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Abstract: We have developed a two-point iterative scheme for multiple roots that achieves fifth
order convergence by using two function evaluations and two derivative evaluations each iteration.
Weight function approach is utilized to frame the scheme. The weight function named as R(υt) is
used, which is a function of υt, and υt is a function of ωt, i.e., υt =

ωt
1+aωt

, where a is a real number

and ωt =
(

g(yt)
g(xt)

) 1
m̃ is a multi-valued function. The consistency of the newly generated methods is

ensured numerically and through the basins of attraction. Four complex functions are considered to
compare the new methods with existing schemes via basins of attraction, and all provided basins
of attraction possess reflection symmetry. Further, five numerical examples are used to verify the
theoretical results and to contrast the presented schemes with some recognized schemes of fifth order.
The results obtained have proved that the new schemes are better than the existing schemes of the
same nature.

Keywords: nonlinear equations; multiple roots; Newton–Raphson’s method; iterative methods
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1. Introduction

The approximate solution of a function g, where g : C → C, is a complex valued
function possessing the nth order derivatives and roots with multiplicity m̃ > 1, can be
evaluated through iterative methods. These types of methods have attracted interest for
some recent research [1,2], including symmetry-related works [3–6]. There are two types
of iterative methods which can serve the purpose: one-point iterative methods and multi-
point iterative methods. One-point iterative methods of order ρ use high order derivatives,
namely g(1)(x), g(2)(x), ..., g(ρ−1)(x) of function g. For example, the methods presented by
Chun et al. [7], Hansen et al. [8], Neta [9], Osada [10] and Sharma et al. [11] are some
one-point iterative methods. However, it is very difficult to find out the higher order
derivatives when the function g is complex. To reduce this ambiguity, multi-point iterative
methods are used as they are free to use any number of evaluations of derivatives. In
most of the multi-point iterative methods, the most reputable modified Newton–Raphson’s
Method [12] for multiple roots of a non linear function is used as the first step, sometimes
as it is and sometimes by making some modifications to it. The scheme for modified
Newton–Raphson’s Method is

xt+1 = xt − m̃
g(xt)

g′(xt)
, t = 0, 1, 2, ... (1)

This method has quadratic order of convergence for m̃ ≥ 1. The multipoint iterative
methods by Zhou et al. [13], Geum et al. [14,15] and Behl et al. [16] have used a modified
Newton’s method as the first phase of their suggested schemes. Further, the methods by
Li et al. [17], Zhou et al. [18], Behl et al. [19], Kansal et al. [20] and Rani et al. [21] are
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some examples of multi-point iterative methods whose first step is based upon a modified
Newton–Raphson’s method.

From the literature, one can observe that the primary goal behind the construction of
the multi-point iterative method is to bring the order of convergence as high as possible
without using the higher order derivatives. Different types of approaches [22–29] (for
example, quadrature formula, adomian polynomial, divided difference approach, the
weight function approach) have been applied by researchers to develop the multi-point
iterative methods. Below, we provide some of the multi-point methods which are based on
a weight function approach. In 2015, Artidiello et al. [30] developed a two-point scheme
using weight function as follows:

yt = xt − β
g(xt)

g′(xt)
,

xt+1 = yt − H(µt)
g(yt)

g′(xt)
,

(2)

where H : R → R is weight function, µt =
a1g(xt)+a2g(yt)
b1g(xt)+b2g(yt)

, and β, a1, a2, b1 and b2 are
real parameters.

Very recently, in August 2022, Cordero et al. [31] developed a new iterative scheme
with the help of weight function, which is given below:

yt = xt − β
g(xt)

g′(xt)
,

xt+1 = yt − H(ut)
g(xt)

g′(yt)
,

(3)

where H : R→ R is weight function, ut =
g′(yt)
g′(xt)

and β is a free parameter.
Further, Chanu et al. [32] created a new scheme using the weight function and divided

difference in September 2022, as follows:

yt = xt −
g(xt)

g′(xt)
,

xt+1 = yt − H(vt)
g(yt)(1 +

A
2 )

g[yt, xt]
,

(4)

where A =
g(yt)(g

′(xt)−g[yt ,xt ])
g(xt)g[yt ,xt ]

, H : R→ R is weight function, and vt =
g(yt)
g(xt)

.
Motivated by this weight function approach, we are fully concentrated on developing

a multi-point iterative method for multiple roots of order five which uses two function
evaluations and two derivative evaluations per iteration. The first step of our new scheme is
also a modified Newton–Raphson’s Method, and the second step involves a weight function.
Mathematica [33] is used in the whole work for symbolic and numerical computation.

The outline of the rest of the paper is as follows: Section 2 of the paper includes the
development of the new family and also an investigation of its convergence. Section 3
discusses a few distinctive members of the newly formed family. The basins of attraction
are contained in Section 4 of the paper. The theoretical findings are validated in Section 5
by a number of numerical instances. Finally, Section 6 includes the closing remarks.
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2. Construction of the Fifth-Order Family

Here, we derive a fifth-order mechanism for multiple zeros (m̃ ≥ 2) in the following,
by considering the scheme:

yt = xt − m̃
g(xt)

g′(xt)
,

xt+1 = yt − m̃R(υt)
g(yt)

g′(yt)
,

(5)

where m̃ ≥ 2 is the multiplicity of the required zero and R(υt) is a single variable weight

function. Moreover, υt = ωt
1+aωt

, where a ∈ R and ωt =
(

g(yt)
g(xt)

) 1
m̃ are multi-valued

functions.

