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Abstract: With the emergence of intelligent terminals, the Internet of Vehicles (IoV) has been
drawing great attention by taking advantage of mobile communication technologies. However, high
computation complexity, collaboration communication overhead and limited network bandwidths
bring severe challenges to the provision of latency-sensitive IoV services. To overcome these problems,
we design a cloud-edge cooperative content-delivery strategy in asymmetrical IoV environments to
minimize network latency by providing optimal computing, caching and communication resource
allocation. We abstract the joint allocation issue of heterogeneous resources as a queuing theory-based
latency minimization objective. Next, a new deep reinforcement learning (DRL) scheme works in each
network node to achieve optimal content caching and request routing on the basis of the perceptive
request history and network state. Extensive simulations show that our proposed strategy has lower
network latency compared with the current solutions in the cloud-edge collaboration system and
converges fast under different scenarios.

Keywords: cloud-edge cooperation; queuing theory; deep reinforcement learning; in-networking
caching; content popularity

1. Introduction

High-speed interconnection between devices and networks becomes possible by ap-
plying the developed wireless communication technologies in intelligent terminals. To
ensure the effectiveness and safety of vehicle driving, it is urgent to develop a more sus-
tainable transportation system [1]. As a new paradigm, the Internet of Vehicles (IoV)
has been drawing great attention and is supported by the ubiquitous perception and
connection capabilities of the Internet of Things (IoT) [2]. The IoV can provide efficient
and low-latency transmission services by fast-exchanging vehicle information over the
network [3]. However, the communication in the IoV is affected by road layouts, obstacles
and dynamic transportation environments [4]. Moreover, high computational complex-
ity, collaboration communications and limited bandwidths bring severe challenges to the
provision of latency-sensitive IoV services. Therefore, how to ensure low-latency network
communication in asymmetrical IoV systems is becoming a crucial issue [5].

Although cloud computing can efficiently cope with high-complexity vehicular com-
puting tasks on the basis of its powerful processing and caching capabilities, this leads
to the high latency problem as all the requests have to be routed to cloud servers to pro-
ceed [6]. In addition, the extra delay caused by the vehicle mobility cannot be ignored
and has a direct influence on the transportation performance and safety [7,8]. Multi-access
edge computing (MEC) has recently been widely studied to reduce the computation and
transmission latency in IoV systems by deploying caching and computing resources in
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road side units (RSUs) and base stations (BSs) and satisfying end-user requests in the edge
servers [9,10]. To strengthen the connectivity between vehicles, related transport protocols
can be designed to shorten the communication time in the MEC-aided IoV [11,12]. More-
over, the adopted in-network storage and offloading schemes can significantly reduce the
network latency and handle the challenges caused by mobile vehicles [13,14]. In addition,
the introduction of deep reinforcement learning (DRL) to MEC-enabled IoV environments
can intelligently allocate network resources to improve transportation performance [15,16].

The constrained service capacities of the MEC-assisted IoV system make it difficult to
satisfy the massive requirements from mobile vehicles. Therefore, cloud-edge collaborative
computing is considered to leverage their merits, where network services can be partitioned
and offloaded to leverage MEC and cloud resources [17,18]. Although current cloud-edge
cooperation offloading schemes in the IoV system improve communication delay and relia-
bility by partitioning tasks and optimizing resource allocation, the cross-layer cooperative
caching and routing problem is largely ignored. In addition, the challenges caused by the
heterogeneous IoV environments have not been discussed in depth. In the article, we design
a DRL-based cloud-edge collaborative resource allocation strategy in a heterogeneous IoV
system where asymmetrical network environments are considered. The proposed solution
can reduce network latency and improve content delivery by realizing optimal computing,
caching and communication resource allocation.

The key innovations of this paper can be summarized as:

• We tackle the joint resource allocation issue by minimizing network delay, where
cross-layer cooperative content caching and request routing are designed to improve
the content distribution and network quality of service (QoS) in the asymmetrical IoV
environment, including RSUs, BSs and the cloud.

• We propose a new deep Q network (DQN) policy to handle the proposed delay
optimization issue by making content caching and request routing decisions on the
basis of the perceptive request history and network state.

