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Abstract: Lower limb rehabilitation exoskeleton robots (LLRERs) play an important role in lower
limb rehabilitation training and assistance walking for patients with lower limb movement disorders.
In order to reduce and eliminate adverse effects on the accuracy of human motion gait tracking during
walking with an LLRER, which is caused by the gravity and friction, the periodic ground shock
force, and the human–exoskeleton interaction force, this paper proposes a feedforward–feedback
hybrid control strategy of sliding mode impulsive control with gravity and friction compensation,
based on the event-triggered mechanism of Lyapunov function. Firstly, to realize high-precision gait
tracking with bounded error, some constraints on controller parameters are deduced by analyzing
the Lyapunov-based stability. Secondly, the Zeno behavior of impulsive event triggers is excluded by
the analysis of three different cases of the triggering time sequence. Finally, the effectiveness of the
proposed hybrid controller is verified by the numerical simulation of the LLRER human–exoskeleton
integrated system based on a three-link simplified model. It shows that an event-triggered sliding
mode impulsive control strategy with gravity and friction compensation can achieve complete gait
tracking with bounded error and has excellent dynamic performance under the constraints.

Keywords: lower limb exoskeleton; human motion; gait tracking; event-triggered control; sliding
mode control; impulsive control; Lyapunov stability; Zeno behavior

1. Introduction

Over the past decades, there have been more and more patients with lower limb
hemiplegia, paraplegic, cerebral palsy, and limb movement disorders, caused by increasing
traffic accidents, stroke, and population aging [1–3]. Consequently, the rehabilitation train-
ing and assistance walking of the elderly, disabled, and others with movement disorders
has become a major social problem. Since the 1960s, after the first exoskeleton “Hardiman”
was made in America, many different exoskeletons have been developed to try to solve the
problem over the world, for example, BLEEX, ALEX, Lokomat, LOPES, Rewalk, Ekso, Rex,
HAL, HULC, CUHK-EXO, and so on [4–8]. As an effective medical auxiliary intelligent
device, lower limb rehabilitation exoskeleton robots (LLRERs) have been rapidly developed
and widely used in many hospitals and families, and there is a huge market demand and
development potential for LLRERs.

In order to make the movements more flexible and compliant and the gait trajectory
more natural and stable, it is very important to realize high-precision human motion gait
tracking of the LLRER human–exoskeleton integrated system [9,10]. So it has become
a current research hotspot in the field of exoskeleton and orthoses and it has attracted
considerable attention and the interest of many researchers around the world. The position
feedback PD control is a common and simple method of human motion gait tracking, but it
is difficult to perform PD parameter tuning due to the inaccurate dynamic model of the
system [11]. To take the role of force or torque into account in gait tracking, accordingly, a
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force and position hybrid control method is formulated in [12,13]. However, some external
disturbances and mechanical friction are undetectable by sensors, so it still cannot obtain the
desired gait results. Consequently, the sliding mode control (SMC) method is introduced
for its complete robustness to some uncertain factors, such as structural uncertainties, pa-
rameter uncertainties, and external disturbances [14,15]. Unfortunately, the high-frequency
chatter caused by SMC is harmful to motors used for joint drivers. Furthermore, to de-
crease chatter in SMC, the sign function is replaced by a hyperbolic tangent function or
sigmoid function, and some artificial intelligence algorithms are adopted [16–19]. Moreover,
sensitivity amplify control (SAC) was first used in BLEEX, and a good tracking control
effect can be obtained based only on an accurate dynamic model [5]. In recent years, new
and effective means for flexible movement, admittance control, and impedance control
are proposed and used in robots [20–22]. The core ideas of them are the same, to ensure
some relationship between external force and position tracking error. In other words,
they all belong to the force and position hybrid control method essentially. Because the
gait trajectory of human motion is periodic and repetitive, iterative learning control (ILC)
is extremely applicable [23,24]. Moreover, it does not rely on the precise mathematical
model of the dynamic system, and it can reduce gait tracking errors significantly with
only a few iterations. However, in the LLRER system, ILC is invalid for non-repetitive
external disturbance.

Recently, with the rapid development of sensor technology, the human–robot co-
operative control based on multi-sensor signals fusion technology is proposed to obtain
perfect gait tracking, including plantar pressure sensor, angle position encoder, inertial
measurement unit (IMU), and human physiological signals sensors, such as surface elec-
tromyogram (sEMG) [25,26], electroencephalogram (EEG), electrooculogram (EOG) [27,28],
and brain–machine [29]. Obviously, there are too many signals and too much data in
the above continuous system caused by periodic sampling called time-triggered control.
Furthermore, in order to effectively reduce the number of sensor signals and decrease the
amount of data sent in the communication network, event-triggered control is proposed
and mainly applied in networked control systems. It was proven that event-triggered
control can save the computational resources of the controller and the network bandwidth
and reduce the energy consumption of the sensor network. The event-triggered SMC is
widely used for its advantages [27,30]. Lately, impulsive control has developed rapidly
due to its advantages such as simpler structure, stronger robustness, and lower control
cost [31–35]. Specifically, compared with other control methods, the advantages and out-
standing features of impulsive control can be summarized as follows: on the one hand,
the impulsive controller is simple in structure and easy to implement. Only the linear
feedback of the state signal is used as the impulsive control signal to realize the control of
the impulsive system [36,37]. Therefore, it greatly reduces the requirements for sensors
and communication technology, and consequently, it can be implemented at a low cost. On
the other hand, impulsive control systems have strong robustness and are suitable for solv-
ing problems such as strong nonlinearity, parameter uncertainty, time delay, and random
disturbance. In addition, impulsive control can provide an effective method to deal with
systems that cannot continuously control. Last but not least, impulsive control reduces
information redundancy and transmission delay and accelerates response speed [38,39]. As
a result, impulsive control based on event-triggered mechanisms has received considerable
attention due to its wide applications in fields such as communication networks, control
technology, engineering sciences, and biology [40–42].

