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Abstract: In this article, we consider a semi-local ring S = Fq + uFq, where u2 = u, q = ps and
p is a prime number. We define a multiplication yb = β(b)y + γ(b), where β is an automorphism
and γ is a β-derivation on S so that S[y; β, γ] becomes a non-commutative ring which is known as
skew polynomial ring. We give the characterization of S[y; β, γ] and obtain the most striking results
that are better than previous findings. We also determine the structural properties of 1-generator
skew cyclic and skew-quasi cyclic codes. Further, We demonstrate remarkable results of the above-
mentioned codes over S. Finally, we find the duality of skew cyclic and skew-quasi cyclic codes using
a symmetric inner product. These codes are further generalized to double skew cyclic and skew quasi
cyclic codes and a table of optimal codes is calculated by MAGMA software.
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1. Introduction

Over finite fields, error-correcting codes were first investigated but as time passed,
more generic structures were examined and implemented. The study of codes over rings
have attracted a lot of interest from many researchers, especially after a landmark paper [1].

Cyclic codes form an important family of linear codes. Skew quasi cyclic codes are
also an immediate and important generalization of cyclic codes. Due to their rich algebraic
structures, several researchers have studied them over finite fields. Recently, they have also
been studied over some finite rings and many good codes have been obtained in this class.
Some authors studied other generalizations of cyclic codes, such as double cyclic codes,
additive codes etc., over rings and obtained some good codes, see for references [2].

In 1933, Ore [3] provided the principal results of a general non-commutative poly-
nomial theory. In 1967, Smits [4] defined a multiplication as ax = (aσ)x + aδ̄ in a ring
K[x, σ, δ̄], where K is a ring, σ is an endomorphism on K and δ̄ is a σ-derivation on K.
Under the above multiplication, this K[x, σ, δ̄] forms a non-commutative ring and is called
a skew-polynomial ring. Abualrub et al. [5] and Bhaintwal [6] devised skew quasi-cyclic
codes for various ring types. The major reason for investigating codes in this context is
because polynomials in skew polynomial rings have multiple factorizations and so have
more ideals than in the commutative ring. However, all of this effort is constrained by the
requirement that the order of the automorphism be a factor of the code length.

In 2012, Jitman et al. [7] constructed skew cyclic codes by considering the skew poly-
nomial ring with a coefficient from Fpm + uFpm , where u2 = 0, a finite chain ring. In 2013,
Boulagouaz et al. [8] introduced the notion of [ f (t), σ, δ]-codes for f (t) ∈ A[ f (t), σ, δ],
where A, σ and δ are a ring, an automorphism and a σ-derivation of A. These codes were
the generalization of the θ-codes as introduced by Boucher et al. [9]. Ashraf et al. [10]
studied skew cyclic codes over a semi-local ring and proved that the Gray image of skew
cyclic codes of length n over Fpm + uFpm , where u2 = 1 is a skew 2-quasi cyclic codes of
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length 2n over Fpm . Further, Ashraf et al. [11] determined the structure of skew cyclic codes
over F3 + uF3, where u2 = 1 and found that skew cyclic codes are equivalent to either
cyclic codes or quasi cyclic codes.

In 2018, Bhaintwal et al. [12] provided a class of skew cyclic codes over R = Z4 + uZ4
with derivation. They found some new good codes over Z4 utilizing the Gray map and
the residue codes of these codes. The discovered codes had been reported and added
to the database of Z4-codes. Later, Fanghui et al. [13] studied the skew cyclic and skew
quasi-cyclic codes over Z4 + uZ4, where u2 = 1. Most of the work on codes is over a
commutative structure. However, recently, the authors of [2,12,14–18] have taken a keen
interest in the study of codes in the setting of skew polynomial rings.

In the present article, we consider a semi-local ring S = Fq + uFq, where u2 = u,
q = ps and p is a prime number. We give the characterization of the skew polynomial
ring S[y; β, γ], where β is an automorphism of S and γ is a β-derivation on S. We obtain
minimal polynomials that generate skew cyclic and skew-quasi cyclic codes. We also find
some more results that describe these codes to double skew cyclic and skew quasi cyclic
codes. Further, we give some examples to support our main results and find optimal codes
which are given in Table 1.

This paper is organized as follows: In Section 2, we give some basic definitions and
properties of ring S = Fq + uFq, where u2 = u, q = ps and p is prime. We also define Gray
maps and give some results that are very useful in proving our main results. In Section 3,
we give some results on skew cyclic codes. Finally, we calculate a table of optimal codes. In
Section 4, we study skew-quasi cyclic codes and find the minimal generating polynomials.
In Section 5, we find the duality of skew cyclic and skew-quasi cyclic codes. In Section 6,
we give some examples to support our main results and a table of optimal codes. Finally,
Section 7, brings the article to an end.

