10−8

(0.7,0.03) 1.5197751000× 10−2 7.5983860000× 10−3 7.5981800000× 10−4 2.5000000000× 10−8 2.5000000000× 10−8

(0.3,0.01) 6.1052750000× 10−3 3.0523910000× 10−3 3.0525800000× 10−4 4.7000000000× 10−8 4.7000000000× 10−8

(0.5,0.02) 1.0447321000× 10−2 5.2232230000× 10−3 5.2232800000× 10−4 5.1000000000× 10−8 5.1000000000× 10−8

(0.7,0.03) 1.5208654000× 10−2 7.6036820000× 10−3 7.6036100000× 10−4 5.6000000000× 10−8 5.6000000000× 10−8

(0.3,0.01) 6.1094410000× 10−3 3.0544310000× 10−3 3.0549000000× 10−4 8.4000000000× 10−8 8.4000000000× 10−8

(0.5,0.02) 1.0454426000× 10−2 5.2266910000× 10−3 5.2270100000× 10−4 9.0000000000× 10−8 9.0000000000× 10−8

(0.7,0.03) 1.5218983000× 10−2 7.6087160000× 10−3 7.6089100000× 10−4 1.0000000000× 10−7 1.0000000000× 10−7

(0.3,0.01) 6.1134420000× 10−3 3.0563990000× 10−3 3.0572500000× 10−4 1.3100000000× 10−7 1.3100000000× 10−7

(0.5,0.02) 1.0461243000× 10−2 5.2300290000× 10−3 5.2307200000× 10−4 1.4100000000× 10−7 1.4100000000× 10−7

(0.7,0.03) 1.5228890000× 10−2 5.2300290000× 10−3 7.6141400000× 10−4 1.5700000000× 10−7 1.5700000000× 10−7

Example 2. Let us consider the fractional PDE system

Dκ
δX+Y℘Zρ −YρZ℘ = X,

Dκ
δY+Z℘Xρ −XρZ℘ = Y,

Dκ
δZ+X℘Yρ −XρY℘ = Z, 0 < κ ≤ 1

(41)
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with the initial conditions

X(℘, ρ, 0) = exp(℘+ ρ),

Y(℘, ρ, 0) = exp(℘− ρ),

Z(℘, ρ, 0) = exp(−℘+ ρ).

(42)

Applying the NT, we have

N{Dκ
δX(℘, ρ, δ)} = −N

{
Y℘Zρ −YρZ℘ −X

}
,

N{Dκ
δY(℘, ρ, δ)} = −N

{
Z℘Xρ −XρZ℘ −Y

}
,

N{Dκ
δZ(℘, ρ, δ)} = −N

{
X℘Yρ −XρY℘ −Z

}
.

(43)

By using the transform property, we have

1
ξκ

N{X(℘, ρ, δ)} − ξ2−κX(℘, 0) = −N
{
Y℘Zρ −YρZ℘ −X

}
,

1
ξκ

N{Y(℘, ρ, δ)} − ξ2−κY(℘, 0) = −N
{
Z℘Xρ −XρZ℘ −Y

}
,

1
ξκ

N{Z(℘, ρ, δ)} − ξ2−κZ(℘, 0) = −N
{
X℘Yρ −XρY℘ −Z

}
.

(44)

The above algorithm’s simplified form is

N{X(℘, ρ, δ)} = ξ2 exp(℘+ ρ)− κ(ξ − κ(ξ − κ))

ξ2 N
{
Y℘Zρ −YρZ℘ −X

}
,

N{Y(℘, ρ, δ)} = ξ2 exp(℘− ρ)− κ(ξ − κ(ξ − κ))

ξ2 N
{
Z℘Xρ −XρZ℘ −Y

}
,

N{Z(℘, ρ, δ)} = ξ2 exp(−℘+ ρ)− κ(ξ − κ(ξ − κ))

ξ2 N
{
X℘Yρ −XρY℘ −Z

}
.

(45)

Using the inverse NT, we obtain

X(℘, ρ, δ) = exp(℘+ ρ)−N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N
{
Y℘Zρ −YρZ℘ −X

}}
,

Y(℘, ρ, δ) = exp(℘− ρ)−N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N
{
Z℘Xρ −XρZ℘ −Y

}}
,

Z(℘, ρ, δ) = exp(−℘+ ρ)−N−1
{

κ(ξ − κ(ξ − κ))

ξ2 N
{
X℘Yρ −XρY℘ −Z

}}
.

