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Abstract: Chemistry, physics, and many other applied fields depend heavily on partial differential
equations. As a result, the literature contains a variety of techniques that all have a symmetry goal for
solving partial differential equations. This study introduces a new double transform known as the
double formable transform. New results on partial derivatives and the double convolution theorem
are also presented, together with the definition and fundamental characteristics of the proposed
double transform. Moreover, we use a new approach to solve a number of symmetric applications
with different characteristics on the heat equation to demonstrate the usefulness of the provided
transform in solving partial differential equations.
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1. Introduction

In Science and Engineering problems, we often search for solutions to distinct differen-
tial equations with initial and boundary conditions. Due to standard differential conditions,
we may first determine the conditions and then determine the constants by looking at the
entire arrangement of the target problem. However, partial differential equations cannot be
solved using a similar method. Changing the constants and conditions in order to meet
the established limits and requirements of the problem is difficult. In mathematics, partial
differential equations are used to express the boundary value problems [1-3], initial value
problems [4-6], heat equations, and wave equations and others [7-10].

There are several methods for solving partial differential equations, including the
separation method, integral transforms, numerical approaches, decomposition methods,
etc. Numerous publications with these references may be found in the literature. For
example, [11-15] explains how to solve a partial differential equation numerically, or
describes the convolution approach, and we have the integral transform method, Fourier,
Laplace, ARA, and the double transforms such as double Laplace Sumudu [16], double
ARA Sumudu [17], and others [18-20]; are all used in the integral transform technique.

Over the years, integral transforms have had great importance and usage that have
given them an important place in solving many types of equations, such as the ordinary
or partial differential and integral equations, and even systems consisting of a set of
equations. The integral transform of the function f(f) where t € (—o0,00) can be obtained
by computing the following improper integral, defined as follows:

EUFWIE) = [ als 0 f0at,

where s is a real or complex variable and 4(s, t) is a function of two variables called the
kernel of the transform that is independent of the variable .
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Numerous integral transforms have emerged to aid in this field, which has captured a
significant portion of the interest of applied mathematicians, as a result of the great success
that has been demonstrated and achieved by integral transforms in solving many physical,
engineering, and other problems represented by equations of all kinds. Among these
integral transforms are Mellin integral transform [21], Hankel’s transform [22], Laplace
Carson transform [23], Sumudu integral transform [24], and others [25,26].

Mathematics showed interest in double integral transforms and their properties to
solve more equations in a simpler and easier way. Its importance and simplicity are
represented by converting the Partial and Ordinary equations into algebraic equations.
After proving the distinction of transforms in solving equations of all kinds, it was necessary
to combine single integral transforms with other methods to achieve greater benefits and to
cover more physical problems.

A formable integral transform was introduced in 2021 by the authors in [27] and it is
an effective tool for solving ordinary, partial differential equations, and integral equations.
In this article, we introduce a new double transform called the double formable transform
(DFT), along with the most significant hypotheses, characteristics, and justifications for
how it contributes to the solution of physical and engineering problems. We give five
examples of heat equations and their solutions. The new approach in this study, is a novel
double transform that transforms functions of two variables into functions of four variables,
with simple calculations. Moreover, the duality between Laplace transform and formable
transform is obvious by simple substitution and a scalar multiplicative variable, which
allow us to solve all problems of partial differential equations by the new approach with
the advantage that reduce the calculations, in which it preserves the values of constants
under DFT.

In addition, in this research, we consider the nonhomogeneous linear heat equation of
the form:

wi(x, t) = owxx(x, t) +ew(x, t) +u(x, t),

with the initial condition:
w(x, 0) = a(x)

and the boundary conditions:
w(0, t) =bi(t), wx(0, t) = by(t)

where w(x, t) is the unknown function, y(x, t) is the source term, and o and € are constant.

A simple formula for the solution of the above equation is established and employed
in solving some applications. The new formula is simple and applicable in dealing with
partial differential equations of heat type, with fewer computations in comparison to other
numerical methods and using other transforms.

