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Abstract: Upper extremity exoskeleton rehabilitation robots have become a significant piece of
rehabilitation equipment, and planning their motion trajectories is essential in patient rehabilitation.
In this paper, a multistrategy improved whale optimization algorithm (MWOA) is proposed for
trajectory planning of upper extremity exoskeleton rehabilitation robots with emphasis on isokinetic
rehabilitation. First, a piecewise polynomial was used to construct a rough trajectory. To make the
trajectory conform to human-like movement, a whale optimization algorithm (WOA) was employed
to generate a bounded jerk trajectory with the minimum running time as the objective. The search
performance of the WOA under complex constraints, including the search capability of trajectory
planning symmetry, was improved by the following strategies: a dual-population search, including
a new communication mechanism to prevent falling into the local optimum; a mutation centroid
opposition-based learning, to improve the diversity of the population; and an adaptive inertia weight,
to balance exploration and exploitation. Simulation analysis showed that the MWOA generated a
trajectory with a shorter run-time and better symmetry and robustness than the WOA. Finally, a pilot
rehabilitation session on a healthy volunteer using an upper extremity exoskeleton rehabilitation
robot was completed safely and smoothly along the trajectory planned by the MWOA. The proposed
algorithm thus provides a feasible scheme for isokinetic rehabilitation trajectory planning of upper
extremity exoskeleton rehabilitation robots.

Keywords: whale optimization algorithm; mutation centroid opposition-based learning; trajectory
planning; upper extremity exoskeleton rehabilitation robot; dual-population

1. Introduction

Strokes are an acute cerebrovascular condition with a high mortality and disability
impairment rate [1,2], and advanced age [3] as an important risk factor. As the elderly
become a more significant component of the population, the number of people suffering
from strokes has increased, which creates a greater demand for rehabilitation services [4].
Traditional rehabilitation provided by professional therapists can no longer meet the ever-
growing demand. Currently, rehabilitation robots are being introduced to assist patients
with motor function training in clinical trials [5,6], and the effectiveness has been validated
and recognized [7]. The trajectory planning of a rehabilitation robot is an important
prerequisite and the basis for assisting patients with motor function training.

A key prerequisite for the successful incorporation of rehabilitation robots into patient
recovery is a carefully planned motion trajectory. In this regard, several methods have been
used to generate upper extremity rehabilitation trajectories. For example, Kim B. et al. [8]
designed a 7-degrees-of-freedom (7-DOF) upper extremity exoskeleton and used the norm-
based time-allocating monotone Bezier interpolation method to generate a trajectory with
no jerk in Cartesian space. Li et al. [9] proposed a modular upper limb rehabilitation
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exoskeleton and applied cubic spline curves as two round-trip trajectories for rehabilitation.
Others have proposed the use of quintic non-uniform rational B-spline (NURBS) interpola-
tion curves [10], a combination of quintic polynomials with cubic Bezier curves [11], and
higher order polynomials to achieve a smooth trajectory [12]. However, methods targeted
to specific rehabilitation training needs, such as isokinetic rehabilitation training, are scarce.

In isokinetic rehabilitation, the patient’s joints are mobilized at a preset and relatively
stable speed, and the resistance force generated in the complete motion is proportional to the
muscle force [13], where the whole motion is of symmetry. This technique has been shown to
provide motor and functional improvement in the affected upper limb of patients with post-
stroke hemiplegia [14,15]. Commercially available equipment for isokinetic rehabilitation
is, however, costly and impractical due to its large size and heaviness. Only recently have
Maharum et al. [16] developed and tested a portable 2-DOF upper limb rehabilitation robot
to provide shoulder and elbow isokinetic rehabilitation. Clearly, the implementation of
upper extremity exoskeleton rehabilitation robots in isokinetic rehabilitation treatment
relies on further validation, including the development of effective trajectory planning
methods tailored to isokinetic training.

Intelligent algorithms are widely applied in trajectory planning, including the ant
colony optimization (ACO) [17], the firefly algorithm (FA) [18], the Harris hawks opti-
mization (HHO) [19], and the whale optimization algorithm (WOA) [20,21]. Among them,
the WOA offers better or comparable performance [22], although it is prone to fall into
local optima and has low convergence accuracy. There have been a number of attempts to
circumvent WOA’s pitfalls. Li et al. [23] used chaotic mapping and quadratic backward
learning-based strategies to initialize the population and introduced an adaptive conver-
gence factor to balance exploration and exploitation. Wang [24] also introduced an adaptive
convergence factor based on the normal distribution and adapted the random search phase
to improve performance. Fan et al. [25] used the tent chaotic map to initialize the population
and opposition-based learning (OBL) to update the individuals throughout the overall
iteration process, thereby improving convergence accuracy and speed. Jiang et al. [26]
embedded the differential evolution algorithm (DE) into the WOA and introduced cloud
adaptive inertia weight to jump out of the local optimum and improve convergence accu-
racy. Elaziz et al. [27] adopted a multi-leader mechanism and Levy flight to enhance the
diversity of the population and avoid premature convergence. Furthermore, opposition-
based learning (OBL) [28], including centroid opposition-based learning (COBL) [29], has
been employed to improve the diversity of the population. Nevertheless, the diversity of
the population inevitably declines because particles gradually gather around the optimal
individual; thus, the effectiveness of these improvements is weakened, particularly in the
middle and late stages of the iteration. More recently, a multi-population strategy has been
applied to intelligent algorithms. Yuan et al. [30] proposed a dual-population ant colony
algorithm based on a dynamic learning mechanism which improved the convergence speed.
Fatih et al. [31] also proposed a multi-population particle swarm optimization (MPPSO). Du
et al. [32] proposed a multi-population covariance learning differential evolution (MCDE)
algorithm which improved convergence accuracy and speed. Liu [33] proposed a multi-
population whale optimization algorithm, where the individuals were affected by the
optimal values from both the horizontal and vertical directions, ultimately enhancing the
global search ability. Unfortunately, adopting a multi-population strategy also implies
unwanted communication between subpopulations.

