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Abstract: In the modern era, mathematical modeling consisting of graph theoretic parameters or
invariants applied to solve the problems existing in various disciplines of physical sciences like
computer sciences, physics, and chemistry. Topological indices (TIs) are one of the graph invariants
which are frequently used to identify the different physicochemical and structural properties of
molecular graphs. Wiener index is the first distance-based TI that is used to compute the boiling
points of the paraffine. For a graph F, the recently developed Gutman Connection (GC) index is
defined on all the unordered pairs of vertices as the sum of the multiplications of the connection
numbers and the distance between them. In this note, the GC index of the operation-based symmetric
networks called by first derived graph D1(F) (subdivision graph), second derived graph D2(F)
(vertex-semitotal graph), third derived graph D3(F) (edge-semitotal graph) and fourth derived graph
D4(F) (total graph) are computed in their general expressions consisting of various TIs of the parent
graph F, where these operation-based symmetric graphs are obtained by applying the operations of
subdivision, vertex semitotal, edge semitotal and the total on the graph F respectively.

Keywords: connection number; connection distance index; Gutman connection index

PACS: 05C90; 05C92

1. Introduction

A Topological index (TI) is a function from the set of graphs on the set of real numbers
that associates a numeric number to each graph appearing in the set of graphs. If two
graphs are isomorphic to each other, then the numeric values of the obtained TIs remain the
same. Moreover, the computed values of the TIs predict the various physical and chemical
properties of the understudy graphs, see [1]. In the subject of cheminformatics, TIs are also
applied in the studies of the quantitative structures property and activity relationships,
see [2–4].

In almost mid of the 20th century, Wiener (1947) [5] discovered a close correlation
between the boiling point of paraffine (an alkane) and the sum of the distances between all
the unordered pairs of vertices. Later on, this first distance-based mathematical expression
is called the name of Wiener index. After the passage of a quarter of the century, Gutman
and Trinajsti (1972) [6] discovered the first and second Zagreb indices. These degree-
based TIs were utilized to determine the total π-electron energy of the molecules. These
developments urged other mathematicians and chemists to develop new TIs for the study
of the different chemical properties of molecular graphs (structures). In the class of distance-
based TIs, the Gutman index and degree distance index are the most important applicable
TIs, see [7,8]. For more details on degree and distance-based indices, we refer to [9–11].

In 2018, first Zagreb connection index (ZC1), second Zagreb connection index (ZC2) and
the modified first Zagreb connection index (ZC∗1 ) were restudied by Ali and Trinajstic [12].
Later on, the connection distance (CD) index and Gutman connection (GC) index are
studied in [13]. It is important to mention that the International Academy of Mathematical
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Chemistry (IAMC) declared that the Zagreb connection indices are better than the ordinary
Zagreb indices for many physicochemical properties of chemical compounds existing in
the molecular graphs. Moreover, Javaid et al. [14] presented a comparison of correlation
coefficients between different TIs and confirmed that connection number-based indices are
very useful TIs for the prediction of entropy, acentric factor, enthalpy of vaporization, and
standard enthalpy of vaporization.

Four newly derived graphs are introduced by Yan et al. [15] by applying subdivision-
related operations on a graph F and obtained first derived graph D1(F) (subdivided
graph), second derived graph D2(F) (vertex-total graph), third derived graph D3(F) (edge-
total graph) and the fourth derived graph D3(F) (total graph). Moreover, for the graphs
obtained by different operations of graphs, the various TIs such as omega index [16],
sombor index [17,18] and Zagreb indices and coindices [19,20] are computed. In particular,
Xu et al. [21] and Bahadur et al. [22] computed the degree distance and Gutman indices
of these derived graphs respectively. Recently, the connection distance index of derived
graphs are computed in [23]. Motivated by this, in the present note, we computed exact
and bounded values of the Gutman connection (GC) index on these derived graphs in the
form of the various TIs of the parent graphs.