• The performance of our solution is evaluated in different system conditions. Extensive
real data-based simulations show that our proposed strategy has lower network
latency compared with the current solutions in the cloud-edge collaboration system.
In addition, the proposed DQN model can adapt to the changes of network states and
user requirements and achieve fast convergence.

The remainder of the paper is structured as follows. In Section 2, the related delay-
sensitive resource allocation work in the IoV environment is reviewed under the MEC-aided
and cloud-edge collaboration scenarios. The delay minimization model is formulated in
Section 3. In Section 4, the latency optimization objective is tackled by utilizing the proposed
DQN scheme. Simulation is conducted and discussed in Section 5. Finally, our paper is
concluded in Section 6.

2. Related Work

In this part, the related delay-sensitive resource allocation work is summarized from
the perspectives of MEC-aided and cloud-edge collaboration IoV scenarios.

2.1. Delay-Sensitive Resource Allocation in Multi-Access Edge Computing

In order to handle a large number of high-complexity computing tasks in the IoV,
cloud computing is considered as the initial solution because of its powerful processing and
caching capabilities [6]. Zhang et al. [19] designed a novel IoV system under a joint cloud
environment, where cloud vendors cooperatively operated to overcome the scalability
problem caused by large-scale vehicle data processing. Chaqfeh et al. [20] presented a
cloud-assisted IoV paradigm to improve the transportation performance by collecting
vehicle knowledge in real time.

However, high latency will be caused in the cloud computing framework due to the
long transmission distance between the cloud and vehicles, which makes it difficult to
ensure the lower delay required in the IoV system. Moreover, the extra delay incurred
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by the high speed vehicle movement cannot be ignored, which directly affects the system
performance [7,8]. MEC-assisted mobile vehicles can reduce the computing and trans-
mitting latency by satisfying content requests from the vehicles in the edge servers [9].
Cao et al. [10] proposed an edge-computing-aided IoV framework by choosing the quality
of experience (QoE)-based vehicles to reduce service latency.

Given that wireless channels are dynamic and complicated, packet loss and distortion
are inevitable during the data transmission in IoV environments [21,22]. To strengthen the
connectivity between vehicles, the target transport protocols are designed to shorten the
communication latency in the MEC-enhanced IoV. Hadded et al. [11] utilized a TDMA-like
MAC protocol to evaluate the media access mechanism in a centralized way and improved
the access efficiency and network delay by dynamically constructing vehicle clusters.
Das et al. [12] designed a communication embrace collision strategy in the IoV scene, which
avoided huge communication overhead among vehicles and promoted content delivery. In
addition, the introduced in-network caching policies in the IoV can significantly reduce
network latency and cope with the challenges caused by the mobile vehicles. Chen et al. [13]
thoroughly summarized content caching solutions in the vehicle naming data network
(VNDN) framework, where cache choice and replacement polices were adopted to improve
the data transmission time. Kang et al. [14] analyzed how to store data packets in advance at
the edge nodes of the IoV system to improve the end-user QoE, which supported seamless
switching between edge servers and an increased data transmission rate. Zhang et al. [23]
proposed an on-demand adaptive caching policy in the IoV, which updated stored files
according to the dynamic changes of content popularity. Moreover, cooperative offloading
schemes can be exploited in the MEC-enabled vehicular environments to promote efficiency
of task scheduling and response latency while ensuring load balance [7,8].

Considering the merits of artificial intelligence in data process and analysis, the uti-
lization of DRL to MEC-assisted IoV systems can improve the network performance by
achieving smart resource allocation [15]. Zhou et al. [16] formulated a finite-state Markov
model and built a DRL-based IoV system to realize intelligent offloading. Based on the ob-
tained vehicular information, Chen et al. [24] optimized service time by using a DRL-based
mobile edge offloading scheme. Zhou et al. [25] presented a new traffic light control scheme,
which aggregated information from the adjacent edge servers and made distributed deci-
sions via reinforcement learning (RL). Qi et al. [26] optimized the multi-armed bandit-based
calculation task offloading model by adaptively learning knowledge from the neighboring
vehicles. Zou et al. [27] proposed a DRL-based double offloading paradigm, which made
computation offloading decisions to balance the energy consumption and system delay by
smartly allocating the workload among edge nodes.

