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Abstract: This research presents a nonlinear adaptive fuzzy control method as an analytical design
and a simple control structure for the trajectory tracking problem in wheeled mobile robots with skew
symmetrical property. For this trajectory tracking problem in wheeled mobile robots, it is not easy to
find an analytical adaptive fuzzy control solution due to the complicated error dynamics between
the controlled wheeled mobile robots and desired trajectories. For deriving the analytical adaptive
fuzzy control law of this trajectory tracking problem, a filter link is firstly adopted to find the solvable
error dynamics, then the research is based on the skew symmetrical property of the transformed
error dynamics. This proposed nonlinear adaptive fuzzy control solution has the advantages of low
computational resource consumption and elimination of modeling uncertainties. From the results
for tracking two simulation scenarios (an S type trajectory and a square trajectory), the proposed
nonlinear adaptive fuzzy control method demonstrates a satisfactory trajectory tracking performance
for the trajectory tracking problem in wheeled mobile robots with huge modeling uncertainties and
outperforms the existing H2 control method.

Keywords: nonlinear adaptive fuzzy control; wheeled mobile robots; skew symmetrical property;
energy consumption

1. Introduction

The broad applications of wheeled mobile robots (WMRs) with a skew symmetrical
property have been attracting much attention because WMRs have been becoming more
and more important for assisting daily human life and industry operations in recent years.
These WMRs need to have a precise motion ability and effective control methods to achieve
assigned missions [1–5]. Much of the literature on WMRs for trajectory tracking control
have been focused on fuzzy control [6–9], neural networks control [10–12], sliding mode
control [13–16], backstepping control [17–19], and feedback linearization control [20–22].
However, in real applications, successfully implementing the above proposed control meth-
ods requires huge design efforts due to controller complexities. Thus, an effective optimal
control with a simple and easy-to-implement control structure is important for controlled
WMR, and there are several related research works on this [23–26]. For the above issue,
a simple optimal control structure should be developed, and this issue can be fixed with
a closed-form solution or analytical solution for this optimal trajectory tracking problem.
However, it is a difficult task for the trajectory tracking problem of the WMR to obtain a
closed-form solution or analytical solution due to complex error dynamics. Fortunately,
using a suitable mathematical arrangement, the closed-form solution or an analytical so-
lution can be derived. In practice, the WMR must work under modelling uncertainties
due to variations of payload and energy loss. Therefore, an innovative nonlinear adaptive
fuzzy optimal control method that is a closed-form design will compensate for the issue
of system parameter variations for the optimal trajectory tracking problem of the WMR
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in this investigation. Adaptive fuzzy control designs with parameters of on-line learning
ability have been widely used in many applications. For example, a neural network based
adaptive control design was proposed for dealing with nonlinear nonaffine systems with
modeling uncertainties [27]; a trajectory-tracking and path-following design was developed
for underactuated autonomous vehicles with parametric modeling uncertainty [28]; an
iterative learning control (ILC) of constrained multi-input multi-output (MINO) nonlinear
systems under the state alignment condition with varying trail lengths was developed to
meet the alignment condition by adjusting the reference trajectory [29]; and a data-driven
control of networked nonlinear systems with event-triggered output was proposed by
integrating the estimated disturbances, the true and the estimated tracking error and the
resultant tracking error systems, which were uniformly ultimately bounded [30]. These
published results indicate the powerful modeling elimination capability of adaptive control
laws with on-line parameter learning ability. For these reasons, for tackling varying system
parameters of the WMR, a parameterized formulation is used on-line to precisely estimate
time-varying system parameters, including mass, inertia, etc., in this investigation. This
proposed adaptive fuzzy control law facilities engineers and researchers to realize control
design of the WMR practically, because it is a closed-form solution and has the simplest
control structure. Due to these promising characteristics, this centralized control law will
possess a low calculation consumption and thus save energy. Furthermore, this proposed
method can mitigate the effect of varying modelling uncertainties based on the on-learning
ability of the derived adaptive fuzzy control law for system parameters. This research is
arranged as follows. Section 1 presents the introduction and literature review. In Section 2,
the wheeled mobile robot dynamics are described. Section 3 presents the adaptive fuzzy
with H2 control design. Section 4 illustrates the simulation results obtained for tracking the
S type and square trajectory by adopting the proposed adaptive fuzzy control method and
the H2 control method. Finally, the conclusions are given in Section 5.