In this study, a multistrategy improved whale optimization algorithm (MWOA) for
the planning of an isokinetic rehabilitation trajectory using an upper extremity exoskeleton
rehabilitation robot is presented. The following approach was followed:

• A preliminary trajectory was first generated based on a piecewise polynomial;
• To more closely resemble a human-like motion, a bounded jerk trajectory was con-

structed using the WOA, with a minimal running time as the optimization objective;
• To tackle the WOA’s shortage in search ability under complex constraints, three strate-

gies were integrated into the proposed MWOA, and the resulting trajectories were
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compared to those obtained by the original WOA. A dual-population search with a
novel communication mechanism to bypass local optimum was used. Mutation cen-
troid opposition-based learning was used to improve the diversity of the population.
An adaptive inertia weight mechanism was used to balance the WOA’s exploration
and exploitation abilities;

• Finally, a 4-DOF upper extremity exoskeleton rehabilitation (4-DOF UEER) robot was
tested by simulation analysis and then validated on a healthy volunteer to mimic
isokinetic rehabilitation training along the trajectory planned by the MWOA.

The organization of this paper is as follows: Section 2 describes the piecewise polyno-
mial trajectory and the trajectory optimization problem. Section 3 briefly introduces the
whale optimization algorithm, mainly describing the improvement in the whale optimiza-
tion algorithm and the trajectory optimization based on this algorithm. Section 4 briefly
introduces the 4-DOF UEER robot, simulation analysis and pilot experiment. The main
conclusions are summarized in Section 5.

2. Piecewise Polynomial Trajectory Planning
2.1. Generation of a Preliminary Rehabilitation Trajectory by Piecewise Polynomial

Isokinetic training is characterized by maintaining a relatively uniform speed through-
out the movement [14,34]. In addition, since the degrees of freedom in upper extremity
exoskeleton rehabilitation robots correspond to those of a human’s upper limb, the contact
between a robot and a patient is close during isokinetic rehabilitation. Moreover, due to
the abnormal muscle tension present in hemiplegic patients, abrupt changes in the motion
trajectory should be avoided to prevent secondary injury. With safety and effectiveness
in mind, a piecewise polynomial trajectory containing a uniform velocity segment was
used as a starting point for isokinetic training planning. Generally, lower-order polynomial
trajectories are prone to impact, while higher-order polynomial trajectories are smoother
but come at a higher computational cost. In order to ensure a continuous and smooth
trajectory without impact, the fifth-order polynomial was selected for the acceleration and
deceleration segments of the trajectory, and intermediate segment of the trajectory is linear
(first-order polynomial). Equation (1) shows the piecewise polynomial trajectory. The
1st, 2nd, and 3rd segments represent the acceleration, uniform velocity, and deceleration
phases, respectively. The corresponding symbols are described in Table 1.

Table 1. Symbols used in the piecewise polynomial.

Symbols Description

i i = 1, 2, · · · , n, n is the number of joints, i is the ith joint.
pi1(t), pi2(t), pi3(t) The 1st, 2nd, and 3rd segment of the trajectory, respectively.

bi1j, bi2j, bi3j The jth coefficient of the 1st, 2nd, and 3rd segment of the trajectory, respectively.
τi1, τi2, τi3 Time corresponding to the 1st and 2nd transition points and the terminal point, respectively.

In Equation (1), the trajectory pi(t) is a time-dependent function, The angular velocity,
angular acceleration, and jerk can be obtained by the first-order, second-order and third-
order derivatives of pi(t) for time, respectively.

pi1(t) = bi15t5 + bi14t4 + bi13t3 + bi12t2 + bi11t + bi10, t ∈ [0, τi1]

pi2(t) = bi21(t− τi1) + bi20, t ∈ [τi1, τi2]

pi3(t) = bi35(t− τi2)
5 + bi34(t− τi2)

4 + bi33(t− τi2)
3 + bi32(t− τi2)

2+

bi31(t− τi2) + bi30, t ∈ [τi1, τi2]

(1)

If ti1, ti2, and ti3 are the running time of the 1st, 2nd, and 3rd segments of the trajectory,
respectively, then,τi1 = ti1, τi2 = ti2 + τi1, and τi3 = ti3 + τi2.

