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Abstract: Due to insufficient healthcare facilities for the fight against cancer, a large percentage
of individuals die. Utilizing computational tools inside the health and medical system helps to
minimize fatalities. Timely cancer detection enhances the likelihood of effective therapy. Cancer
risk assessment is important for legal and regulatory reasons, for cancer prevention, and to avoid
the risks. The approach for assessing cancer risk based on the q-rung orthopair fuzzy set (q-ROFS)
is described. The technique is predicated on a multifactor evaluation of the likelihood of a can-
cerous. q-ROFS is a robust approach for modeling uncertainties in multicriteria decision making
(MCDM). The combinative distance-based assessment (CODAS) technique integrates two separate
approaches, namely the “simple additive weighting” (SAW) method and the “weighted product
method (WPM)”. In this study, the CODAS approach is extended to the q-rung orthopair fuzzy frame-
work with application to cancer risk assessment. Additionally, the symmetry of the optimal decision
in cancer risk assessment is carried out by a comparison analysis of the suggested model with some
existing models.

Keywords: cancer risk; q-rung orthopair fuzzy; CODAS technique; symmetrical analysis
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1. Introduction

Cancer is a widespread killer, despite the large amount of examinations and rapid
research progress in recent decades. Current data show that cancer accounts for 23% of
deaths in the USA, the second highest cause of death after cardiovascular disorders [1].
Deaths from cardiopathy have been steadily declining in the U.S. population from 1975 to
2002. As of 2020, the world populace has reached seven billion. Fifteen million new cancer
cases have been identified, and twelve million cancer patients died [2]. These tendencies
in cancer occurrence and the loss of life recall Bailer’s 1985 judgement of the U.S. cancer
response as a “certified failure”, a plan created fourteen years prior through President
Nixon’s declaration of a “war on cancer”. Several decades later, researchers continue to
research whether or not or how cancers may be preventable and ask, “Why are we losing
the war on most cancers?” We tend to answer this question through examining the risks
for cancer and exploring how to modulate those risks [3].

Decision making is a crucial aspect of many medical fields, as healthcare professionals
are often required to make complex and difficult decisions in a time-sensitive manner. Some
of the areas in which decision making is particularly important include:

• Diagnosis: Healthcare professionals must consider a range of factors when mak-
ing a diagnosis, including the patient’s symptoms, medical history, and test results.
Making an accurate diagnosis is crucial for determining the most appropriate course
of treatment.
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• Treatment: Healthcare professionals must consider the potential benefits and risks
of different treatment options and choose the one that is most likely to be effective
and safe for the patient. This can involve weighing the potential benefits and risks of
different medications, therapies, or procedures.

• Management of chronic conditions: For patients with chronic conditions, such as
diabetes or heart disease, healthcare professionals must make ongoing decisions
about the management of the condition. This can involve determining the most
appropriate treatment plan, adjusting the treatment plan as needed, and monitoring
the patient’s progress.

• Palliative care: Healthcare professionals working in palliative care must make de-
cisions about the care of patients who are nearing the end of life. This can involve
determining the most appropriate treatment and care options, as well as addressing
issues related to end-of-life planning, such as advance care directives.

Proper decision making is crucial for ensuring the best possible outcomes for patients.
Uncertainty is a vital element of any choice-making method, especially MCDM. Nu-

merous techniques and procedures for reducing the uncertainty in choice making have
been advanced. An expert weighs the advantages, features, and boundaries of the typi-
cal elements as a way to make an informed selection. To address uncertainty, Zadeh [4]
introduced a prominent notion, called a “fuzzy set” (FS), which has been used in several
sectors of technology. Each alternative in an FS is assigned a value between zero and 1.
The definition of a membership feature is fundamental to the improvement in the fuzzy
logic and modeling. Researchers continue to discuss the way to effectively describe a
membership function so as to ensure good choice strategies. Nevertheless, in real-world
demanding situations, selection makers decide based on membership degree (MSD) and
non-membership degree (NMSD). Atanassov [5] advanced a generalization of FS, termed
the Intuitionist Fuzzy Set (IFS), which includes membership and non-membership functions
that may express satisfactory and unsatisfactory levels, respectively. Yager [6,7] provided a
Pythagorean fuzzy set (PFS) with the constraint that the rectangular of the sum of its MSD
and NMSD was less than or equal to one. PFS is better than IFS at modeling the uncertainty
in demanding MCDM situations. Yager [8] also developed q-ROFSs to represent selection
records in which the sum of the qth energy of the MSD and NMSD was less than or equal to
one. As “q” increases, so does the distance of the desirable orthopairs, and more orthopairs
fulfill the boundary requirement. We can exploit more fuzzy records using q-ROFSs. In
other words, we can change the ‘q’ to determine the information range, making q-ROFS
more flexible and desirable for uncertainty.