As we know, at the moment a user’s heel touches with the toe off the ground, the
LLRER human–exoskeleton integrated system will be subjected to the external shock force
and human–exoskeleton interaction force. Generally, they are regarded as time-varying and
external random disturbances which cannot be accurately measured by sensors and have a
bad influence on gait tracking but cannot be ignored [43]. In order to reduce and eliminate
the adverse effects, this paper synthesizes the advantages of above several different control
strategies and proposes the sliding mode impulse control based on the event-triggered
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mechanism [27,44]. By simulation verification, the proposed hybrid control strategy can
achieve perfect gait tracking for the LLRER human–exoskeleton integrated system. The
originalities and the novelties of the proposed control system are summarized as follows:
(1) Although there are many control methods for exoskeleton robot trajectory tracking,
our paper is the first time applying impulsive control to exoskeleton robots. (2) Although
event-triggered control has been widely and maturely used in networked control systems
and complex networks, there are few studies on its application to improve the accuracy
of exoskeleton gait tracking. (3) Sliding mode control is a common nonlinear control
method, but it is the first time to design a hybrid controller by combining the sliding
mode control (SMC) with event-triggered impulsive control (ETIC) [45,46]. (4) In addition,
in references [6,9,11,14], passive ankle joints are used, so the controllers are designed
only based on the common dynamic model of the two-link manipulator; meanwhile, the
friction is ignored in the dynamic model, which greatly reduces the accuracy of lower limb
exoskeleton gait tracking. Moreover, a sinusoidal signal is used as the desired trajectory
in [9,11,47], and it is different from the practical gait trajectory. However, different from the
above, active ankle joints are used in our CUHK-EXO LLRER, and the dynamic model of the
human–exoskeleton integrated not only includes the exoskeleton, but it also includes the
human body mass inertia parameters and the Coulomb viscous friction model. Moreover,
the walking gait of healthy humans is used as the desired trajectory for patients with lower
limb movement disorders at the early stage of passive rehabilitation training.

The major contributions of this paper are as follows: (1) In order to reduce and
eliminate adverse effects on the accuracy of gait tracking caused by the gravity and friction,
the periodic ground shock force, and human–exoskeleton interaction force during a patient
with lower limb disorder walking with an LLRER, the feedforward compensation control,
impulsive control based on event-triggered mechanism, and sliding mode control are
combined to design the controller of LLRER gait tracking. (2) Based on event-triggered
sliding mode impulsive control, the constraints of gait tracking with bounded error and
exclusion of Zeno behavior are derived and proved, respectively, and they are useful for
the selection of the hybrid controller parameters.

The rest of this paper is organized as follows. In Section 2, some notations, definitions,
and assumptions are provided, and the problem and the design of the hybrid controller
are formulated. Our main results are proposed in Section 3, including Lyapunov-based
stability analysis and Zeno behavior exclusion. A numerical simulation of a practical
human–exoskeleton integrated system with the proposed hybrid controller is presented
and results are discussed in Section 4. Finally, the paper is concluded in Section 5.

2. Models and Method
2.1. Notation

Let R, R+, and Z+ denote the set of real numbers, positive real numbers, and positive
integers, respectively. Rn is the n-dimensional real spaces with Euclidean norm, and Rm×n

represents m× n dimensional real space. In addition, a ∨ b is the maximum of a and b. The
notation AT and A−1 denote the transpose and inverse of matrix A, respectively. diag[· · · ]
denotes a diagonal matrix. δ(t− tk) is the Dirac delta function, it presents the impulsive
effects due to impulsive action at instant tk, and {tk, k ∈ Z+}∞

k=1 is time sequence generated
by the impulsive event-triggered mechanism (IETM). I3 is the third-order identity matrix.
λ is the proportion coefficient and λ > 0.

2.2. Dynamic Model of CUHK-EXO LLRER

Generally, the dynamic model of an articulated robot with revolute joints can be
described by a Lagrangian system as follows [10,11,48]:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + F(θ̇) = T + τd (1)

where θ ∈ Rn is the vector of generalized coordinate, θ̇ ∈ Rn is the vector of generalized
velocity, and θ̈ ∈ Rn is the vector of generalized acceleration. M(θ), C(θ, θ̇) ∈ Rn×n repre-



Symmetry 2023, 15, 224 4 of 19

sent the symmetric positive-definite mass-inertia matrix and the Coriolis and centrifugal
forces matrix, separately. G(θ), F(θ̇), τd, T ∈ Rn×n represent the gravity, Coulomb viscous
force, external disturbance, and the output torque of joint actuator, respectively.

For the Lagrangian dynamic system (1), there are two fundamental properties, as
follows [10,11].