Theorem 1. Let α ∈ D be a multiple root with multiplicity m̃ ≥ 2 of a holomorphic function
g : D ⊂ C→ C for an open interval D. If x0 is sufficiently close to α then the new Scheme (5) has
fifth-order of convergence, provided

R(0) = 1, R′(0) = 0, R′′(0) = 2, |R′′′(0)| < ∞, (6)

and fulfils the aforementioned error equation,

et+1 =

(
(18 + 12a + 6m̃− R′′′(0))D4

1 − 12m̃D2
1D2

6m̃4

)
e5

t + O(e6
t ). (7)

Proof of Theorem 1. If xt and et denote the approximate solution and the corresponding
error in t–th iteration, then et = xt − α.

For the function g(xt), apply Taylor’s series expansion about x = α,

g(xt) = g(α) + g(1)(α)et +
g(2)(α)

2!
e2

t + ... +
g(m̃−1)(α)

m̃− 1!
em̃−1

t +
g(m̃)(α)

m̃!
em̃

t + ... (8)

since the root α has multiplicity m̃. Therefore, g(α) = g(1)(α) = g(2)(α) = ...g(m̃−1)(α) = 0
and g(m̃)(α) 6= 0. Thus, Equation (8) becomes

g(xt) =
g(m̃)(α)

m̃!
em̃

t

(
1 + D1et + D2e2

t + D3e3
t + D4e4

t + D5e5
t + O(e6

t )

)
. (9)

Here, the asymptotic error constants Di =
m̃!

(m̃+i)!
g(m̃+i)(α)

g(m̃)(α)
, i = 1, 2, 3, ...

g′(xt) =
g(m̃)(α)

(m̃− 1)!
em̃−1

t

[
1 +

(1 + m̃
m̃

)
D1et +

(2 + m̃
m̃

)
D2e2

t +
(3 + m̃

m̃

)
D3e3

t(4 + m̃
m̃

)
D4e4

t +
(5 + m̃

m̃

)
D5e5

t + O(e6
t )

]
.

(10)

Dividing (9) by (10), we obtain

g(xt)

g′(xt)
=

et

m̃
− D1

m̃2 e2
t +

[(1 + m̃)D2
1 − 2m̃D2]

m̃3 e3
t +

L′

m̃4 e4
t +

L
m̃5 e5

t + O(e6
t ), (11)

where L′ = [−(1 + m̃)2D3
1 + m̃(4 + 3m̃)D1D2 − 3m̃2D3], L = ((1 + m̃)3D4

1 − 2m̃(3 + 5m̃ +
2m̃2)D2

1D2 + 2m̃2(3 + 2m̃)D1D3 +2m̃2[(2 + m̃)D2
2 − 2m̃D4]).
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Put (11) in the first step of (5),

eyt =
D1

m̃
e2

t +

(
2m̃D2 − (1 + m̃)D2

1

m̃2

)
e3

t +

(
−L′

m̃3

)
e4

t + O(e5
t ). (12)

Now, we have

g(yt) =
g(m̃)(x0)

m̃!
em̃
yk

(
1 + D1eyk + D2e2

yk
+ D3e3

yk
+ D4e4

yk
+ D5e5

yk
+ O(e6

yk
)

)
, (13)

and

g′(yt) =
g(m̃)(α)

(m̃− 1)!
em̃−1
yk

[
1 +

(1 + m̃
m̃

)
D1eyk +

(2 + m̃
m̃

)
D2e2

yk
+
(3 + m̃

m̃

)
D3e3

yk

+
(4 + m̃

m̃

)
D4e4

yk
+
(5 + m̃

m̃

)
D5e5

yk
+ O(e6

yk
)

]
.

(14)

Divide (13) by (9),

g(yt)

g(xt)
=
(D1

m̃

)
em̃

(
1 +

L1

D1
et +

L2

2m̃D2
1

e2
t +

L3

6m̃2D3
1

e3
t + o(e4

t )

)
, (15)

where L1 = 2m̃D2 − (2 + m̃)D2
1, L2 = (1 + m̃)2(3 + m̃)D4

1 − 2m̃(3 + 5m̃ + 2m̃2)D2
1D2 +

4m̃2(m̃ − 1)D2
2 + 6m̃2D1D3, L3 = −(m̃ + 1)3(m̃2 + 6m̃ + 8)D6

1 + 6m̃(m̃4 + 6m̃3 + 13m̃2 +
13m̃ + 4)D4

1D2 + 8m̃3(m̃2 − 3m̃ + 2)D3
2 + 6m̃2D3

1(3m̃2 + 7m̃ + 4)D3 + 36m̃3(m̃− 1)D1D2D3
− 12m̃3D2

1 [(m̃ + 1)2D2
2 − 2D4].

