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Abstract: We give a concise review of the properties of quantum geometrodynamics in the pilot-wave
quantum cosmology, focusing on the issue of its nonlocal character. We also discuss the problem
of the origin of quantum probabilities in this theory with a focus on the ergodic approach to its
resolution.
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1. Introduction

The nature of time has remained a philosophical mystery since the ancient epochs [1,2].
Should the spacetime arena and all events in it be regarded as actually existing, while the
human spirit is only sliding along its world line in this pre-existing continuum (as first
imagined by British writer Herbert Wells [3] and independently by Russian philosopher
Mitrofan Aksenov [4])? Or should the world around us be considered a gradual develop-
ment in time into existence, in accordance with our own experience and perception? It is
interesting that both philosophical viewpoints are reflected in the mathematical formalism
of the modern relativity theory: the first in the Lagrangian version and the second in the
Hamiltonian version.

While both formulations can be used in classical theory, the quantum theory of gravity
and cosmology faces specific problems in this regard. There, “the universe as a whole”
is described by a wave function of three-dimensional geometry and matter fields, which
do not contain any time parameters. How does the observed time-dependent expanding
universe emerge in this picture?

One of the interpretational frameworks of quantum theory resolving these issues is
the pilot-wave formulation proposed by Bohm [5,6] (see [7,8] for reviews) and based on
the pioneering ideas from de Broglie [9,10]. Its basic idea is quite simple. Any physical
system evolves deterministically in terms of appropriate configuration variables (for which
John Bell coined the term “beables” [11]). These variables can be chosen to be just those
of classical physics, i.e., the coordinates of fundamental particles and field spatial con-
figurations. The classical and quantum theories are distinguished by their dynamics. In
classical physics, the dynamics follow the principle of extremal local action. In quantum
physics, the evolution is guided (piloted, according to de Broglie) by a wave function
that obeys the Schrödinger equation. This version of quantum mechanics was termed
“ontological interpretation” by its proponent [7]; it is frequently called “Bohmian mechanics”
in the literature.

In this paper, we review the main features of the pilot-wave theory applied to the
universe. We will see that, in the pilot-wave framework, the arising quantum geometry
of spacetime is necessarily described as a development within time. Despite being fully
deterministic, the quantum dynamics, nevertheless, fails to be invariant with respect to
arbitrary refoliations of spacetime, which means that it is intrinsically nonlocal.

Given the fully deterministic character of the evolution of the universe in the pilot-
wave theory, it is then necessary to explore the nature of the quantum probabilities that
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operate on a smaller scale. The qualitative picture of this probabilistic behaviour is clear:
the universe, in the course of its evolution, forms multitudes of identical ensembles of
subsystems (such as atoms), in which the positions of constituent particles are not controlled
by the observer and, therefore, are random. This explains the randomness in the outcomes
of various experiments with such systems. There is, however, an important quantitative
problem. The probabilities of the results of the quantum measurements should coincide
with those predicted by the standard (Göttingen) interpretation, which is consistent with
the experiments. For the pilot-wave theory, this requirement can be satisfied assuming
that the configuration variables x in a pure quantum ensemble are distributed according
to its wave function ψ(x), with the probability distribution function p(x) = |ψ(x)|2. This
condition is usually called “quantum equilibrium”: it is preserved in time for an ensemble
of closed systems by virtue of the Schrödinger equation. However, in the pilot-wave theory,
this distribution cannot be introduced as an independent postulate; its origin must be
explained. Several resolutions of this important problem will also be reviewed in this paper,
with a focus on the ergodic approach.

2. Classical Geometry of Space and Time

The view of spacetime as the existing “eternity” arises in relativity theory, where it
is regarded as a maximally extended four-dimensional manifold, M, endowed with a
Lorentzian-signature metric. General-covariant Einstein equations treat space and time as
extensions of similar nature. The “evolution” viewpoint is inherent in the Hamiltonian
approach to the dynamics of gravitational fields (and matter fields) due to Arnowitt, Deser,
and Misner [12]. Here, one considers a foliation of spacetime by spatial hypersurfaces Σt,
endowed with the induced metric gab, the lapse function N , and the shift vector N a, so
that these objects completely describe the spacetime metric:

ds2 = −
(
N 2 −N aNa

)
dt2 + 2Nadxadt + gab dxadxb . (1)