2.2. Delay-Sensitive Resource Allocation in IoT-Edge-Cloud Computing Environments

In MEC-assisted IoV environments, edge coordination can effectively reduce trans-
mission delay, and the redesigned transmission protocols can improve communication
reliability. However, the limited service capacities make it difficult to deal with the growing
tasks from mobile vehicles. To achieve reliable and low-delay communication, the coopera-
tion problem between the cloud and edge computing is considered, where the tasks are
partitioned and offloaded to the adjacent nodes for parallel or sequential execution [17,18].
Recently, some works have studied the field of task partitioning with different working
modes and design goals, which can improve network delay while realizing load balance
between edge and cloud computing [28,29]. Time-critical tasks are offloaded to MEC
servers while other services are assigned to cloud servers [30]. Ren et al. [31] formulated
the collaborative allocation problem of cloud-edge resources as a centralized convex opti-
mization model to minimize the service delay of mobile users. Kadhim et al. [32] designed
a software-defined IoV architecture to improve network delay by migrating the tasks to
edge servers rather than the cloud. In addition, MEC and cloud servers minimized system
delay by meeting partitioned tasks in local vehicles [33]. Shen et al. [34] minimized service
delay by sharing the overload among network nodes in a cloud-edge cooperation scenario.
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How to leverage energy efficiency and delay is a key research issue in cloud-side
collaboration environments. To optimize the execution time caused by power-hungry
services, Wang et al. [28] jointly optimized the transmission power, calculation speed
and task division ratio in different network nodes. Abbasi et al. [35] leveraged the power
consumption and network latency by cooperatively distributing workloads among network
nodes. Regarding a tradeoff between the task-processing latency and energy consumed
by edge terminals, Bozorgchenani et al. [30] discussed the impact of task classification
on task offloading, local computing energy efficiency and service time. Li et al. [36]
minimized the system cost by making offloading and resource allocation decisions in an
IoV-edge-cloud system.

At present, IoT-edge-cloud collaboration has drawn increasing attention, however,
is lacking deep investigation and discussion. In addition, the related DRL-aided so-
lutions need to be improved to adapt to dynamic and complicated IoT environments.
Rahman et al. [37] designed a DRL-based computation offloading scheme in resources-
constrained fog radio access networks, which optimized the system latency by intelligently
assigning computation tasks between edge nodes and the cloud, computing capabilities
and transmit power of BSs. To minimize the network delay and adapt to dynamic wire-
less environments, Van et al. [38] utilized the DRL policy to make optimal computation
offloading and resource allocation decisions according to raw network states. In [39], a two-
timescale DRL model was built in MEC-enabled 5G ultradense networks to jointly optimize
offload decisions, resource allocation and storage deployment. Ren et al. [40] designed an
intelligent service offloading and migration strategy in the IoV system to optimize system
delay, energy efficiency and network throughput.

3. System Model

In this part, we first present the network, content popularity and delay models and then
formulate the minimal delay problem in the IoV system.

The notations of main variables are in Table 1.

Table 1. Notations of main variables.

Symbols Notations

NR,NR Amount and set of RSUs

Ai,Ai Number and set of directly connected edge devices of node i in the
same layer

Bi Upper access vertex of node i

ABi ,ABi Number and set of nodes horizontally connecting to Bi

Mi Number of mobile vehicles accessed to RSU i

F,F Amount and set of different files

bm,i, f k
m,i Available wireless bandwidth of the link from the mth vehicle to the ith RSU

and its traffic for content k

bi,j, f k
i,j Available wired bandwidth of the link li,j and its traffic for content k

Ci Caching capacity for node i

λi, λc Average arriving rate of node i and the cloud

µi, µc Average serving rate of each server in node i and the cloud

ki,s, kc,s Amount of servers in node i and the cloud
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Table 1. Cont.