Also,

ωt =

(
g(yt)

g(xt)

)1/m̃
=

D1

m̃
em̃ +

L1

m̃2 e2
t +

M1

2m̃3 e3
t +

M2

6m̃4 e4
t + o(e5

t ), (16)

where M1 = [(7 + m̃(7 + 2m̃))D3
1 − 2m̃(7 + 3m̃)D1D2 + 6m̃2D3], M2 = [−(2 + m̃)(17 +

m̃(17 + 6m))D4
1 + 6m̃(17 + 4m̃(4 + m̃))D2

1D2 − 12m̃2(5 + 2m̃)D1D3 + 12m̃2(−(3 + m̃)D2
2 +

2m̃D4)].
From Scheme (5), we have υt =

ωt
1+aωt

. Using (16) in it, we obtain

υt =
D1

m̃
em̃

t +
2m̃D2 − (2 + a + m̃)D2

1

m̃2 e2
t +

N1

2m̃3 e3
t +

N2

6m̃4 e4
t + o(e5

t ), (17)

where N1 = [(7 + 2a2 + m̃(7 + 2m̃) + 4a(2 + m̃))D3
1 − 2m̃(7 + 4a + 3m̃)D1D2 + 6m̃2D3],

N2 = [(34 + 6a3 + 51m̃ + 29m̃2 + 6m̃3 + 18a2(2 + m̃) + 6a(11 + 11m̃ + 3m̃2))D4
1 − 6m̃(17 +

6a2 + 16m̃+ 4m̃2 + 2a(11+ 5m̃))D2
1D2 + 12m̃2(5+ 3a+ 2m̃)D1D3 + 12m̃2((3+ 2a+ m̃)D2

2−
2m̃D4)].

Expanding weight function R(υt) around the locality of origin, as follows,

R(υt) = R(0) + R′(0)υt +
1
2!

R′′(0)υ2
t +

1
3!

R′′′(0)υ3
t + ... (18)

At last, using the result of step one of schemes (5), (13), ( 14) and (18) in the second
step of Mechanism (5), we obtain

et+1 = − [−1 + R(0)]D1

m̃
e2

t +
[−2(−1 + R(0))m̃D2 + D2

1((−1 + R(0))(1 + m̃)− R′(0)]
m̃2 e3

t

+
Q1

2m̃3 e4
t +

Q2

6m̃4 e5
t + O(e6

t ),
(19)
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where Q1 = (−6(−1 + R(0))m̃2D3 + 2m̃D1D2((−1 + R(0))(4 + 3m̃) − 4R′(0)) + D3
1(2 +

4m̃− 4m̃(R(0) + 2m̃2 − 2R(0)m̃2 + 2(3 + a + 2m̃)R′(0) − R′′(0))), Q2 = (12m̃2(−2(−1 +
R(0))m̃D4 + D2

2((−1 + R(0))(2 + m̃)− 2R′(0))) + 12m̃2D1D3((−1 + R(0))(3 + 2m̃)−
3R′(0))+ 6m̃D2

1D2(2(−3+R(0)− 5m̃+ 5R(0)m̃− 2m̃2 + 2R(0)m̃2)− (17+ 6a+ 10m̃)R′(0)+
3R′′(0)) + D4

1(−6− 6R(0)− 18m̃+ 6R(0)m̃− 18m̃2 + 18R(0)m̃2 − 6m̃3 + 6R(0)m̃3 − 3(11 +
2a2 + 17m̃+ 6m̃2 + 2a(5 + 3m̃))R′(0) + 3(5 + 2a + 3m̃)R′′(0)− R′′′(0)).

Using the Expression (19), we can quickly determine that Mechanism (5) obtains the
convergence of at least fifth-order, if

R(0) = 1, R′(0) = 0, R′′(0) = 2. (20)

Next, by using (20) in (19), we obtain

et+1 =

(
(18 + 12a + 6m̃− R′′′(0))D4

1 − 12m̃D2
1D2

6m̃4

)
e5

t + O(e6
t ), (21)

Provided |R′′′(0)| < ∞. Hence, Scheme (5) has fifth-order convergence.

3. Special Cases

This section provides the new methods of fifth order for multiple roots by making
different choices of weight functions adhering the constraints of Theorem 1. A few special
cases are stated in the preceding Table 1.

Table 1. Some special cases of Mechanism (5).

Cases (Naming) Weight Functions Equivalent Iterative Method

Case-1 (TM1) R(υt) = 1 + υ2
t yt = xt − m̃ g(xt)

g′(xt)
,

xt+1 = yt − m̃(1 + υ2
t )

g(yt)
g′(yt)

.

Case-2 (TM2) R(υt) = e−υt + υt +
υ2

t
2 yt = xt − m̃ g(xt)

g′(xt)
,

xt+1 =

yt − m̃(e−υt + υt +
υ2

t
2 )

g(yt)
g′(yt)

.

Case-3 (TM3) R(υt) = (1− υt)eυt + 3
2 υ2

t yt = xt − m̃ g(xt)
g′(xt)

,
xt+1 = yt − m̃((1− υt)eυt +

3
2 υ2

t )
g(yt)
g′(yt)

.

Case-4 (TM4) R(υt) = 2− υt − 1
1+υt

+ 2υ2
t yt = xt − m̃ g(xt)

g′(xt)
,

xt+1 = yt − m̃(2− υt − 1
1+υt

+

2υ2
t )

g(yt)
g′(yt)

.

4. Basins of Attraction

The graphical images known as the basins of attraction of the roots of a polynomial
g(w) in the Complex plane are used to inspect the convergence of the scheme. The major
significance of using the basins of attraction is that it widens the scope of inceptive guesses
to obtain the zeros of an equation. These graphical images have been used by many
researchers [34–42] to measure the stability and effectiveness of the iterative formulae. We
use 10−3 as tolerance, with a maximum of 25 iterations to exhibit the basins. The procedure
is closed down with the comment that the iteration method starting from w0 is divergent, if
the tolerance is not gained in the needed number of iterations. There are some basic rules
that are used to draw the basins of attraction, given as below:

• The first rule is to select a rectangular area and make sure that every root of the
considered polynomial lies inside this region.
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• Each initial guess of a root is given a color in the basins of attraction. Similarly, another
color is given to each initial guess of another root in the basins of attraction. For each
of the complex polynomial’s roots, this operation is repeated.