(46)

Solution by Means of NDMCF

Assume that the unknown functions X(℘, ρ, δ), Y(℘, ρ, δ) and Z(℘, ρ, δ) have the following
solution in the infinite series form:

X(℘, ρ, δ) =
∞

∑
l=0

Xl(℘, ρ, δ),Y(℘, ρ, δ) =
∞

∑
l=0

Yl(℘, ρ, δ) and Z(℘, ρ, δ) =
∞

∑
l=0

Zl(℘, ρ, δ).
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Remember that Y℘Zρ = ∑∞
m=0Am, YρZ℘ = ∑∞

m=0 Bm, Z℘Xρ = ∑∞
m=0 Cm, XρZ℘ = ∑∞

m=0Dm,
X℘Yρ = ∑∞

m=0 Em and XρY℘ = ∑∞
m=0 Fm represent the nonlinear terms. Thus, (46) can be

rewritten using certain terms as

∞

∑
l=0

Xl+1(℘, ρ, δ) = exp(℘+ ρ)−N−1

{
κ(ξ − κ(ξ − κ))

ξ2 N

{
∞

∑
l=0
Al −

∞

∑
l=0
Bl −X

}}
,

∞

∑
l=0

Yl+1(℘, ρ, δ) = exp(℘− ρ)−N−1

{
κ(ξ − κ(ξ − κ))

ξ2 N

{
∞

∑
l=0
Cl −

∞

∑
l=0
Dl −Y

}}
,

∞

∑
l=0

Zl+1(℘, ρ, δ) = exp(−℘+ ρ)−N−1

{
κ(ξ − κ(ξ − κ))

ξ2 N

{
∞

∑
l=0
El −

∞

∑
l=0
Fl −Z

}}
.

(47)

Thus, by comparing both sides of (47), we obtain

X0(℘, ρ, δ) = exp(℘+ ρ),

Y0(℘, ρ, δ) = exp(℘− ρ),

Z0(℘, ρ, δ) = exp(−℘+ ρ),

X1(℘, ρ, δ) = − exp(℘+ ρ)(κ(δ− 1) + 1),

Y1(℘, ρ, δ) = exp(℘− ρ)(κ(δ− 1) + 1),

Z1(℘, ρ, δ) = exp(−℘+ ρ)(κ(δ− 1) + 1),

X2(℘, ρ, δ) = exp(℘+ ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
,

Y2(℘, ρ, δ) = exp(℘− ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
,

Z2(℘, ρ, δ) = exp(−℘+ ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
.

In the same manner, the remaining Xl ,Yl and Zl (l ≥ 3) elements are easy to obtain. So, we
describe the alternative sequence as

X(℘, ρ, δ) =
∞

∑
l=0

Xl(℘, ρ, δ) = X0(℘, ρ, δ) +X1(℘, ρ, δ) +X2(℘, ρ, δ) + · · ·

= exp(℘+ ρ)− exp(℘+ ρ)(κ(δ− 1) + 1)

+ exp(℘+ ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
+ · · · .

Y(℘, ρ, δ) =
∞

∑
l=0

Yl(℘, ρ, δ) = Y0(℘, ρ, δ) +Y1(℘, ρ, δ) +Y2(℘, ρ, δ) + · · ·

= exp(℘− ρ) + exp(℘− ρ)(κ(δ− 1) + 1)

+ exp(℘− ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
+ · · · .

Z(℘, ρ, δ) =
∞

∑
l=0

Zl(℘, ρ, δ) = Z0(℘, ρ, δ) +Z1(℘, ρ, δ) +Z2(℘, ρ, δ) + · · ·

= exp(−℘+ ρ) + exp(−℘+ ρ)(κ(δ− 1) + 1)

+ exp(−℘+ ρ)

(
(1− κ)2 + 2κ(1− κ)δ +

κ2δ2

2

)
+ · · · .
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Solution by Means of NDMABC

Assume that the unknown functions X(℘, ρ, δ), Y(℘, ρ, δ) and Z(℘, ρ, δ) have the following
solution in the infinite series form:

X(℘, ρ, δ) =
∞

∑
l=0

Xl(℘, ρ, δ),Y(℘, ρ, δ) =
∞

∑
l=0

Yl(℘, ρ, δ) and Z(℘, ρ, δ) =
∞

∑
l=0

Zl(℘, ρ, δ).