Symbols Notations

ρi, ρc Average utilization rate of node i and the cloud

Pi,n, Pc,n Probability that n requests enter the queuing system of node i and
the cloud

Pi,Q, Pc,Q users’ waiting probability in node i and the cloud

Ni,Q, Nc,Q Amount of requests to process in the queue of node i and the cloud

Td
i , Td

c Average response time of node i and the cloud

θi, θc Maximal response latency that node i and the cloud tolerate

Bm,i, Bi,m, Bi,j Maximal bandwidths of the link lm,i, li,m and li,j

3.1. Network Model

The cloud-edge cooperation IoV system in Figure 1 is asymmetrical due to the multi-
layered heterogeneous network paradigm. We abstract the network model to be a directed
graph G = (N ,L). N is the set of nodes, including all the RSUs and BSs, which are
expressed by NR and NB, respectively. L is the set of links, where the network link from
node i and j is denoted as li,j. We assume that all the contents are cached in the cloud, while
RSUs and BSs have limited caching capabilities. For the sake of simplicity, in this paper,
the Greek and non-Greek forms of a variable represent a set and the number of its elements,
and we interchangeably replace a RSU or BS with the term “node”.

To fetch an interested file, a car first sends the corresponding request to its accessed
RSU. If the content is buffered in the RSU, the file will be sent back to the vehicle. Otherwise,
this content request will be forwarded to its adjacent RSUs, the attached BS and its directly
connected BSs in sequence. If the request from the vehicle cannot be satisfied in the nodes
above, it will fetch the content from the cloud.

Figure 1. Network model of the IoV with cloud-edge cooperation.

3.2. File Popularity Model

In our IoV system, the file set is defined as F = {1, 2, . . . , F}, which indicates that
there are F different kinds of network content. The end-users’ request characteristics give
the distribution of content popularity certain features. According to the Zipf distribution,
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the popularity of network contents declines from 1 to F [41,42]. Therefore, the probability
that a vehicle fetches the content k, Pk is expressed as

Pk =
k−α

F
∑

f=1
f−α

, k = 1, 2, · · · , F. (1)

A large value of α means that popular content has a higher request probability in
the network.

3.3. Delay Model

The latency for the vehicles to obtain their interested contents consists of transmission
latency consumed to transmit network data and the sojourn time of service nodes (e.g.,
RSUs, BSs and the cloud) to proceed with content requests. Ai consists of all the RSUs
directly connected to the ith RSU accessed by multiple vehicles denoted asMi. Bi is the
attached BS of RSU i. Similarly, ABi consists of network nodes horizontally connecting to
Bi. Xk

i and Xk
Bi

are two boolean variables, which are set to be 1 if the two nodes cache file k.
Otherwise, they are set to be 0.

3.3.1. Transmission Delay

There are two kinds of transmission delay models, which depend on the link types in
the network. The round-trip delay between the mobile vehicle m and its accessed RSU i
(i ∈ NR) to fetch the content k, donated as Ttr,k

m,i , can be expressed as

Ttr,k
m,i =

f k
m,i

bm,i
+

f k
i,m

bi,m
(2)

where bm,i and bi,m are the available bandwidths of the wireless links lm,i and lj,i, respectively.
f k
m,i and f k

i,m are their traffic load for content k.
Similarly, the round-trip delay of the node i and its neighboring node j (i, j ∈ N ) in

the IoV system to obtain the content k is written as

Ttr,k
i,j =

f k
i,j

bi,j
+

f k
j,i

bj,i
(3)

where bi,j and bj,i are the available bandwidths of the wired links li,j and lj,i, respectively.
f k
i,j and f k

j,i are their traffic load for content k.

3.3.2. Sojourn Delay

The sojourn delay in the IoV system includes the waiting and serving latency caused
by a request arriving at a node. Queuing time means the average latency consumed by a
request waiting to process in its arriving node, which is determined by the service rate and
request arrival rate of the node. The M/M/ks queuing system is adopted in the IoV system
to present the processing of network requests [43,44]. λi and ki,s represent the request
arrival rate and the amount of servers for the ith node, respectively. µi is the service rate of
a server in the ith node, which depends on the CPU speed and the amount of CPU cycles
consumed by requests.

Hence, the utilization rate of node i is written as

ρi =
λi

ki,sµi
(4)
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According to the state-transition characteristics in Figure 2, the equilibrium equation
of a system in a steady state can be written as{

λiPi,n−1 = nµiPi,n, (1 ≤ n < ki,s)
λiPi,n−1 = ki,sµiPi,n, (ki,s ≤ n);

(5)

where Pi,n is the probability that n requests wait in node i.

s
k m

s
k mm 2m

l l l l

s
k 1

s
k +1

s
k -0 1 2

Figure 2. State transition diagram of M/M/ks queuing model.