2. Preliminaries

A connected and simple graph F is taken into consideration throughout this article
in which, V(F) = {ak : 1 ≤ k ≤ r} and E(F) = {ηl : 1 ≤ m ≤ s} such that |V(F)| = r and
|E(F)| = s. The most useful definitions are given below

• The minimum number of consecutive edges that occurred between the two nodes
ak and am is called the distance between them and is denoted by λ(ak, am) for 1 ≤ k,
m ≤ r.

• The cardinality of is N1
F(b) = {a ∈ V(F), λ(a, b) = 1} is called the degree of node b of

graph F and is denoted by ∆(b).
• The cardinality of N2

F(b) = {a ∈ V(F), λ(a, b) = 2} is called the connection number
of node b of graph F and is denoted by χ(b).

• Degree of an edge ηk = aman is denoted by ∆(ηk) and is equal to ∆(am) + ∆(an)− 2,
where 1 ≤ k ≤ s for some 1 ≤ m, n ≤ r.

• The minimum distance between the corresponding nodes of two edges ηk = axay
and ηm = azaw is called the distance between the two edges and is denoted by
λG(ηk, ηm) i.e., λG(ηk, ηm) = min{λF(ax, az), λF(ax, aw), λF(ay, az), λF(ay, aw)}, where
1 ≤ k, m ≤ s and 1 ≤ x, y, z, w ≤ r.

• The distance between one edge ηm = axay and one node ak is defined as
λF(ak, ηm) = min{λF(ak, ax), λF(ak, ay)}, where 1 ≤ j ≤ s and 1 ≤ i, x, y ≤ r.

More detailed knowledge can be obtained from [24–26]. Some related TIs are the followings:

Definition 1 ([5]). Wiener index of a connected and simple graph F is

W(F) =
1
2 ∑

ak ,am∈V(F)
λF(ak, am).

Definition 2 ([6]). First and second Zagreb index of a connected and simple graph F are defined as

M1(F) = ∑
akam∈E(F)

[∆F(ak) + ∆F(am)] = ∑
ak∈V(F)

[∆F(ak)]
2.

and
M2(F) = ∑

akam∈E(F)
[∆F(ak)∆F(am)].
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Definition 3 ([27]). Edge version of Wiener index of a connected and simple graph F is defined as

We(F) = ∑
{ηk ,ηm}⊆E(F)

[λF(ηk, ηm) + 1].

Definition 4 ([7]). The degree distance index of a connected and simple graph F is

DD(F) =
1
2 ∑

ak ,am∈V(F)
{λF(ak, am)(∆F(ak) + ∆F(am))}.

The degree distance index of Pn is DD(Pn) =
n(n− 1)(2n− 1)

3
.

Definition 5 ([22]). Edge version of degree distance index of a connected and simple graph F is

DDe(F) = ∑
{ηk ,ηm}⊆E(F)

[λe(ηk, ηm) + 1][∆(ηk) + ∆(ηm))].

Definition 6 ([8]). Gutman index of a connected and simple graph F is

Gut(F) =
1
2 ∑

ak ,am∈V(F)
{λF(ak, am)(∆F(ak)∆F(am))}.

Definition 7 ([22]). Edge version of Gutman index of a connected and simple graph F is

Gute(F) = ∑
{ηk ,ηm}⊆E(F)

[λe(ηk, ηm) + 1][∆(ηk)∆(ηm))].

Definition 8 ([13]). Connection Distance (CD) of a connected and simple graph F is

CD(F) = ∑
{ak ,am}⊆V(F)

λF(ak, am)[χF(ak) + χF(am)]

or
CD(F) =

1
2 ∑

ak ,am∈V(F)
{λF(ak, am)(χF(ak) + χF(am))}.

Definition 9 ([13]). Gutman Connection (GC) of a connected and simple graph F is defined as

GC(F) = ∑
{ak ,am}⊆V(F)

λF(ak, am)[χ(ak)χ(am)]

or
GC(F) =

1
2 ∑

ak ,am∈V(F)
{λF(ak, am)(χF(ak)χF(am))}.

Gutman index of Pn is GM(Pn) =
(n− 1)(2n2 − 4n + 3)

3
.