• If the iterative formula which started with the initial approximation w0 converges to a
root, then the basins of attraction display the color which is allotted to the initial guess
of that root at point w0. Otherwise, the initial guess w0 is painted with black color.

We now proceed to compare our newly proposed methods, TM1, TM2, TM3 and TM4,
with some existing schemes of the same nature. For comparison, we consider the three
subcases of the scheme by Sharma et al. [40] and three subcases of the family presented by
Chanu et al. [41]. The first method developed by Sharma et al. [40], which we denoted by
SM1, is given as:

yt = xt − m̃
g(xt)

g′(xt)
,

xt+1 = yt − m̃(1 + ω2
t )

g(yt)

g′(yt)
.

(22)

We designate the second subcase of the method by Sharma et al. [40] as SM2, which is
given below:

yt = xt − m̃
g(xt)

g′(xt)
,

xt+1 = yt − m̃

(
1 + ωt + ω2

t
1 + ωt

)
g(yt)

g′(yt)
.

(23)

Here, ωt =
(

g(yt)
g(xt)

) 1
m̃ is a multi-valued function in both the subcases SM1 and SM2.

We write the third subcase of the method by Sharma et al. [40] as SM3, which is
given below:

yt = xt − m̃
g(xt)

g′(xt)
,

xt+1 = yt − m̃

(
(g(xt))

2
m − (g(yt))

2
m

(g(xt))
2
m − 2(g(yt))

2
m

)
g(yt)

g′(yt)
,

(24)

We denote the first subcase of the method by Chanu et al. [41] as NPM1. The scheme
for NPM1 is:

yt = xt + m̃
g(xt)

g′(xt)
,

zt = xt −
m̃
2m̃

g(yt)

g′(xt)
,

xt+1 = zt − m̃

(
1− 2

m̃
+

4
m̃2 +

( 4
m̃
− 8

m̃2

)
h +

( 4
m̃2 −

2
m̃

)
h2

)
g(zt)

g′(zt)
,

(25)

The second subcase of the method by Chanu et al. [41] is expressed as NPM2. This
scheme is given by:

yt = xt + m̃
g(xt)

g′(xt)
,

zt = xt −
m̃
2m̃

g(yt)

g′(xt)
,

xt+1 = zt − m̃

(
1 +

4(h3 − 3h + 2)
3m̃2 − 2(h3 − 3h + 2)

3m̃

)
g(zt)

g′(zt)
,

(26)
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The third subcase of the method by Chanu et al. [41] is denoted by NPM3. The method
is presented by:

yt = xt + m̃
g(xt)

g′(xt)
,

zt = xt −
m̃
2m̃

g(yt)

g′(xt)
,

xt+1 = zt − m̃

(
1 +

4(h− 1)2(2h + 1)
3m̃2 − 2(h− 1)2(2h + 1)

3m̃

)
g(zt)

g′(zt)
,

(27)

where h = 2m̃ g(xt)
g(yt)

is a multi-valued function in schemes NPM1, NPM2 and NPM3.
We compare our newly proposed methods TM1, TM2, TM3 and TM4 with SM1, SM2, SM3,

NPM1, NPM2 and NPM3 by using the following four problems through basins of attraction. To
view dynamical vision, we assume a rectangle D = [−3, 3]× [−3, 3] ∈ C with 500× 500
grid points.

Problem 1. Let us assume the polynomial g1(w) = (w2 − 1)3, having zeros w = 1,−1 with
multiplicity 3. Distribute the colours blue and green among each starting point in the basins of
attraction of roots −1 and 1, respectively. Figure 1 shows the basins that were obtained for the
methods TM1, TM2, TM3, TM4, SM1, SM2, SM3, NPM1, NPM2 and NPM3. From Figure 1, one can easily
observe that the methods TM1, TM2, TM3 and TM4 divide the complex plane into two equal halves
without any disturbance in the regions, but in case of the methods SM1, SM2, SM3, NPM1, NPM2 and
NPM3, the complex plane is divided into two equal halves, which have disturbances. Therefore, the
basins of attraction for the proposed methods, TM1, TM2, TM3 and TM4, are more stable than those for
SM1, SM2, SM3, NPM1, NPM2 and NPM3. Among the newly proposed methods, all performed equally
well.

Problem 2. Now, consider the polynomial g2(w) = (w4 + 4w2 + 16)2, having zeros w =

1 +
√

3i, 1−
√

3i,−1 +
√

3i,−1−
√

3i with multiplicity 2. We have assigned the colors blue,
green, magenta and cyan for each initial point in the basins of attraction of zeros 1 +

√
3i, 1−√

3i,−1 +
√

3i,−1−
√

3i, respectively. Figure 2 displays the basins created using the techniques
TM1, TM2, TM3, TM4, SM1, SM2, SM3, NPM1, NPM2 and NPM3. Black spots in Figure 2 show the points
which are not convergent to any of the roots. It is clear from Figure 2 that the convergence area is
more for methods TM1, TM2, TM3, TM4 and SM3 as compared to the methods SM1, SM2, NPM1, NPM2
and NPM3. Furthermore, it can be seen that the new proposed methods, SM2 and SM3, do not contain
any black spots which indicate the divergent points.