Remember that Y℘Zρ = ∑∞
m=0Am, YρZ℘ = ∑∞

m=0 Bm, Z℘Xρ = ∑∞
m=0 Cm, XρZ℘ = ∑∞

m=0Dm,
X℘Yρ = ∑∞

m=0 Em and XρY℘ = ∑∞
m=0 Fm represent the nonlinear terms. Thus, (46) can be

rewritten using certain terms as

∞

∑
l=0

Xl+1(℘, ρ, δ) = exp(℘+ ρ) + N−1

{
ϑκ(ξκ + κ(ϑκ − ξκ))

ξ2κ
N

{
∞

∑
l=0
Al −

∞

∑
l=0
Bl −X

}}
,

∞

∑
l=0

Yl+1(℘, ρ, δ) = exp(℘− ρ) + N−1

{
ϑκ(ξκ + κ(ϑκ − ξκ))

ξ2κ
N

{
∞

∑
l=0
Cl −

∞

∑
l=0
Dl −Y

}}
,

∞

∑
l=0

Zl+1(℘, ρ, δ) = exp(−℘+ ρ) + N−1

{
ϑκ(ξκ + κ(ϑκ − ξκ))

ξ2κ
N

{
∞

∑
l=0
El −

∞

∑
l=0
Fl −Z

}}
.

(48)

Thus, by comparing both sides of (48), we obtain

X0(℘, ρ, δ) = exp(℘+ ρ),

Y0(℘, ρ, δ) = exp(℘− ρ),

Z0(℘, ρ, δ) = exp(−℘+ ρ),

X1(℘, ρ, δ) = exp(℘+ ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
,

Y1(℘, ρ, δ) = exp(℘− ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
,

Z1(℘, ρ, δ) = exp(−℘+ ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
,

X2(℘, ρ, δ) = exp(℘+ ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
,

Y2(℘, ρ, δ) = exp(℘− ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
,

Z2(℘, ρ, δ) = exp(−℘+ ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
.

In the same manner, the remaining Xl ,Yl and Zl (l ≥ 3) elements are easy to obtain. So, we
describe the alternative sequence as

X(℘, ρ, δ) =
∞

∑
l=0

Xl(℘, ρ, δ) = X0(℘, ρ, δ) +X1(℘, ρ, δ) +X2(℘, ρ, δ) + · · ·

= exp(℘+ ρ)− exp(℘+ ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
+ exp(℘+ ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
+ · · · ,

Y(℘, ρ, δ) =
∞

∑
l=0

Yl(℘, ρ, δ) = Y0(℘, ρ, δ) +Y1(℘, ρ, δ) +Y2(℘, ρ, δ) + · · ·

= exp(℘− ρ) + exp(℘− ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
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+ exp(℘− ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
+ · · · ,

Z(℘, ρ, δ) =
∞

∑
l=0

Zl(℘, ρ, δ) = Z0(℘, ρ, δ) +Z1(℘, ρ, δ) +Z2(℘, ρ, δ) + · · ·

= exp(−℘+ ρ) + exp(−℘+ ρ)

(
1− κ +

κδκ

Γ(κ + 1)

)
+ exp(−℘+ ρ)

(
κ2δ2κ

Γ(2κ + 1)
+ 2κ(1− κ)

δκ

Γ(κ + 1)
+ (1− κ)2

)
+ · · · .

At κ = 1, the exact solution to (41) is

X(℘, ρ, δ) = exp(℘+ ρ− δ),

Y(℘, ρ, δ) = exp(℘− ρ + δ),

Y(℘, ρ, δ) = exp(−℘+ ρ + δ).

In Figure 4, the exact approximate solutions, respectively, to X(℘, δ) for system (41).
In Figure 5, the approximate solution when κ = 0.8, 0.6 for system (41) of X(℘, δ). In
Figure 6, the approximate solution to system (41) at various values of κ for X(℘, δ). In
Figure 7, the exact approximate solutions, respectively, to Y(℘, δ) for system (41). In
Figure 8, approximate solution when κ = 0.8, 0.6 for system (41) of Y(℘, δ). In Figure
9, The approximate solution to system (41) at various values of κ for Y(℘, δ). In Figure
10, The exact approximate solutions, respectively, to Z(℘, δ) for system (41). In Figure
11, approximate solution when κ = 0.8, 0.6 for system (41) of Z(℘, δ). In Figure 12, the
approximate solution to system (41) at various values of κ for Z(℘, δ). In Tables 3, 4 and 5
show that the absolute error obtained for different values of δ for system (41).

Figure 4. The exact approximate solutions, respectively, to X(℘, δ) for system (41).

Figure 5. The approximate solution when κ = 0.8, 0.6 for system (41) of X(℘, δ).
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Figure 6. The approximate solution to system (41) at various values of κ for X(℘, δ).

Figure 7. The exact approximate solutions, respectively, to Y(℘, δ) for system (41).

Figure 8. The approximate solution when κ = 0.8, 0.6 for system (41) of Y(℘, δ).