Edge version of Pn is Gute(Pn) = Gut(Pn−1) =
(n− 2)(2n2 − 8n + 9)

3

CD(Pn) =
2n3 − 6n2 + 10n− 12

3

GC(Pn) =
2n3 − 12n2 + 34n− 42

3

DD(Cn) = GM(Cn) = Gute(Cn) = CD(Cn) = GC(Cn) =


n3

2
if n is even

n(n2 − 1)
2

if n is odd
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Four new graphs were obtained from the four operations D1, D2, D3 and D4 on the
graph F by Yan et al. [15] which are defined as follows:

• First derived graph D1(F) is established from F when every edge ηk = aman of F
is upgraded by a path of length 2 by including a new node ck in it. The newly
included nodes ck are also called white or new vertices while am and an are called
old/black nodes.

• Second derived graph D2(F) is established from D1(F) when a new node ck is again
joined with the end nodes am and an of the respective edge ηk.

• Third derived graph D3(F) is established from D1(F) when two white nodes ck and
cm are further joined together if their respective edges ηk and ηm have one common
end node in graph F.

• Fourth derived graph D4(F) is established from D2(F) when two white nodes ck and
cm are further joined together if their respective edges ηk and ηm have one common
end node in graph F.

Faiz Farid et al. [23] derived the relation between the connection numbers of derived
graphs and the connection numbers or degrees of graphs in the following lemmas.

Lemma 1 ([23]). Let D1(F) be first derived graph of connected and simple graph F. Then
(i) χD1(F)(ak) = ∆(F)(ak) and
(ii) χD1(F)(ck) = ∆(F)(am) + ∆(F)(an)− 2 = ∆(ηk) where ck is a white node with respective edge
ηk = aman.

Lemma 2 ([23]). Let D2(F) be second derived graph of connected and simple graph F and
(a) If F is a {C3, C4}− free graph, then
(i) χD2(F)(ak) = 2χF(ak) and
(ii) χD2(F)(ck) = 2[∆F(am) + ∆F(an)]− 4 = 2[∆F(ηk)]
(b) If F is a {C3, C4}− graph, then
(i) χD2(F)(ak) ≤ 2χF(ak) + p, where p = max{pk} and pk are number of C3 and C4 cycles joined
with ak in F
(ii) χD2(F)(ck) ≤ 2[∆(F)(am) + ∆(F)(an)]− 4− q = 2[∆(F)(ηk)]− q, where q = max{qk} and
qk are number of C3 cycles joined with ck in F

Lemma 3 ([23]). Let D3(F) be third derived graph of connected and simple graph F and
(a) If F is a {C3, C4}− free graph, then
(i) χD3(F)(ai) = ∆(F)(ak) + χ(F)(ak) and
(ii) χD3(F)(ck) = χ(F)(dk) + χ(F)(ek).
(b) If F is a {C3, C4}− graph, then
(i) χD3(F)(ak) ≤ ∆(F)(ak) + χ(F)(ak) + p where p = max{pk} and pk is the number of C3 and
C4 cycles joined with vertex ai .
(ii) χD3(F)(ck) ≤ χ(F)(dk) + χ(F)(ek) + q where q = max{qk} and qk is the number of C3 cycles
in graph F joined with edge ηk .

Lemma 4 ([23]). Let D4(F) be fourth derived graph of connected and simple graph F and
(a) If F is a {C3, C4}− free graph, then
(i) χD4(F)(ak) = 2χ(F)(ak) and
(ii) χD4(F)(ck) = χ(F)(am) + χ(F)(an)
(b) If F is a {C3, C4}− graph, then
(i) χD4(F)(ak) ≤ 2χ(F)(ak) + p where p = max{pk} and vertex ak is connected with pk number
of C3 and C4 cycles and
(ii) χD4(F)(ck) ≤ χ(F)(am) + χ(F)(an) + q where q = max{qk} and edge ηk is connected with the
qk number of C3 cycles in graph F
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3. Mian Results

This section covers the main results of the Gutman connection index on the four types
of derived graphs.