2. Preliminaries

Let S = Fq + uFq be a commutative ring, where u2 = u, q = ps and p is a prime.
Moreover, S is isomorphic to the ring Fq[u]/〈u2 − u〉. Any element z ∈ S can be written
as z = c + ud for all c, d ∈ Fq. The maximal ideals of S are 〈u〉 and 〈1− u〉. Therefore, S is
a semi-local ring.

The Gray map can be defined as

Φ : S −→ F2
q

c + ud 7−→ (d, c + d).

The above Gray map can be extended as

Φ : Sn −→ F2n
q

(c0 + ud0, . . . , cn−1 + udn−1) 7−→ (d0, . . . , dn−1, c0 + d0, . . . , cn−1 + dn−1).

The Gray weight of v is defined as

wG(v) = wH(Φ(v)).

A non-void C ⊂ Sn is a linear code over S of length n if it is S-submodule of Sn. The Gray
distance of two distinct codewords can be written as

dG(v1, v2) = wG(v1 − v2) = dH(Φ(v1), Φ(v2)).

It is obvious that, if C is a linear code, then dG(C) = min{wG(v) | 0 6= v, v ∈ C}. The Gray
map Φ is a weight preserving rule from Sn (Gray weight) to F2n

q (Hamming distance).
Let us define a map g : U −→ U, where U is a ring with unity. Then, g is called a (β, α)-

derivation on U if it satisfies g(c + d) = g(c) + g(d) and g(cd) = β(c)g(d) + g(c)α(d) for
all c, d ∈ U, where α and β are any two automorphisms of U. A map γ : U −→ U is called
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a β-derivation of U if it is a (β, I)-derivation, where I denotes the identity automorphism
of U. Now, the ring automorphism β : S −→ S of S is defined as follows:

c + du 7−→ cp + udp.

We can easily verify that s is the order of β. Let us define Sβ ⊆ S, a subring of S, as
Sβ = {a | β(a) = a, ∀ a ∈ S}.

Define the inner β-derivation of S as follows:

γ : S −→ S

c + ud 7−→ (1 + u){β(c + ud)− (c + ud)}.

Clearly, γ(a) = 0 for all a ∈ Sβ. The maps β and γ are described in [12].
If an automorphism β and inner β-derivation γ of S are given, the set S[y; β, γ] =

{c0 + c1y + · · · + cn−1yn−1 | cj ∈ S for all j = 0, 1, . . . , n− 1} with usual addition of
polynomials and the multiplication defined by the rule:

yb = β(b)y + γ(b) (1)

for all b ∈ S forms a ring. The ring S[y; β, γ] is termed as a skew polynomial ring over S.
The ring S[y; β, γ] is non-commutative under the multiplication defined in (1) unless β is
the identity. For a skew polynomial ring, the center of S[y; β, γ] can be defined by the set

Z(S[y; β, γ]) = {g(y) | g(y) · a(y) = a(y) · g(y) for all a(y) ∈ S[y; β, γ]}.

Any element g(y) ∈ Z(S[y; β, γ]) is called a central element.

Lemma 1 ([12]). If q = 4, then for any element a ∈ Fq

yna =

{
(β(a)y + γ(β(a))yn−1, if n is odd

βn(a)yn, if n is even.

The skew polynomial ring S[y; β, γ] is neither left nor right ideal. Obviously, the right
division algorithm can be stated as, if for any f (y), g(y) ∈ S[y; β, γ], where g(y) has unit as
its leading coefficient, then we can find q(y), r(y) ∈ S[y; β, γ] such that

f (y) = q(y)g(y) + r(y),

where r(y) = 0 or deg(r(y)) < deg(g(y)). Similarly, the left division algorithm can be
defined. Therefore, a central element is a right as well as a left divisor.

Definition 1. Let a(y), b(y) ∈ S. A polynomial d(y) is said to be a greatest common right (left)
divisor (gcrd) of a(y) and b(y) if

(i) d(y) is the right (left) divisor of a(y) and b(y).
(ii) If e(y) is the right (left) divisor of a(y) and b(y), then e(y) is the right (left) divisor of d(y).

Definition 2. A least degree polynomial h(y) ∈ S is said to be the least common right (left)
multiple of a(y), b(y) ∈ S if a(y) and b(y) are right (left) divisors of h(y).