In 2016, Ghorabaee et al. [9] proposed the combinative distance-based assessment
(CODAS) technique for integrating two separate scoring processes, namely the “sim-
ple additive weighting” (SAW) method and the “weighted product method” (WPM).
Over the past few decades, the CODAS technique has been utilized in numerous fields.
Ghorabaee et al. [10] also extended the CODAS approach to a fuzzy set. Badi et al. [11]
presented the CODAS approach to solve MCDM issues for a Libyan steel manufacturer.
Bolturk [12] presented Pythagorean fuzzy CODAS and its application to the supplier selec-
tion process in a manufacturer. Bolturk and Kahraman [13] presented the Interval-valued
intuitionistic fuzzy CODAS approach and its implementation to the subject of wave-energy
plant selection. Mathew and Sahu [14] compared CODAS to several MCDM approaches.
Pamucar et al. [15] devised the linguistic neutrosophic CODAS approach to select power-
generation technologies. Peng and Garg [16] developed a strategy with novel similarities
to CODAS. Roy et al. [17] presented an adaptation of the CODAS methodology utilizing an
interval-valued intuitionistic fuzzy (IVIF) set for the efficient selection of metals in building
projects with imperfect weight data. Seker [18] suggested an IVIF trapezoidal CODAS algo-
rithm. Liu and Liu [19] proposed novel Bonferroni mean AOs for q-ROFS with applications
to MCDM. Liu et al. [20] introduced q-ROF Heronian mean AOs, their properties, and their
applications. Joshi and Gegov [21] presented the concept of confidence level q-ROF AOs for
the MCDM technique and demonstrated it with a real-world problem of customer selection.
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Garg [22] introduced the connection numbers-based q-ROFSs with applications to MCDM.
Liu and Wang [23] proposed some basic AOs (averaging and geometric) for q-ROFSs with
applications. Garg et al. [24] initiated the concept of exponential operation-based AOs for
q-ROFSs with some new score functions. Jana et al. [25] conceptualized some Dombi AOs
for q-ROFSs with applications to real-life problems. Wei et al. [26] also conceptualized
Heronian mean AOs. Lin et al. [27] proposed linguistic q-ROFSs and interactional parti-
tioned Heronian mean AOs for linguistic q-ROFSs. Khan et al. [28] proposed the idea of
a knowledge base for q-ROFSs. Zeng et al. [29] proposed weighted induced logarithmic
distance measures for q-ROFSs with MCDM. Sitara et al. [30] produced graph structures
related to q-ROFS with decision-making analysis. Farid and Riaz [31] proposed generalized
q-ROF Einstein interactive geometric AOs. Saha et al. [32] proposed the idea of hybrid
hesitant fuzzy weighted AOs. Feng et al. [33] gave the score functions of a generalized
orthopair fuzzy set. Mahmood et al. [34] proposed the spherical fuzzy set and T-spherical
fuzzy set with applications for medical diagnosis. Ashraf and Abdullah [35] proposed
a mathematical approach for MCDM in COVID-19 by utilizing spherical fuzzy informa-
tion. Attaullah et al. [36] introduced the concept of q-rung orthopair hesitant fuzzy rough
AOs. Extensive work related to decision making can be seen in [37–39]. Zararsız and Riaz
proposed Bipolar fuzzy metric spaces and their application [40]. Alcantud [41] presented
extensive results related to soft sets. Karaaslan and Ozlu [42] developed work related to
dual type-2 hesitant FSs. Senapati et al. [43] proposed Aczel–Alsina geometric AOs for
interval-valued IFSs.

1.1. Motivation and Objectives

Multicriteria decision making (MCDM) is a useful tool for cancer risk assessment, as it
allows for the evaluation and comparison of multiple criteria in order to make informed
decisions about the cancer risk. One of the main motivations for using fuzzy MCDM
in cancer risk assessment is the complexity of the decision-making process. Cancer risk
assessment involves the evaluation of a wide range of factors that can influence an individ-
ual’s risk of developing cancer, including genetic factors, environmental exposures, and
lifestyle behaviors. MCDM methods allow for the systematic and transparent evaluation of
these factors, which can help to improve the accuracy and reliability of the risk assessment
process. Another motivation for using fuzzy MCDM in cancer risk assessment is the need to
balance multiple conflicting objectives. For example, an individual may be concerned about
their risk of developing cancer but may also have other priorities, such as their quality of
life or the cost of risk reduction measures. MCDM methods allow for the integration of
multiple objectives and the explicit consideration of the tradeoffs between them.