This article is organized as follows: in Section 2, Fundamental facts and properties
of single formable transform are presented. In Section 3, we introduce the new double
formable transform, with the basic properties and theorems, several relations related to
the existence, partial derivatives, and double convolution are presented. In Section 4, we
apply DFT to the heat equation and obtain a formula for the solution. In Section 5, some
examples are presented and solved with the new double transform.

2. Fundamental Facts of the Formable Transform

In 2021, a new integral transform known as the formable transform [27], of the contin-
uous function f () on the interval [0, c0) is defined by:

Riw(t)] = B(s,u) = > /0°° e it (t)dt.

u

The inverse formable transform is given by:
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R Rw(t L[ (s uya
- fr— t = — —eu .
Riw®)]] =w(t) = 5 [~ e¥Bls,u)ds
2.1. Formable Transform of Some Basic Functions

In this section, we presnt the valued of formable transform for some basic functions
as follows.

R[] = 1. ¢y

R[] = ”SL:r(a +1), &> 0. o)

Rle] = ﬁ ®)

R[sin(at)] = Szfﬁ 4)

R[sinh(at)] = % ®)
$2

R[COS(ﬂt)] m (6)
2

R[cosh(at)] = sz—SW' (7)

2.2. Formable Transform of Derivatives

The formable transform for a derivative of a continuous function is given as follows:

AR [w' (1] = %B(s,u) - EW(O) 8)
0] - () -T2 0o

The above results can be obtained from the definition of formable transform with
simple calculations.

3. Double Formable Transform

In this section, we present a new double integral transform called the double formable
transform. Fundamental properties and theorems related to the existence and partial
derivatives and etc., are illustrated.

Definition 1. Let w(x,t) be a continuous function of two variables x > 0 and t > 0. Then the
double formable transform (DFT) of w(x, t) is defined as:
R[R[w(x,t)]] = R2[w(x,t), (v,7,5,u)] = Re[Re[w(x,t);t — (s,u)];x = (v,7)]
=3 6’"6""( e i [w(x, H]d ) (10)
s Jo Joo e D w(x, )dx

which is equivalent to

R2[w(x,t)] = W(v,r,5,u) = sv /

/ e XSt o (px, ut)duxdt. (11)
o Jo

We denote the single FT as follows:

o  Withrespect to x: Ry[w(x,t)] = W(v,1,t);
o  Withrespect to : Ri[w(x, t)] = W(x,s,u).
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Clearly, the DFT is a linear transformation as shown below:

R%[a w(x,t) —I—bm(x t)] 2y e aw(x ) +bm(x,t)]dxdt
=asl [ [Fexth t[w(x t) Jdxdt + bS8 [ [ e~ Xt [ m(x, t)]dxdt
= aR*[w(x,1)] + b R*[m(x,1)],

where a and b are constants.
Property 1. Let w(x, t) = f(x)g(t),x > 0, > 0. Then R?[f(x)g(t)] = Rx[f(x)] Re[g()]-

Proof. By the definition of DFT, we get

RAf(x)gt)] = 53 Jo Jo e Tl [f(x)g(1)]dxdt = ”fo (x)e™7¥dx 5 [o° g(t)e u'dt =
Rl f(x)] Rt[g( )).0

3.1. DFT of Some Basic Functions
In the following arguments, we introduce the DFT for some functions.

i Letw(x,t) =1,x > 0,t > 0. Then:

/ / P ddt = / e*%xdxi/ efgtdt:R[l} R[1].
rJo u.Jjo

From Equation (1), we get: R?[1] = 1.
ii. Letw(x,t)= x*tP,x > 0,t > 0and «, B are positive constants. Then:

R x tﬁ / / e~ Xl Bxdt = / X e_gxdxzf tﬁe_itdt:R[x“]R[tﬁ}.
0

From Equation (2), we get: R?[x*tF] = (£)" (%)ﬁl"(tx +1T(B+1).
iii. Letw(x,t) = Pt ¥ > 0,t > 0and a, B are constants. Then,