Property 1. The matrix Ṁ(θ)− 2C(θ, θ̇) is skew-symmetric, and it holds for arbitrary x ∈ Rn

xT(Ṁ(θ)− 2C(θ, θ̇))x = 0 (2)

Property 2. There exist three constants M1, M2, kc ∈ R+ that are skew-symmetric and hold for
arbitrary x ∈ Rn, such that

M1 ≤ ‖M(θ)‖ ≤ M2, ‖C(θ, θ̇)‖ ≤ kc‖θ̇‖ (3)

As shown in Figure 1a, taking the CUHK-EXO as an example, the prototype of the
wearable LLRER is developed by the Chinese University of Hong Kong (CUHK) research
team and is called CUHK-EXO [10,11,24,49,50]. When a user is walking with LLRER
for rehabilitation training, the two legs alternatively stand and swing in a gait cycle. To
make the analysis of LLRER easier, the thigh, shank, and foot can be approximated as three
different rigid bodies. So the swing leg can be simplified into a three-link structure as shown
in Figure 1b. O stands for the position of the hip joint, A stands for the position of the knee
hip joint, and B stands for the position of the ankle joint. m1, m2, and m3 present the mass of
the thigh, shank, and foot, separately. L1, L2, and L3 are the lengths of body segments. C1,
C2, and C3 are the centers of mass (COMs) of them. l1, l2, and l3 represent the distance from
the joint position to the COM, separately. The inertia of different segments rotating around
their COMs are represented by I1, I2, and I3, respectively. θ1, θ2 , and θ3 represent the angles
of three joints. The angular ranges are defined as follows: θ1 ∈ [−30◦, 30◦], θ2 ∈ [0◦, 60◦],
θ3 ∈ [−20◦, 20◦]. θ, θ̇, and θ̈ denote the position, angular velocity, and angular acceleration
of the joints, respectively. θ(t) = [θ1(t) θ2(t) θ3(t)]T denotes the actual angles of the hip,
knee, and ankle joints, as shown in Figure 1b. θd(t) = [θ1d(t) θ2d(t) θ3d(t)]T represents
the time-varying desired joint angles of human motion during walking. Let fv and fc
present the viscous friction coefficient and the Coulomb friction coefficient of Coulomb
viscous friction, respectively.

Figure 1. Prototype and simplified model. (a) CUHK-EXO. (b) The three-link structure of the
swing leg.

For the three-link simplified model of the human–exoskeleton integrated system in
Figure 1b, the dynamic model (1) can be written as in [10,11].
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2.3. Event-Triggered Sliding Mode Impulsive Control

Let e(t) = θd(t)− θ(t) denote the tracking errors of trajectory. So ė(t) = θ̇d(t)− θ̇(t),
ë(t) = θ̈d(t) − θ̈(t). The feedback gain is Λ = diag[λ, λ, λ] ∈ R3×3, and the reference
angular velocity is defined as θ̇r(t) = θ̇d(t) +Λe(t). So the reference angular acceleration is
θ̈r(t) = θ̈d(t) + Λė(t). The sliding mode surface function is defined as follows:

s(t) = ė(t) + Λe(t) = θ̇d(t)− θ̇(t) + Λe(t) = θ̇r(t)− θ̇(t) (4)

Taking the derivative of the terms in the above formula, we get

ṡ(t) = ë(t) + Λė(t) = θ̈d(t)− θ̈(t) + Λė(t) = θ̈r(t)− θ̈(t) (5)

when a user is walking with the LLRER for gait rehabilitation, the gravity and Coulomb
viscous friction always exist and can be identified and estimated in real-time by different
methods [10]. So the online feedforward compensation control is adopted to counteract
the gravity and friction, which always exist in LLRERs. To decrease the disturbances and
system uncertainties and improve system robustness, a sliding mode control (SMC) method
based on the exponential approach law is introduced. Furthermore, the hyperbolic tangent
function is used to substitute the sign function for reducing chatter. It is worth noting that
the external disturbance mainly comes from the ground shock force from the heel touching
the ground to the toe leaving the ground and human–exoskeleton interaction force during
the single leg swing. They are not continuous but discrete and impulsive. So, the Dirac delta
function is used to imitate and against them, and event-triggered impulsive control (ETIC)
is considered simultaneously [36,40,42]. So a feedback–feedforward hybrid controller
with online gravity and friction compensation based on SMC and ETIC is designed as
follows [36,40,51]:

u(t) = T + τd = G(θ(t)) + F(θ̇(t))− K1s(t)− K2 tanh(s(t)) + µM(θ(t))s(t)
∞

∑
k=1

δ(t− tk) (6)

where, K1, K2 ∈ R≥0 are the parameters of SMC based on exponential approach law, and
µ ∈ R+ denotes the gain of impulsive controller.

Obviously, from (4), it is also a PD negative feedback control with feedback gain λ.
The feedback compensation control system based on SMC and ETIC is depicted in Figure 2.
According to (1), (4), (5), and (6), and letting ∆ = M(θ)θ̈r + C(θ, θ̇)θ̇r, the equation can be
derived as follows:

M(θ)ṡ(t) =
(
K1 I3 − C(θ, θ̇)

)
s(t) + ∆ + K2 I3 tanh(s(t))− µM(θ)s(t)

∞

∑
k=1

δ(t− tk) (7)

Because M(θ) is a symmetric positive-definite matrix, so M−1(θ) exists. Therefore,
(7) can be written as:

ṡ(t) = M−1(θ)
[(

K1 I3 − C(θ, θ̇)
)
s(t) + ∆ + K2 I3 tanh(s(t))

]
− µs(t)

∞

∑
k=1

δ(t− tk) (8)

when t 6= tk, δ(t− tk) = 0, so (8) is simplified as

ṡ(t) = M−1(θ)
[(

K1 I3 − C(θ, θ̇)
)
s(t) + ∆ + K2 I3 tanh(s(t))

]
(9)

In this paper, s(t) is continuous except at the triggering instant t = tk, so there exist
limt→t−k

s(t) = s(t−k ) and limt→t+k
s(t) = s(t+k ). Generally, s(t) is left continuous at tk for

all k, thus s(t−k ) = s(tk). By the property of Dirac function,
∫ +∞
−∞ δ(t− tk)dt = 1 exists.