Finally, MCDM can be used to engage stakeholders in the decision-making process. In
the context of cancer risk assessment, stakeholders may include healthcare professionals,
policymakers, and the general public. By using MCDM methods, these stakeholders can be
involved in the decision-making process, and their preferences and values can be taken
into account. MCDM is a useful tool for cancer risk assessment due to the complexity of
the decision-making process, the need to balance multiple conflicting objectives, and the
ability to engage stakeholders in the decision-making process.

The objectives of this paper are as follows:

1. An improved q-rung orthopair fuzzy CODAS is discussed in detail. The CODAS
technique integrates two separate approaches, namely the “simple additive weighting”
(SAW) method and the “weighted product method (WPM)”.

2. A case study related to cancer risk assessment is provided as an application of the
q-rung orthopair fuzzy CODAS approach.

3. The optimal decision for cancer risk assessment is carried out by a comparison analysis
of the suggested model with some existing models.
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1.2. Organization of Paper

The remainder of the article is structured as follows. In Section 2, we introduce some
of the fundamental characteristics associated with q-ROFSs. The q-ROF CODAS method is
presented in Section 3. The case study, cancer risk factors, and related example are provided
in Section 4. The conclusion is drawn in Section 5.

2. Preliminaries

We introduce a few important elements of the q-ROFS, the operational laws of the
q-ROFS, and the score and accuracy functions in this section.

Definition 1 ([8]). Let q ≥ 1. A q-rung orthopair fuzzy set O in S is defined as

O = {〈κ, LO(κ), MO(κ)〉 : κ ∈ S},

where LO, MO : S → [0, 1] defines the membership and non-membership of the alternative κ ∈ S ,
and for every κ, we have

0 ≤ L
q
O(κ) +M

q
O(κ) ≤ 1.

Furthermore, πO(κ) = (1−L
q
O(κ)−M

q
O(κ))

1/q is called the indeterminacy degree of κ
to O.

Liu and Wang suggested combining the q-ROFN information with the following
operational rules.

Definition 2 ([23]). LetH1 = 〈L1, M1〉 andH2 = 〈L2, M2〉 be q-ROFN. Then,
(1) H̄1 = 〈M1, L1〉;
(2)H1 ∨H2 = 〈max{L1, M1}, min{L2, M2}〉;
(3)H1 ∧H2 = 〈min{L1, M1}, max{L2, M2}〉;
(4)H1 ⊕H2 = 〈(L q

1 +L
q

2 −L
q

1 L
q

2 )
1/q, M1M2〉;

(5)H1 ⊗H2 = 〈L1L2, (M q
1 +M

q
2 −M

q
1 M

q
2 )

1/q〉;
(6) σH1 = 〈(1− (1−L

q
1 )

σ)1/q, M σ
1 〉;

(7)Hσ
1 = 〈L σ

1 , (1− (1−M
q
1 )

σ)1/q〉.

Definition 3 ([23]). Assume that H̆k = 〈Lk, Mk〉 is the family of q-ROFN and q-ROFWG :
Λn → Λ, if

q-ROFWG(H̆1, H̆2, . . . H̆n) =
n

∑
k=1
H̆Fk

k

= H̆F1
1 ⊗ H̆

F2
2 ⊗ . . . , H̆Fn

n ,

where Λn is the set of all q-ROFN, andF = (F1,F2, . . . ,Fn)T is the weight vector of (H̆1, H̆2, . . . , H̆n),
such that 0 6 Fk 6 1, and ∑n

k=1 Fk = 1. Then, the q-ROFWG is called the q-rung orthopair fuzzy
weighted geometric operator.

Based on the q-ROF operational rules, we can also consider q-ROFWG by the
theorem below.