Figure 9. The approximate solution to system (41) at various values of κ for Y(℘, δ).
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Figure 10. The exact approximate solutions, respectively, to Z(℘, δ) for system (41).

Figure 11. The approximate solution when κ = 0.8, 0.6 for system (41) of Z(℘, δ).

Figure 12. The approximate solution to system (41) at various values of κ for Z(℘, δ).
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Table 3. The absolute error obtained at different values of δ for system (41).

(℘, δ) X(℘, δ) at κ = 0.4 X(℘, δ) at κ = 0.6 X(℘, δ) at κ = 0.8 (NTDMCF) at κ = 1 (NTDMABC) at κ = 1

(0.3,0.01) 4.4552686000× 10−2 2.2275469000× 10−2 2.2274830000× 10−3 1.2000000000× 10−8 1.2000000000× 10−8

(0.5,0.01) 5.4416773000× 10−2 2.7207319000× 10−2 2.7206530000× 10−3 1.4000000000× 10−8 1.4000000000× 10−8

(0.7,0.01) 6.6464797000× 10−2 3.3231094000× 10−2 3.3230120000× 10−3 1.7000000000× 10−8 1.7000000000× 10−8

(0.3,0.02) 4.4587295000× 10−2 2.2292198000× 10−2 2.2291340000× 10−3 4.5000000000× 10−8 4.5000000000× 10−8

(0.5,0.02) 5.4459045000× 10−2 2.7227751000× 10−2 2.7226690000× 10−3 5.4000000000× 10−8 5.4000000000× 10−8

(0.7,0.02) 6.6516428000× 10−2 3.3256051000× 10−2 2.7226690000× 10−3 6.6000000000× 10−8 6.6000000000× 10−8

(0.3,0.03) 4.4619247000× 10−2 2.2307698000× 10−2 2.2306910000× 10−3 1.0000000000× 10−7 1.0000000000× 10−7

(0.5,0.03) 5.4498071000× 10−2 2.7246685000× 10−2 2.7245720000× 10−3 1.2300000000× 10−7 1.2300000000× 10−7

(0.7,0.03) 6.6564094000× 10−2 3.3279175000× 10−2 3.3277990000× 10−3 1.4900000000× 10−7 1.4900000000× 10−7

(0.3,0.04) 4.4649499000× 10−2 2.2322416000× 10−2 2.2321930000× 10−3 1.7800000000× 10−7 1.7800000000× 10−7

(0.5,0.04) 5.4535021000× 10−2 2.7264661000× 10−2 2.7264070000× 10−3 2.1800000000× 10−7 2.1800000000× 10−7

(0.7,0.04) 6.6609225000× 10−2 3.3301131000× 10−2 3.3300410000× 10−3 2.6600000000× 10−7 2.6600000000× 10−7

(0.3,0.05) 4.4678498000× 10−2 2.2336557000× 10−2 2.2336620000× 10−3 2.7800000000× 10−7 2.7800000000× 10−7

(0.5,0.05) 5.4570440000× 10−2 2.7281932000× 10−2 2.7282010000× 10−3 3.4000000000× 10−7 3.4000000000× 10−7

(0.7,0.05) 6.6652485000× 10−2 3.3322227000× 10−2 3.3322310000× 10−3 4.1400000000× 10−7 4.1400000000× 10−7

Table 4. The absolute error obtained at various values of δ for system (41).

(℘, δ) X(℘, δ) at κ = 0.4 X(℘, δ) at κ = 0.6 X(℘, δ) at κ = 0.8 (NTDMCF) at κ = 1 (NTDMABC) at κ = 1

(0.3,0.01) 1.639000890× 10−2 8.194678600× 10−3 8.194366000× 10−4 4.000000000× 10−9 4.000000000× 10−9

(0.5,0.01) 2.001880200× 10−2 1.000900300× 10−2 1.000862000× 10−3 5.000000000× 10−9 5.000000000× 10−9

(0.7,0.01) 2.445101900× 10−2 1.222502300× 10−2 1.222455000× 10−3 7.000000000× 10−9 7.000000000× 10−9

(0.3,0.02) 1.640271640× 10−2 8.200808400× 10−3 8.200195000× 10−4 1.630000000× 10−8 1.630000000× 10−8

(0.5,0.02) 2.003432300× 10−2 1.001649000× 10−2 1.001574000× 10−3 2.000000000× 10−8 2.000000000× 10−8

(0.7,0.02) 2.446997700× 10−2 1.223416800× 10−2 1.223325000× 10−3 2.400000000× 10−8 2.400000000× 10−8

(0.3,0.03) 1.641442990× 10−2 8.206469900× 10−3 8.205516000× 10−4 3.690000000× 10−8 3.690000000× 10−8