2. Wheeled Mobile Robot Dynamics

In this section, the WMR dynamics are described and the error dynamics of trajectory
tracking with the desired trajectory are also formulated.

2.1. Wheeled Mobile Robot Dynamics

A wheeled mobile robot which consists of two driving wheels and one omnidirectional
wheel is shown in Figure 1. Two driving wheels of the WMR are separated by 2E and
both two driving wheels have the same radius of r. The instantaneous position of this
controllable WMR in the global coordinate frame {O, X, Y} is denoted as a. R = (xR,yR)
presents the position of the controllable WMR in the global coordinate frame, and the angle
θ denotes the direction of the local frame {R, XR, YR}. Based on the above descriptions, the
global coordinate frame of the WMR will be expressed by Equation (1).

a = [xR yR θ]
T (1)

The dynamic system of the WMR is illustrated in Figure 1 and this WMR usually
moves heading toward the direction of the axis of the driving wheels. Then, the kinematics
of the WMR with constraints can be presented as Equation (2).

.
a =


.
xR.
yR.
θ

 =

cos θ −d sin θ
sin θ d cos θ

0 1

[vl
ω

]
(2)

where vl and ω denote the linear and angular velocities, respectively.
According to the WMR kinematics model in Equation (2), it can be transferred to the

dynamics of the controlled WMR by applying the Euler–Lagrange method. Then, Equation
(2) can be rewritten as Equation (3):
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P(a)
..
a + Q(a,

.
a)

.
a + O(a) = W(a)τ (3)

where P(a) ∈ R3×3 is the inertia matrix, Q(a,
.
a) ∈ R3×3 is the centripetal and coriolis

matrix, O(a) ∈ R3×3 is the gravitational vector, W(a) ∈ R3×2 is the input transformation
matrix, and τ ∈ R2×1 is the torque of input control vector. The

.
a and

..
a are velocity and

acceleration vectors of the WMR, respectively.
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Figure 1. Wheeled mobile robot dynamic system.

In Equation (3), there are two properties which are described as P1 and P2 [31,32].
P1. The inertia matrix P(a) is symmetric positive definite.
P2. Skew symmetry property: The matrix

.
P(a) − 2Q(a,

.
a) is skew symmetric and

xT(
.
P(a)− 2Q(a,

.
a))x = 0 for all x ∈ Rn.

The O(a) can be ignored because this WMR moves on the horizontal plane. Then,
Equation (3) can be rewritten as Equation (4).

P(a)
..
a + Q(a,

.
a)

.
a = W(a)τ (4)

The detailed descriptions of P(a) ∈ R3×3, Q(a,
.
a) ∈ R3×3 and W(a) ∈ R3×2 are

given below:

P(a) =

 m 0 ml sin θ
0 m −ml cos θ

ml sin θ −ml cos θ IP

 (5)

Q(a,
.
a) =

0 0 ml
.
θ cos θ

0 0 ml
.
θ sin θ

0 0 0

 (6)

W(a) =
1
r

cos θ sin θ
sin θ sin θ

E −E

 (7)

τ =

[
τr
τl

]
(8)
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where m is the WMR mass, θ is the angle of heading attitude, l is the distance between
position R and a, IP is the inertia, τr and τl are the torques of right and left wheel, respec-
tively. The system parameters (m, l, IP) of WMR are modeling uncertainty due to varying
payloads in this research.

2.2. The Mathematical Model of Trajectory Tracking Error Dynamics

Suppose the desired trajectory ar is a twice continuously differentiable function ar ∈ C2.
The

.
ar and

..
ar are the velocity and acceleration vector of ar, respectively, in this investigation.

Based on the above definitions, the trajectory tracking error between the WMR a and the
desired trajectory ar can be described in the following equation:

e =

[ .
â
â

]
=

[ .
a− .

ar
a− ar

]
(9)

where
ar = [xd yd θd]

T (10)

The following dynamics of the trajectory tracking error can be obtained by Equations
(4) and (9).