Theorem 1. Let D1(F) be first derived graph of connected and simple graph F, then

GC(D1(F)) = 2Gut(F)+ 2Gute(F)+m(M1− 2m)+
r

∑
k=1

s

∑
m=1

[∆(ak)∆F(ηm)]λG(ak, ηm)

Proof. χD1(F)(ak) = ∆F(ak) and χD1(F)(ck) = ∆F(am) + ∆F(an)− 2 = ∆D1(F)(ηi)

λD1(F)(ak, am) = 2λF(ak, am)

λD1(F)(ck, cm) = 2[λF(ηk, ηm)+ 1]

λD1(F)(ak, cm) = 2λF(ak, ηm)+ 1

GC(D1(F)) = ∑
{ak ,am}⊆V(F)

[χD1(F)(ak)χD1(F)(am)]λD1(F)(ak, am).

=
1
2

r

∑
k,m=1

[χD1(F)(ak)χD1(F)(am)]λD1(F)(ak, am) +
1
2

s

∑
k,m=1

[χD1(F)(ck)χD1(F)(cm)]λD1(F)(ck, cm)

+
1
2

r

∑
k=1

s

∑
m=1

[χD1(F)(ak)χD1(F)(cm)]λD1(F)(ak, cm)

=
1
2

r

∑
k,m=1

[∆F(ak)∆F(am)]2λF(ak, am) +
1
2

s

∑
k,m=1

[∆F(ηk)∆F(ηm)]2[λF(ηk, ηm) + 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)∆F(ηm)][2λF(ak, ηm) + 1]

= 2Gut(F) + 2Gute(F) +
1
2

r

∑
k=1

s

∑
m=1

∆F(ak)∆F(ηm)

+
r

∑
k=1

s

∑
m=1

[∆F(ak)∆F(ηm)]λF(ak, ηm)

= 2Gut(F)+ 2Gute(F)+
1
2
(

r

∑
k=1

[∆F(ak)])(
s

∑
m=1

[∆F(ηm)])

+
r

∑
k=1

s

∑
m=1

[∆F(ak)∆F(ηm)]λF(ak, ηm)

= 2Gut(F)+ 2Gute(F)+ s(M1− 2s)+
r

∑
k=1

s

∑
m=1

[∆F(ak)∆F(ηm)]λF(ak, ηm)

Theorem 2. Let D2(F) be second derived graph of connected and simple graph F and

(a)GC(D2(F)) ≤ 4CD(F)+ 2pCD(F)+ p2W(F)+ 4Gute(F)+ 2(M1− 2s)2

+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm)λF(ak, ηm)+ r
r

∑
k=1

s

∑
m=1

∆F(ηm)λF(ak, ηm)
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+ 2(M1− 2s)(
r

∑
k=1

χF(ak))+ rp(M1− 2s)

(b)GC(D2(F)) ≥ 4GC(F)+ 4Gute(F)+ 2(M1− 2s)2− 2qDDe(F)− 2sq(M1− 2s)

+ q2We(F)+
q2s2

2
+ 2

r

∑
k=1

s

∑
m=1

[χF(ak)∆F(ηm)]λF(ak, ηm)

+ 2(M1− 2s)
r

∑
k=1

χF(ak)− s
r

∑
k=1

s

∑
m=1

[χF(ak)(λF(ak, ηm)+ 1)

Proof. (a) For upper bounds, χD2(F)(ak) ≥ 2χ(F)(ak) + p and χD2(F)(ck) = ∆(F)(am) +
∆(F)(an)− 2 = ∆F(ηi)
Also λD2(F)(ak, am) = λF(ak, am), for ak,am ∈V(F)
λD2(F)(ck, cm) = λF(ηk, ηm)+ 2, for ηk,ηm ∈ E(F)
λD2(F)(ak, cm) = λF(ak, ηm)+ 1, for ak ∈V(F) and ηm ∈ E(F)

GC(D2(F)) = ∑
{ak ,am}⊆V(G)

λD2(F)(ak, am)[χD2(F)(ak)χD2(F)(am)].