RZ acx+,3t —_ / / Ox+5t) zxx+/3t} dxdt — 2 /00 e“xefgxdx E /00 eﬁtefﬁtdt — R[elXX} R[eﬁt]
r.Jo u.Jjo

From Equation (3) we get: R? [e®*+F!] =
Similarly,

50
(s—au)(v—pr) *

i(ax _ 5v
R? [e( +ﬁt)} (s —iau)(v—ipr)’

Thus, one can obtain

R2 [ei(“ﬁﬁt)} _ sv(sv — aPur) + isv(srp + uvw)

(s2 + a2u2) (02 + B2r2)
Using Euler’s formulas:

- eix _ e—ix & . eix +e—ix
smx — ————— coOsx = ————

2i 2
and the formulas: . L N .
sinhx:e 7.6 &coshx:e te .

2i 2

Thus, we find the DFT of the following functions:

sv(srp + uon)

Refsin(ax + )] = e g
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sv(sv — afur)
(s2 4+ a?u?)(v? + B?r?)

sv(srp + uva)
(2 — a2u2) (2 — B212)

sv(sv + apur)
(52 — a?u?)(v? — p2r?)

R oavt)] = 55 e 50 (o)
%fooo[fo(:l\/ﬂﬂ)e*?xdxf e utdt = sy e o te—utdt.

Thus, we get

R2[cos(ax + Bt)] =

R2[sinh(ax + Bt)] =

R2[cosh(ax + Bt)] =

(305 = g

4vs + FPru’
where | (] \/E) is the Bessel function.

3.2. Existence Conditions for DFT

If w(x,t) is a function of exponential orders a« and B as x — o and t — oo, and if

there exists a positive constant Z, such that Vx > X and t > T, we have:

lw(x,t)| < Ze*¥ TP,

We can write w(x,t) = O(e¥*F!), as x — co and t — o0, (2) > aand (£) > B.

Theorem 1. Let w(x,t) be a continuous function on the region [0,X) x [0, T) of exponential
orders a and B. Then, R?[w(x, t)] exists for (2) and (), provided Re(%) > a and Re(%) > B.

Proof. By the definition of DFT, we get

IR2[w(x,1)]| = |22 [2° [ e Grtil [w(x, £)] dxdt’ <= fo Joo e (0 o(x, 1) | dxdt
<z fo ~Graxgy s [ e (GPlgt
:(Z)IXVZ)%’ ( )>0€al’1dR€( )>‘B|:|

3.3. Some Basic Theorems of DFT

Theorem 2. (Shifting property) Let w(x,t) be a continuous function, and R?[w(

W(v,r,s,u). Then:

2 [t Bt _ sV or su
R [e w(x,t)} (v —ar)(s — Bu) W<U'vzxr's'sﬁu

Proof. Using the definition in Equation (10),

RZ[ ax+pty, ( — sp
fsvfo fo e (?” ar)x+(s=Pu)) g (rx, ut)dxdt.

By letting (v —ar)x = vy, and dx =
Equation (13), we have

UlXV

RZ[ezxxﬂitw(x,t)] = (o—ar)(s—pu) ar) —Bu) fO fO ~(ovsn w(” YT ﬁ”

= i W (o o5 53 ) O

f e~ vx+st)[lxrx+13”t (rx ut)]dxdt

dy and (s — pu)t = st, and dt =

x b)) =

(12)

(13)
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Theorem 3. (Periodic function) Let R?[w(x,t)] exist, where w(x,t) is a periodic function of
periods o and B such that:
w(x +a,t+p) =w(xt), Vx,y.