.
e =

[
−P−1(a)Q(a,

.
a) 03×3

I3×3 03×3

]
e +

[
− ..

ar − P−1(a)Q(a,
.
a)

.
ar

03×3

]
+

[
P−1(a)W(a)τ

03×3

]
(11)

In order to analyze this trajectory tracking problem of a WMR with Equation (11), a
PD type filter link f (t) and a state space transformation matrix T are defined as Equations
(12) and (13) to simplify this dynamic of the trajectory tracking error.

f (t) = ϑ
.
â + vâ (12)

where ϑ and v are positive constants which are adjustable variables.

T =

[
ϑI3×3 vI3×3
I3×3 03×3

]
(13)

Differentiating the PD type filter link f (t) and Equation (12) can be described with
following equation:

.
f (t) = −P−1(a)Q(a,

.
a) f (t) + ϑP−1(a)[−F(e, t) + W(a)τ] (14)

where
F(e, t) = P(a)(

..
ar −

ϑ

v

.
â) + Q(a,

.
a, )(

.
ar −

ϑ

v
â) (15)

From Equations (12) to (14), a more solvable error dynamics can be presented as

.
e = T−1

[ .
f (t)
.
â(t)

]
= M(e, t)e(t) + B(e, t)

[
−F(e, t) + τ′

]
(16)

in which

M(e, t) = T−1
[
−P−1(a)Q(a,

.
a) 03×3

1
v I3×3 − ϑ

v I3×3

]
T (17)

B(e, t) = T−1DP−1(a) (18)

D =

[
I3×3
03×3

]
(19)

τ′ = W(a)τ (20)
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The nonlinear function F(e, t) contains perturbed factors due to the variations of the
WMR system parameters. For precisely estimating F(e, t), a fuzzy approximation which
includes a set of adjustable parameters Θ f is integrated as an important control part of τ′

as follows:
τ′ = τe + τf (e, Θ f ) (21)

where τf (e, Θ f ) is a fuzzy approximator and Θ f is the adaptive parameter vector. This
τf (e, Θ f ) is used for approximating the perturbed term F(e, t). The control term τe is used
to eliminate the influence of the environmental disturbances.

Substituting Equation (21) into Equation (16), we can obtain Equation (22).

.
e = M(e, t)e(t) + B(e, t)τe + B(e, t)

[
−F(e, t) + τf (e, Θ f )

]
(22)

The proposed fuzzy approximation τf (e, Θ f ) with adjustable parameters can be de-
scribed in Equation (23):

τf (e, Θ f ) = ξ(e)Θ f (23)

where
Θ f =

[
Θ1 Θ2 Θ3

]T (24)

ξ(e) =

ξT
1 (e) 01×M 01×M

01×M ξT
2 (e) 01×M

01×M 01×M ξT
3 (e)

 (25)

Θi =
[
Θi1 · · · ΘiM

]T i = 1, 2, 3 (26)

ξi

(
e) =

[
ξi1(e) · · · ξiM(e)

]T i = 1, 2, 3 (27)

and ξil(e) can be described as

ξil(e) =

6
∏
j=1

µFil
j
(ej)

M
∑

k=1

6
∏
j=1

µFik
j
(ej)

i = 1, 2, 3 and l = . . . M (28)

Furthermore, the optimal parameter vector Θ f (t) must be defined before deriving the
adaptive law. The optimal parameter vector is defined as

Θ∗f (t) = arg min
Θ f∈ΩΘ

max
e∈Ωe

∥∥∥ξ(e)Θ f (t)F(e, t)
∥∥∥ (29)

where ‖.‖ denotes the Euclidean norm, ΩΘ and Ωe are the set of Θ f (t) and e(t), respectively.
Based on this optimal parameter vector Θ∗f (t), the perturbed term F(e, t) can be formulated
as follows:

F(e, t) = ξ(e)Θ∗f + ε(t) (30)

where ε(t) is the approximation error.
Substituting Equations (23) and (30) into Equation (22), we can obtain Equation (31).