The range of motion of a patient’s joint is generally given by the physiotherapist to
obtain the initial position θi0, and the terminal position θi f . The trajectory is continuous;
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thus, position, angular velocity, angular acceleration, and jerk are continuous at two
transition points. To ensure safety, the angular velocity and angular acceleration at both
positions are zero. This produces 14 equations than can be expressed in matrix form
(Equation (2)):

TB = θ (2)

where θ =
[
0, 0, 0, 0, 0, 0, 0, 0, θi f , 0, 0, θi0, 0, 0

]T
, denoting the position vector of the joint. T

denotes the time parameter matrix, T =

T11 T12 0
0 T22 T23

T31 T32 T33

, where

T11 =


t5
i1 t4

i1 t3
i1 t2

i1 ti1
5t4

i1 4t3
i1 3t2

i1 2ti1 1
20t3

i1 12t2
i1 6ti1 2 0

60t2
i1 24ti1 6 0 0

, T12 =


1 0 −1 0
0 −1 0 0
0 0 0 0
0 0 0 0

, T22 =


0 ti2 1 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 t5

i3

,

T23 =


0 0 0 0 −1
0 0 0 −1 0
0 0 −2 0 0
0 −6 0 0 0
t4
i3 t3

i3 t2
i3 ti3 1

, T31 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 2 0

, T32 =


0 0 0 5t4

i3
0 0 0 20t3

i3
1 0 0 0
0 0 0 0
0 0 0 0

, and

T33 =


4t3

i3 3t2
i3 2ti3 1 0

12t2
i3 6ti3 2 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

Coefficient matrix B = [B1, B2, B3]
Twhere B1 = [bi15, bi14, bi13, bi12, bi11, bi10],

B2 = [bi21, bi20], and B3 = [bi35, bi34, bi33, bi32, bi31, bi30].
As mentioned above, the time parameter matrix T can be obtained once t = [t1, t2, t3]

is determined; then, the coefficient matrix B can be calculated by Equation (3). Finally, the
trajectory can be calculated by substituting B into Equation (1).

B = T−1θ (3)

2.2. Description of the Trajectory Optimization Problem

Since polynomial functions cannot fully mimic natural human motion, optimization-
based methods have been developed to generate human-like trajectories, most commonly
the minimum jerk trajectory [35]. A commonly used alternative for trajectory planning is
the bounded jerk method, of which Frisoli et al.’s [36] bounded jerk trajectory for robot-
assisted stroke neurorehabilitation is a notable example. In addition to its resemblance to
human movement, Chang et al. [34] have put forward the trajectory’s running time as a
signific index for rehabilitation. In this regard, Qie et al. [37] used a genetic algorithm (GA)
to generate a trajectory with minimum running time, effectively reducing motion time and
improving rehabilitation effectiveness. Therefore, a bounded jerk trajectory was chosen
in the present study to achieve a more human-like rehabilitation movement, and the total
running time was taken as the optimization objective in order to improve rehabilitation
effectiveness. The fitness function can be expressed:

f = min(ti1 + ti2 + ti3) (4)

For safety reasons, angular velocity, angular acceleration, and jerk should be limited.
Furthermore, to ensure effectiveness, a time constraint for the 2nd segment with the longest
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running time was added, expecting that rehabilitation produces its maximal effect in the
uniform velocity segment. These constraints can be expressed as in Equation (5):

.
θimin <

∣∣∣ .
θij

∣∣∣ < .
θimax∣∣∣ ..θij

∣∣∣ < ..
θimax∣∣...θ ij

∣∣ < ...
θ imax

max(ti1, ti3) < ti2

(5)

where
.
θij,

..
θij, and

...
θ ij represent angular velocity, angular acceleration, and jerk of the

ith joint of the jth segment trajectory, respectively,
.
θimin and

.
θimax are the minimum and

maximum angular velocity of the ith joint, respectively.
..
θimax and

...
θ imax are the maximum

angular acceleration and jerk of the ith joint, respectively. Note that the minimum an-
gular velocity refers to the uniform velocity segment, which is necessary for adequate
training intensity.

In case of violations to these constraints, a penalty was imposed using a penalty
function described elsewhere [38]:

fvj =

{
λvj others
0

.
θimin <

∣∣∣ .
θij

∣∣∣ < .
θimax

faj =

{
λaj

∣∣∣ ..θij

∣∣∣ > ..
θimax

0 others

fpj =

{
λpj

∣∣...θ ij
∣∣ > ...

θ imax
0 others

ftj =

{
λtj max(ti1, ti3) ≥ ti2
0 others

(6)

where fvj, faj, fpj, and ftj represent the angular velocity, angular acceleration, jerk, and time
penalty of the jth segment trajectory, respectively, and λvj, λaj, λpj, and λtj are the angular ve-
locity, angular acceleration, jerk, and time penalty weight of jth segment trajectory, respectively.

Therefore, the ultimate fitness function can be expressed in Equation (7) as:

f = min(
3

∑
j=1

(tij + fvj + faj + fpj + ftj)) (7)

Accordingly, as more constraints are violated, the fitness value increases and eventually
the optimal trajectory is found.

3. Optimization Algorithm
3.1. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a meta-heuristic intelligent optimization
algorithm proposed by Mirjalili [20] in 2016. This algorithm was inspired by the charac-
teristic spiral foraging behavior of humpback whales known as the bubble-net hunting
strategy. This algorithm consists of three main mathematical models, namely the encircling
prey, bubble-net attacking method, and search for prey models.