Problem 3. Consider the polynomial g3(w) = (w4 + w2 + 1)2. The roots of this polynomial are

w = 1−
√

3i
2 , 1+

√
3i

2 , −1−
√

3i
2 and −1+

√
3i

2 with multiplicity 2. Assign the colours green, blue, cyan,

and magenta to each initial point on the roots 1−
√

3i
2 , 1+

√
3i

2 , −1−
√

3i
2 and −1+

√
3i

2 . It is observed
from Figure 3 that the proposed methods TM1, TM2, TM3 and TM4, as well as the method SM3, are
adequate to converge to all the roots, and the divergent points occur in case of the methods SM1, SM2,
NPM1, NPM2 and NPM3.
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Figure 1. Basins of attraction of TM1–TM4, SM1–SM3 and NPM1–NPM3 for polynomial g1(w).

Figure 2. Basins of attraction of TM1–TM4, SM1–SM3 and NPM1-NPM3 for polynomial g2(w).
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Figure 3. Basins of attraction of TM1–TM4, SM1–SM3 and NPM1–NPM3 for polynomial g3(w).

Problem 4. The fourth polynomial we consider is g4(w) = (w4 − w3 + w2 − w + 1)3. For this
polynomial, w = e

πi
5 , e

−πi
5 , e

3πi
5 and e

−3πi
5 are the roots of the polynomial with multiplicity 3. We

assign the colors to each initial guess of zero e
πi
5 , e

−πi
5 , e

3πi
5 and e

−3πi
5 as green, blue, cyan and

magenta, respectively. It is observed from Figure 4 that the methods TM1, TM2, TM3, TM4 and SM3
do not contain any black spots, but the methods SM1, SM2, NPM1, NPM2 and NPM3 do contain them,
which means that the methods TM1, TM2, TM3, TM4 and SM3 have performed better than the methods
SM1, SM2, NPM1, NPM2 and NPM3.

As is visible in all figures, the basins of attraction possess reflection symmetry, and one
can even go further to provide a proof for their symmetry [42], while in other instances [3]
the behavior was identified as near to symmetric.



Symmetry 2023, 15, 228 10 of 14

Figure 4. Basins of attraction of TM1–TM4, SM1–SM3 and NPM1–NPM3 for polynomial g4(w).

5. Numerical Results

The convergence of the newly generated methods is ensured in this section, numeri-
cally. Some nonlinear problems are solved by the newly generated methods. Other existing
schemes mentioned in the previous section are also considered for comparison.

Mathematica programming software [33] is used to bring off the computational work.
The numerical results are summarized in tabular form. The table embraces the number of
iterations necessary to procure the root with finishing benchmark |xt+1 − xt|+ |f(xt)| <
10−200 and estimated error |xt+1 − xt| in the last three iterations, residual error of the
considered function |f(xt)| and computational order of convergence (COC), by exerting the
formula:

COC =
log| xt+2−α

xt+1−α |

log| xt+1−α
xt−α |

, where t = 1, 2, ... (28)

The CPU running time is also presented in numerical results. For all the numerical
computations, we have used Mathematica 12.0 programming software on Windows 10 on
Intel Core i3. The problems considered for comparison are mentioned in Table 2. For our
methods, in all the problems we have taken a = −1.
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Table 2. Test functions.

Test Functions Root p x0

f1(x) =
(
sin2x− x2 + 1

)2 1.4044916 2 2
f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675 1.7500000 2 2.2
f3(x) = (x− 2)15(x− 4)5(x− 3)10(x− 1)20 1.0000000 20 0.7
f4(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x+ 12960 3.0000000 4 2.5
f5(x) = [(x− 1)3 − 1]50 2.0000000 50 2.1

The computational results in Tables 3 and 4 show that the methods NPM1, NPM2 and
NPM3 have the best residuals, but the major drawback of these methods is that they do not
retain their order of convergence. Therefore, our proposed methods have performed better
and possess lower residual error as well as low CPU-time for functions f1(x) and f2(x).
They also preserve their fifth order of convergence. The numerical data for the function
f3(x) shown in Table 5 demonstrate that TM4 performs better than the existing methods,
with low error and precise result estimations. Further, the elapsed CPU time is minimal
in the case of TM3. The numerical results obtained for function f4(x) are shown in Table 6.
One can observe that each scheme has extremely high precision, with the lowest residual
calculated by TM4. Table 7 shows the numerical results of the methods for function f5(x).
The best performer for this function is TM4. Furthermore, it is worth mentioning here that
the methods NPM1–NPM3 do not converge to the required root for the problems f3(x) and
f5(x), or we can say that they are divergent for these problems.

Table 3. Computational results for function f1(x).

Methods t |et−2| |et−1| |et| |f(xt+1)| COC CPU Time

TM1 5 9.65× 10−12 5.42× 10−56 3.03× 10−277 1.66× 10−2765 5.00000 0.00186139
TM2 5 1.21× 10−11 1.87× 10−55 1.64× 10−274 4.44× 10−2738 5.00000 0.00216832
TM3 5 1.57× 10−11 7.36× 10−55 1.67× 10−271 6.13× 10−2708 5.00000 0.00231683
TM4 5 1.87× 10−12 6.12× 10−60 2.32× 10−297 2.00× 10−2967 5.00000 0.00247525
SM1 5 6.71× 10−11 1.90× 10−51 3.48× 10−254 3.11× 10−2534 5.00000 0.00279208
SM2 5 1.17× 10−10 3.82× 10−50 1.45× 10−247 8.09× 10−2468 5.00000 0.00278218
SM3 5 5.76× 10−11 8.90× 10−52 7.82× 10−256 1.03× 10−2550 5.00000 0.00263366
NPM1 5 2.83× 10−15 3.23× 10−88 7.21× 10−526 4.85× 10−6302 6.00000 0.00279208
NPM2 5 2.83× 10−15 3.23× 10−88 7.21× 10−526 4.85× 10−6302 6.00000 0.00279208
NPM3 5 2.83× 10−15 3.23× 10−88 7.21× 10−526 4.85× 10−6302 6.00000 0.00279208

Table 4. Computational results for function f2(x).