Theorem 1 ([23]). Let H̆k = 〈Lk, Mk〉 be the family of q-ROFN, we can find q-ROFWG by

q-ROFWG(H̆1, H̆2, . . . H̆n) =

〈 n

∏
k=1

L
Fk
k , q

√
(1−

n

∏
k=1

(1−M
q
k )

Fk )

〉
.
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Definition 4 ([23]). Consider <̂ = 〈L , M 〉 as a q-ROFN; then, the score function V of <̂ will be
given as

V (<̂) = L q −M q,

with V (<̂) ∈ [−1, 1]. The rating of a q-ROFN defines its ranking i.e., a high score defines a
strong choice of the q-ROFN. However, the score characteristic is not useful in several instances.
Consequently, to examine q-ROFNs, it is important to not always rely on the score function. We
add a further technique, the accuracy characteristic, to solve this problem.

Definition 5 ([23]). Suppose <̂ = 〈L , M 〉 is a q-ROFN; then, the accuracy function G of <̂ is
defined as

G(<̂) = L q +M q,

where G(<̂) ∈ [0, 1]. The high value of the accuracy degree G(<̂) defines the high preference of <̂.

Theorem 2. Let Z = 〈LZ , MZ 〉 and J = 〈LJ, MJ〉 be any two q-ROFN, V (Z), V (J) be the
score function of Z and J, and G(Z),G(J) be the accuracy function of Z and J, respectively; then,
(1) If V (Z) > V (J), then Z > J;
(2) If G(Z) > G(J) then Z > J.

The value of the score feature is between –1 and 1. We introduce every other score feature to

assist subsequent studies, H (<) = 1+L
q
< −M

q
<

2 . We can see that 0 ≤H (<) ≤ 1. This new score
function satisfies all the properties of a score function.

3. q-Rung Fuzzy CODAS Approach

The main assignment in preferred multicriteria decision making (MCDM) issues is
to choose one or more options from a set of options primarily based on the criteria. The
“combinative distance-based evaluation” (CODAS) approach is a relatively new MCDM
method introduced by Ghorabaee et al. [9] in 2016. Ghorabaee et al. [10] also extended the
CODAS approach to a fuzzy set. We extended the CODAS approach to q-ROFNs, and we
present its application as an assessment tool to assess cancer risk. To start, in comparison to
the large amount of current methods, which give identical weight to experts or a known
reputation vector, specialists’ should have an impact on the criteria and their weights, based
on their qualifications and reputation. Second, the q-rung direct rating approach is used
to set up the relations and relevance of the criteria primarily based on the professional
group’s evaluation of the alternatives. Third, the q-rung fuzzy CODAS approach is used to
construct alternative orderings based on their assessment scores. Assume that there are n al-
ternatives given as A` =

{
A`1 , . . . ,A`i , . . . ,Aǹ

}
(n ≥ 2) and Aa =

{
Aa1 , . . . ,Aaj , . . . ,Aam

}
(m ≥ 2) that comprise the finite set of m criteria. Suppose that ζ0 =

{
ζ01 , . . . , ζ0e , . . . , ζ0z

}
(z ≥ 2) are the assemblage of invited DMs. The q-ROF-CODAS approach consists of the
following steps (Algorithm 1, q-rung fuzzy CODAS approach).
Step 1: The reputation of the decision makers is evaluated first:

The notations used are Ψ̂x, which indicates the q-ROFN average reputation of the
invited DM Lx̀ , and M

(1)
x and Ψ(2)

x are the q-ROF that express the invited DM ζ x̀ in terms
of education and expertise, respectively.

Ψ̂e = avg
(

Ψ(1)
e , Ψ(2)

e

)
=

(
L

Ψ(1)
e

+L
Ψ(2)

e

2
,
M

Ψ(1)
e

+M
Ψ(2)

e

2

)
, e = 1, 2, . . . , x. (1)

Table 1 shows a q-ROF linguistic scale that can be used to distinguish specialists based
on their credentials and expertise.
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Table 1. q-ROF linguistic scale to distinguish the DMs.

Qualifications Experience (Years) Working in Cancer Hospital q-ROF

General physician [5, 8) [1, 2) (0.820, 0.840)
Cancer specialist [8, 11.5) [2, 5) (0.900, 0.460)
Cancer surgeon [12, 20) [5, 10) (0.940, 0.350)
Ph.D. in cancer research ≥ 20 ≥ 10 (0.890, 0.160)

Step 2: Normalize the importance of the DMs:

D` =
scoreP

(
∆̂e

)
∑z

t=1 scoreP
(

∆̂t

) =
1 +L

q
∆̂e
−M

q
∆̂e

∑z
t=1

(
1 +L

q
∆̂t
−M

q
∆̂t

) , e = 1, . . . , z; (2)

here, D` =
(
D`1 , . . . ,D`, . . . ,Dz̀

)T
is the importance vector of the DMs, with D` ∈ [0, 1]

and ∑z
e=1Dè = 1.