3.1.1. Encircling Prey

This model assumes that the current optimal individual (the best search agent) is the
target prey, and other particles (search agents) update their positions by approaching the
optimal individual. The mathematical model is as follows:{

D =
∣∣CX*(k)− X(k)

∣∣
X(k + 1) = X*(k)− AD

(8)
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{
A = 2ar− a

C = 2r
(9)

where X is the position of particle, X∗ is the position of the optimal individual obtained
so far, and C denotes the swing factor. || is the absolute value, r is a random number in
[0, 1], a is the convergence factor that is linearly reduced from 2 to 0 over the course of the
iterations, and k indicates the current iteration.

3.1.2. Bubble-Net Attacking Method (Exploitation Phase)

Humpback whales swim along a spiral path and spit bubbles, shrinking and encircling
the prey simultaneously. To simulate this behavior, this algorithm assumes a probability of
50% of choosing either the shrinking encircling mechanism or the spiral updating position.
The model is expressed in Equations (10) and (11):

X(k + 1) = X*(k)− AD i f p < 0.5 (10){
X(k + 1) = D′eblcos (2πl) + X*(k) i f p ≥ 0.5

D′ =
∣∣X*(k)− X(k)

∣∣ (11)

where p denotes probability and is a random number in [0, 1], b is a constant that defines
the shape of the spiral, and l is a random number in [−1, 1].

3.1.3. Search for Prey (Exploration Phase)

This model allows particles to randomly search when |A| ≥ 1, particles update their
positions according to the randomly selected particle rather than the optimal individual.
This model is shown in Equation (12):

X(k + 1) = Xrand − A|CXrand − X(k)| (12)

where Xrand represents a randomly selected particle.

3.2. Multistrategy Improved Whale Optimization Algorithm (MWOA)

Despite its good optimization performance, the reliability of the WOA is limited under
complex constrains. To enable the WOA’s reliability for trajectory optimization under the
above-mentioned constraints, a multistrategy improved whale optimization algorithm
(MWOA) was designed. The new MWOA was aimed at improving the diversity of the
population and balancing the algorithm’s exploration and exploitation performance to
prevent it from prematurely falling into a local optimum.

3.2.1. Dual-Population Search

To initialize the population, the WOA uses a random method that cannot guarantee
the diversity of the initial population. In addition, a single population lacks a mechanism
to communicate with external information, making it difficult to escape a local optimum
position once it has fallen into one. The dual-population search is equivalent to initializing
different populations twice and improves the diversity of the initial population to a certain
extent. Moreover, dual-population constantly communicate search information in a parallel
search process so as to avoid falling into a local optimum.

However, if two subpopulations P1 and P2 search their personal optimal individual
X∗1 and X∗2 in a given iteration, inappropriate communication between the two subpopula-
tions can be counterproductive. To tackle this issue, a new communication mechanism is
proposed in the current study, as follows:

V(k) = V(k− 1) + r1 ∗ (H(k)− L(k)) + r2 ∗
(

H(k)− X*(k− 1)
)

, (k ≥ 2) (13)

X*(k) = r3 ∗ X*(k− 1) + V(k) (14)
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where H(k) and L(k) denote the better and the worse personal optimal individual between
X∗1 and X∗2 in the kth iteration, respectively, and X∗(k) represents the position of the global
optimal individual in the kth iteration. As determined by X∗(1) = H(1), the better personal
optimal individual is regarded as the global optimal individual in the 1st iteration. V(k) is
the variation in the kth iteration, and r1, r2, and r3 are random numbers in [0, 1].

Through this communication mechanism, beginning from the 2nd iteration, the global
optimal individual is determined by the global optimal individual of the last iteration
and the variation in the current iteration. The variation consists of three parts: the first
is the variation in the last iteration, the second is the difference between the personal
optimal individuals of the two subpopulations in the current iteration, and the third is the
difference between the current iteration’s better personal optimal individual and the global
optimal individual of the last iteration. This means that the global optimal individual
combines the search capabilities of the two subpopulations in the current iteration and the
search experience obtained by the entire population, as opposed to taking only the optimal
individual of a certain subpopulation. Furthermore, even if a subpopulation falls into a
local optimum, it can escape through this communication mechanism, effectively reducing
the probability of falling into local optima. Once a certain dimension of X∗(k) exceeds the
search space boundary, it is replaced by the corresponding dimension of H(k). This newly
proposed communication mechanism is represented in Figure 1.
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3.2.2. Mutation Centroid Opposition-Based Learning

In centroid opposition-based learning (COBL), the centroid of the current population
is taken as reference point to calculate the opposite population. The two populations are
then combined into a single population and several particles with the highest fitness are
selected to ultimately form a population.

Assume that population P = (X1; · · · ; XN) is composed of N particles with D dimen-
sional search space, then the centroid of the population can be defined as follows:

M =
X1 + · · ·+ XN

N
(15)

Each particle Xi =
(
xi1, xi2, · · · , xij

)
, where xij ∈ [lb, ub]. Then:

Mj =
∑N

i=1 xij

N
, j = 1, · · · , D (16)

where lb and ub denote the lower and upper boundary of the search space, respectively.
Having defined the centroid of the population as M, the opposite particle, Xi, of

particle Xi can be calculated as follows:

Xi = 2×M− Xi (17)
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Particles beyond the boundary are recalculated according to Equation (18):

xij =

{
lb + r× (ub− lb) xij < lb
ub− r× (ub− lb) xij > ub

(18)

where r is a random number in [0, 1].
For convergence, the WOA performs local exploitation during the middle and later

stages. As particles gradually gather around the optimal individual, the centroid changes
very little, which in turn renders COBL ineffective to preserve the diversity of the popula-
tion. For this reason, a mutation operation is implemented to help the centroid jump out of
the current gathering, whereby all particles are able to change in response to the change
of reference point, thus improving the diversity of the population. The centroid mutation
operation is expressed by Equation (19):

M′ = M× (1 + γ) (19)

where γ indicates the mutation operator and M′ is the centroid after mutating.
Since it cannot be guaranteed that the position of the centroid will improve after

mutation, the greedy strategy is adopted to compare the fitness of the centroid before and
after mutating. When the fitness of the centroid is better after mutation, the centroid is then
updated to M′, otherwise the centroid remains unchanged.