The (Latin) spatial indices are lowered and raised by gab and its inverse gab, respectively.
The classical Hilbert–Einstein action for the metric together with a system of bosonic

fields Φ takes the form

S =
∫
M

d3x dt
(

πab ġab + πΦΦ̇−NH−N aHa

)
, (2)

in which N and N a become Lagrange multipliers enforcing the Hamiltonian and momen-
tum constraintsH andHa, respectively. The symbol πΦ denotes the system of conjugate
momenta of the bosonic fields, and πab are the conjugate momenta for the metric, gab. The
constraints have the form

H ≡ 1
2κ
Gabcdπabπcd + κ

√
g
(

2Λ− (3)R
)
+HΦ = 0 , (3)

Ha ≡ −2∇bπb
a +HΦ

a = 0 , (4)

where only the gravitational parts of the constraints have been written explicitly. The
Φ-partsHΦ andHΦ

a , of the constraints, follow from the respective Lagrangian and will not
be specified here. The gravitational constant above is κ = (16πG)−1, where G is Newton’s
constant, Λ is the cosmological constant, and

Gabcd =
1
√

g
(gacgbd + gadgbc − gabgcd) (5)

is Wheeler’s supermetric. The symbol ∇a denotes the three-space covariant derivative
determined by the metric gab, with (3)R being its scalar curvature. The classical field
equations, including the constraints, are obtained by varying action (2) with respect to all
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its field variables. Of relevance for our discussion is the equation of motion for the spatial
metric:

ġab =
N
κ
Gabcdπcd +∇aNb +∇bNa . (6)

Here and below, the overdot denotes the derivatives with respect to the time coordinate
t. In this case, the lapse function N and shift vector N a are not dynamical, they can be
specified at will, reflecting the reparametrisation and refoliation freedom in metric (1).

One of the methods of solving the dynamical equations for the metric and matter fields
consists in obtaining first a solution to the action functional S[gab(x), Φ(x)] that obeys the
(time-independent) Einstein–Hamilton–Jacobi equation that follows from the constraint
Equation (3) after the substitutions of πab → δ/δgab(x) and πΦ → δ/δΦ(x):

1
2κ

δS ◦ δS + κ
√

g
(

2Λ− (3)R
)
+HΦ = 0 , (7)

where δ symbolises the variational derivative δ/δgab(x), and the symbol “◦” denotes the
scalar product defined by Wheeler’s supermetric, Equation (5). Evolution of the spatial
metric gab is then given by Equation (6), in which one should make the substitution

πab(x, t)→ δS
δgab(x)

∣∣∣∣
gab(x)=gab(x, t)

. (8)

The form (6) corresponds to the view of the world’s geometry as evolving in time.

3. Quantum Geometry of Space and Time

Proceeding to quantisation, we observe that, in the Schrödinger picture, the system
described by action (2) is represented by the wave function Ψ[gab(x), Φ(x)], which is a
solution to the quantum constraint Equations [13,14],

ĤµΨ = 0 , (9)

where the operators Ĥµ are obtained from the classical expressions H0 ≡ H and Ha

by replacing the generalised momenta πab and πΦ with the corresponding operators of
variational derivatives (with some operator ordering).

The wave function Ψ, called the “wave function of the universe”, does not depend
on time t. Since our universe evolves in time, this creates difficulty in interpreting this
wave function. This problem is usually resolved in quantum cosmology by assigning the
role of time to one of the physical variables and by reducing the phenomenon of time to
correlations between this variable and other physical quantities. However, such a choice is
always made arbitrarily; even then, time usually fails to be universally defined. Moreover,
the usual statistical meaning of the wave function loses its sense in quantum cosmology,
making it unclear what measurements and related probabilities it can possibly describe.