So integrating both sides of system (8) from tk to t+k , one can obtain as follows: ∆s(tk) =
s(t+k ) − s(tk) = −µs(tk). Thereby, s(t+k ) = (1− µ)s(tk) = (1− µ)s(t−k ). Consequently,
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combined with (9), the impulsive control system of the LLRER (1) under control law (6)
can be described as:{

ṡ(t) = M−1(θ)
[(

K1 I3 − C(θ, θ̇)
)
s(t) + ∆ + K2 I3 tanh(s(t))

]
, t 6= tk, t ≥ t0,

s
(
t+k
)
= (1− µ)s

(
t−k
)
, t = tk, k ∈ Z+.

(10)

Figure 2. Design of the hybrid controller of the human–exoskeleton integrated system.

Remark 1. In the control law (6), if K1 = K2 = 0, and µ > 0, then (6) only includes ETIC with
gravity and friction compensation as follows:

u(t) = T = G(θ) + F(θ̇)− µM(θ)s(t)
∞

∑
k=1

δ(t− tk) (11)

Obviously, it is a special case of (6). At the instant t 6= tk, u(t) = T = G(θ) + F(θ̇), the
control law is irrelevant to state tracking errors, so there is no need to calculate and transmit errors.
Only when t = tk should the desired human motion gait trajectories be received, and errors should
be calculated and transferred. Therefore, compared to the time-triggered control method, (11) can
greatly save computing resources and reduce the burden of the communication network.

Remark 2. In the control law (6), if K1 > 0, K2 = µ = 0, then there is a proportional-derivative
(PD) negative feedback control with gravity and friction compensation as in [11]. In this paper, the
dynamic model contains Coulomb viscous friction, so it is more exact than in [11] and has better
tracking performance.

Remark 3. In the control law (6), if K1 > 0, K2 > 0, µ = 0, then (6) is gravity and friction
compensation control based on sliding mode control, which involved in [52].

Remark 4. In the control law (6), if K1 > 0, K2 = 0, µ > 0, then (6) consists of PD control and
ETIC with gravity and friction compensation as in [36].

The triggering time sequence {tk, k ∈ Z+}∞
k=1 in (7) is generated by the following

impulsive event-triggered mechanism (IETM) [33,40]:{
tk = min

{
tk−1 + τmax, t∗k

}
t∗k = inf

{
t ≥ tk−1 : V(s(t)) ≥ eb−η(t−tk−1)V

(
s
(

t+k−1

))} (12)

where tk−1 + τmax is called the forced triggering instant, t∗k is called the required event-
triggered instant, b is a threshold parameter, b > 0, η is the exponential decay rate of
the two consecutive triggered instants, and η > 0. A Lyapunov function is chosen as
V(s(t)) = sT(t)s(t), it depends on the state errors s(t) at time t and the last time event-
triggered instant tk−1, respectively. t0 ≥ 0 is a given initial instant and s(t+0 ) is the initial
state error of system at t0. Note that the triggering time sequence {tk, k ∈ Z+}+∞

k=1 may be
different with the different choice of Lyapunov function V(s(t)). The changes of b and η will
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influence the triggering interval, and b may affect the boundary of eb−η(t−tk−1)V(s(tk−1)).
On the one hand, if b is larger, then the threshold is larger too. It means that there are larger
triggering intervals but fewer triggering times. On the other hand, with a larger η, the
threshold decays faster, the triggering intervals become smaller but the triggering times
are greater.

Remark 5. When the exponential decay rate η = 0, it is a special case of (12). Although it is easier,
it is a constant unrelated to the triggering interval. So in practical application, one can adjust the
two values of b and η simultaneously to obtain the desired system performance more easily.

Remark 6. In practical LLRER applications, the signals of the plantar pressure sensors and the
human–exoskeleton interaction force sensors are used as the forced triggering conditions, and the
Lyapunov function threshold of state error is used as the required event-triggered condition.

2.4. Definitions and Assumptions

The following definitions and assumptions are presented and exploited in the con-
troller parameters design and stability analysis of the LLRER system.

Definition 1. For given α > 0 and any initial values of system (1), there exist a constant T0 ∈ R+,
for ∀t > T0, such that e(t) ∈ Ωs := {e(t) ∈ Rn‖e(t)‖ < α}, where α is a boundary of the
desired tracking error and ‖·‖ is the Euclidean vector norm. So the LLRER system described by the
Lagrangian dynamic model (1) is said to achieve practical tracking synchronization [36,53].

Definition 2. Let N(t0, t) denote the triggered times based on the event-triggered mechanism, so
it holds

N(t0, t) ≥ t− t0

τmax
− 1 (13)

where τmax = max{tk+1 − tk} is the maximum triggering interval, and {tk, k ∈ Z+}+∞
k=1 is

triggering time sequence generated by (12).

Definition 3. Given a locally Lipschitz function V(x) : Rn → R+, the upper right–hand Dini
derivative of V(x) is defined as D+V(x) = limh→0+(V(x + h)−V(x))/h.

Assumption 1. The hip joint (flexion/extension), knee joint (flexion/extension), and ankle joint
(dorsiflexion/plantar flexion) are constrained to move only in the sagittal plane.

Assumption 2. We assume that
∥∥θ̇(t)

∥∥,
∥∥θ̇d(t)

∥∥, and
∥∥θ̈d(t)

∥∥ are bounded, and there exist a
positive constant a1 ∈ R+, such that

∥∥θ̇(t)
∥∥ ≤ a1.