=
1
2

r

∑
k,m=1

[χD2(F)(ak)χD2(F)(am)]λD2(ak, am) +
1
2

s

∑
k,m=1

[χD2(F)(ck)χD2(F)(cm)]λD2(F)(ck, cm)

+
1
2

r

∑
k=1

s

∑
m=1

[χD2(F)(ak)][χD2(F)(cm)]λD2(F)(ak, cm)

≤∑
1
2

r

∑
k,m=1

[2χF(ak) + p][2χF(am) + p]λF(ak, am) +
1
2

s

∑
k,m=1

[2∆F(ηk)][2∆F(ηm)][λF(ηk, ηm) + 2]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak) + p][2∆F(ηm)][λF(ak, ηm) + 1]

= 2
r

∑
k,m=1

[χF(ak)χF(am)]λF(ak, am) + p
r

∑
k,m=1

[χF(ak) + χF(am)]λF(ak, am)

+
p2

2

r

∑
k,m=1

λF(ak, am) + 2
s

∑
k,m=1

[∆F(ηk)∆F(ηm)](λF(ηk, ηm) + 1)

+ 2
s

∑
k,m=1

[∆F(ηk)∆F(ηm)]+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm)λF(ak, ηm)+ p
r

∑
k=1

s

∑
m=1

∆F(ηm)λF(ak, ηm)

+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm) + p
r

∑
k=1

s

∑
m=1

∆F(ηm)

= 4GC(F) + 2pCD(F) + p2W(F) + 4Gute(F) + 2(M1 − 2s)2

+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm)λF(ak, ηm) + p
r

∑
k=1

s

∑
m=1

∆F(ηk)λF(ak, ηm)

+ 2(
r

∑
k=1

χF(ak)(
s

∑
m=1

∆Fηm)) + pr(M1 − 2s)

= 4GC(F) + 2pCD(F) + p2W(F) + 4Gute(F) + 2(M1 − 2s)2 +

+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm)λF(ak, ηm) + p
r

∑
k=1

s

∑
m=1

∆F(ηm)λF(ak, ηm)
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+ 2(M1 − 2s)(
r

∑
k=1

χF(ak)) + pr(M1 − 2s)

(b) For lower bounds, χD2(F)(ak) = 2χ(F)(ak) and χD2(F)(ck) = [∆(F)(dk) + ∆(F)(ek)−
2]− q = ∆F(ηk)− q

GC(D2(F)) = ∑
{a,b}⊆V(F)

[χD2(F)(a)χD2(F)(b)]λD2(F)(a, b).

=
1
2

r

∑
k,m=1

[χD2(F)(ak)χD2(F)(am)]λD2(F)(ak, am) +
1
2

s

∑
k,m=1

[χD2(F)(ck)χD2(F)(cm)][λD2(F)(ck, cm) + 1]

+
1
2

r

∑
k=1

s

∑
m=1

[χD2(F)(ak)χD2(F)(cm)]λD2(F)(ak, cm)

≥ 1
2

r

∑
k,m=1

[2χF(ak)][2χF(am)]λF(ak, am) +
1
2

s

∑
k,m=1

[2∆F(ηk)− q][2∆F(ηm)− q][λF(ηk, ηm) + 2]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)][2∆F(ηm)− q][λF(ak, ηm) + 1]

= 2
r

∑
k,m=1

[χF(ak)χF(am)]λF(ak, am) + 2
s

∑
k,m=1

[∆F(ηk)∆F(ηm)][λF(ηk, ηm) + 1]

+ 2
s

∑
k,m=1

[∆F(ηk)∆F(ηm)]− q
s

∑
k,m=1

[∆F(ηk)+∆F(ηm)](λF(ηk, ηm)+ 1)− q
s

∑
k,m=1

[∆F(ηk)+∆F(ηm)]

+
q2

2

s

∑
k,m=1

(λF(ηk, ηm) + 1) +
q2

2

s

∑
k,m=1

+2
r

∑
k=1

s

∑
m=1

[χF(ak)∆G(ηm)]λF(ak, ηm)

+ 2
r

∑
k=1

s

∑
m=1

χF(ak)∆F(ηm)− q
r

∑
k=1

s

∑
m=1

[χF(ak)(λF(ak, ηm)+ 1)

= 4GC(F)+ 4Gute(F)+ 2(M1− 2s)2− 2qDDe(F)− 2sq(M1− 2s)