.
e = M(e, t)e(t) + B(e, t)τe + B(e, t)ξ(e)Θ̃ f (t) + B(e, t)d(t) (31)

where
Θ̃ f (t) = Θ f (t)−Θ∗f (t) (32)

d(t) = −ε(t) (33)
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3. Adaptive Fuzzy with H2 Control Design
3.1. Adaptive Fuzzy with H2 Trajectory Tracking Problem for WMR

The design objective of this trajectory tracking problem is to develop an adaptive fuzzy
with H2 control law to satisfy the H2 optimal performance index. Inspecting Equation (31),
the adaptive fuzzy with H2 control design of trajectory tracking of a WMR can be solved if
this problem has a closed-form solution τe(t) and an adaptive law Θ̃ f (t) that satisfies the
following performance index [33].

min
τe(t)∈[0,t f )

[
eT(t f )L f e(t f ) + Θ̃

T
f (t f )ZΘ̃ f (t f ) +

∫ t f

0
[eT(t)Le(t) + τT

e (t)Xτe(t)]dt
]

(34)

where L f , L, Z and X are the weighting matrix which are positive definite matrices for all
t f ∈ [0, ∞).

If one unique solution, C(e, t) satisfies the nonlinear time-varying differential Equation
(35). According to the mathematical analysis, the trajectory tracking problem of a WMR
will be guaranteed to find a closed-form solution.

.
C(e, t) + C(e, t)M(e, t) + MT(e, t)C(e, t) + L− C(e, t)B(e, t)X−1BT(e, t)C(e, t) = 0 (35)

and the control law τ′(e, t) can be described as

τ′(e, t) = ξ(e)Θ∗f (t) +
1

εv
τ∗e (e, t) (36)

where
τ∗e (e, t) = −X−1BT(e, t)C(e, t)e(t) (37)

.
Θ
∗
f (t) = −vZ−1ξT(e)BT(e, t)C(e, t)e(t) (38)

C(e, t) = CT(e, t) ≥ 0 (39)

3.2. Analytical Solution C(e, t) of Adaptive Fuzzy with H2 Trajectory Tracking Problem

The trajectory tracking problem is a closed-form solution if the analytical solution
C(e, t) is to be solved mathematically. It is tough to solve Equation (35) and find an
analytical solution for C(e, t) because the differential Equation (35) is a very complex time-
varying equation. Fortunately, we can obtain the solution of C(e, t) by treating C(e, t) as
the following mathematical form:

C(e, t) = RT
[

M(e, t) 03×3
03×3 O

]
R (40)

where R and O are a positive matrix.
Applying Equation (16) and C(e(t), t) into Equation (40) yields:

.
C(e, t) + C(e, t)M(e, t) + MT(ei, t)C(e, t) = Λ (41)

where

Λ =

[
03×3 O

O 03×3

]
(42)

Equation (43) can be obtained by using Equations (18) and (40):

C(e, t)B(e, t) = DTT (43)

According to Equations (41) and (43), the time-varying Equation (35) can be described
as the following Equation (44):

Λ + L− TT DX−1DTT = 0 (44)
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Suppose
X = δ2 I3×3 (45)

where δ > 0.
The symmetric matrix L in Equation (44) is a diagonal matrix and can be further

factorized as the following form:

L =

[
l11

T l11 l12
lT
21 l22

T l22

]
(46)

Applying T and D defined in Equations (13) and (19), Equation (44) can be described
as Equation (47): [

l11
T l11 − 1

δ2 T11
TT11 O + l12 − 1

δ2 T11
TT12

O + l12
T − 1

δ2 T12
TT11 l22

T l22 − 1
δ2 T12

TT12

]
= 0 (47)

According to Equation (13), above submatrices T11 and T12 can be rewritten as

T11 = δl11 (48)

T12 = δl22 (49)

Then

T =

[
δl11 δl22

0 I

]
(50)

In Equation (47), the matrix l11 and l22 must be a diagonal form based on T11 = ϑI3×3 and
T22 = vI3×3 in Equation (13). The l11 and l22 will be defined in Equation (51):

l11 = l22 = I3×3 (51)

and
ϑ = v = δ (52)

From the results of Equation (47), the nonlinear adaptive fuzzy control law τ′(e, t) can
be presented as Equations (53) and (55), respectively:

τ∗e (e, t) = −1
δ

ΠTe(t) (53)

where
Π =

[
l11 l22

]T (54)

In addition, the nonlinear adaptive fuzzy law Θ̃ f (t) can be expressed in the following:

Θ̃ f (t) = Z−1ξ(t)Πe(t) (55)

By integrating τ∗e (e, t) and Θ̃ f (t) derived in Equations (53) and (55), the overall non-
linear adaptive optimal control law τ∗e (e, t) and the adaptive law Θ∗f (t) are described as
follows.