According to above assumption, (5), and λ > 0, hence,
∥∥θ̈r(t)

∥∥ are bounded, for
a2 ∈ R+, it can be derived as follows:∥∥θ̈r(t)

∥∥ =
∥∥θ̈d(t) + λė(t)

∥∥
=
∥∥θ̈d(t) + λ

(
θ̇d(t)− θ̇(t)

)∥∥
≤
∥∥θ̈d(t)

∥∥+ λ
∥∥θ̇d(t)

∥∥+ λ‖θ̇(t)‖
≤ a2

(14)

Remark 7. All the dynamic parameters of the LLRER dynamic model (1) are identified as in [11,51].
In practical application, the joint angles, angular velocities, and angular accelerations are bounded.
They can be accurately measured in real-time by encoders and inertial measurement units (IMU).
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3. Main Results
3.1. Lyapunov Stability Analysis

Theorem 1. Given K1, K2 ∈ R≥0 and the desired tracking error bound arbitrarily α > 0, if the
impulsive control gain µ, feedback gain λ, and the maximum trigger interval τmax satisfy the
constraints as follows:

(i) 0 < µ < 1; (ii) λ > 1; (iii) τmax < − ln(1− µ)2

ρ
(15)

where β = 2(M2a2 + kca1(a1 + α) + K1α + K2)/M1 > 0, ρ = β/α > 0, then the asymptotic
convergence of system (1) can be guaranteed. That means the LLRER system (1) can track
the desired gait trajectory θd under the ETIC (7) and IETM (12) with the tracking error
bound α.

Proof of Theorem 1. There are three steps to prove Theorem 1, as follows.

• Step 1: Firstly, we should prove that, for given α > 0 and any initial values of system
(1), there exists a constant T1 ∈ R+, if ∀t > T1 satisfies, then it holds as follows:

s(t) ∈ Ψs := {s(t) ∈ Rn‖s(t)‖ < α} (16)

To do this, a quadratic Lyapunov function V(s(t)) = sT(t)M(θ)s(t) is constructed. If
s(t) ∈ Rn/Ψs, due to (16), then ‖s(t)‖ ≥ α.
On the one hand, when t ∈ [tk, tk+1), t 6= tk, for above V(s(t)), taking the Dini
derivatives along the solutions of the first equation of (10), we get

D+V(s(t)) = 2sT(t)M(θ)ṡ(t) + sT(t)Ṁ(θ)s(t)

= 2sT(t)
(
∆− C(θ, θ̇)s(t) + K1s(t) + K2 tanh(s(t))

)
+ sT(t)Ṁ(θ)s(t)

= 2sT(t)(∆ + K1s(t) + K2 tanh(s(t))) + sT(t)(Ṁ(θ)− 2C(θ, θ̇))s(t)

(17)

By Property 1, i.e., (2), sT(t)(Ṁ(θ)− 2C(θ, θ̇))s(t) = 0. For ∆ = M(θ)θ̈r(t) + C(θ, θ̇)θ̇r(t),
thus

D+V(s(t)) = 2sT(t)(∆ + K1s(t) + K2 tanh(s(t))) ≤ 2
∥∥∥sT(t)

∥∥∥(‖∆‖+ K1‖s(t)‖+ K2)

= 2
∥∥∥sT(t)

∥∥∥(‖M(θ)‖
∥∥θ̈r(t)

∥∥+ ‖C(θ, θ̇)‖
∥∥θ̇r(t)

∥∥+ K1‖s(t)‖+ K2
) (18)

By Property 2, i.e., (3), we have ‖M(θ)‖ ≤ M2, ‖C(θ, θ̇)‖ ≤ kc‖θ̇(t)‖. According
to Assumption 2, (14), and (4), we have ‖θ̇(t)‖ ≤ a1, ‖θ̈r(t)‖ ≤ a2, and

∥∥θ̇r(t)
∥∥ =

‖θ̇(t) + s(t)‖ ≤ ‖θ̇(t)‖+ ‖s(t)‖ ≤ a1 + ‖s(t)‖. Accordingly, it can be derived as

D+V(s(t)) ≤ 2
∥∥∥sT(t)

∥∥∥(M2a2 + kca1(a1 + ‖s(t)‖) + K1‖s(t)‖+ K2) (19)

Since ‖s(t)‖ ≥ α, hence, from this one can get that

D+V(s(t)) ≤ 2
∥∥∥sT(t)

∥∥∥‖s(t)‖(M2a2 + kca1(a1 + α) + K1α + K2)/α (20)

Due to (3), there exists M1 ≤ ‖M(θ)‖, hence, (20) can be written as

D+V(s(t)) ≤ 2(M2a2 + kca1(a1 + α) + K1α + K2)
∥∥∥sT(t)

∥∥∥‖M(θ)‖‖s(t)‖/(αM1)

= 2(M2a2 + kca1(a1 + α) + K1α + K2)
∥∥∥sT(t)M

T
2 (θ)

∥∥∥∥∥∥M
1
2 (θ)s(t)

∥∥∥/(αM1)

= 2(M2a2 + kca1(a1 + α) + K1α + K2)sT(t)M(θ)s(t)/(αM1)

= (β/α)V(s(t)) = ρV(s(t))

(21)
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Because s(t) is left continuous at tk , so t(t+k−1) = s(t−k ) = s(tk). We integrate both
sides of the above inequality (21) from tk−1 to t, and get that

ln
V(s(t))

V
(

s
(

t+k−1

)) ≤ ρ(t− tk−1) (22)

from which one can obtain

V(s(t)) ≤ V
(

s
(

t+k−1

))
eρ(t−tk−1), t ∈ [tk, tk+1), k = 1, 2, 3 . . . (23)

On the other hand, at the impulsive instant, when t = tk, V(s(t)) is expressed as
V(s(t+k )) = sT(t+k )M(θ)s(t+k ). We substitute the second equation of the impulsive
system (10) into the above equality to get

V
(
s
(
t+k
))

= (1− µ)sT(t−k )M(θ)(1− µ)s
(
t−k
)

= (1− µ)2sT(t−k )M(θ)s
(
t−k
)
= (1− µ)2V

(
s
(
t−k
)) (24)

By the constraint (i) 0 < µ < 1, we have (1− µ)2 < 1. It implies that the Lyapunov
function decreases gradually.