Based on ∑∞
n=0 Pi,n = 1 and Equation (4), the steady probability that no request waits

in node i, donated as Pi,0, can be expressed as

Pi,0 =

[ki,s−1

∑
n=0

(ki,sρi)
n

n!
+

(ki,sρi)
ki,s

(1− ρi)ki,s!

]−1

, (6)

and Pi,n can be written as

Pi,n =



1
n!
(ki,sρi)

nPi,0, (0 < n ≤ ki,s)

kki,s
i,s

ki,s!
ρi

nPi,0, (n > ki,s)

(7)

When all servers of the ith node are occupied, its arriving requests have to queue.
The corresponding probability can be calculated by

Pi,Q =
∞

∑
n=ki,s

Pi,n = Pi,0
kki,s

i,s

ki,s!
ρi

ki,s

1− ρi
(8)

The number of requests in the queue is

Ni,Q = Pi,Q
ρi

1− ρi
(9)

The average queuing time of requests is

Tq
i =

Ni,Q

λi
=

ρi
λi(1− ρi)

Pi,Q (10)

The service time for a content request in the queue refers to the latency fetching the
interesting file of an end-user in a node or the cloud. Therefore, the average serving latency
can be expressed as

Ts
i =

1
µi

(11)

Based on the average queuing and service latency equations in Equations (10) and (11),
the sojourn delay for node i, denoted as Td

i , can be written as

Td
i = Tq

i + Ts
i =

ρi
λi(1− ρi)

Pi,Q +
1
µi

(12)
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Similarly, the sojourn delay in the cloud can be expressed as follows

Td
c =

ρc

λc(1− ρc)
Pc,Q +

1
µc

(13)

where ρc, λc, µc and Pc,Q are the utilization rate of the cloud, its request arriving and serving
rates and the probability that a request waits in the cloud, respectively.

Based on the transmission and sojourn delay models, the latency to obtain the content
k for the mth vehicle accessed in the ith RSU, denoted as Tk

m,i, is expressed as Equation (14).

Tk
m,i = Ttr,k

m,i + Xk
i Td

i +
(

1− Xk
i

){[
1− ∏

i′∈Ai

(
1− Xk

i′

)](
Ttr,k

i,i′ + Td
i′

)
+ ∏

i′∈Ai

(
1− Xk

i′

){
Ttr,k

i,Bi
+

Xk
Bi

Td
Bi
+
(

1− Xk
Bi

)
1− ∏

j∈ABi

(1− Xk
j )

(Ttr,k
Bi ,j

+ Td
j

)
+ ∏

j∈ABi

(
1− Xk

j

)(
Ttr,k

Bi ,c
+ Td

c

)

 (14)

3.4. Problem Formulation

In this paper, the joint optimization problem of heterogeneous resources can be formu-
lated as a queuing theory-based latency-minimization model, where cross-layer collabora-
tive caching and routing are considered in an asymmetrical IoV environment. Therefore,
the minimal delay problem of the IoV system is written as

Min
NR

∑
i=1

Mi

∑
m=1

F

∑
k=1

Tk
m,i

s.t. C1 :
F

∑
k=1

Xk
i sk ≤ Ci, ∀i ∈ N

C2 :
Mi

∑
m=1

F

∑
k=1

f k
m,i ≤ Bm,i,

Mi

∑
m=1

F

∑
k=1

f k
i,m ≤ Bi,m,

∀i ∈ NR

C3 :
F

∑
k=1

f k
i,j ≤ Bi,j, ∀i ∈ N , j ∈ Ai ∪ Bi

C4 : Td
i ≤ θi, Td

c ≤ θc, ∀i ∈ N
C5 : Xk

i ∈ {0, 1}, ∀i ∈ N , k ∈ F
C6 : ρi ≤ 1, ρc ≤ 1, ∀i ∈ N (15)

where θC and θi are the upper limits of the response latency caused by edge nodes and
the cloud, respectively. sk is the size of file k. Ci represents the maximal caching capacity
node i provides. Bm,i, Bi,m and Bi,j are the bandwidth capacities of the link lm,i, li,m and
li,j, respectively.