τ∗e (e, t) = −δT
T ΠT

Te(t) (56)

Θ∗f (t) = −Z−1ξT(t)ΠT
Te(t) (57)

Then, the trajectory tracking problem of adaptive fuzzy control can be solved by the
following adaptive fuzzy control law.

τ′(e, t) = ξ(t)Θ∗f (t) +
1
v

τ∗e (e, t) (58)
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3.3. Closed-Loop Control Diagram of This Proposed Method

Assuming all system states of the controlled WMR can be fully measured, the control
block diagram of the trajectory tracking design of a WMR is illustrated in Figure 2. There
are five function elements, including a desired trajectory generator, the proposed adaptive
control law, optimal control term, system parameter adapter law and dynamics of the WMR.
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Figure 2. The closed-loop control diagram of a WMR via the proposed method.

4. Verification Results

There are two testing scenarios, i.e., an S type and square trajectory, to verify the
tracking performance in this section. The desired S type trajectory has a radius of 5 m. For
the desired square trajectory, there are four straight lines and four corners. The mathe-
matical equations of the desired S type and square trajectory are presented in Section 4.1.
This proposed method will also be compared with H2 control approach [24], which was
developed based on the same WMR model as this investigation. In addition, Matlab version
of 2022a will be used to verify the trajectory tracking performance of this proposed method
and the compared method.

4.1. Verification Environment Configuration

The related WMR parameters of this simulation are given in Table 1. The time-varying
mass m = m + ∆m includes a fixed value m = 10(kg) and a disturbed value ∆m. This
∆m involves the 20% variation of m to simulate the real situation of WMR under cargo of
different weights.

Table 1. Wheeled mobile robot parameters.

Description Parameter Value

WMR wheel radius r 6.5 (cm)
WMR width 2E 35.6 (cm)

Distance from a to C l 14 (cm)
WMR mass m 10 (kg)

WMR inertia IP 10 (kg-m2)

In the desired S type trajectory scenario, the original states are x0 = 0(meter),
y0 = 0(meter), and ωd = 3

◦
/s. This desired trajectory (DT) is generated by Equation (59)

and is shown in Figure 3. {
x = x0 + rd cos(2θd)
y = y0 + 2rd sin(θd)

(59)

where rd is the radius of the desired S type trajectory, and θd =
∫ t

0 ωddt is the desired
rotation angle with the desired constant angular velocity ωd.
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In another desired square trajectory scenario, this desired trajectory (DT) is constructed with
four straight lines and four corners, which are d1, d2, . . . , d8 from Equation (60) to (67). The
initial condition of this desired square trajectory is configured to x0 = −7(m), y0 = −8(m),
and ωr = 3

◦
/s. These sub-trajectories are described in the following statements and are

shown in Figure 4.
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The first line d1 starts from (x0, y0) and moves forward to the right-hand side with a
moving velocity vr and can be described by the following equation.

d1 :


xr1 = x0 + vrt1
yr1 = y0
θr1 = 0

(60)

The first corner d2 starts from (xr1, yr1) with a radius rr and rotation angle θr2 which
is presented in Equation (61).

d2 :


xr2 = xr1 + rr cos(θr2 + 270

◦
)

yr2 = yr1 + rr sin(θr2 + 270
◦
)

θr2 =
∫ t2

t1
ωrdt

(61)

From Equation (62), the second line d3 starts from (xr2, yr2) with a moving velocity vr
and a θr3 = 90

◦
.

d3 :


xr3 = xr2
yr3 = yr2 + vrt3
θr3 = 90

◦
(62)

As in corner d2, the second corner d4 can be generated with the following equation.
The initial position of d4 is (xr3, yr3) and θr4 is the rotation angle of d4.

d4 :


xr4 = xr3 + rr cos(θr4)
yr4 = yr3 + rr sin(θr4)

θr4 =
∫ t4

t3
ωrdt + 90

◦
(63)

The third line d5 starts from (xr4, yr4) with a velocity vr and a θr5 = 90
◦

is expressed as

d5 :


xr5 = x4 − vrt5
yr5 = yr4
θr5 = 180

◦
(64)