Two polynomials a(y), b(y) ∈ S are right (left) coprime if, for any f (y), g(y) ∈ S such
that a(y) f (y) + b(y)g(y) = 1.

By using the characteristic of the Gray map Φ in [19], we can easily obtain the follow-
ing results.

Lemma 2. Let C be a linear code with the parameter [n, M, dG] over R. Then Φ(C) is a [2n, M, dL]-
linear code over Fq, where dG = dL.
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3. (β, γ)-Skew Cyclic Codes

In 2013, Boulagouaz [8] defined a concept of the structure of ( f (y), β, γ) cyclic codes
for a monic polynomial f (y) ∈ S[y; β, γ], where S is a ring, β is an automorphism and γ
is a β-derivation of S, respectively. In 2018, Sharma et al. [12] gave the characterization of
skew-cyclic codes over the ring S = Z4 + uZ4 with u2 = 1 and obtained some important
structural properties. In 2021, Fanghui Ma et al. gave another description of skew-cyclic
codes over S = Z4 + uZ4 that is distinct from [12]. Now, we study the (β, γ) skew-cyclic
codes of length n over S = Fq + uFq, where u2 = u, q = ps and p is a prime number.

Definition 3 ([20,21]). Let S be a ring with unity. A pseudo-linear map H : Rn −→ Sn is
an additive map defined by

H(u) = β(u)M + γ(u), (2)

where u = (u1, u2, . . . , un) ∈ Sn, β(u) = (β(u1), β(u2), . . . , β(un)), M is a n × n matrix
over S and γ(u) = (γ(u1), γ(u2), . . . , γ(un)). If γ = 0, then H is known as a semi-linear
transformation.

Definition 4. Let γ be a β-derivation on S, where β is an automorphism of S. A non-subset
C ⊂ Sn is said to be a (β, γ)-skew cyclic code over S of length n if

(i) C is an S-submodule of Sn;
(ii) H(C) contained in C

and H is defined in (2) with

M =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

 (3)

such that H(C) can be written as H(C) = {H(w) | w ∈ C}.

Suppose that Sn = S[y; β, γ]/〈yn − 1〉. Let w(y) + 〈yn − 1〉 ∈ Sn and for any a(y) ∈
S[y; β, γ], define the product from left as

a(y)(w(y) + 〈yn − 1〉) = a(y)w(y) + 〈yn − 1〉.

Sn forms a left S[y; β, γ] module under the above definition. We can express every codeword
w ∈ C as w = (w0, w1, . . . , wn−1) of a (β, γ)-skew cyclic code C by a polynomial w(y) =
(w0 + w1y + · · ·+ wn−1yn−1). We obtain that yw(y) corresponds to the codeword H(c).

Lemma 3. If u(y) = (u0 + u1y + · · ·+ un−1yn−1) ∈ S[y; β, γ]/〈yn − 1〉 represents the word
u = (u0, u1, . . . , un−1) ∈ Sn, then yu(y) can be represented by the word
(β(un−1) + γ(u0), β(u0) + γ(u1), . . . , β(un−2) + γ(un−1)) ∈ Sn.

Proof. In order to prove the given statement, we just calculate the value of yu(y), i.e.,

yu(y) = y

(
n−1

∑
i=0

uiyi

)
=

(
n−1

∑
i=0

yuiyi

)

=

(
n−1

∑
i=0

(β(ui)y + γ(ui))yi

)
= β(u0)y + γ(u0) + β(u1)

2 + γ(u1)y + β(u2)y3 + (u2)y2 + · · ·+ β(un−1)

+γ(un−1)yn−1

= (β(un−1) + γ(u0)) + (β(u0) + γ(u1))y + · · ·+ (β(un−2 + γ(un−1))yn−1.
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Hence, yu(y) can be represented by the word

(β(un−1) + γ(u0), β(u0) + γ(u1), . . . , β(un−2 + γ(un−1)) ∈ Sn.

Lemma 4. A code C of length n over S is a (β, γ)-skew cyclic code if and only if C is an S[y; β, γ]-
submodule of Sn.

Proof. Let C be a (β, γ)-skew cyclic code of length n over S. Then, for any c(y) ∈ C,
the (β, γ)-cyclic shift yc(y) also belongs to C by Lemma 5. Therefore, yic(y) also belongs to
C for all i ∈ N. It follows that, for any a(y) ∈ S[y; β, γ] and c(y) ∈ C their product a(y)c(y)
also belongs to C. This implies that C is a submodule of Sn. The converse part is directly
followed by the definition.

Theorem 1. Let C = 〈p(y)〉, where p(y) is monic polynomial of degree n− k. Then C, a (β, γ)-
skew cyclic code of length n over S is a S-free code with rank k if and only if p(y) is a right divisor
of yn − 1.