(0.5,0.03) 2.004863000× 10−2 1.002340500× 10−2 1.002224000× 10−3 4.500000000× 10−8 4.500000000× 10−8

(0.7,0.03) 2.448745200× 10−2 1.224261400× 10−2 1.224119000× 10−3 5.500000000× 10−8 5.500000000× 10−8

(0.3,0.04) 1.642550160× 10−2 8.211826900× 10−3 8.210469000× 10−4 6.550000000× 10−8 6.550000000× 10−8

(0.5,0.04) 2.006215300× 10−2 1.002994800× 10−2 1.002829000× 10−3 8.000000000× 10−8 8.000000000× 10−8

(0.7,0.04) 2.450396900× 10−2 1.225060600× 10−2 1.224858000× 10−3 9.800000000× 10−8 9.800000000× 10−8

(0.3,0.05) 1.643609600× 10−2 8.216955400× 10−3 8.215136000× 10−4 1.023000000× 10−7 1.023000000× 10−7

(0.5,0.05) 2.007509300× 10−2 1.003621200× 10−2 1.003399000× 10−3 1.250000000× 10−7 1.250000000× 10−7

(0.7,0.05) 2.451977400× 10−2 1.225825700× 10−2 1.225554000× 10−3 1.530000000× 10−7 1.530000000× 10−7
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Table 5. The absolute error obtained for different values of δ for system (41).

(℘, δ) X(℘, δ) at κ = 0.4 X(℘, δ) at κ = 0.6 X(℘, δ) at κ = 0.8 (NTDMCF) at κ = 1 (NTDMABC) at κ = 1

(0.3,0.01) 2.445101900× 10−2 1.222502300× 10−2 1.222455000× 10−3 7.000000000× 10−9 7.000000000× 10−9

(0.5,0.01) 2.001880200× 10−2 1.000900300× 10−2 1.000862000× 10−3 5.000000000× 10−9 5.000000000× 10−9

(0.7,0.01) 1.639000890× 10−2 8.194678600× 10−3 8.194366000× 10−4 4.000000000× 10−9 4.000000000× 10−9

(0.3,0.02) 2.446997700× 10−2 1.223416800× 10−2 1.223325000× 10−3 2.400000000× 10−8 2.400000000× 10−8

(0.5,0.02) 2.003432300× 10−2 1.001649000× 10−2 1.001574000× 10−3 2.000000000× 10−8 2.000000000× 10−8

(0.7,0.02) 1.640271640× 10−2 8.200808400× 10−3 8.200195000× 10−4 1.630000000× 10−8 1.630000000× 10−8

(0.3,0.03) 2.448745200× 10−2 1.224261400× 10−2 1.224119000× 10−3 5.500000000× 10−8 5.500000000× 10−8

(0.5,0.03) 2.004863000× 10−2 1.002340500× 10−2 1.002224000× 10−3 4.500000000× 10−8 4.500000000× 10−8

(0.7,0.03) 1.641442990× 10−2 8.206469900× 10−3 8.205516000× 10−4 3.690000000× 10−8 3.690000000× 10−8

(0.3,0.04) 2.450396900× 10−2 1.225060600× 10−2 1.224858000× 10−3 9.800000000× 10−8 9.800000000× 10−8

(0.5,0.04) 2.006215300× 10−2 1.002994800× 10−2 1.002829000× 10−3 8.000000000× 10−8 8.000000000× 10−8

(0.7,0.04) 1.642550160× 10−2 8.211826900× 10−3 8.210469000× 10−4 6.550000000× 10−8 6.550000000× 10−8

(0.3,0.05) 2.451977400× 10−2 1.225825700× 10−2 1.225554000× 10−3 1.530000000× 10−7 1.530000000× 10−7

(0.5,0.05) 2.007509300× 10−2 1.003621200× 10−2 1.003399000× 10−3 1.250000000× 10−7 1.250000000× 10−7

(0.7,0.05) 1.643609600× 10−2 8.216955400× 10−3 8.215136000× 10−4 1.023000000× 10−7 1.023000000× 10−7

6. Conclusions

This study uses the natural transform decomposition method to solve various fractional-
order partial differential equations. In terms of the CF and ABC, the fractional derivatives
are expressed. The proposed method is used to obtain the solution to a number of numerical
problems. The solutions to the presented problems are determined in various fractional and
integer orders. The approximate solutions to the problems are observed to agree with the
exact solutions to the problems. Furthermore, it has been revealed that the fractional-order
solutions converge to an integer-order solution to the problems. The suggested technique
is shown to be simple and effective and may be implemented to solve various differential
equation systems with fractional order.
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