A number of interpretations were suggested in order to achieve a coherent picture of
the observed reality both on a microscopic quantum and on a macroscopic classical level.
Among them is the pilot-wave theory due to Bohm [5–7]. For a non-relativistic system
of particles with configuration coordinates x ≡ {xi}, conjugate momenta pi, and wave
function ψ(x, t) respecting the Schrödinger equation, the pilot-wave theory describes the
evolution as follows. The wave function can always be written in the form ψ = R exp(iS/h̄)
with real R and S; then, the evolution law is postulated to be

pi(ẋ) = ∇iS , (10)

where pi(ẋ) is the momentum expressed through the velocity. In the classical limit, phase
S satisfies the classical Hamilton–Jacobi equation. Therefore, the pilot-wave formulation
can be regarded simply as a quantum “deformation” of the classical dynamics (see [8]
for a detailed discussion of this viewpoint). This allows one to hold a special view on
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the “reality” of the wave function of a physical system: it is no more real than a solution
S of the Hamilton–Jacobi equation in classical theory. A generalisation of the guidance
Equation (10) to relativistic quantum mechanics and quantum field theory can be found
in [7,8].

Pilot-wave treatment of the “wave function of the universe” was first given in [8,15–17]
(for recent developments, see [18]). According to the general rules, the wave function is
written in the form Ψ = R exp(iS/h̄). The momentum constraint ĤaΨ = 0 in (9) then
implies an invariance of the wave function with respect to spatial coordinate reparametrisa-
tions, i.e., its dependence only on the three-geometry (3)G of Σ. The Hamiltonian constraint
(or the Wheeler–De Witt Equation [13,14]) ĤΨ = 0 in (9) gives birth to two equations:

1
2κ

δS ◦ δS + κ
√

g
(

2Λ− (3)R
)
− h̄2

2κ

δ ◦ δR
R

+
<
(
Ψ†ĤΦΨ

)
R2 = 0 , (11)

δ ◦
(

R2δS
)
− 2κ

h̄
=
(

Ψ†ĤΦΨ
)
= 0 , (12)

where by < and = we denote the real and imaginary parts, respectively. The term propor-
tional to h̄2 in (11) is called the quantum potential. In the formal limit h̄→ 0, Equation (11)
reproduces the classical Einstein–Hamilton–Jacobi Equation (7).

According to the dynamic principle of the pilot-wave theory, the quantum evolution of
the metric gab is described by Equation (6) with substitution (8). The Lagrange multipliers
N and N a in Equation (6) do not have evolution equations; therefore, they can be specified
arbitrarily, similarly to the case of classical geometrodynamics.

Thus, a family of solutions of the quantum dynamics is obtained by solving the quan-
tum Equations (11) and (12) instead of solving the classical Equation (7). A configuration
gab(x, t), Φ(x, t) then represents a solution to the guidance Equation (6) and the similar
equation for Φ with arbitrarily specified functions N (x, t) and N a(x, t). A solution thus
obtained will describe a quantum four-geometry with a matter-field configuration Φ.

The procedures described above for obtaining solutions in classical and quantum case
are very similar. There is, however, a substantial difference in principle between the classical
and quantum geometries. In the classical case, a different specification of N and N a will
lead to the same four-geometry, only with a different foliation by a family of hypersurfaces
Σt and different coordinates on each of these hypersurfaces. In quantum dynamics, due to
the reparametrisation-invariance of the wave function, Ψ, the arising four-geometry will
remain the same only with respect to the choice of the spatial coordinates xa on each of the
hypersurfaces Σt, which is controlled by the shift vector N a. The role of the lapse function
N is more significant in the quantum case: different specifications of the lapse function N
will result in different quantum four-geometries. This difference becomes negligible only
in the classical limit, in which the quantum potential in (11) can be neglected.

This entails another important difference between the classical and quantum ge-
ometrodynamics: while the former obeys local differential equations, the latter is essentially
nonlocal with a distinguished space-time foliation. The precise meaning of this statement
is the following. Given a solution

(4)G ≡
{

gab(x, t) , N µ(x, t)
}

(13)

of the quantum pilot-wave geometrodynamics, an arbitrary change of the space-like folia-
tion of (4)G will lead to the representation of this four-geometry, which fails to be such a
solution. This can be proved by a simple argument: because of the non-classical character
of the four-geometry (13), by changing the foliation, one generally violates the momentum
constraint (4), which should also be satisfied in the quantum case [16].

The nonlocal character is a generic feature of the laws of the pilot-wave theory [7], and
this remains to be the case even in the fully covariant formulation based on tensor quantities,
including the metric. Quantum geometrodynamics distinguishes foliation (13) as the only
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one in which its components are evolved according to the guidance of Equation (6) applied
to the pilot-wave theory.