Methods t |et−2| |et−1| |et| |f(xt+1)| COC CPU Time

TM1 6 4.66× 10−12 5.07× 10−52 7.73× 10−252 1.22× 10−2502 5.00000 0.00154455
TM2 6 5.77× 10−12 1.57× 10−51 2.31× 10−249 7.59× 10−2478 5.00000 0.00170297
TM3 6 7.45× 10−12 5.92× 10−51 1.87× 10−246 1.02× 10−2448 5.00000 0.00138614
TM4 6 1.29× 10−12 5.41× 10−55 7.17× 10−267 2.57× 10−2653 5.00000 0.00169307
SM1 6 3.21× 10−11 1.31× 10−47 1.46× 10−229 2.01× 10−2279 5.00000 0.00215842
SM2 6 5.73× 10−11 2.87× 10−46 8.98× 10−223 2.18× 10−2211 5.00000 0.00262376
SM3 6 2.65× 10−11 5.00× 10−48 1.21× 10−231 3.03× 10−2300 5.00000 0.00231683
NPM1 6 1.48× 10−18 1.03× 10−100 1.16× 10−593 1.72× 10−7103 6.00000 0.00232673
NPM2 6 1.48× 10−18 1.03× 10−100 1.16× 10−593 1.72× 10−7103 6.00000 0.00247525
NPM3 6 1.48× 10−18 1.03× 10−100 1.16× 10−593 1.72× 10−7103 6.00000 0.00200990
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Table 5. Computational results for function f3(x).

Methods t |et−2| |et−1| |et| |f(xt+1)| COC CPU Time

TM1 5 1.52× 10−14 2.00× 10−69 7.74× 10−344 1.03× 10−34298 5.00000 0.00139604
TM2 5 2.12× 10−14 1.15× 10−68 5.39× 10−340 1.13× 10−33913 5.00000 0.00139604
TM3 5 3.08× 10−14 8.08× 10−68 9.98× 10−336 3.42× 10−33486 5.00000 0.00108911
TM4 5 1.46× 10−15 7.05× 10−75 1.84× 10−371 2.49× 10−37068 5.00000 0.00154455
SM1 5 2.29× 10−13 3.26× 10−63 1.92× 10−312 9.26× 10−31153 5.00000 0.00262376
SM2 5 4.77× 10−13 1.62× 10−61 7.34× 10−304 2.06× 10−30292 5.00000 0.00247525
SM3 5 1.84× 10−13 1.08× 10−63 7.68× 10−315 1.82× 10−31392 5.00000 0.00171683
NPM1 Div − − − − − −
NPM2 Div − − − − − −
NPM3 Div − − − − − −

Here, Div means divergent.

Table 6. Computational results for function f4(x).

Methods t |et−2| |et−1| |et| |f(xt+1)| COC CPU Time

TM1 5 9.88× 10−24 2.43× 10−117 2.19× 10−585 2.27× 10−11698 5.00000 0.00216832
TM2 5 1.02× 10−23 2.91× 10−117 5.48× 10−585 2.26× 10−11690 5.00000 0.00200990
TM3 5 1.05× 10−23 3.48× 10−117 1.37× 10−584 2.22× 10−11682 5.00000 0.00247525
TM4 5 8.10× 10−24 7.87× 10−118 6.84× 10−588 1.05× 10−11748 5.00000 0.00263366
SM1 5 1.40× 10−23 1.75× 10−116 5.27× 10−581 2.31× 10−11610 5.00000 0.00278218
SM2 5 1.64× 10−23 4.13× 10−116 4.26× 10−579 4.79× 10−11572 5.00000 0.00294059
SM3 5 1.40× 10−23 1.71× 10−116 4.76× 10−581 3.02× 10−11611 5.00000 0.00340595
NPM1 5 2.50× 10−18 3.16× 10−90 1.02× 10−449 1.21× 10−8984 5.00000 0.00309901
NPM2 5 2.70× 10−18 4.94× 10−90 1.00× 10−448 1.18× 10−8964 5.00000 0.00324752
NPM3 5 2.90× 10−18 7.52× 10−90 8.78× 10−448 1.04× 10−8945 5.00000 0.00308911

Table 7. Computational results for function f5(x).

Methods t |et−2| |et−1| |et| |f(xt+1)| COC CPU Time

TM1 5 1.11× 10−25 2.25× 10−125 7.74× 10−624 1.96× 10−155748 5.00000 0.00200990
TM2 5 2.01× 10−25 4.90× 10−124 4.26× 10−617 8.03× 10−154061 5.00000 0.00170301
TM3 5 3.61× 10−25 1.02× 10−122 1.82× 10−610 1.64× 10−152400 5.00000 0.00200990
TM4 5 4.50× 10−28 6.15× 10−138 2.92× 10−687 2.36× 10−171634 5.00000 0.00170297
SM1 5 1.08× 10−23 4.79× 10−115 8.42× 10−572 2.36× 10−142719 5.00000 0.00247525
SM2 5 3.65× 10−23 2.79× 10−112 7.39× 10−558 6.33× 10−139228 5.00000 0.00231683
SM3 5 8.89× 10−24 1.85× 10−115 7.26× 10−574 1.87× 10−143235 5.00000 0.00757426
NPM1 Div − − − − − −
NPM2 Div − − − − − −
NPM3 Div − − − − − −

Here, Div means divergent.