Then,

Rz[w(x,t)]:(l_e ﬁ+ua ( //e el xt)]dxdt) O (14)

Proof. Using the definition of DFT, we get:

R2[w( / / L0 [w((x, £)|dcdt (15)

Using the property of improper integral, Equation (15) can be written as:

R2Jw / / S0 (v, 1] dxdt + ”/ / L0 [, £) ] dxdt (16)
Putting x = o 4 f and t = 7 4 & on the second integral in Equation (16) We obtain
R [w(x, )] = W)
YIS e i [w(x, )t + 52 [ f7 e” AT [w(p 4 B, T+ a)|dpd.
Using the periodicity of the function w(x, t), Equation (17) can be written by
R2[w( / / P [w(x, )| dxdt + e~ (FBHE0) 2 U/ / Go+a®) (w(p, T))dpdt (18)
Using the definition of DFT, we get
R2[w( / / P [w(x, ]dxdt + e PPV R2[w(x, ). (19)
Thus, Equation (19) can be simplified into
R2[w(x, t)] = ( / / P+ t)]dxdt). O
(1 — e (At
Theorem 4. (Heaviside function) Let R?[w(x, t)] exists, then:
R2:[w(x —6,t —o)H(x —6,t — 0)] = e 70w R2[w(x, t)], (20)
where H(x — 6,t — o) is the Heaviside unit step function defined as
1,x>6t>0
H(x—o,t—0) = { 0 , Otherwise.
Proof. Using the definition of DFT, we get
R?[w(x —5,t —o)H(x — 6, t— f f e~ G¥ il [w(x — 6,t — o)H(x — 6,t — o)]dxdt

fo f e~ Grrtat)] (x—(St— o)|dxdt @1)

Putting x — 6 = p and t — ¢ = 7 in Equation (21), we obtain

R2[w(x — 6,t — o)H(x — 6t — / / —(Ho+0)+ 5+ [ (p, 7] dpdT. (22)
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Thus, Equation (22) can be simplified into
R2[w(x —6,t—o)H(x —6,t— o) =e 107 u7 ( / / e )]deT> = e TR [w(x, t)]
Theorem 5. (Convolution theorem). Let R?[w(x, t)] and R*[q(x, t)] be exist. Then

R2[w(x, 1) * #q(x,1)] = = (R2[w(x, 1)) R?[q(x,1))) (23)

where

x t
w(x, t)**q(x,t) = / / w(x —p,t —1)q(p, T)dpdT
0 JO
Proof. Using the definition of DFT, we get

722[ (x t) * *q x, t =322 ¥ fo P [w(x, t) * #q(x, t)]dxdt

e "* H U Jyw(x—p,t—1)q(p, T)dpdr] dxdt. 4)
Using the Heaviside unit step function, Equation (24) can be written as
R2[(w * *q) (x / / Pxtt) {/ / x—p,t—T)H(x—p,t—r)q(p,r)dpdr] dxdt (25)

Thus, Equation (25) can be written as

R} (wxxq)(x,t)] =[5 Jo q dpd’['[ur I Jo e Grtat) w(x—p,t—T)H(x—p,t—T)dxdt}

—-Jb J3* 9o, T)dpdr (e=7P- uf732[ w(x, 1))
Zwu»>htme<w (0, Didpd = ERfw(x, HR2g(x, ). O

Theorem 6. (Derivatives properties) Let w(x,t) be a continuous function. Then, we get the
following derivatives properties:

1
[<5]

(@ RA[MGO] s -
(b) Rf%WW: [w(x, )] -
© R?[Z) = SR w(x )] - 5 Rx[ ( 0)] - Rx[aw(’f 2.
@ R[] — £ Rl ] - SRlw(0,0)] - £ [202].

| 02
(@ R2[THeh| = 2= (R2[w(x, )] — Ralw(x,0)] = Re[tw(0,1)] +w(0,0))-
Proof. )
(@) RE[MGA] = s o e (et |20l axdr = 2 [ Fraxs e it | 250 ar.