In Equation (65), the third corner d6 of this desired square trajectory starts from
(xr5, yr5) with a radius rr and rotation angle θr6.

d6 :


xr6 = xr5 + rr cos(θr6 + 90

◦
)

yr6 = yr5 + rr sin(θr6 + 90
◦
)

θr6 =
∫ t6

t5
ωrdt + 180

◦
(65)

The fourth line d7 of this desired square trajectory starts from (xr6, yr6) with a velocity
vr and a constant θr5 = 270

◦
is described as following equation.

d7 :


xr7 = xr6
yr7 = yr6 − vrt7
θr7 = 270

◦
(66)

Finally, the fourth corner d8 of this desired square trajectory starts from (xr7, yr7) with
a radius rr and rotation angle θr8 can be presented as

d8 :


xr8 = xr7 + rr cos(θr8 + 180

◦
)

yr8 = yr7 + rr sin(θr8 + 180
◦
)

θr8 =
∫ t8

t7
ωrdt + 270

◦
(67)

Initial conditions of the controlled WMR with respect to these two control laws and
two tracking trajectories are given in Table 2.
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Table 2. Initial positions and attitude of the WMR.

Tracking Trajectory Initial Position (xr, yr) Attitude θ

S Type Trajectory (0,3.8) π/4
Square Trajectory (−9,9) 3π/4

4.2. The Fuzzy Logic System Definition

In this research, the membership functions are set as Gaussian function. The advantage
of Gaussian function is that it can cover the entire universal and differentiable variables.
These membership functions are selected in the following equations.

µFi1
j
= exp

[
−
(
ej − 3aj

)2
]

(68)

µFi2
j
= exp

[
−
(
ej − 2aj

)2
]

(69)

µFi3
j
= exp

[
−
(
ej − aj

)2
]

(70)

µFi4
j
= exp

(
−e2

j

)
(71)

µFi5
j
= exp

[
−
(
ej + aj

)2
]

(72)

µFi6
j
= exp

[
−
(
ej + 2aj

)2
]

(73)

µFi7
j
= exp

[
−
(
ej + 3aj

)2
]

(74)

for i = 1, 2, 3 and j = 1, 2, 3, 4, 5, 6 where a1, a2, a3, a4, a5, a6 are the center for each
membership functions which will be defined for adjusting parameters. However, each
output of the fuzzy logic system is given 7 fuzzy rules corresponding to 6 state variables.
All fuzzy rules are defined in the following statements.

R(i1): IF e1 is Fi1
1 , e2 is Fi1

2 · · · and e6 is Fi1
6 then τfi

is Gi1

R(i2): IF e1 is Fi2
1 , e2 is Fi2

2 · · · and e6 is Fi2
6 then τfi

is Gi2

R(i3): IF e1 is Fi3
1 , e2 is Fi3

2 · · · and e6 is Fi3
6 then τfi

is Gi3

R(i4): IF e1 is Fi4
1 , e2 is Fi4

2 · · · and e6 is Fi4
6 then τfi

is Gi4

R(i5): IF e1 is Fi5
1 , e2 is Fi5

2 · · · and e6 is Fi5
6 then τfi

is Gi5

R(i6): IF e1 is Fi6
1 , e2 is Fi6

2 · · · and e6 is Fi6
6 then τfi

is Gi6

R(i7): IF e1 is Fi7
1 , e2 is Fi7

2 · · · and e6 is Fi7
6 then τfi

is Gi7

for i = 1, 2, 3.
A = ∑7

k=1 ∏6
j=1 µFik

j
(ej) (75)

and given fuzzy architecture matrix ξ(e) adaptive vector Θ f as

ξ(e) =

ξT
1 (e) 01×7 01×7

01×7 ξT
2 (e) 01×7

01×7 01×7 ξT
3 (e)

 (76)

Θ f =
[
Θ1 Θ2 Θ3

]T (77)

where
Θi =

[
Θi1 Θi2 Θi3 Θi4 Θi5 Θi6 Θi7

]T (78)

ξi(e) =
[

∏6
j=1 µ

Fi1
j
(ej)

A

∏6
j=1 µ

Fi2
j
(ej)

A · · ·
∏6

j=1 µ
Fi7

j
(ej)

A

]
(79)
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for i = 1, 2, 3. In the following simulation, we will apply the same fuzzy rules and Gaussian
function for the fuzzy logic system.