• Step 2: Next, we will prove that, for t ∈ [tk, tk+1), k = 1, 2, 3 · · · , the inequality holds
as follows:

V(s(t)) ≤ (1− µ)2(k−1)V
(
s
(
t+0
))

eρ(t−t0) (25)

(a). If k = 1, then t ∈ [t0, t1). From inequalities (23) and (24), one can obtain

V(s(t)) ≤ V
(
s
(
t+0
))

eρ(t−t0) = (1− µ)2×(1−1)V
(
s
(
t+0
))

eρ(t−t0) (26)

which means (25) holds.
(b). If k = 2, then t ∈ [t1, t2) . From inequalities (23) and (24), one has

V(s(t)) ≤ V
(
s
(
t+1
))

eρ(t−t1) = (1− µ)2V
(
s
(
t−1
))

eρ(t−t1)

= (1− µ)2V
(
s
(
t+0
))

eρ(t1−t0)eρ(t−t1)

= (1− µ)2×(2−1)V
(
s
(
t+0
))

eρ(t−t0)

(27)

which means (25) also holds.
(c). Assume that when k = n ≥ 3, t ∈ [tn−1, tn), the inequality (25) holds as follows:

V(s(t)) ≥ (1− µ)2×(n−1)V
(
s
(
t+0
))

eρ(t−t0) (28)

Thereby, when k = n + 1, t ∈ [tn, tn+1), from inequality (23) and (24), we can con-
clude that

V(s(t)) ≤ V
(
s
(
t+n
))

eρ(t−tn) = (1− µ)2V
(
s
(
t−n
))

eρ(t−tn)

≤ (1− µ)2(1− µ)2×(n−1)V
(
s
(
t+0
))

eρ(tn−t0)eρ(t−tn)

= (1− µ)2nV
(
s
(
t+0
))

eρ(t−t0)

(29)

That means when k = n + 1, inequality (25) also holds. Therefore, synthesizing (a),
(b), and (c) by the method of mathematical induction, when t ∈ [tk−1, tk), k ∈ Z+,
inequality (25) always holds.
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Due to 0 < (1− µ)2 < 1, from (13) and (25), one has

V(s(t)) ≤ (1− µ)
2
(
(t−t0)
τmax −1

)
V
(
s
(
t+0
))

eρ(t−t0)

= (1− µ)−2V
(
s
(
t+0
))

e

(
ln(1−u)2

τmax +ρ

)
(t−t0)

(30)

from constraint (ii), we have ln(1−u)2

τmax
+ ρ < 0. Hence, when k → +∞, there exists

V(s(t)) → 0 as t → +∞, which means that V(s(t)) is monotonically decreasing to
s(t) ∈ Ωs, and the system (1) under control law (6) is exponential asymptotic stable.
In another words, there always exists T1 > 0, such that ‖s(t)‖ ≤ α for ∀t > T1.

• Step 3: Finally, we will prove that, there exists T0 > T1 such that ‖e(t)‖ < α for ∀t > T0.
If e(t) ∈ Rn/Ωs, then ‖e(t)‖ ≥ α holds, Owing to ‖s(t)‖ ≤ α, so ‖s(t)‖ ≤ ‖e(t)‖. We
multiply both sides of the above inequality by ‖eT(t)‖ to get

‖eT(t)‖‖s(t)‖ ≤ ‖e(t)‖2 = eT(t)e(t) (31)

We choose a quadratic Lyapunov function: V(θ, θ̇, t) = 1
2 eT(t)e(t). From (4) and (31),

we can derive

V̇(θ, θ̇, t) =
1
2

(
ėT(t)e(t) + eT(t)ė(t)

)
= −λeT(t)e(t) +

1
2

(
sT(t)e(t) + eT(t)s(t)

)
≤ −λeT(t)e(t) +

∥∥∥eT(t)
∥∥∥‖s(t)‖

≤ −λeT(t)e(t) + eT(t)e(t)

= (1− λ)eT(t)e(t)

(32)

According to the constraint (iii) λ > 1, we have V̇(θ, θ̇, t) < 0, and it is negative
definite function when e(t) ∈ Rn/Ωs. Therefore, the Lyapunov function is gradually
decreased until e(t) ∈ Ωs. According to definition 1, there always exist T0 > T1, for
∀t > T0, ‖e(t)‖ < α holds. It means that the practical tracking synchronization is
within a desired tracking error bound α and the tracking errors e(t) remain within the
desired finite ball Ωs. The proof of Theorem 1 is completed.

Remark 8. In Theorem 1, the constraints are sufficient and non-essential conditions. It implies
that if the conditions are not met, the joint angles of the LLRER system may be able to track the
desired gait trajectory.

As in Remark 1, if the control law only includes ETIC with gravity and friction
compensation as (11), i.e., K1 = K2 = 0, µ 6= 0, we substitute it to (15) in Theorem 1, then
one can obtain as follows:

Corollary 1. Given the desired tracking error bound arbitrarily α > 0, if the impulsive control
gain µ, feedback gain λ, and the maximum trigger interval τmax satisfy the constraints as follows:

(i) 0 < µ < 1; (ii) λ > 1; (iii) τmax < − ln(1− µ)2

ρ
(33)

where β = 2(M2a2 + kca1(a1 + α))/M1 > 0, ρ = β/α > 0, then the asymptotic convergence of
system (1) can be guaranteed. That means the LLRER system (1) can track the desired gait trajectory
θd under the ETIC (11) and IETM (12) with the tracking error bound α.
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As in Remark 4, if the control law consists of PD control and ETIC with gravity and
friction compensation, i.e., K1 > 0, K2 = 0, µ > 0, and we substitute it into (15) in Theorem
1, then one can obtain as follows:

Corollary 2. Given the desired tracking error bound arbitrarily α > 0, if the impulsive control
gain µ, feedback gain λ, and the maximum trigger interval τmax satisfy the constraints as follows:

(i) 0 < µ < 1; (ii) λ > 1; (iii) τmax < − ln(1− µ)2

ρ
(34)

where β = 2(M2a2 + kca1(a1 + α) + K1α)/M1 > 0, ρ = β/α > 0, then the asymptotic
convergence of system (1) can be guaranteed. That means the LLRER system (1) can track the
desired gait trajectory θd under the ETIC (11) and IETM (12) with the tracking error bound α.