C1 indicates that the caching contents in a node cannot exceed its cache capacity. C2
and C3 require that the traffic on a link must be less than its maximal bandwidth. C4
presents that the response latency consumed by the cloud and other network devices
cannot exceed the maximal latency that they can tolerate, which ensures end-user QoE. C5
means that the caching decision variable Xk

i only takes the value of 0 or 1. C6 indicates that
the utilization of RSUs, BSs and the cloud cannot exceed their maximal serving capacities.

4. Intelligent Caching and Routing Policy

In our IoV system, the crucial problem is to collaboratively allocate computation,
storage and transmission resources to quickly exchange information and make efficient
caching and routing decisions, which improves the network latency [45]. Although the RL
algorithms can achieve optimal resource allocation by dynamically collecting environment
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information, it is difficult to overcome the problems caused by dynamic and heterogeneous
scenarios [46]. Given the advantages of DL in network routing [47], the integration of RL
and DL can be utilized to handle the dimensionality disaster issue generated by our asym-
metrical IoV system [48]. Therefore, we designed a DQN-enabled cross-layer collaborative
caching and routing scheme to minimize system latency and improve content distribution.

Evaluate and target networks depicted in Figure 3 are two neural ones with the
same structure. Based on the known state information, DQN uses the evaluate net-
work with weighting variable ω to estimate the Q function and obtain action values.
In our proposed solution, the network state for node i at the time t is expressed by
si,t = {Xi,t,Gt, Ri,t, ∀i ∈ N}, where Xi,t =

{
X1

i,t, . . . , Xk
i,t, . . . , XF

i,t, ∀i ∈ N , k ∈ F
}

is the
caching decision vector for the network contents, Gt is the network topology, and
Ri,t =

{
R1

i,t, . . . , Rk
i,t, . . . , RF

i,t, ∀i ∈ N , k ∈ F
}

is the content request vector from the ith
node at the time t, respectively.

The action for node i at the time t is written as ai,t = {Xi,t+1, ni,t+1, ∀i ∈ N}, where

ni,t+1 =
{

n1
i,t+1, . . . , nk

i,t+1, . . . , nF
i,t+1, ∀i ∈ N , k ∈ F

}
is a vector indicating the next hop

information for content requests of node i at the following training cycle. The reward

obtained by the ith node at the time t is written as ri,t =
{

∑
Tep
t=1

γTep−t

Tm,i
, ∀i ∈ NR, m ∈ Mi

}
,

where Tep is the number of training cycles, and γ is a weighting parameter indicating
the influence of previous training rewards on the current process. Therefore, based on
Equation (14), we can obtain the delay caused by the accessed vehicles of the ith RSU, de-
noted as Tk

m,i, which is written as Tm,i =
{

T1
m,i, . . . , Tk

m,i, . . . , TF
m,i, ∀i ∈ NR, m ∈ Mi, k ∈ F

}
,

can be obtained from Equation (14).
The workflow of the proposed DQN-based cooperative caching and routing policy is

summarized in Algorithm 1. The system first initializes the weighting variable γ, explo-
ration speed ε, learning rate, memory replay, size for batch gradient descent CB, number of
quaternions and the amount of training cycles Tep. According to the state si,t, our evaluated
model outputs the Q value Q(si,t, ai,t; ω). Based on the obtained Q value, our IoV network
chooses an action by utilizing the ε-greedy policy. Specifically, our system randomly selects
an action with the probability ε ∈ (0, 1) or chooses the most valuable action according to
the expression ai,t = argmaxai,t

Q(si,t, ai,t; ω) with probability 1− ε.
Therefore, the proposed DQN model can obtain rewards on the basis of the the known

information while avoiding the local optimality problems to adapt to the dynamic network
environments. After executing the selected action ai,t, node i can obtain knowledge about
the reward ri,t and the next state si,t+1. The training process is terminated if the current
request can be satisfied by the caching contents in the next hop node. The quaternion
(si,t, ai,t, ri,t, si,t+1) is cached in the memory replay, where a small number of samples
are randomly chosen as a label to speed up the training process in an independent and
identically distributed way. During the process, the weighting variables of our neural
models are modified through backpropagation and gradient descent policies. In addition,
a loss function is exploited to continuously reduce the deviation between the label and the
output result, denoted as the mean square error (MSE), which can be defined as