Among the many available mutation operation methods, the Cauchy mutation and
the Levy mutation have been shown to be the most effective, especially in comparison to
the Gaussian mutation [39]. Therefore, the present paper employed the Cauchy and Levy
mutations for centroid mutation.

1. Cauchy Mutation

This is a random mutation operation based on the Cauchy distribution. Zhao [40]
demonstrated the effectiveness of the Cauchy mutation in improving the diversity of the
population when applied to the grasshopper optimization algorithm (GOA). The standard
Cauchy distribution is shown in Equation (20):

fc(x) =
1

π(1 + x2)
,−∞ < x < ∞ (20)

The standard Cauchy distribution peaks at zero, it is lower in the middle and longer at
both ends. This long-tailed distribution allows the centroid a higher probability of jumping
to a better position that may significantly improve the diversity of the population. The
Cauchy mutation is given in Equation (21):

Cauchy(0, 1) = tan[(δ− 0.5)π] (21)

where δ ∈ (0, 1).

2. Levy mutation

The Levy flight is a process of random walking, and its walking step size meets the
heavy-tailed distribution [27]. The Levy mutation is described as follows:

L(β) =
µσ

|v|
1
β

, 0 < β ≤ 2 (22)

where µ and v belong to the standard normal distribution, and σ is given by:

σ =

Γ(1 + β) sin(πβ
2

)
Γ
(

1+β
2

)
β2(

β−1
2 )


1
β

(23)
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where Γ(·) is the standard gamma function and β = 1.5.
The Levy mutation is characterized by predominantly small steps and occasional large

steps, i.e., small or large centroid changes, which can improve the diversity of the population.
Both mutations are each applied to one of the two subpopulations, centroid mutation

is ultimately expressed by Equation (24):{
M′ = M× (1 + Cauchy) or

M′ = M× (1 + L(β))
(24)

To verify the effect of mutation centroid opposition-based learning, the Levy mutation
was applied to the WOA (referred to as the Levy mutation centroid opposition-based learn-
ing whale optimization algorithm, LCOBLWOA) and compared to the centroid opposition-
based learning whale optimization algorithm (COBLWOA) and the WOA alone. For these
comparisons, the standard benchmark function Sphere, whose theoretical optimal value is
zero, was taken as an example, and the population distribution was analyzed. The search
dimension was set to D = 2 in order to display the distribution of the population more
intuitively. The remaining parameters were as follows: lb = −30, ub = 30, N = 30, and the
maximum iteration was 100. The 1st, 60th, and 84th iterations (the latter two randomly
selected) were chosen to represent population distribution at the initial, middle, and later
iterations, respectively.

The results are shown in Figure 2. It illustrates the population distributions obtained
by the WOA, COBLWOA, and LCOBLWOA during different iterations. Figure 2a–c shows
the population distribution obtained by the WOA at the 1st, 60th, and 84th iteration,
respectively. As shown, the population was uniformly distributed in the initial iteration and
the diversity of the population was abundant. In the 60th and 84th iterations, however, the
population nearly gathered around three points, indicating a sharp decline in the diversity
of the population. Figure 2d–f shows the population distributions of the COBLWOA. With
this algorithm, the population remained uniformly distributed in the initial and middle
iterations, but by the 84th iteration, the bulk of the population was distributed in an arc
at the lower right. This indicates that, despite being conducive to the diversity of the
population improvements throughout early to middle iterations, the COBL could not
prevent the decline of diversity in later stages. Finally, Figure 2g–i shows the population
distributions obtained by the LCOBLWOA. Over all the iterations analyzed, LCOBLWOA
resulted in a uniformly distributed population, indicating abundant diversity across all
iterations and confirming the effectiveness of the Levy mutation centroid opposition-based
learning (LCOBL) to improve the diversity of the population.