4. Quantum Fields and Particles in Curved Spacetime

In this section, we review the way in which the pilot-wave quantum field theory
arises on a semiclassical pilot-wave metric background. Consider the usual treatment of
the classical limit for quantum gravity where the wave function takes the approximate
form [16,19]

Ψ
[
(3)G, Φ

]
≈ R

[
(3)G

]
exp

(
iS
[
(3)G

]
h̄

)
χ
[
(3)G, Φ

]
. (14)

Here, following the semiclassical approximation, we assume that the phase S
[
(3)G

]
is a solution to the classical vacuum Einstein–Hamilton–Jacobi equation (which is just
Equation (7) without the matter part), and real R

[
(3)G

]
is chosen so that it obeys the

equation
δ ◦
(

R2δS
)
= 0 . (15)

Assuming a weak dependence of χ
[
(3)G, Φ

]
on (3)G and neglecting the quantum

potential for gravity, from Equations (11) and (12) one obtains the quantum equation

ih̄
κ

δS ◦ δχ = ĤΦχ . (16)

The four-geometry arises as a solution to the guidance Equations (6) and (8), with the
quantum potential neglected, it respects the classical Einstein equations. The functional
χ[t, Φ] ≡ χ

[
(3)G(t), Φ

]
then evolves on the background of this four-geometry according to

the usual Schrödinger’s equation,

ih̄χ̇ =
∫

Σ
d3xN µĤΦ

µ χ , (17)

which follows from (3)–(6) and (16). This represents the equation of the quantum field
theory on a classical geometric background, which naturally arises in a semiclassical limit
of the pilot-wave geometrodynamics. We note that the local physical time is related to the
coordinate time t as dtphys = N (t)dt.

Thus far, we have been dealing with bosonic fields, Φ. Fermions with their unusual
statistics require different treatments in the pilot-wave theory. Such a complete theory can
be constructed in many ways, choosing different entities as “beables”. One choice consists
in treating fermions as point particles and demanding that the arising wave function be
antisymmetric with respect to the permutation of the coordinates and spin indices of
identical fermions. In relativistic quantum mechanics, there arises the problem of the
negative-energy states of particles. A possible resolution of this problem in the pilot-wave
theory is based on Dirac’s idea that all such energy states are occupied [7,16]. The wave
function, in this case, should have an infinite number of arguments for each fermionic
specie, and this number will be countable assuming the spatial geometry is compact, for
example, topologically a three-sphere. This, then, will lead us to wave functions of the
form [16]

Ψα1 ...αn ...
[
(3)G, Φ, x1, . . . , xn, . . .

]
, (18)

which are also multispinors with a countable set of particle arguments xi and corresponding
spinor indices αi. The wave function will presumably be a solution to a constraint equation
of the form (

Ĥ+ ∑
n
Ĥ(n)

D + Ĥint

)
Ψ = 0 , (19)

where Ĥ is the Hamiltonian operator constraint for the bosonic fields, acting on the field
arguments of the wave function, Ĥ(n)

D is the Dirac Hamiltonian constraint acting on the
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particle coordinate xn and on the corresponding spinor index αn in (18), and Ĥint is the
interaction Hamiltonian acting both on the field variables and on the particle coordinates.
The interactions will enable particle transitions between negative-energy and positive-
energy levels, which will describe the creation and annihilation of fermionic pairs. The
pilot-wave guidance condition for a Dirac particle is given by [7,16]

dxa
n

dt
=

Ψ†(γ0γa)
nΨ

Ψ†Ψ
, (20)

where Dirac’s gamma matrices, γµ, act on the corresponding spinor index, αn.