L(ω) = E

[(
ri,t + γ max

ai,t+1
Q′
(
si,t+1, ai,t+1; ω−

)
−Q(si,t, ai,t; ω)

)2
]

(16)

where ri,t + γ max
ai,t+1

Q′(si,t+1, ai,t+1; ω−) is the target Q-value calculated by our target model

with the parameter ω−, and Q(si,t, ai,t; ω) is the Q-value achieved by our evaluation model
with the parameter ω. Our target model provides immovable labels to make the training
process converge fast and remain stable. Therefore, the variable update frequency of our
target model is lower than that of the evaluation network. To be specific, ω is updated at
every step while ω− is updated at every fixed step. The proposed DQN algorithm can make
optimal caching and routing decisions by making the Q value approximate the target one.
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Algorithm 1 Workflow of the DQN-based cooperative caching and routing algorithm

Require: Weighting variable γ, exploration speed ε, learning rate, memory replay, size for
batch gradient descent CB, the number of quaternions, the amount of training cycles
Tep

1: Initialize replay memory
2: Initialize evaluation model with weighted variable ω
3: Initialize target model with weighted variable ω− = ω
4: for each episode in Tep for node i do
5: Initialize state si,1
6: for each step t do
7: According to the state si,t, the ε-greedy strategy is adopted in the evaluation

network to obtain an action ai,t
8: Execute action ai,t based on state si,t to obtain the next state si,t+1 and the current

reward ri,t and decide whether the training process is terminated at the step t′ = t
according to the caching state of the next hop node

9: Cache quaternion (si,t, ai,t, ri,t, si,t+1) in memory replay
10: Randomly select CB samples (si,t′ , ai,t′ , ri,t′ , si,t′+1) from memory replay
11: if training process terminates at step t′ + 1 then
12: Set yi,t′ = ri,t′

13: else
14: Set yi,t′ = ri,t′ + γ max

ai,t′+1
Q′(si,t′+1, ai,t′+1; ω−)

15: Evaluation network with ω operates the gradient descent policy by using MSE
function in Equation (16)

16: Replace ω− with ω every fixed steps
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Figure 3. The schematic diagram of our deep reinforcement learning model.
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5. Simulation Results and Discuss

In this part, we describe the evaluation environment and analyze the simulation results
in the asymmetrical IoV network.

5.1. Simulation Settings

In this paper, the proposed model is evaluated in a three-layer IoT-edge-cloud network
topology. The skewness factor α related to the content popularity varies from 0.6 to 2 [49,50].
In the simulation, the storage capacity of a node is abstracted as a ratio to F different kinds
of network files. Given that the storage capacity for edge devices in realistic networks is
limited, the range of storage capacity is from 0.1% to 1% in our IoV system [51,52].

In the simulation, our proposed “DQN” method is compared with current popular
strategies in the IoT-edge-cloud environments, referred to as “Popularity” [53], “LRU” [54]
and “Without Cache”, to demonstrate the advantages of our solution. In “DQN”, collabora-
tive caching and routing decisions are made according to the perceptive request history
and network state, which can adapt to the changes in network states and user requirements
to realize timely and optimal resource allocation. In “Popularity”, the network contents are
cooperatively stored in the nodes on the basis of the known file popularity distribution of
our IoV system. Specifically, RSUs and their horizontally connecting nodes collaboratively
store network files on the basis of the descending rank of file popularity, while BSs store
data in a complementary manner with the connected RSUs. Therefore, requests for “hot”
files are satisfied by edge nodes while serving those for “cold” files as much as possible. In
“LRU”, RSUs and BSs cache the passing data and modify their stored contents by utilizing
the least recently used (LRU) policy. “Without Cache” represents the optimal solution
where storage capacities are deployed in the RSUs and BSs, and every request is forwarded
to the cloud to obtain the corresponding file. Each node can make optimal routing deci-
sions by sharing its network knowledge. In our simulation, the cooperative routing policy
mentioned in network model is adopted in all the comparative schemes.