Importantly, all three algorithms had different search boundaries even in the same iter-
ation. For instance, in the 60th iteration, the WOA search boundary was on the magnitude
of 1× 10−3, while the COBLWOA and the LCOBLWOA were on the magnitude of 1× 10−23

and 1× 10−25, respectively. The gap was greater in the 84th iteration, indicating that the
three algorithms had different convergence speeds and convergence accuracies. This was
confirmed upon inspection of the convergence curves (Figure 3), which also revealed that
the LCOBLWOA had the fastest convergence speed and the highest convergence accuracy.
To characterize the LCOBLWOA’s mutation trends, a set of 30 random experiments was
run (Figure 4). The average number of mutations was 35.5667, with a standard deviation
of 4.1413. This indicates that mutations in the LCOBLWOA occur in a relatively stable
fashion. Additionally, experiments with the Cauchy mutation centroid opposition-based
learning whale optimization algorithm were implemented with similar results. Taken
together, mutation centroid opposition-based learning effectively improved the diversity of
the population across all iterations and enhanced the search performance of the WOA.
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3.2.3. Adaptive Inertia Weight

In the original WOA, particles update their positions without regard to the correspond-
ing inertia weight. Since appropriate inertia weight can improve convergence accuracy, the
present work introduced inertia weight to adaptively adjust the updated position. Inertia
weight can be expressed as follows:

ω = ωmax − (ωmax −ωmin)

((
2 ∗ iter

max_iter

)
−
(

iter
max_iter

)2
)

(25)

where ωmax and ωmin are the maximum and minimum adaptive inertia weights, respec-
tively, max_iter indicates the maximum iteration, and iter denotes the current iteration.

Adaptive inertia weight, ω, decreases smoothly throughout iterations; it is larger
during the early iterations and becomes smaller at later iterations, which improves the
algorithm’s global exploration capability at the beginning and favors its local exploitation
capability at a later stage. The improved WOA is thus expressed as:

X(k + 1) = ωX*(k)− AD (26)

X(k + 1) = D′eblcos (2πl) + ωX*(k) (27)

X(k + 1) = ωXrand − A|CXrand − X(k)| (28)

The pseudo-code for the MWOA is also included in Algorithm 1.

Algorithm 1: Pseudo-code of MWOA algorithm.

1: Initialize two subpopulations P1 and P2, each subpopulation of size n1 and n2, respectively.
2: while 1 (iter < max_iter) do
3: Use Equation (16) to calculate the centroid of P1 and P2 as M1, M2
4: Levy mutation operator for centroid M1 by using Equation (24) and create L_M1
5: if f (L_M1 ) < f (M1 ) // f (·) is fitness function
6: M′1 ← L_M1 //M′1 denotes centroid of P1 after mutating
7: else
8: M′1 ← M1
9: end if

10: In P1, use Equations (17) and (18) calculate opposite subpopulation
−
P1

11: C_P1 ← P1 ∪
−
P1 , calculate each particle fitness of C_P1.

12: Sort and select n1 fittest individuals from the C_P1 to replace P1
13: Calculate and obtain optimal individual X∗1 of P1
14: Cauchy mutation operator for centroid M2 by using Equation (24) and create C_M2
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15: Similar to steps 5–9, calculate centroid M′2 of P2

16: In P2, use Equations (17) and (18) calculate opposite subpopulation
−
P2

17: C_P2 ← P2 ∪
−
P2 , calculate each particle fitness of C_P2

18: Sort and select n2 fittest individuals from the C_P2 to replace P2
19: Calculate and obtain optimal individual X∗2 of P2
20: Calculate the global optimum X∗ by the new communication mechanism
21: while 2 (iter≥ 2) do
22: Use Equations (13) and (14) to calculate the global optimal individual X∗

23: end while 2
24: X∗1 ← X∗ ; X∗2 ← X∗

25: Update parameters ω, a
26: for i = 1 : n1
27: update parameters A, C, l, p
28: update P1 using Equations (26)–(28), calculate the fitness of each particle
29: end for
30: for j = 1 : n2
31: update parameters A, C, l, p
32: update P2 using Equations (26)–(28), calculate the fitness of each particle
33: end for
34: Update X∗ if there is a better solution
35: iter = iter + 1
36: end while 1
37: return X∗

3.2.4. Trajectory Planning Process Based on the MWOA

The trajectory planning process using the MWOA comprises the following steps:
Step 1: Determine the initial and terminal position and constraints, randomly initialize

two subpopulations P1 and P2, and with each particle expressing as Xi = (ti1, ti2, ti3);
Step 2: Calculate the fitness of each particle in both subpopulations and update both

subpopulations through the mutation centroid opposition-based learning method;
Step 3: Calculate the global optimal individual, X∗, through the new communica-

tion mechanism;
Step 4: Update ω and WOA parameters, update the position of P1 and P2 according to

Equations (26)–(28) independently, and update X∗ if there is a better solution;
Step 5: Determine whether the iteration is terminated. If it is satisfied, output X∗,

otherwise, return to Step 2;
Step 6: Substitute X∗ into Equation (3) to calculate coefficient matrix B, then substitute

B into Equation (1) to output the global optimal trajectory.

4. Simulation Analysis and Pilot Experiment
4.1. 4-DOF Upper Extremity Exoskeleton Rehabilitation Robot

The 4-DOF upper extremity exoskeleton rehabilitation (4-DOF UEER) robot used in
this paper is illustrated in Figure 5. It consists of shoulder, elbow, and wrist components,
which correspond to the joints found in human upper limbs. Joints 1 and 2 of the 4-DOF
UEER robot are designed on the shoulder, where joint 1 performs abduction and adduction
movements and joint 2 executes flexion and extension movements. Joints 3 and 4 mimic
the elbow and wrist, respectively, and both perform flexion and extension movements.
Together, the four joints, driven by servo motors, can assist a human patient to complete
most upper limb movements. The positions and angular velocity of each joint could be
obtained through embedded angle sensors and encoders. For the present work, the 4-DOF
UEER robot was installed on a movable wheelchair, and it is thus freely mobile.
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4.2. Single Joint Trajectory Planning Experiment