Proof. Suppose that p(y)|yn − 1 and yn − 1 = p(y)q(y). We notice that q(y) must be a
monic polynomial of degree k. Let q(y) = yk + bk−1yk−1 + · · · + b0. Now, we have to
show that the set S = {p(y), yp(y), . . . , yk−1 p(y)} forms a basis for C. Clearly, span(S) ⊆ C.
For the reverse inclusion, let any codeword c(y) ∈ C be of the form c(y) = h(y)p(y),
for some h(y) ∈ S[y; β, γ]. Since p(y)q(y) = 0 in Sn, yk p(y) can be expressed as a linear
combination in S. It follows that yr p(y) is also true, whenever r > k. Hence, h(y)p(y) ∈
span(S) for any polynomial h(y) ∈ S[y; β, γ]. Therefore, S is the spanning set for C.

Now, we have to show that S is linearly independent. Let us consider h(y)p(y) = 0,
where deg(h(y)) < k. This means that yn − 1|h(y)p(y), i.e., h(y)p(y) = r(y)(yn − 1),
for some polynomial r(y) ∈ S[y; β, γ]. However, since p(y) is monic

n− k ≤ deg(h(y)p(y)) ≤ n− 1

and for the same reason, deg(r(y)(yn − 1) ≥ n. This implies that h(y) must be a zero
polynomial, hence S is linearly independent. Finally, we get C as a R-free code with rank k.

Conversely, suppose that C = 〈p(y)〉 is free of rank k. Clearly, span(S) ⊆ C. On the
other hand, S is linearly independent. Thus, |C| = |span(S)| and C = span(S). Now, let
us consider yk p(y) ∈ C = span(S). Then yk p(y) = h(y)p(y) for some polynomial h(y) of
degree less than or equal to k− 1. Finally, we have (yk − h(y))p(y) = 0 in Sn. The left side
is a monic polynomial of degree n which is divisible by yn − 1. Therefore, it must be equal
to yn − 1. Hence, p(y)|yn − 1.

Lemma 5. Let yn− 1 = q(y)p(y) in S[y; β, γ] and let C be a free (β, γ)-skew cyclic code generated
by p(y). If f (y) and q(y) are right co-prime, then C = 〈 f (y)p(y)〉.

Proof. It is clear that 〈 f (y)p(y)〉 ⊆ C. Since f (y) and q(y) are right co-prime, there exist
polynomials a(y), b(y) ∈ S[y; β, γ] such that

a(y) f (y) + b(y)q(y) = 1.

Multiplying by p(y) on both sides, we get

a(y) f (y)p(y) + b(y)q(y)p(y) = p(y)

or
a(y) f (y)p(y) + b(y)(yn − 1) = p(y).
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Finally, it can be written as a(y) f (y)p(y) = p(y) in Sn. This implies that p(y) ∈ 〈 f (y)p(y)〉.
Thus, C = 〈 f (y)p(y)〉.

Let C = 〈p(y)〉 be a (β, γ)-skew cyclic code of length n over S, where p(y) = p0 +
p1y + · · ·+ pn−kyn−k is right divisor of yn − 1, where gn−k = 1. From Theorem 1, we find
that C is a free left S[y; β, γ]-submodule of dimension n − deg(p(y)). According to [8],
the generator matrix G of C can be written as

G =


p

H(p)
H2(p)

...
Hk−1(p)

,

where p = (p0, p1, . . . pn−k) is the corresponding codeword of p(y).

4. (β, γ)-Skew Quasi (QC) Codes

In this section, we will give the introduction of (β, γ)-skew quasi cyclic codes over S
and structural properties of (β, γ)-skew QC codes with 1-generator.

Definition 5. An automorphism β and β-derivationγ are defined on S. A non-void subset C of SN

is known as a (β, γ)-skew quasi cyclic code of length n`, where N = n` and index ` if it satisfies
the conditions given below,

(i) C is an S-submodule of SN ;
(ii) If w = (w0, w1, . . . , wn−1) ∈ C,

then
H`(w) = β(w)M + γ(w) ∈ C,

where wi = wi,0, wi,1, . . . , wi,`−1) for i = 0, 1, . . . , n − 1 and M is given as in (3), β(w) =
(β(w0), β(w1), . . . , β(wn−1)), γ(w) = (γ(w0), γ(w1), . . . , γ(wn−1)), β(wi) = (β(wi,0),
β(wi,1), . . . , β(wi,`−1)) and γ(wi) = (γ(wi,0), γ(wi,1), . . . , γ(wi,`−1)).