3.2. Exclusion of Zeno Behavior

Theorem 2. There is no Zeno behavior for system (10) under IETM (12) if the triggering parameters
satisfy the constraints as follows:

b > 0, η > 0, η + ρ > 0 (35)

Proof of Theorem 2. We consider three cases.

• Case (a): Triggering time sequence {tk, k ∈ Z+}+∞
k=1 entirely consists of the forced

triggering instants {tk−1 + τmax}+∞
k=1. In this case, it follows the assumption tk− tk−1 =

τmax > 0, which means with certainty that the Zeno behavior is excluded.

• Case (b): Triggering time sequence {tk, k ∈ Z+}+∞
k=1 fully consists of the required

event-triggered instants {t∗k}
+∞
k=1. In this case, according to (12) and (23), it holds that

eb−η(tk−tk−1)V
(

s
(

t+k−1

))
≤ V(s(tk)) ≤ eρ(tk−tk−1)V

(
s
(

t+k−1

))
(36)

Due to V
(

s
(

t+k−1

))
≥ 0, hence, eb−η(tk−tk−1) ≤ eρ(tk−tk−1). For ρ > 0, η > 0, thus

yielding b− η(tk − tk−1) ≤ ρ(tk − tk−1). It can be deduced that tk − tk−1 ≥ b/(η +
ρ) > 0. Repeating this procedure for t ∈ [tk−1, tk), k = 1, 2, 3 · · · ,+∞, we obtain
tk − t0 ≥ bk/(η + ρ). If the constraints satisfy b > 0, η > 0, η + ρ > 0, then tk ≥

bk
η+ρ + t0 → +∞ as k→ +∞. This implies that the Zeno behavior is excluded.

• Case (c): Triggering time sequence {tk, k ∈ Z+}+∞
k=1 consists of both event-triggered

instants and forced triggering instants. In this case, we assume instant Q is the Zeno
instant, so Q 6= +∞. Let P = (Q − τmax/ξ) ∨ t0, where ξ > 1 and Q − τmax < P,
so the interval [P, Q) consists of infinitely many impulsive instants. If there exists a
forced triggering instant in [P, Q), then we claim that there must be only one forced
triggering instant called t̄. Otherwise, it will contradict the definition of P. Obviously,
all tk ∈ (t̄, Q) are required event-triggered instants. From case (b), it holds tk → +∞ as
k→ +∞, which contradicts the definition of instant Q. Inversely, if there is no forced
triggering instant in [P, Q), then the Zeno behavior can also be excluded [33,54].

In summary, in the above three cases, it can be obtained that if constraints (35) are
satisfied, then the triggering interval exists definitely, which implies that the Zeno behavior
of system (10) under IETM (12) is excluded. So far the proof of Theorem 2 is completed.

As in Remark 5, if η = 0, we substitute it to (35) in Theorem 2, then one can obtain:

Corollary 3. There is no Zeno behavior for system (10) under IETM (12) if the triggering parame-
ters satisfy constraints: b > 0, ρ > 0 [55].
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4. Numerical Simulation