6. Concluding Remarks

We have introduced a new multi-point iterative algorithm that can solve nonlinear
equations having multiple zeros. The scheme is based on the weight function approach. Per
iteration, the presented scheme requires two assessments of functions and two assessments
of its derivatives to achieve the fifth order convergence. Some special cases of the new
family are also presented. The presented basins of attraction have confirmed that the
performance of the new methods is on par with or better than the established schemes in
the literature. The theoretical results proved in the paper regarding the order of convergence
are verified through various numerical examples. A comparison with the existing methods
is also made. The results obtained have once again proved the robustness of the new
schemes. Moreover, the CPU time is also evaluated, which is lesser for the newly proposed
schemes. In a nutshell, we can say that the new methods have performed better than
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the existing methods in terms of basins of attraction, the number of iterations required to
converge to the root, residual errors and CPU-time for the considered problems.

Author Contributions: Conceptualization, methodology, T.S.; Formal analysis, validation, resources,
L.J.; Software, writing—original draft preparation, H.A. All authors have read and agreed to the
published version of the manuscript.

Funding: The study was partly supported by Council of Scientific and Industrial Research India,
grant number 09/0254(11217)/2021-EMR-I.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the anonymous referees for their valuable suggestions
on the first version of this paper.

Conflicts of Interest: No conflicts of interest have been disclosed by the authors.

References
1. Kumar, D.; Sharma, J.R.; Cesarano, C. One-Point Optimal Family of Multiple Root Solvers of Second-Order. Mathematics 2019,

7, 655. [CrossRef]
2. Sharma, J.R.; Kumar, S.; Jäntschi, L. On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence.

Mathematics 2020, 8, 1091. [CrossRef]
3. Alharbey, R.A.; Kansal, M.; Behl, R.; Machado, J.A.T. Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their

Dynamics. Symmetry 2019, 11, 837. [CrossRef]
4. Sharma, J.R.; Kumar, S.; Jäntschi, L. On a Class of Optimal Fourth Order Multiple Root Solvers without Using Derivatives.

Symmetry 2019, 11, 1452. [CrossRef]
5. Sharma, J.R.; Kumar, D.; Cattani, C. An Efficient Class of Weighted-Newton Multiple Root Solvers with Seventh Order Conver-

gence. Symmetry 2019, 11, 1054. [CrossRef]
6. Sharma, J.R.; Kumar, D.; Argyros, I.K. An Efficient Class of Traub-Steffensen-Like Seventh Order Multiple-Root Solvers with

Applications. Symmetry 2019, 11, 518. [CrossRef]
7. Chun, C.; Neta, B. A Third-Order Modification of Newton’s Method for Multiple Roots. Appl. Math. Comput. 2009, 211, 474–479.

[CrossRef]
8. Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [CrossRef]
9. Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202, 162–170. [CrossRef]
10. Osada, N. An optimal multiple root finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [CrossRef]
11. Sharma, J.R.; Sharma, R. Modified Chebyshev–Halley Type Method and Its Variants for Computing Multiple Roots. Numer.

Algorithms 2012, 61, 567–578. [CrossRef]
12. Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365. [CrossRef]
13. Zhou, X.; Chen, X.; Song, Y. Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math.

Comput. 2013, 219, 6030–6038. [CrossRef]
14. Geum, Y.H.; Kim, Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their

dynamics. Appl. Math. Comput. 2015, 270, 387–400. [CrossRef]
15. Geum, Y.H.; Kim, Y.I.; Neta, B. A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics

behind their extraneous fixed points. Appl. Math. Comput. 2016, 283, 120–140. [CrossRef]
16. Behl, R.; Cordero Barbero, A.; Motsa, S.S.; Torregrosa Sánchez, J.R. An eighth-order family of optimal multiple root finders and its

dynamics. Numer. Algorithms 2018, 77, 1249–1272. [CrossRef]
17. Li, S.; Liao, X.; Cheng, L. A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math.

Comput. 2009, 215, 1288–1292.
18. Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Comput.

Appl. Math. 2011, 235, 4199–4206. [CrossRef]
19. Behl, R.; Kansal, M.; Salimi, M. Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions. Mathematics 2020, 8,

827. [CrossRef]
20. Kansal, M.; Cordero, A.; Torregrosa Sánchez, J.R.; Bhalla, S. A stable class of modified Newton-like methods for multiple roots

and their dynamics. Int. J. Nonlinear Sci. Numer. Simul. 2020, 21, 603–621. [CrossRef]
21. Rani L.; Soleymani, F.; Kansal, M.; Kumar Nashine, H. An optimized Chebyshev–Halley type family of multiple solvers: Extensive

analysis and applications. Math. Methods Appl. Sci. 2022, 8699. [CrossRef] [CrossRef]
22. Sharma, J.R. A family of third-order methods to solve nonlinear equations by quadratic curves approximation. Appl. Math.