5.2. Simulation Results

Figure 4 shows the latency of different solutions when the storage capacities varies.
With the growth of storage capacities of RSUs and BSs, more of the files that end-users are
interested in are cached to significantly reduce the latency of different strategies with caches.
However, our designed “DQN” model performs much better than other solutions due to
the timely and intelligent caching and routing decisions. As the cache size grows, the per-
formance gap caused by different caching strategies is narrowed. For “Without Cache”,
its performance barely changes because all the requests finally obtain the corresponding
contents in the cloud.

Figure 5 shows the latency of different solutions when the content popularity varies.
When the content popularity grows, end-users in the IoV system pay more attention to
the popular content, thereby, reducing the network latency of the solutions with caches
and bridging their performance gap. Based on the perceptive request history and network
state, the “DQN” scheme can make collaborative caching and routing decisions, which
gives it better performance compared with Popularity” and “LRU”. When the value
of the parameter α for the content popularity is small, the static cooperative caching in
“Popularity” leads to a high routing overhead, and it is difficult to represent the dynamics
and differences of the accessed content requests, therefore, bridging the gap between
“Popularity” and “LRU”. Moreover, content requests in “Without Cache” fetch the targeted
files in the cloud, which means that its performance does not greatly vary.

Figure 6 shows the latency of different solutions when the content diversity changes.
As the amount of different content grows, we can see that the performance of solutions
with caches declines and that their performance gap is enlarged in Figure 6. The growth of
content diversity in the network means that the amount of requests for popular files are
reduced, which deteriorates the cache hit rate and increases the network latency. Based on
the information of user requests, available resources and caching contents, the proposed
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“DQN” model can always achieve optimal caching and routing to adapt to the changes
of network environments and user preference, which makes it perform much better than
other schemes. In “Without Cache”, each request is routed to the cloud to obtain the data,
which leaves its performance unchanged.
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Figure 4. Network delay versus cache size.
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Figure 5. Network delay versus content popularity.

Figure 7 shows the latency of different solutions when the request arrival rates vary.
Due to the constraint service capacity and network resources, the increase of request arrival
rates indicates that more requests are queued and lost in the network, thereby, resulting
in a significant growth of network latency for the four strategies. However, the proposed
“DQN” policy still performs better than other schemes with larger request arrival rates.
The reason is that the increasing content requests arriving at each node can improve the
predictive accuracy for caching and routing decisions.
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Figure 6. Network delay versus the number of different contents.
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Figure 7. Network delay versus request arrival rate.

Figure 8 shows the accumulated reward of “DQN” in each episode when the learning
rates vary. Our proposed model always converges fast when the learning rates change.
As shown in Figure 8, a large value of the learning rate in the proposed “DQN” model
indicates that the occupied proportion of learned information in the whole knowledge
increases. However, a large learning rate does not mean better convergence performance
and higher accumulated reward. When the learning rate was 0.005, the system achieved
the best performance. Therefore, existing and newly explored results must be taken into
consideration when choosing the value for the learning rate.

Figure 9 shows the accumulated reward of “DQN” in each episode when storage
capacities vary. The reward value obtained by “DQN” increases when the cache capacities
grow. This is because a larger storage capacity can improve the caching and routing
decisions, which will further reduce the network delay. However, the fluctuation degree
is different when the storage capacities change. The reason is that the greedy strategy
of “DQN” has random characteristics, and the information obtained by partial cycles
is incomplete.
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Figure 8. Reward versus learning rate.
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6. Summary and Future Work

In this article, we designed a cloud-edge cooperative content-delivery scheme in an
asymmetrical IoV network to improve the latency by jointly optimizing the computing,
caching and communication resources. We first formulated the joint optimization issue
of heterogeneous resources as a queuing-theory-based delay model. Then, based on the
request history information and currently available network resources in the system, a new
reinforcement learning policy was proposed to make collaborative caching and routing
decisions by predicting the content popularity. Finally, we discussed the performance of
the proposed solution in different network scenarios. Extensive simulations demonstrated
that our designed strategy performed much better than the current common policies.
The proposed model can adapt to the changes in network states and user requirements
and quickly converge to a stable state.

In future work, the end-user mobility problem will be investigated and modeled to
improve the proposed mechanism in a more complex network environment. In addition, in-
depth collaboration among mobile users, edge and cloud networks will be considered to
promote the QoE of network terminals. Finally, the tradeoff between network delay and
energy consumption will be discussed to compromise among multiple network indicators.
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