Now consider the ring S`
n = (S[y; β, γ]/〈yn − 1〉)` as a left Sn = S[y; β, γ]/〈yn − 1〉-

module, whereas the product from the left is expressed as f (y)(p1(y), p2(y), . . . , p`(y)) =
( f (y)p1(y), f (y)p2(y), . . . , f (y)p`(y)). Define a map ψ : Sn` −→ S`

n such that

ψ(w) = (w0(y), w1(y), . . . , w`−1(y)),

where w = (w0,0, . . . , w0,`−1, w1,0, . . . , w1,`−1, . . . , wn−1,0, . . . , wn−1,`−1) ∈ Sn`, wj(y) =
n−1
∑

i=0
wi,jyi ∈ Sn. We can easily show that ψ is a module isomorphism.

Theorem 2. Let C ⊂ Sn`. Then C is a (β, γ)-skew quasi cyclic code of length n` with index ` if
and only if ψ(C) is a left Sn-submodule of S`

n.

Proof. The proof is directly followed by Theorem 3 of [13].

The (β, γ)-skew QC code of length n` with index ` over S generated by t elements
p1(y), p2(y), . . . , pt(y) is a left Sn submodule of S`

n and is called a t-generator (β, γ)-skew
QC code of length n` and index `. For t = 1, C is called the 1-generator (β, γ)-skew QC code.
The 1-generator (β, γ)-skew cyclic code C is generated by p(y) = (p1(y), p2(y), . . . , p`(y)),
which has the form

C = { f (y)p(y) = ( f (y)p1(y), f (y)p2(y), . . . , f (y)pt(y)) | f (y) ∈ Sn}.
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Now, let us define a map

πi : S`
n −→ Sn, i = 1, 2, . . . , n

( f1(y), f2(y), . . . , f`(y)) 7−→ fi(y).

The map πi is the module homomorphism.
Since C is the left Sn-submodule of S`

n, then πi(c) = ci is the left S[y; β, γ]-submodule
of Sn. Thus, Ci = 〈p(y)〉. If p(y) is the monic right divisor of yn − 1 such that yn − 1 =
hi(y)pi(y) and if the polynomial gi(y) and hi(y) are the right co-prime for all i = 1, 2, . . . , `,
then from Lemma 5, any generator C has the form

p(y) = (g1(y)p1(y), g2(y)p2(y), . . . , g`(y)p`(y)).

Theorem 3. Let C be a 1-generator (β, γ)-skew QC code of length n` and index ` over S generated
by p(y) = (g1(y)p1(y), g2(y)p2(y), · · · , g`(y)p`(y)), where pi(y) is the monic polynomial
and gcrd(gi(y), yn − 1|pi(y)) = 1, i = 1, 2, . . . , `. Then, C is a free skew QC code with the
rank n− deg(q(y)) and has a basis S =

{
p(y), yp(y), . . . , yn−deg(q(y))−1 p(y)

}
, where q(y) =

gcld(p(y), yn − 1).

Proof. Let S =
{

p(y), yp(y), . . . , yn−deg(q(y))−1 p(y)
}

. We need to prove that S generates
C. Since q(y) = gcld(p(y), yn − 1), there is a monic polynomial h(y) such that yn −
1 = q(y)h(y). Let deg(q(y)) = k. Then, deg(h(y)) = n − k. Any element of C can be
written as b(y) = a(y)p(y), where a(y) ∈ Sn. If deg(a(y)) < n − k , then S generates
C, otherwise, using the division algorithm, there exist two polynomials c(y) and d(y)
such that a(y) = c(y)h(y) + d(y), where d(y) = 0 or deg(d(y)) < n− k. It is clear that
q(y) = gcld(p(y), yn − 1). The polynomial yn − 1 ∈ Z(S[y; β, γ]) because n is even then by
Lemma 5, we have

yn − 1 = p(y)h(y) = h(y)p(y).

Then, it can be written as
h(y)p(y) ≡ 0 mod (yn − 1),

which implies that c(y) ≡ d(y)p(y) mod (yn − 1). Since deg(d(y)) = n − k, we get S
generating C.

Now, we have to prove that S is linearly independent. So, let there be a polynomial
a(y) = ∑n−k−1

i=0 aiyi such that a(y)p(y) = 0, where ai ∈ S for all 0 ≤ i ≤ n − k − 1.
Then, a(y)gi(y)pi(y) = 0 for all 1 ≤ i ≤ l, which implies that yn − 1 is a divisor of
a(y)gi(y)pi(y) for all i. Hence, yn − 1 is divisor of gcld(a(y)g1(y)p1(y), a(y)g2(y)p2(y), · · ·
a(y)gl(y)pl(y), a(y)(yn − 1)) = a(y)p(y). Since deg(a(y)p(y)) = n− 1 < deg(yn − 1), a(y)
must be a zero polynomial. This implies that S is linearly independent. Hence, S forms
a basis for C.