4.3. Simulation Results

As depicted above, a published H2 control method is adopted in this investigation
for comparison [24]. The system parameters of the WMR are provided in Table 1 and
initial positions and attitude of the WMR are listed in Table 2. For explicitly presenting
the simulation results of the S type and square trajectory, trajectory tracking results of
this proposed adaptive fuzzy control method (AF) and the H2 control method (H2) with
respect to the trajectory of the desired S type and square will be revealed separately in the
following discussion.

The S type trajectory tracking results of the WMR controlled by using the adaptive
fuzzy control method (AF) and H2 control method (H2) with initial conditions are shown
in Figures 5 and 6. From Figures 5 and 6, the trajectory tracking performance can be
found for this WMR in the first corner of the desired S type trajectory driven by these two
control methods. Obviously, the WMR in Figure 5 controlled by the proposed adaptive
fuzzy control method (AF) has quicker convergent rates in tracking the desired S type
trajectory than the H2 method (H2) from the trajectory contour, even under the effect of a
20% modeling uncertainty of m which was not considered in the control design process of
the H2 control method.
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The tracking errors in the X-axis, Y-axis and the heading angle of the WMR are
illustrated in Figures 7–9. The results depict the histories of tracking errors eX,eY , and
eθ for the WMR using the adaptive fuzzy control method and H2 control method. From
the comparisons of these tracking results, it is easy to see that the trajectory tracking
performance of the H2 control method is worse than the proposed adaptive fuzzy control
method for the controlled WMR because of the existence of the effect of 20% modeling
uncertainty caused by ∆m. From these simulation results, both of these two control methods
possess rapid transient response. However, larger tracking errors are found in the whole
tracking period for the H2 control method. On the whole, the proposed adaptive fuzzy
control method obviously outperforms the H2 control method in the WMR.
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Figures 10 and 11 reveal the square trajectory tracking results of the WMR driven by
the adaptive fuzzy control method (AF) and H2 method (H2). The performance of the square
trajectory tracking can be obtained for this WMR in four corners of the desired square
trajectory driven by these two control methods. The WMR controlled by the proposed
adaptive fuzzy control method (AF) demonstrated outstanding performance for tracking
the desired square trajectory compared to the H2 method (H2) under the effect of a 20%
modeling uncertainty of m.
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The tracking error results in the X-axis, Y-axis and the heading angle of the WMR
can be found in Figures 12–14. The results illustrate the performance of tracking errors eX ,
eY, and eθ for the desired square trajectory tracking of the WMR by adopting the adaptive
fuzzy control method and H2 control method. According to the compared results, it is
obvious that the proposed adaptive fuzzy control method has a better trajectory tracking
performance than the H2 control method for the controlled WMR due to the ∆m effect of 20%
modeling uncertainty. From these tracking error results, we can see that smaller tracking
errors always can be obtained throughout the entire tracking period for the proposed
adaptive fuzzy control method. On the whole, the H2 control method is obviously inferior
to the proposed adaptive fuzzy control method in the trajectory tracking of the WMR.
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5. Conclusions

A nonlinear adaptive fuzzy control design with the skew symmetrical property is
successfully developed for the trajectory tracking problem in wheeled mobile robots in this
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research. The main contribution of this study is the closed-form solution with adaptive
fuzzy control method for the trajectory tracking problem in wheeled mobile robots. Based
on the related literature, the closed-form solution for the trajectory tracking problem in
wheeled mobile robots has still not been perfected due to the lack of optimal control meth-
ods for complex dynamics under modeling uncertainties. For achieving this investigative
purpose, this study has several key contributions, i.e., the simplest and most easy-to-
implement control structure for the trajectory tracking problem in wheeled mobile robots
with a closed-form solution. According to the above results, this proposed method provides
an energy consumption saving with complex control structures in practice. From the two
simulation scenarios, the proposed adaptive fuzzy control method has better tracking
performance of the desired S type and square trajectory than the H2 method, no matter the
convergence of tracking errors in X-axis, Y-axis and the heading angle, and in handling of
modelling uncertainties.
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