To verify the effectiveness of the proposed control strategy, a simulation study of
human motion gait tracking for the CUHK-EXO LLRER human–exoskeleton integrated
system is carried out in MATLAB. The user’s height is 170 cm, the weight is 65 kg, and
the mass of the CUHK-EXO LLRER is 20 kg. By measurement, estimation, and dynamic
parameter identification, one can obtain these parameters and the dynamic model as
in [10,47,48]: m1 = 9.6 kg, m2 = 5.3 kg, m3 = 1.4 kg, L1 = 0.46 m, L2 = 0.4 m, L3 = 0.28
m, fv1 = 0.062, fc1 = −1.731, fv2 = 0.031, fc2 = −0.012, fv3 = 0.157, and fc3 = −0.632.
According to the reference [36], we set several basic parameters as follows: M1 = 2.36,
M2 = 9.2, kc = 0.65, α = 0.02, a1 = 1.52, a2 = 0.03, µ = 0.98, λ = 10, K1 = 12, and
K2 = 1.4; then we substitute them into Theorem 1 and Theorem 2 to get the values range
of τmax, b, and η; at last we take a group of parameters with good tracking performance
as the final parameters of the controller: τmax = 0.0152, b = 1.34, and η = 0.68. Generally,
a healthy human body always has a symmetrical gait, and the motion trajectories of the
two legs are exactly the same except for half a gait cycle ahead or behind. When a healthy
human walks, the angles of the hip, knee, and ankle joints of the lower limb can be used
as the desired trajectories for patients with lower limb movement disorders at the early
stage of passive rehabilitation training. As shown in Figures 3 and 4, they are common gait
trajectories obtained from CGA (Clinical Gait Analysis) and CASIA (Chinese Academy of
Sciences Institute of Automation) Gait Dataset B [6,47,56]. We take the three-link simplified
structure of the CUHK-EXO human–exoskeleton integrated system as the dynamic model
to carry out gait tracking simulation. We obtain the 3D simulation diagram of walking gait,
as shown in Figure 5. In the simulation, the step distance is 2 m, the gait cycle is 2 s, and
the walking velocity of the human–exoskeleton integrated system is 1 m/s. It walks three
gait periods and goes forward 6 m in 6 s. In a gait cycle, there are 100 time-sampling points,
and the sampling interval is 2 ms. Based on the dynamic model of CUHK-EXO human
exoskeleton integrated system, with the desired trajectory input as in Figure 4, the gait
tracking results are shown in Figures 6–8 for the proposed hybrid control strategy in this
paper and the PD control method with gravity and friction compensation [54,55]. In the
simulation, the hip joint and knee joint are disturbed by the human–exoskeleton interaction
forces, the disturbances are simulated by the sine wave signal, τd1 = τd2 = 0.3sin(t), and
the ankle joint is disturbed mainly by the shock force from the ground, the disturbance is
simulated by the square wave signal, τd3 = 1.5square(2 ∗ pi ∗ t, 10). At the beginning of
human motion, the system is in the initial state, the human–exoskeleton stands on both legs,
all the angles of the joints are zeros, [θ1(0) θ2(0) θ3(0)] = [0◦ 0◦ 0◦], but the desired angles
of joint are [θ1d(0) θ2d(0) θ3d(0)] = [23◦ 1◦ − 1◦]. When the system starts, for existing large
tracking errors, the output torques of joint actuators increase rapidly, and the hip joint angle
achieves real-time gait tracking with bounded errors only in 0.24 s; the other two joints
take 0.35 s and 0.37 s, respectively. As shown in Figures 6–8, the hybrid control strategy
proposed in this paper can achieve complete tracking with bounded error after the control
system runs for 0.3 s. As shown in Figure 9, the maximum tracking error angles of the
hip, knee, and ankle joints are only 1◦, 1.2◦, and 1.5◦ when the system runs stably, and the
maximum error rates of gait tracking are 4%, 2%, and 7.5%, respectively. It shows that the
control system has a fast response speed and small tracking error. So it can achieve perfect
gait tracking. However, compared to the proposed hybrid control strategy, the method of
PD control with gravity and friction compensation has larger tracking errors, and it can
not realize complete tracking of real-time gait trajectory. From Figure 9, we can find that
the tracking errors are the biggest at the moment of the exchange of the two legs, i.e., the
half of the gait cycle, as compared to the other moments in a gait cycle, due to the external
disturbances. When the heel touches the ground, the ankle joint directly suffers the shock
forces of the ground, in order to reduce and eliminate the adverse effects, the actuator of the
ankle joint outputs impulsive action on the ankle joint periodically, so the torque chattering
is larger than hip and knee joints as shown in Figure 10.
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In Figure 11, there are 100 time samplings in a gait cycle of 2 s, and the three event
triggers have different release instants. As Figure 12, the impulsive numbers of the three
event triggers are 29, 27, and 33, separately. The maximum impulsive interval is 0.014 s,
which is less than τmax obviously. The average impulsive numbers are approximately 30,
but there are 100 control signals in PD continuous system. So the event-triggered impulsive
control reduced the quantity of sensor signals sent, reduced the amount of data in network
communication, and saved the computational resources of the controller. The controller
signals are reduced, the action frequency of the actuator is reduced accordingly, and the
service life of the actuator is prolonged. In summary, the simulation results show that the
LLRER human–exoskeleton-integrated system can achieve high-precision gait tracking
during walking based on the event-triggered sliding model impulsive control.

Figure 3. Desired joint angle of left leg.

Figure 4. Desired joint angle of right leg.
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Figure 5. Three−dimensional simulation of the walking gait.

Figure 6. Tracking of hip joint angle.

Figure 7. Tracking of knee joint angle.
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Figure 8. Tracking of ankle joint angle.

Figure 9. Tracking errors of joint angle.

Figure 10. Output torque of joint actuator.



Symmetry 2023, 15, 224 16 of 19

Figure 11. Event trigger release instants.

Figure 12. Impulsive numbers and intervals.

5. Conclusions

The main objective of this paper consists in obtaining an efficient closed-loop hybrid
controller to realize the high-precision gait tracking for LLRERs human–exoskeleton inte-
grated system. Specifically, in order to reduce and eliminate adverse effects on the accuracy
of human motion gait tracking during walking with LLRER, which is caused by gravity
and friction, the periodic ground shock force, and human–exoskeleton interaction force,
a feedforward–feedback hybrid controller with online gravity and friction compensation
based on event-triggered sliding mode impulsive control is designed. At first, the LLRER
dynamic model and its two fundamental properties are introduced. Afterward, the error
impulsive control system of the LLRERs is derived by defining the sliding mode surface
function and combining the hybrid controller with the dynamic model. In addition, an
impulsive event-triggered mechanism consisting of forced triggering and required trig-
gering is designed. Furthermore, according to Lyapunov stability analysis, Theorem 1
for joint angle bounded error tracking is proposed and proved theoretically. Meanwhile,
the special cases of Theorem 1, Corollary 1, and Corollary 2 are proposed. Moreover, the
Zeno behavior caused by impulsive event-triggered mechanism is excluded, and some
controller parameters constraints are derived, i.e., Theorem 2 and Corollary 3. Finally, the
effectiveness of the proposed hybrid control strategy for the LLRER human–exoskeleton
integrated system is verified by MATLAB simulation. On the one hand, for the desired
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human motion trajectories, the system can achieve high-precision gait tracking with small
bounded errors. On the other hand, compared with time-triggered control, event-triggered
control can evidently reduce signal transmission and save resources. In the future, hybrid
controller parameter optimization, performance tests by experiment on the CUHK-EXO
prototype, and practical applications of the LLRERs will be studied in depth.
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