Using integration by parts to the second integral, we obtain:

Letu = ¢ ut = du=—3e" wtdt
9 b
do = wéf lit = o=w(x1)

Thus,

ifoooe_ﬁt{aw(“)]dt 7<—w x,0)+ £ [Feutlw t)]dt)

u 26
Rﬂﬂ$qzﬁnﬂ<,ﬂ—aRd<fﬂD *

(b) R2[FEA] = 5 7 fo e Grean [ |adr = ¢ e i[5 Jax 57 et
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Simplifying and using integration by part, we obtain

CN N _’x[aw”)}dx— ( w(O,t)+%fome_%x[w(x,t)]dx).
R2[ 2458 | = 2R2[w(x, 1)) — 2Ry [0(0, )]0

X

(27)

@ RE[ZGEO] = 5y f57 fi7 e (rrio [T lavar = 2 e T raxg [T e [T ar

Using integrating by parts, we obtain

S % i [PRlt)) gy s (9w(x,0) D[ e [2ulnn)
”/Oe [aﬂ "= ot Tul ¢ ar |

Using Equation (26), we have

R[] = & Rt ] - SRofu0) - SR [P0 0

(@) R[FEE] = 55T 5T i [P e = ¢ 57 e v [T g [T e

Using integrating by parts, we obtain

o 2 o
g/ i o“w(x, t) P ~ow(0,t) n g/ - ow(x, t) i
r Jo ox? r ox rJo ox

Using Equation (27), we have

R2 [a%(xf) } _ :—ZRz[w(x,t)] - %Rt[w(o,t)] - 2Ry [awég ”} O ()

(& RA[TEGA] = 5 o7 e e in [T | avar = ¢ [ e B [TEA ax & [ e e

Using integrating by parts, we obtain

R e G R ORI

Using Equations (26) and (27), we get

2
R2 {ag’t(a’;”} - % (Rz[w(x, 1] — R[w(x,0)] — Ry[w(0,£)] + Ry [w(o,o)]). 0

The previous results of DFT to some basic functions, some theorems and basic deriva-
tives are summarized in Table 1, below.

Table 1. DFT to some basic functions.

w(x,t) R [w(x, )]
1 1
b (4)*(2)Pr(a+1)I(B+1), aand p > 0.

X +pt W
sin(ax + Bt) %
cos(ax + Bt) %
sinh(ax + Bt) %
cosh(ax + pt) %

Jo (J \/ﬁ) Zlvszf.?[2 ru
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Table 1. Cont.

w(x,t) R [w(x, )]
e HPlyp(x, t) WM B(U, SE s, %)
u(x—6,t—o)H(x —6,t — o) e~ ST R2 [w(x, t)]
w(x, t) *xq(x,t) SR [w(x, )] R?[g(x, )]
wy(x,t) G R [w(x, 1)) — 3 Re[w(x,0)]
wy (x, 1) URZ[W( x, )] = $R[w(0, )]
wit(x, 1) SR w(x, ] - 5 Ralw(x,0)] - §Rx | 252 |
ex(x,1) S R2w(x, )] - SRf(0,0)] - £y aw( 0]
Wiy (x, 1) ﬁ(Rz[w(x )] = Rafw(x, 0)] = Ri[w(0, f)]"’)
" (w(0,0)]

4. Basic Idea of DFT Method

To illustrate the usage of DFT in solving partial differential equations, we explain the
technique in this section by applying DFT on heat equations. We consider a general form
of heat equation as:

w(x, t) = owxx(x, t) +ew(x, t)+ pu(x, t) (30)

with the initial condition:
w(x, 0) = a(x),)

and the boundary conditions:
w(0, t) = by(t)), wx(0, t) = ba(t),

where w(x, t) is the unknown function, yi(x, t) is the source term, and o and € are constants.
A simple formula of the solution for the above equation is established and employed to
solve some applications.

The main idea of this method is to apply the DFT on Equation (30) and the single
formable transform to the conditions as the following.