5. Cosmological Implications

The fact that the pilot wave theory describes causal evolution on all scales has im-
portant implications for cosmology and gravitational physics. First, there is no issue of a
quantum-to-classical transition and collapse of the wave function in the pilot-wave infla-
tionary quantum cosmology. The primordial “quantum fluctuations” evolve in a causal
deterministic way, similarly to classical configurations of fields all over the history of the
universe, and the field configuration in the universe can be assumed to be “lumpy” from
the very beginning even though its wave function is symmetric with respect to spatial trans-
lations. Inhomogeneities become classical once their corresponding quantum potential (the
last term in (11) in the case of metric field) becomes small. Observationally, we deal with
only one realisation of the cosmological evolution, and its statistical properties should be
interpreted in the ergodic sense, as averages over large spatial regions. This circumstance,
I believe, allows one to assert that the pilot-wave theory makes the same predictions for
cosmological observables as the usual quantum approach, contrary to some expectations in
the literature (see [20]). The unique realisation of the pilot-wave cosmological history is
the instance of cosmic variance. While its origin in the usual quantum cosmology remains
to be mysterious and is connected with the notion of collapse of wave function or with
many-worlds interpretation, in the pilot-wave quantum cosmology it arises most naturally
as just a given deterministic realisation.

Secondly, since the pilot-wave evolution is nonclassical in the quantum domain of
the wave function (in which the quantum potential term in (11) is important), this may, in
some cases, prevent such a universe from forming cosmological singularities. For these
and related features of the pilot-wave cosmology, see [18,21].

6. Origin of Quantum Randomness
6.1. The Problem of Quantum Equilibrium

In the pilot-wave theory, the wave function (18) describes a single object, the universe,
and the fields and particles in this universe are piloted according to deterministic laws. As
we have pointed out, on very large scales, such a universe does not allow for any funda-
mental statistical description. Indeed, in the pilot-wave theory, the wave function of the
universe is devoid of any probabilistic meaning; in particular, it need not be normalisable
or be a member of any Hilbert space. Its role in the formalism is quite similar to the role of
the Jacobi functional, S, in classical theory: it just pilots the configuration variables.

However, on smaller scales and in microphysical experiments, we deal with unpre-
dictability of the results of measurements and with quantum probabilities. Thus, the origin
of such quantum probabilities in the cosmological framework of the pilot-wave theory begs
for explanation. This will be the topic of the present section.

The evolution guided by the universal wave function (18) will occasionally lead to
the formation of naturally or artificially prepared quantum ensembles of identical systems
piloted by the same wave function. That is where the laws of the usual quantum mechanics
start to apply, and we should understand why and how this happens in the present
formalism. In the pilot-wave theory, the measurement process is treated as a partial case
of the generic deterministic evolution [7]. The probabilistic character of the measurement
outcomes is caused by a random distribution of the actual (initial) values of the microscopic
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particle and field configurations in each system of an ensemble, as well as in the measuring
apparatus.

Consider a system with configuration variables xS and a typical ideal measurement of
an observable Λ with discrete eigenvalues Λn, and the corresponding normalised eigen-
states ψn(xS). Before the measurement, the measuring apparatus, described by config-
uration variables xA, has wave function φ(xA). Thus, the initial total wave function is

Ψi(xS, xA) = ψ(xS)φ(xA) = ∑
n

cnψn(xS)φ(xA) . (21)

Interaction between the measuring apparatus and the system causes evolution of the
total wave function into

Ψ f (xS, xA) = ∑
n

cnψn(xS)φn(xA) . (22)

The measurement is efficient if the normalised states φn of the measuring apparatus
are non-overlapping and macroscopically distinct. According to the pilot-wave theory, the
configuration variables XS and XA, respectively, of the system and apparatus, evolving
in a deterministic way, eventually get into a localisation region of only one of the states
φn. The actual position of the configuration variables XS and XA uniquely determines the
macroscopic state of the apparatus, hence, the measurement outcome in each particular
experiment. This provides a solution to the “measurement problem” in the pilot-wave
theory.

According to the established laws of quantum mechanics, the probability with which
the result Λn appears in an ensemble of measurements with the initial wave function (21)
is given by pn = |cn|2. In order that this result be valid in the pilot wave theory, it is
necessary to assume that the configuration variables x in a quantum ensemble with wave
function ψ(x) are distributed as p(x) = |ψ(x)|2. This condition is termed “quantum
equilibrium” [20,22–25]: as a consequence of the Schrödinger equation, it is preserved in
time for a closed system. In the the pilot-wave theory, the origin of such a distribution begs
for explanation. In this section, we will consider this important question (for a review of
different approaches to this problem, see [26]).