Comput. 2007, 184, 210–215. [CrossRef]
23. Sharma, J.R. A family of methods for solving nonlinear equations using quadratic interpolation. Comput. Math. Appl. 2004, 48,

709–714. [CrossRef]

http://doi.org/10.3390/math7070655
http://dx.doi.org/10.3390/math8071091
http://dx.doi.org/10.3390/sym11070837
http://dx.doi.org/10.3390/sym11121452
http://dx.doi.org/10.3390/sym11081054
http://dx.doi.org/10.3390/sym11040518
http://dx.doi.org/10.1016/j.amc.2009.01.087
http://dx.doi.org/10.1007/BF01396176
http://dx.doi.org/10.1016/j.amc.2008.01.031
http://dx.doi.org/10.1016/0377-0427(94)00044-1
http://dx.doi.org/10.1007/s11075-012-9551-4
http://dx.doi.org/10.1007/BF01444024
http://dx.doi.org/10.1016/j.amc.2012.12.041
http://dx.doi.org/10.1016/j.amc.2015.08.039
http://dx.doi.org/10.1016/j.amc.2016.02.029
http://dx.doi.org/10.1007/s11075-017-0361-6
http://dx.doi.org/10.1016/j.cam.2011.03.014
http://dx.doi.org/10.3390/math8050827
http://dx.doi.org/10.1515/ijnsns-2018-0347
.
http://dx.doi.org/10.1002/mma.8699
http://dx.doi.org/10.1016/j.amc.2006.05.193
http://dx.doi.org/10.1016/j.camwa.2004.05.004


Symmetry 2023, 15, 228 14 of 14

24. Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. A new technique to obtain derivative-free optimal iterative methods for
solving nonlinear equations. J. Comput. Appl. Math. 2013, 252, 95–102. [CrossRef]

25. Ostrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1966.
26. Behl, R. A Derivative Free Fourth-Order Optimal Scheme for Applied Science Problems.Mathematics 2022, 10, 1372. [CrossRef]
27. Abbasbandy, S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method.

Appl. Math. Comput. 2003, 145, 887–893. [CrossRef]
28. Babajee, D.K.R.; Cordero, A.; Soleymani, F.; Torregrosa, J.R. On improved three-step schemes with high efficiency index and their

dynamics. Numer. Algorithms 2014, 65, 153–169. [CrossRef]
29. Behl, R.; Bhalla, S.; Magreñán, Á.A.; Moysi, A. An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple

Zeros. Mathematics 2021, 9, 546. [CrossRef]
30. Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Multidimensional generalization of iterative methods for solving

nonlinear problems by means of weight-function procedure. Appl. Math. Comput. 2015, 268, 1064–1071. [CrossRef]
31. Cordero, A.; Iqbal, S.; Torregrosa, J.R.; Zafar, F. New Iterative Schemes to Solve Nonlinear Systems with Symmetric Basins of

Attraction. Symmetry 2022, 14, 1742. [CrossRef]
32. Chanu, W.H.; Panday, S.; Thangkhenpau, G. Development of Optimal Iterative Methods with Their Applications and Basins of

Attraction. Symmetry 2022, 14, 2020. [CrossRef]
33. Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003.
34. Said Solaiman, O.; Hashim, I. Efficacy of Optimal Methods for Nonlinear Equations with Chemical Engineering Applications.

Math. Probl. Eng. 2019, 11, 1–11. [CrossRef]
35. Said Solaiman, O.; Hashim, I. An iterative scheme of arbitrary odd order and its basins of attraction for nonlinear systems.

Comput. Mater. Cont. 2021, 66, 1427–1444. [CrossRef]
36. Fatou, P. Sur les équations fonctionelles. Bull. Soc. Math. France 1919, 47, 161–271. [CrossRef]
37. Julia, G.M. Mémoire sur l’itération des fonctions rationelles. J. Math. Pures Appl. 1918, 1, 47–246.
38. Sharma, J.R.; Arora, H. Some novel optimal eighth order derivative-free root solvers and their basins of attraction. Appl. Math.

Comput. 2016, 284, 149–161. [CrossRef]
39. Kumar, S.; Bhagwan, J.; Jäntschi, L. Optimal Derivative-Free One-Point Algorithms for Computing Multiple Zeros of Nonlinear

Equations. Symmetry 2022, 14, 1881. [CrossRef]
40. Sharma, J.R.; Arora, H. A Family of Fifth-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Numer.

Anal. Appl. 2021, 14, 186–199. [CrossRef]
41. Henarita Chanu, W.; Panday, S.; Dwivedi, M. New Fifth Order Iterative Method for Finding Multiple Root of Nonlinear Function.

Eng. Lett. 2021, 29, 942–947.
42. Bray, K.; Dwyer, J.; Barnard, R. W.; Williams, G.B. Fixed Points, Symmetries, and Bounds for Basins of Attraction of Complex

Trigonometric Functions. Int. J. Math. Math. Sci. 2020, 2020, 1853467. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cam.2012.03.030
http://dx.doi.org/10.3390/math10091372
http://dx.doi.org/10.1016/S0096-3003(03)00282-0
http://dx.doi.org/10.1007/s11075-013-9699-6
http://dx.doi.org/10.3390/math9050546
http://dx.doi.org/10.1016/j.amc.2015.07.024
http://dx.doi.org/10.3390/sym14081742
http://dx.doi.org/10.3390/sym14102020
http://dx.doi.org/10.1155/2019/1728965
http://dx.doi.org/10.32604/cmc.2020.012610
http://dx.doi.org/10.24033/bsmf.998
http://dx.doi.org/10.1016/j.amc.2016.02.054
http://dx.doi.org/10.3390/sym14091881
http://dx.doi.org/10.1134/S1995423921020075
http://dx.doi.org/10.1155/2020/1853467

	Introduction
	Construction of the Fifth-Order Family
	Special Cases
	Basins of Attraction
	Numerical Results
	Concluding Remarks
	References