Applying formable transform to the initial condition as:

Rax[w(x, 0)] = Ryfa(x)] = A = A(v,r,0).
Applying formable transform to the boundary conditions as:

Ri[w(0, )] = Rt[bl()]:B

By (0 s, u),
Rilws (0, )] = Ry [ba(t)] =

By = By(0,s,u).
Now, applying the DFT to both sides of Equation (30), to get
R2[wi(x, t)] = R [owar(x, t) +ew(x, t) + pu(x, t)]

Using the differentiation properties of the DFT with the above transformed conditions,
we have

“R2[w(x, )] - ~A] = Z’QRZ[ t]—sz — UBy| + eR%w(x, 1)] + R2[u(x, t)] (31)
LR ) = 2] = 0| R, 0] = 5B - B ’ H
Equation (31) can be simplified as the follows

sr2A — cv*uBy — cvruBy + rPuR?[u(x, t)]

2 _
Rifw(x, )] = sr2 — gv2u — eur?

(32)
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Operating the inverse DFT to both sides of Equation (32) gives

sr? A — ov®uBy — ovruBy + r*uR?[u(x, t)]

2—1
w(x, t) =R
(% 1) sr2 — ov2u — eur?

7

where w(x, t) represents the term arising from the known function y(x, t) and the initial
and boundary conditions.

5. Applications on DFT for Solving Heat Equations

Example 1. Let us consider the heat equation given as

he(x,t) = hyx(x, 1), x,£ >0, (33)

with initial conditions: h(x,0) = sin x, and the boundary conditions h(0,t) = 0,h,(0,t) = e~ *.
Applying the formable transform to all conditions, we have:

or s
:—,B :0 ’ B = .
02 412 ! 27 st

(34)

Applying the DFT to the Equation (33) and substituting all the values in Equation (34),

we have .
- R D) =5 () - ()
_ so(sr2—2%u
T ur(02+r2) (s+u)
Thus, we get
2 - sor

Applying the inverse DFT to Equation (35), then the solution of Equation (33) is

s or
s+u v247r2

h(x, t) = R [ } =e 'sinx.

In the following, we present Figure 1 that presents a graph of the 3D exact solution of
Example 33, the graph can be obtained using Mathematica software 13.

Figure 1. The solution h(x, ) of Example 1.
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Example 2. Let us consider the heat equation given by:

he(x, t) = 4hyx(x, 1), x,t >0, (36)
with the initial condition: h(x,0) = cosx , and the boundary conditions: h(0,t) = e %,
hx (0, t) = O.

Applying the FT to all conditions, we have:
A= T B -5 B0 (37)
T2 TNV  syan 0 RT

Applying DFT to Equation (36) and substituting all values of the transformed condi-
tions in Equation (36), we have:

2 2 2
(s = 2| R2n(x, 0] = 3 (7)) - % (53)
_ 502 (sr274vzu)
T w2024 r2) (s +4u)

Thus, one can get

sv? (512 — 4uv?) ur? _ s0?
ur2(v2 +12)(s +4u) (sr2 —4uv?) (02 +12)(s +4u)’

RP[h(x, t)] = (38)

Running the inverse DFT to Equation (38), then the solution of Equation (36) is

S 02

hx, ) =R2 =2 %
(x, t) =R [s+4u 02 +12

} =e¢ *cosx.

In the following, we present Figure 2 that presents the graph of the 3D exact solution of
Example 2.

Figure 2. The solution h(x, t) of Example 2.

Example 3. Let us consider the heat equation given by

hi(x, 1) = hyx(x, 1) — 2h(x,t), x,t >0, (39)
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with the initial condition: h(x,0) = sinhx, and the boundary conditions: h(0,t) = 0,
hy(0,t) = et
Applying the formable transform to all conditions, we have
ur s

A=——— ,B1=0, By= .
v2 — 72 ! 2T stu

(40)

Applying DFT to Equation (39) and substituting the values in Equation (32), we have

F—v—i—f—z}Rz[h(x,t)]:i(L) v( s ):sv(sr2_v2u+2ur2)'
T

u\2—12) r\s+u ur(v? —r2)(s+u)

Thus, after simple calculations, we get

sor

R 0l = =y

(41)
Applying the inverse DFT to Equation (41), then the solution of Equation (39) is
given by
S or
s+u v2—r?

h(x, t) = R>1 [ } = ¢ 'sinhx.