In his pioneering works [5,6,27], Bohm provided a qualitative solution to this problem
(see also [7]). He argued that quantum equilibrium will be established by the complicated
motions of interacting particles. If p(x) is the real particle distribution, then it is easy to
show that the ratio p(x)/|ψ(x)|2 is conserved along the quantum pilot-wave trajectories.
Bohm then conjectured that the complicated mixing character of the pilot-wave dynamics
will cause the coarse-grained value p(x)/|ψ(x)|2 to approach unity, thus establishing the
quantum equilibrium.

A quantitative justification of Bohm’s conjecture was proposed by Valentini [20,22–24]
by introduction of the quantity H = −

∫
p log

(
p/|ψ|2

)
dx called “subquantum entropy.” By

analogy with Boltzmann’s H-theorem in statistical mechanics, it is suggested in [20,22–24]
that the “subquantum entropy” increases in time approaching its maximum value of zero,
thereby establishing the coarse-grained quantum equilibrium, p = |ψ|2. This is substanti-
ated by the “subquantum H-theorem” [20,22–24] stating that the coarse-grained “entropy”
H reaches its local minimum under the conditions of “no fine-grained microstructure”:
p = p and |ψ|2 = |ψ|2. Obviously, some specification of the property for a system to be
sufficiently “complicated” is required here.

A different solution to the quantum equilibrium problem was proposed by Dürr,
Goldstein and Zanghì [25]. Here, the key role is played by the notion of typicality applied
to measurable subsets of the configuration space of a closed system. The measure density
of typicality is taken to be the equivariant expression |Ψ|2 based on the system wave
function. It is then shown that the set of initial conditions that produce the usual quantum-
mechanical statistical outcomes (to certain precision) of various measurements in the history
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of this system has measure of typicality close to one. A drawback of this solution is the
specific dependence of the typicality measure on the wave function itself, which makes the
argument look circular [20]. Indeed, as noted by the authors of this approach (Section 7 [25]),
a different choice of the typicality measure in the space of initial conditions would result in
different predicted probability distributions.

6.2. Ergodicity Argument

In [28], we justified the quantum equilibrium hypothesis of the pilot-wave dynamics
using the ideas of ergodic theory [29–31]. Similarly to some approaches to the classical
statistical mechanics [32], this theory represents the equilibrium ensemble averages of
various functions of dynamical variables by their time averages. The dynamical space of
a system in this theory is regarded as a measure space, and its temporal evolution as a
one-parameter group of measure-preserving transformations. A dynamical system is called
ergodic if the measure of any subset which is left invariant by all these transformations, or
of its complement set, is equal to zero. A central role in the ergodic theory belongs to the
Birkhoff–Khinchin theorem, which states that, for almost all initial conditions, the fraction
of time spent by an ergodic system in a measurable region of its dynamical variables is
proportional to the invariant measure of this region. In classical statistical mechanics, one is
talking about the Liouville measure in the phase space, and the assumption of ergodicity of
the Hamiltonian dynamics can be used to justify the microcanonical equilibrium distribution.

Applying the ergodicity argument to the pilot-wave quantum dynamics, we can
assume that this dynamics is ergodic with respect to the measure density |Ψ|2. One of
the difficulties of this approach is that |Ψ|2 is, in general, time-dependent [24] (p. 40).
This difficulty is removed if we restrict ourselves to systems in stationary quantum states.
Incidentally, this is the case with the universal wave function (18), which, as we have seen
in the previous section, does not depend on time. A sufficiently “disentangled” large
subsystem of such a universe will also be stationary, and the ergodicity argument can be
applied to it as well.

We then follow the reasoning of [28] with a slight improvement. For a system in a
stationary ergodic state, the pilot-wave dynamics preserves the measure with density |Ψ|2,
and the average time spent in any configuration region is given by the measure of that
region with measure density |Ψ|2, as required. Note that the ergodicity property does not
single out a specific measure, it depends only on the equivalence class of measures. (Two
measures with common domain are said to be equivalent if they have common system of
sets of measure zero.) However, the invariant measure with density |Ψ|2 is unique (modulo
normalisation) for an ergodic system, which makes it relevant to the objective probabilities.