5. Dual of (β, γ)-Skew Cyclic and Skew QC Codes under Symmetric Inner Product

Let C be a (β, γ)-skew QC code with index ` and length N = n` over S. Let u =
(x0, x1, . . . , xn−1) ∈ Sn` and v = (y0, y1, . . . , yn−1) ∈ Sn`, where xi = (xi,0, xi,1, . . . , xi,`−1) ∈
S` and yi = (yi,0, yi,1, . . . , yi,`−1) ∈ S` for all i = 0, 1, . . . , n− 1. Then, the inner product is
represented by

〈u, v〉 =
n−1

∑
i=0

xi · yi =
n−1

∑
i=0

`−1

∑
j=0

xijyij.

It can be easily seen that 〈u, v〉 = 〈u, v〉, that is, it is symmetric.
According to the inner product of u and v, the dual code of C is determined as

C⊥ = {v ∈ Sn` | 〈u, v〉 = 0, ∀ u ∈ C}.
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Lemma 6. Let C be a (β, γ)-skew cyclic code of length n over S generated by a monic right
divisor g(y) of yn − 1. Then, u(y) ∈ Sn is in C if and only if u(y)h(y) = 0 in Sn, where
yn − 1 = h(y)p(y).

Proof. Suppose that u(y) ∈ C. Then it can be written as u(y) = a(y)p(y) for some
a(y) ∈ Sn. So, u(y)h(y) = a(y)p(y)h(y) = 0 in Sn by Lemma 5. Let u(y)h(y) = 0 in Sn for
some u(y) ∈ Sn. Then there exists r(y) ∈ S[y; β, γ] such that u(y)h(y) = r(y)(yn − 1) =
r(y)h(y)p(y). This implies that u(y) = r(y)p(y). Hence the result.

Theorem 4. Let C = 〈p(y)〉 be a principally generated (β, γ)- skew cyclic code of length n over S
such that yn − 1 = h(y)p(y) for some h(y) = a0 + a1y + · · ·+ akyk ∈ S[y; β, γ], where k is odd,
then the matrix

H =


ak β(ak−1) + γ(ak) ak−1 · · · β(a0) + γ(a1) · · · 0 0
0 β(ak) ak−1 · · · a0 γ(a0) · · · 0
0 0 ak ak−2 β(ak−3) + γ(ak−2) · · · · · · 0
...

...
...

...
...

...
...

...
0 0 · · · ak β(ak−1) + γ(ak) · · · a1 β(a0) + γ(a1)


is a parity check matrix for C.

Proof. Let g(y) ∈ C. Then, by Lemma 4.1, we have g(y)h(y) = 0 in Sn. Therefore,
the coefficients of yk, yk+1, ..., yn−1 in (g0 + g1y + g2y2 + · · ·+ gn−2yn−2 + gn−1yn−1)(a0 +
a1y + · · ·+ ak−1yk−1 + akyk) are all zero, that is, after simplification, we get

g0ak + g1(β(ak−1) + γ(ak)) + g2ak−2 + · · ·+ gk(β(a0) + γ(a1)) = 0

g1(β(ak)) + g2ak−1 + g3(β(ak−2) + (γak−1)) + · · ·+ gk+1a0 + gk+2γ(a0) = 0

g2ak + g3(β(ak−1) + γ(ak)) + g4ak−2 + · · ·+ gk+1a1 + gk+2(β(a0) + γ(a1)) = 0
...

...
...

...
...

gn−k−1ak + gn−k(β(ak−1) + γ(ak)) + · · ·+ gn−2a1 + gn−1(β(a0) + γ(a1)) = 0.

From these equations, we find that for any c ∈ C and cHT = 0, thus GHT = 0. Now each
row of H is orthogonal to C for every c ∈ C. So, span(H) ⊆ C⊥ and also H contains square
sub-matrix of order n− k, with a non-zero determinant, as H is a lower triangular matrix
with all diagonal entries being units by Lemma 4.2. This implies that all rows of H are
linearly independent. Therefore, |span(H)| = |S|n−k, |C||C⊥| = |S|n and |C| = Sk gives
|C⊥| = Sn−k. Hence, span(H) = C⊥ and so H is a parity check matrix of C.