In the following, we present Figure 3, that presents the graph of the 3D exact solution

of Example 3.
10
5
0
] -10
2.x10712
0
-2.x10712
—4. X 10-1 2 | I I I I 1 I 1 1 I 1 1 I L L | L L
0 20 40 60 80
Figure 3. The solution h(x, t) of Example 3.
Example 4. Let us consider the heat equation given as:
he(x,t) = hyx(x,t) +sinx, x,t >0, (42)
with the initial condition: h(x,0) = cosx, and the boundary conditions: h(0,t) = e *,

hy(0,) =1—et.
Applying the formable transform to all the conditions, we have

02

0242

S B=1-
s+ u s+u

, Bi= (43)

Applying DFT to the Equation (42) and substituting the all the transformed values in
Equation (43), we get
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2 2 2
[ - &R 0) = 5 (5) — 2 () — 20 - ) + o

_ [ s0? (sr2—uv?) ] [ o(sr?—uv?) ]
T ur?(stu) (v 4r?) r(stu)(v2+12) |
Thus, after simple calculations, one can obtain
'Rz[h(x,t)]:[ s 202 2}_’_{ u 2vr 2]:[ s 2'02 2]+[s+u—s 2'ur 2]. (44)
S+u v-+r S+u v°s+r S+uvs+r S+u v-+r

Applying the inverse DFT to Equation (44), then the solution of Equation (42) is
given by

2
21 S % S or ot —Ey .
h(X, t)—R |:S—|—u7)2—-}-r2+<1_s—|-_u>02——‘r7’2:| =e COSX+(1—€ )smx.

In the following, we present Figure 4 that presents the graph of the 3D exact solution
of Example 4.

Figure 4. The solution h(x, t) of Example 4.

Example 5. Let us consider the heat equation given as

hax (x,8) — he(x,t) — 3h(x,t) = =3, x,t >0, (45)

with the initial condition: h(x,0) = 1+ sinx, and the boundary conditions: h(0,t) = 1,
hx(o, t) - 6_4t.
Applying the formable transform to all conditions, we get

or s
02 + 12 Bi=1 Bz_s+4u'

A=1+ (46)

Applying the DFT to Equation (45) and substituting the all the values in Equation (46),
we have

s = G4 3|R2h(x, 0] = 5 (14 2% ) — % — Esm) +3

02412

2.2 2 2 2 2 2 b3

_ | src—uv +3ur sre4-4ur-—uv-—ur
- { ur? } + SUT’[ ur? (s+4u) (v2412)
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Thus, after simple computations, we have

sor
(02 +12) (s + 4u)

R2[h(x, )] =1+ (47)

Applying the inverse DFT to Equation (47), then the solution of Equation (45) is

B} or

— —4t s
S—|—4u‘()2——|—r2 —1+€ Sin x.

h(x, ) =R>" {1 +

In the following, we present Figure 5 that presents the graph of the 3D exact solution
of Example 5.

Figure 5. The solution h(x, ) of Example 5.

6. Conclusions

In this paper, we introduced a new double transform called the double formable
transform. Several properties and theorems of the double transform were presented and
proved. New results related to partial derivatives and the double convolution theorem
were discussed and proved. Finally, we applied DFT to solve some applications on heat
equations. A simple formula for solving heat partial differential equations were established,
and used to solve some examples. The outcomes of this study show the strength and
simplicity of DFT in solving partial differential equations. As a result, we intend to use
it for solving more applications in the future, due to the simplicity and the advantage of
preserving the constants values under the transform which reduces the calculations, in
comparison to other integral transforms.
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