Consider in more detail the process of preparation for a subsystem and the emergence
of time-dependent wave functions. We split the configuration variables z = (x, y) of the
total system into the coordinates x of the subsystem of interest and the coordinates y of
the environment. For the x subsystem, we can introduce the conditional time-dependent
wave function (see [25]) ψt(x) = Ψ(x, Y(t)), where Y(t) is the actual pilot-wave dynamics
of the environment variables. The x subsystem is “well prepared” in the domain Ω, if its
pilot-wave dynamics in this domain does not affect that of the environment; in this case,
the conditional wave function ψt(x) is its effective wave function in this domain. (For
example, in an experiment where electrons are diffracted by a narrow slit, the domain
Ω may be the space behind the slit.) Suppose that this takes place in some small time
interval containing t0 and that the effective wave function ψ(x) ≈ ψt0(x), x ∈ Ω, in this
time interval is sufficiently closely approximated by Ψ(x, Y) when Y ∈ Γ.

Then, whenever the variable Y evolves in the domain Γ, the variable X is piloted in
the domain Ω by the wave function ψ(x). Under the condition that Y is in the domain Γ,
the chance of finding X in a domain ω ⊂ Ω is given by the time ratio

P(X ∈ ω |Y ∈ Γ) = lim
T→∞

∫ T
0 χω×Γ(Z(t)) dt∫ T
0 χΩ×Γ(Z(t)) dt

, (23)
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where by χM we denote the characteristic function of a set M. Since the total system piloted
by Ψ(z) is assumed to be ergodic, the Birkhoff–Khinchin ergodic theorem [29–31] ensures
the existence of the limit in Equation (23) for almost all initial values of Z, with the result

P(X ∈ ω |Y ∈ Γ) =
µΨ(ω× Γ)
µΨ(Ω× Γ)

= µψ(ω) , (24)

where µΨ and µψ are the measures in the domains of z and of x, respectively, with measure
densities given by the corresponding normalised wave functions. Equality (24) constitutes
the justification of the standard quantum probabilities.

We have already noted that the measure density |Ψ|2 of the ergodic approach is
objectively singled out on the ground of its invariance. We should only comment on the
Lebesgue integration measure for the time parameter t in Equation (23). This parameter
encodes the time translation symmetry of the quantum dynamics and can be identified
with local physical time. The Lebesgue integration measure in Equation (23) is then the
only natural measure in the context of stationarity.

Certainly, there are quantum states that do not exhibit ergodic pilot-wave evolution;
such are, for example, states with real wave functions, for which the phase S = 0, and the
pilot-wave dynamics is trivial. Therefore, ergodicity should be regarded as our specification
of complexity of quantum states. The conditions under which the pilot-wave evolution
becomes ergodic can be studied in various particular cases. Recent progress in this direction
can be found in [33], and some simple examples are given in [28].

The ergodic approach implies that quantum equilibrium for a whole quantum system
is reached on the recurrence timescale of this system. In the case of a macroscopically
large system, this time is usually astronomically large. However, since we do not make
quantum experiments with large systems, it is sufficient to assume ergodicity to take place
for small enough quantum subsystems evolving on small timescales. It looks plausible that
conditions of this sort do really occur in nature.

7. Discussion

Pilot-wave interpretation of the “wave function of the universe” produces determinis-
tic quantum geometry of spacetime in the form of foliation (13). Unlike in classical general
relativity, evolution of this geometry is governed by a functional S obeying the quantum
Hamilton–Jacobi Equation (11) with a nonlocal quantum potential. As a result, its foliation
is distinguished by the quantum pilot-wave dynamics: formally changing the foliation re-
sults in a new four-geometry that cannot be obtained as a solution in the pilot-wave theory.
This is the precise meaning in which the quantum pilot-wave dynamics is nonlocal. This
nonlocality disappears in the classical limit, in which the effect of the quantum potential is
negligible.

It is remarkable that, in the pilot-wave quantum theory, the wave function of the
“universe as a whole” need not be regarded as a member of a Hilbert space, in particular,
it does not require square-integrability with respect to all its arguments (see also the
general discussion in [7]). The only role of the wave function in this interpretation is to
provide the time evolution for the particle and field configuration variables, which does not
require its normalisation. However, this same fact calls for a justification of the “quantum
equilibrium” hypothesis for subsystems, i.e., the property that their configuration variables
are distributed according to |ψ|2 in pure quantum ensembles. We have reviewed several
approaches to these problems and have shown how such a justification can be given by an
appeal to ergodicity of quantum dynamics.
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