+ q2We(F) +
q2s2

2
+ 2

r

∑
k=1

s

∑
m=1

[χF(ak)∆F(ηm)]λF(ak, ηm)

+ 2(M1− 2s)
r

∑
k=1

χF(ak)− q
r

∑
k=1

s

∑
m=1

[χF(ak)(λF(ak, ηm)+ 1)

Corollary 1. If F be a {C3, C4}− free graph,then

GC(D2(F)) = 4GC(F)+ 4Gute(F)+ 2(M1− 2s)2 + 2
r

∑
k=1

s

∑
m=1

[χF(ak)∆F(ηm)]λF(ak, ηm)

+ 2(M1− 2s)
r

∑
k=1

χF(ak)

Proof. By taking r = 0 and s = 0, we can get the required result.

Theorem 3. Let D3(F) be third derived graph of connected and simple graph F and

GC(D3(F)) ≤ Gut(F)+GC(F)+ p2W(F)+ pDD(F)+ pCD(F)+ 2r2s2
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+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)][λF(ak, am)]+ 2prs

+
1
2

r

∑
k,m=1

[χF(ak)χF(am)]+
p
2

r

∑
k,m=1

[χF(ak)+χF(am)]+
p2r2

2

+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)]+ q2We(F)

+
q
2

s

∑
k,m=1

[χF(dk)+χF(ek)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

s

∑
k,m=1

[χF(dk)+χF(em)][χF(dk)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)+χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

Proof. χD3(F)(ak) ≤ ∆F(ak) + χF(ak) + p and χD3(F)(ck) ≤ χ(F)(dk) + χ(F)(ek) + q

λD3(F)(a, b) = λF(a, b)+ 1

λD3(F)(ck, cm) = λF(ηk, ηm)+ 1

λD3(F)(ak, cm) = λF(ak, ηm)+ 1

GC(D3(F)) = ∑
{a,b}⊆V(F)

[χD3(F)(a)χD3(F)(b)]λD3 (a, b).

=
1
2

r

∑
k,m=1

[χD3(F)(ak)χD3(F)(am)]λD3(F)(ak, am)+
1
2

s

∑
k,m=1

[χ(ck)χ(cm)]λD3(F)(ck, cm)

+
1
2

r

∑
k=1

s

∑
m=1

[χD3 (ak)χD3 (cm)]λD3 (ak, cm)

≤ 1
2

r

∑
k,m=1

[∆F(ak)+χF(ak)+ p][∆F(am)+χF(am)+ p][λF(ak, a)+ 1]

+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)+ q][χF(dm)+χF(em)+ q][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)+χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

=
1
2

r

∑
k,m=1

[∆F(ak)∆F(am)][λF(ak, am)]+
1
2

r

∑
k,m=1

[χF(ak)χF(am)][λF(ak, am)]

+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)][λF(ak, am)]+
p2

2

r

∑
k,m=1

[λF(ak, am)]

+
p
2

r

∑
k,m=1

[∆F(ak)+∆F(am)][λF(ak, am)]+
p
2

r

∑
k,m=1

[χF(ak)+χF(am)][λF(ak, am)]

+
1
2

r

∑
k,m=1

[∆F(ak)∆F(am)]+
p
2

r

∑
k,m=1

[∆F(ak)+∆F(am)]+
1
2

r

∑
k,m=1

[χF(ak)χF(am)]

+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)]+
p
2

r

∑
k,m=1

[χF(ak)+χF(am)]+
p2

2

r

∑
k,m=1

+
q2

2

s

∑
k,m=1

[λF(ηk, ηm)+ 1]+
q
2

s

∑
k,m=1

[χF(dk)+χF(ek)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]
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+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)+χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

= Gut(F) + GC(F) + p2W(F) + pDD(F) + pCD(F) + 2r2s2

+
1
2

r

∑
k,m=1

[∆F(ak)χF(am) + χF(ak)∆F(am)][λF(ak, am)] + 2prs

+
1
2

r

∑
k,m=1

[χF(ak)χF(am)]+
p
2

r

∑
k,m=1

[χF(ak)+χF(am)]+
p2r2

2

+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)]+ q2We(F)