Theorem 5 ([22]). Let C be a (β, γ)-skew cyclic code of length n over S and it is invariant under
a pseudo-linear map H(a) = β(a)M + γ(a) for all a ∈ C of length n and M is represented in
(2). Then C⊥, the dual of C is a (β−1, γ

′
)-skew cyclic code over S and is also invariant under

a pseudo-linear map H
′
(b) = β−1(b) · Mt + γ

′
(v) for all b ∈ CC, where γ

′
= −β−1γ is a

(id, β−1)-derivation and Mt is a transpose of M.

Theorem 6. Let C be a (β, γ)-skew QC code with index ` and length n` over S. Then, C⊥,
the Euclidean dual of C, is invariant under a pseudo-linear map H

′
(a) = β−1(a) ·Mt + γ

′
(a)

for all a ∈ C, where C⊥ is a (β−1, γ
′
)-skew QC code with index ` and length n` over S and

γ
′
= −β−1γ is a (id, β−1)-derivation and Mt is a transpose of M.

Proof. Let a = (a0, a1, . . . , an−1) ∈ Rnl , aj = (aj,o, aj,1, . . . , aj,`−1) ∈ R` for j = 0, 1, . . . , n− 1.
Applying H

′
on a, we get

H
′
(a) = β−1(a) ·Mt + γ

′
(a),
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where

β−1(a) = (β−1(a0), β−1(a1), . . . , β−1(an−1)), γ
′
(a) = (γ

′
(a0), γ

′
(a1), . . . , γ

′
(an−1)),

β−1(aj) = (β−1(aj,0), β−1(aj,1), . . . , β−1(aj,`−1)), γ
′
(aj) = (γ

′
(aj,0), γ

′
(aj,1), . . . , γ

′
(aj,`−1))

for j = 0, 1, . . . , n− 1. For any a ∈ C and u ∈ C⊥, we have

0 = u · Hl(a)t

= u · (β(a) ·M)t + u · (γ(a))t

= u · (β(a) ·M)t + (γ(au))− γ(u) · (β(a))t

= u ·Mt · (β(a))t − γ(u) · (β(a))t

= (u ·Mt − γ(u)·)(β(a))t.

It follows that

0 = β−1(0)

= β−1(u ·Mt − γ(u))·)(β(a))t

= β−1(u ·Mt − γ(u)·)(a)t

= (β−1(u) ·Mt + γ
′
(u))(a)t,

i.e., H
′
(u) · at = 0 for all a ∈ C and u ∈ C⊥. Therefore, H

′
(u) ∈ C⊥.

6. Example

Example 1. Assume that F4 = F2(w), w2 + w + 1 = 0. Let n = 6

y6 − 1 = (w2y3 + wy2 + y + 1)(w2y3 + w2y2 + y + 1).

Define an automorphism β : F4 → F4 by β(a) = a2 and γ : F4 → F4 by γ(a) = β(a)− a. Let
C = 〈p(y)〉 be a 1-generator (β, γ) skew cyclic code of length 6 over S with generator p(y) =
w2y3 + wy2 + y + 1. Then, the parameters of Φ(C) are [9,13,23], that is, Φ(C) is an optimal code.

Example 2. Consider that F4 = F2(w), w2 + w + 1 = 0. Let n = 6

y6 − 1 = (w2y3 + wy2 + y + 1)(w2y3 + w2y2 + y + 1).

Define an automorphism β : F4 → F4 by β(a) = a2 and γ : F4 → F4 by γ(a) = β(a)− a. Let
C = 〈p(y)〉 be a 1-generator (β, γ) skew cyclic code of length 6 over S with generator p(y) =
w2y3 + w2y2 + y + 1. Then, the parameters of Φ(C) are [13,19,23].

Example 3. For n = 8 and S = F4 + uF4, we have

y8 − 1 = (y2 − 1)(y6 + y4 + y2 + 1).

Let C be a 1-generator (β, γ) skew QC cyclic code of length 56 with index 7 over S with generator
p(y) = (p1(y), p2(y), p3(y), p4(y), p5(y), p6(y), p7(y)), where p1(y) = p2(y) = p3(y) =
p4(y) = p5(y) = p6(y) = p7(y) = y6 + y4 + y2 + 1. According to Theorem 3, we can find q(y)
as q(y) = gcld(p(y), y8 − 1) = y6 + y4 + y2 + 1. Then, {p(y), yp(y)} forms a basis of C and
|C| = 162. By using Theorem 2.1 of [19] `d ≤ d(C), i.e., d(C) = 28. Hence, C and Φ(C) are
(β, γ)-skew QC codes over S with parameters (56, 162, 28) and (112, 44, 28), respectively.