According to rehabilitation theory, the recovery of upper limb movement and function
of stroke patients should start with rehabilitation of a single joint and gradually build up to
multi-joint rehabilitation. For this reason, a trajectory was first planned for a single joint.
The MWOA and the WOA were used to optimize the trajectory, assuming that the initial
position θ0 = 0 and the terminal position θ f = 0.5236 rad. Partial constraint values were

obtained from the literature [14], the constraints were as follows:
.
θimax = 0.5236 rad/s,

.
θimin = 0.0873 rad/s,

..
θimax = 0.5236 rad/s2, and

...
θ imax = 3 rad/s3. Common parameters

were set as follows: λvj = λaj = λpj = λtj = 40 (the weights of all constraints were set to
the same value since they were considered equally important), max_iter = 50, lb = 0.5 s,
ub = 7 s, and D = 3. The newly set experimental parameters are summarized in Table 2.

Table 2. Experimental parameters.

Algorithm Population Size N ω

WOA 30

MWOA P1 n1= 16
P2 n2 = 14

ωmax = 0.9
ωmin = 0.3

Given the randomness of the algorithms, 15 experiments were performed. As shown
in Figure 6, the total running time of the trajectory optimized by the MWOA was lower than
that of the WOA, with the exception the 10th experiment. Since the trajectory optimized by
the WOA in the 10th experiment violated the time constraint, it was considered that no
feasible solution could be found in this experiment. This also suggests that the WOA may
be unable to find a feasible solution under complex constraints, which supports the notion
that the WOA needs further improvement. Excluding data from the 10th experiment, the
running time was 17.5670% shorter for the MWOA compared to the WOA, with an average
running time of 3.1130 s and 3.7764 s, respectively, and a standard deviation of 0.0714
and 0.7967, respectively. These results confirmed that the MWOA has higher convergence
accuracy and more stability than the WOA.
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Experimental trajectories were randomly selected for further inspection (Figure 7).
All trajectories were smooth and continuous, with the 2nd segment maintaining uniform
velocity and the 1st and 3rd segments lacking sudden changes in angular velocity or
angular acceleration or a continuous and bounded jerk curve, and all constraints were
satisfied. In particular, the trajectory optimized by MWOA had a similar running time both
in the 1st and 3rd segments, the jerk was close to the maximum value, and the angular
velocity and angular acceleration were greater than the trajectory optimized by the WOA.
In comparison, the running time of the 1st segment optimized by WOA was longer than its
3rd segment, the jerk approached the maximum value in the 3rd segment, and the angular
velocity and angular acceleration were also larger than those for the 1st segment. This
shows that the MWOA optimized a trajectory with better symmetry than the WOA.
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Figure 7. Comparison of the trajectories optimized by the MWOA and the WOA. (a) A comparison
of the position curves optimized by the MWOA and the WOA. (b) A comparison of the angular
velocity curves optimized by the MWOA and the WOA. (c) A comparison of the angular acceleration
curves optimized by the MWOA and the WOA. (d) A comparison of the jerk curves optimized by the
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To visualize the trajectory optimization process of both algorithms, convergence curves
were plotted and are shown in Figure 8. The WOA converged at the 7th iteration, while
the MWOA did not converge until the 27th iteration, which indicated that the WOA had
a higher convergence speed. However, importantly, the WOA only searched for the local
optimal solution, while the MWOA searched for a better solution. Figure 8b,c shows the
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convergence curves of running time for each trajectory segment. The running time of the
2nd segment was the longest and evidently satisfied the time constraints of the trajectory.
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The above results confirmed that the MWOA successfully achieved a higher conver-
gence accuracy and robustness than the WOA. Moreover, only the WOA failed to find a
feasible solution in some instances, whereas the MWOA was always capable of finding
a feasible solution, which further highlights the feasibility and reliability of the MWOA.
These improvements were made possible by the different strategies integrated into the
WOA. First, the dual-population search strategy improved the diversity of the initial popu-
lation, and when used in tandem with the mutation centroid opposition-based learning
strategy, which improved the diversity of the population throughout the entire iterative pro-
cess, it allowed for a wider search space. In addition, the new communication mechanism
proposed in this paper that allowed the two subpopulations to continuously communicate
their search information to avoid premature convergence. Finally, the adaptive inertia
weight parameter balanced the local exploitation and global exploration capabilities and
improved the convergence accuracy of the algorithm.

The MWOA was also compared to other famous optimization algorithms, namely
the particle swarm optimization algorithm (PSO) [41], the firefly algorithm (FA) [42],
the salp swarm algorithm (SSA) [43], and the improved whale optimization algorithm
(IWOA) [21]. Each algorithm was run in 15 randomized experiments under the same
experimental conditions, taking other parameters from their original reference. The index
Em [17] was used to evaluate optimization performance; the smaller the Em value, the better
the optimization performance. In addition, the number of times an algorithm failed to find
a feasible solution was also used to evaluate optimization performance. Standard deviation
(STD) was used to evaluate robustness; the smaller the STD, the higher the robustness. The
index Em was calculated by Equation (29):

Em = (Sa − Smin)/Sa (29)
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where Smin is the optimal value among the experimental results and Sa is the average value
of experimental results.