+
q
2

s

∑
k,m=1

[χF(dk)+χF(ek)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)+χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

Corollary 2. If F is a {C3, C4}− free graph, then

GC(D3(F) = Gut(F)+GC(F)+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)][λF(ak, am)]

+
1
2

r

∑
k,m=1

[χF(ak)χF(am)]+
1
2

r

∑
k,m=1

[∆F(ak)χF(am)+χF(ak)∆F(am)]

+ 2r2s2 +
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[∆F(ak)+χF(ak)][χF(dm)+χF(em)][λF(ak, ηm)+ 1]

Proof. By taking p = 0 and q = 0, we can get the required result.

Theorem 4. Let D4(F) be fourth derived graph of connected and simple graph F and

GC(D4(F)) ≤ 4GC(F)+ rCD(F)+ p2W(F)+ q2We(F)

+
1
2

s

∑
k,m=1

[χF(dm)+χF(em)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
q
2

s

∑
k,m=1

[χF(dm)+χF(em)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]
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+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

Proof. χD4(F)(ak) = 2χF(ak) + p and χD4(F)(ck) = χ(F)(dk) + χ(F)(ek) + q = χD4(F)(ηk)
Also

λD4(F)(ak, am) = λF(ak, am)

λD4(F)(ck, cm) = λF(ηk, ηm)+ 1

λD4(F)(ak, cm) = λF(ak, ηm)+ 1

GC(D4(F)) = ∑
{a,b}⊆V(F)

λD4(a, b)[χD4(a)χD3(b)].

=
1
2

r

∑
k,m=1

[χD4(F)(ak)χD4(F)(am)]λD4(F)(ak, am) +
1
2

s

∑
k,m=1

[χD4(F)(ck)χD4(F)(cm)]λD4(F)(ck, cm)

+
1
2

r

∑
i=1

s

∑
m=1

[χD4(F)(ak) + χD4(F)(cm)]λD4(F)(ak, cm)

≤ 1
2

r

∑
k,m=1

[2χF(ak) + p][2χF(am) + p][λF(ak, am)]

+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)+ q][χF(dm)+χF(em)+ q][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]

= 2
r

∑
k,m=1

[χF(ak)χF(am)][λF(ak, am)]+ p
r

∑
k,m=1

[χF(ak)+χF(am)][λF(ak, am)]+
p2

2

r

∑
k,m=1

[λF(ak, am)]

+
q2

2

s

∑
k,m=1

[λF(ηk, ηm)+ 1]+
q
2

s

∑
k,m=1

[χF(dk)+χF(ek)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

s

∑
k,m=1

[χF(dk) + χF(ek)][χF(dm) + χF(em)][λF(ηk, ηm) + 1]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)+ r][χF(dm)+χF(em)+ s][λF(ak, ηm)+ 1]

= 4GC(F) + 2pCD(F) + r2W(F) + p2We(F)

+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
q
2

s

∑
k,m=1

[χF(dk)+χF(ek)+χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)+ p][χF(dm)+χF(em)+ q][λF(ak, ηm)+ 1]
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Corollary 3. If F is a {C3, C4}− free graph, then

GC(D4(F)) = 4GC(F)+
1
2

s

∑
k,m=1

[χF(dk)+χF(ek)][χF(dm)+χF(em)][λF(ηk, ηm)+ 1]

+
1
2

r

∑
k=1

s

∑
m=1

[2χF(ak)][χF(dm)+χF(em)][λF(ak, ηm)+ 1]

Proof. By taking r = 0 and s = 0, we can get the required result.

4. Conclusions

In this paper, we studied the four types of derived graphs subdivision graph, vertex-
semitotal graph, edge-semitotal graph, and total graph with the help of the Gutman
connection index, where the derived are obtained under the four different operations of
subdivision. All the obtained results are expressed in the terms of the different TIs of the
parent graph. Moreover, the results are also deduced for the derived graphs being free from
the cycles of the order of three and four. However, the problem is still open to computing
the Gutman connection index for the derived graphs obtained by the various operations of
the product of graphs.
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