Example 4. For n = 5 and S = F3 + uF3, we have

y5 − 1 = (y− 1)(y4 + y3 + y2 + y + 1).
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Let C be a 1-generator (β, γ) skew QC cyclic code of length 30 with an index 6 over S with
generator p(y) = (p1(y), p2(y), p3(y), p4(y), p5(y), p6(y)), where p1(y) = p2(y) = p3(y) =
p4(y) = p5(y) = p6(y) = y4 + y3 + y2 + y + 1. According toTheorem 3, we can find q(y) as
q(y) = gcld(p(y), y5− 1) = y4 + y3 + y2 + y + 1. Then, {p(y)} forms a basis of C and |C| = 9.
By using Theorem 2.1 of [19] `d ≤ d(C), i.e., d(C) = 30. Hence, C and Φ(C) are (β, γ)-skew QC
codes over S with parameters (30, 9, 30) and (60, 32, 30), respectively.

Remark 1. In the table, we use the following factorization:

y8 − 1 = (wy2 + wy + w2)(wy3 + w2y2 + w)(w2y3 + y + 1) ∈ F4[y; β, γ]

y16 − 1 = (wy15 + y14 + wy13 + y12 + wy11 + y10 + wy9 + y8 + wy7 + y6 + wy5 + y4

+wy3 + y2 + wy + 1)(wy + 1) ∈ F4[y; β, γ]

y22 − 1 = (w2y21 + y20 + w2y19 + y18 + w2y17 + y16 + w2y15 + y14 + w2y13 + y12

+w2y11 + y10 + w2y9 + y8 + w2y7 + y6 + w2y5 + y4

+w2y3 + y2 + w2y + 1)(w2y + 1) ∈ F4[y; β, γ]

y26 − 1 = (wy25 + wy24 + wy23 + wy22 + wy2121 + wy20 + wy19 + wy1818 + wy17

+wy16 + wy15 + wy14 + wy13 + wy1212 + wy11 + wy10 + wy9 + wy8

+wy7 + wy6 + wy5 + wy4 + wy3 + wy2 + wy + w)(wy + w2) ∈ F4[y; β, γ]

y28 − 1 = (y27 + wy26 + y2525 + wy24 = y23 + wy22 + y21 + wy20 + y19 + wy18

+y17 + wy16 + y15 + wy14 + y13 + wy12 + y11 + wy10 + y9 + wy8 + y7

+wy6 + y5 + wy4 + y3 + wy2 + y + w)(y + w2) ∈ F4[y; β, γ]

y40 − 1 = (wy39 + w2y38 + wy37 + w2y36 + wy35 + w2y34 + wy33 + w2y32 + wy31

+w2y30 + wy29 + w2y28 + wy27 + w2y26 + wy25 + w2y24 + wy23 + w2y22

+wy21 + w2y20 + wy19 + w2y18 + wy17 + w2y16 + wy15 + w2y14 + wy13

+w2y12 + wy11 + w2y10 + wy9 + w2y8 + wy7 + w2y6 + wy5 + w2y4

+wy3 + w2y2 + wy + w2)(wy + w) ∈ F4[y; β, γ].

Table 1. The list of optimal codes.

n q Generators k Φ(C)

8 4 p1(y) = wy2 + wy + w2, p1(y) = wy3 + w2y2 + w 5 [16, 10, 3]

16 4 p1(y) = p2(y) = wy + 1 15 [32, 30, 2]

22 4 p1(y) = p2(y) = w2y + 1 21 [44, 42, 2]

26 4 p1(y) = p2(y) = wy + w2 24 [52, 48, 2]

28 4 p1(y) = p2(y) = y + w2 27 [56, 54, 2]

40 4 p1(y) = p2(y) = wy + w 39 [80, 78, 2]

7. Conclusions

In the present article, the structural properties of a semi-local ring S = Fq + uFq,
u2 = u, q = ps with derivation have been studied. We have extended the notion of
the multiplication of polynomials using automorphism and a derivation. With respect
to such multiplication, the ring S[y; β, γ], where β is an automorphism of S and γ is a
β-derivation on S, forms a skew polynomial ring. Some results on the (β, γ)-skew cyclic
code are demonstrated and they are very useful for determining the rank of the above-
mentioned codes. Additionally, the skew-quasi cyclic codes over S and their properties
are investigated. Further, we have obtained the duality of 1-generator skew cyclic and
skew-quasi cyclic codes. Finally, some examples are given in support of our main results
and a table of optimal codes is evaluated.
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