Figure 9 shows the fitness convergence curves of the above-mentioned algorithms. It
can be observed that the MWOA has the best convergence accuracy as well as comparable
convergence speed. Furthermore, as shown in Table 3, the MWOA and the PSO had a
smaller Em value than the FA, SSA, IWOA, and WOA. The PSO and IWOA failed to find
a feasible solution in one instance, and the WOA failed in two instances. Therefore, the
MWOA had the best performance and also showed the best robustness.
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Table 3. Simulation results of different algorithms.

Algorithm Em STD Failure Time

PSO 0.0467 0.1069 1
FA 0.2257 1.4820 0

SSA 0.0711 0.3466 0
WOA 0.2253 0.8870 2
IWOA 0.0764 0.2208 1

MWOA 0.0438 0.0824 0

4.3. Multi-Joint Trajectory Planning Experiment

Trajectory planning for multiple joints was also performed. The initial position of each
joint was assumed to be zero and the terminal position vectors were θ f = (−0.7854, −0.8727,
−1.0472, and −0.9075 rad). Constraints and parameters were the same as for Section 4.2,
and the MWOA was applied to optimize the trajectory of each joint independently. As
shown in Table 4, the running times of each joint and each trajectory segment were all
different. To ensure that constraints were satisfied as well as ensuring the synchronous
motion of all joints, the maximum running time of each segment was selected to generate
the trajectory; thus, the running time of each joint was t = (1.2368, 1.3914, and 1.2948 s). The
trajectories of each joint are shown in Figure 10. All trajectories were smooth, continuous,
and satisfied constraints, similar to the single-joint experiments.

Table 4. Running time of each joint trajectory.

Joint (i) ti1 ti2 ti3

1 1.1957 1.2527 1.1167
2 1.1572 1.2805 1.2361
3 1.2345 1.3914 1.2948
4 1.2368 1.3308 1.2344
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To verify the feasibility of the trajectory optimized by the MWOA, a simulation of the
4-DOF UEER robot moving along the planned trajectory was carried out. The end-effector
trajectory of the 4-DOF UEER robot is shown in Figure 11. The simulation showed that
the 4-DOF UEER robot moved steadily along the trajectory during the complete motion.
Furthermore, the trajectory of the end-effector was smooth and continuous.
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Finally, a pilot rehabilitation experiment was performed on a healthy volunteer. The
volunteer was first familiarized with the content of the experiment and then made to wear
the 4-DOF UEER robot and sit in a wheelchair with his arms relaxed. The 4-DOF UEER
robot moved together with the volunteer’s arm along the planned trajectory, as depicted in
Figure 12. Comparisons of position and angular velocity between the simulation and the
actual are shown in Figures 13 and 14. Among these joints, the maximum position errors
were 0.033 rad (in joint 2), and the maximum angular velocity errors were 0.021 rad/s (in
joint 3). The motion process remained stable and was completed safely, which verified the
feasibility and practical value of the proposed MWOA.
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5. Conclusions

In this paper, a multistrategy improved whale optimization algorithm (MWOA) was
proposed for isokinetic rehabilitation trajectory planning with upper extremity exoskeleton
rehabilitation robots. The main conclusions are as follows:

(1) A piecewise polynomial was used to construct the preliminary isokinetic rehabili-
tation trajectory. The trajectory included acceleration, uniform velocity, and deceleration,
which meets the basic characteristics of isokinetic rehabilitation. Taking the minimum
running time as the objective, the improved whale optimization algorithm was used to
realize the bounded jerk trajectory in line with human motion. The simulation results have
shown that the trajectory was continuous and smooth and without impact; moreover, the
running time of the uniform velocity segment was the longest, indicating the feasibility of
the trajectory;

(2) Compared with the original whale optimization algorithm, this proposed algorithm
had a stronger global search ability, a higher convergence accuracy, a better robustness un-
der complex constraints, and was more reliable and symmetrical in trajectory optimization.
Compared with other excellent optimization algorithms, this algorithm also had a higher
convergence accuracy and robustness;

(3) The upper extremity exoskeleton rehabilitation robot completed the simulated
rehabilitation experiment safely and stably along the planned rehabilitation trajectory,
indicating that the isokinetic rehabilitation trajectory planning of the upper extremity
exoskeleton rehabilitation robot proposed in this paper was a feasible scheme.

As a result of the complexity of rehabilitation, further research is needed on rehabilita-
tion trajectory planning, such as multi-objective trajectory planning.
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ACO Ant colony optimization
COBL Centroid opposition-based learning
COBLWOA Centroid opposition-based learning whale optimization algorithm
DE Differential evolution algorithm
DOF Degree of freedom
FA Firefly algorithm
GA Genetic algorithm
GOA Grasshopper optimization algorithm
HHO Harris hawks optimization
IWOA Improved whale optimization algorithm
LMCOBL Levy mutation centroid opposition-based learning
LMCOBLWOA Levy mutation centroid opposition-based learning whale optimization algorithm
MCDE Multi-population covariance learning differential evolution
MPSO Multi-population particle swarm optimization
MWOA Multi-strategy improved whale optimization algorithm
NURBS Non-uniform rational B-spline
OBL Opposition-based learning
PSO Particle swarm optimization algorithm
STD Standard deviation
SSA Salp swarm algorithm
UEER Upper extremity exoskeleton rehabilitation
WOA Whale optimization algorithm
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