Step 3: Evaluate the criteria of the importance matrices Ve =
[
Ve

j

]
m×1

:



Aa1 (L e
V1

, M e
V1
)

Aa2 (L e
V2

, M e
V2
)

...
...

...
...

Aam (L e
Vm

, M e
Vm

)

here, Ve
j =

(
L e

Vj
, M e

Vj

)
(j = 1, . . . , m; e = 1, . . . , z) is an q-ROFNs representing the impor-

tant assessment of the criterion Aaj provided by the DM ζ0e .
Step 4: Compute the consolidated criterion significance matrix:

Ŵ =
[
Wj
]

m×1 :

Wj =
(
LWj

, MWj

)
= q− ROFWG`

(
V1

j , . . . , Ve
j , . . . , Vz

j

)
=

z⊗
e=1

(
Ve

j

)Dè

=

 z

∏
e=1

L
Dè

Ve
j

, q

√√√√1−
z

∏
e=1

(
1−M

q
Ve

j

)Dè

, j = 1, . . . , m; (3)

here, Wj =
(
LWj

, MWj

)
is the q-ROF aggregated importance assessment of the criterion

Aaj given by the DMs.
Step 5: Normalize the aggregated criteria importance:

kj =
scoreP(Wj

)
∑m

l=1 scoreP(Wl)
=

1 +L
q
Wj
−M

q
Wj

∑m
l=1

(
1 +L

q
Wl
−M

q
Wl

) ,

where k = (k1, . . . ,kj, . . . ,km)T is the importance vector of the criteria, with kj ∈
[0, 1](j = 1, . . . , n) and ∑n

j=1 kj = 1.
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Step 6: Obtain the decision matrices Ψe =
[
Ψe

ij

]
n×m

:

Aa1 Aa2 Aam


A`1 (L 1
11, M 1

11) (L 1
12, M 1

12, ) · · · · · · (L 1
1m, M 1

1m)
A`2 (L 1

21, M 1
21) (L 1

22, M 1
22, ) · · · · · · (L 1

2m, M 1
2m)

...
...

. . . . . .
...

Aǹ (L 1
n1, M 1

n1) (L 1
n2, M 1

n2) · · · · · · (L 1
nm, M 1

nm)

where Ψe
ij =

(
LΨe

ij
, MΨe

ij

)
(i = 1, . . . , n; j = 1, . . . , m; e = 1, . . . , z ) is a q-ROFN that repre-

sents the assessment of the alternative A`i with respect to the criterion Aaj given by the

invited expert ζ0e . It is defined by utilizing the q-rung fuzzy set.
Step 7: Determine the aggregated decision matrix G =

[
Gij
]

n×m :

Gij = q-ROFWG`
(

Ψ1
ij, . . . , Ψ̂e

ij, . . . , Ψk
ij

)

=

(
z

∏
e=1

L D`e
Ψe

ij
, 4

√
1−

z

∏
e=1

(
1−MΨe

ij

)D`e

)
, (4)

where the aggregation is determined by applying the “q-rung fuzzy geometric (q-ROFWG)
operator”, and Gij =

(
LGij , MGij

)
is the q-rung fuzzy aggregated calculation of the possible

options or alternatives A`i with respect to the criterion Aaj given by the experts.

Step 8: Determine the normalized decision matrix Ĝ =
[

R̃ij

]
n×m

:

R̃ij =

{(
Gij
)c; | Aaj ∈ CR−

Gij; | Aaj ∈ CR+,
(5)

where R̃ij =
(
LR̃ij

, MR̃ij

)
denotes the q-ROF normalized assessment of the alternative A`i

with respect to the criterionAaj given by the experts, CR− ⊆ CR is the set of benefit criteria,
CR− ⊆ CR is the set of cost criteria, and CR+ ∪CR− = CR. Only alternative assessments
with respect to the cost criteria are transformed by utilizing the complement operation.
Step 9: Determine the q-rung fuzzy negative-ideal solution (q-ROFNsIS).

Ŝ−j =

(
LŜ−j

, MŜ−j

)
= R̂−j | score

(
R̂−j
)

= min
1≤i≤n

[
score

(
Rij
)]

, j = 1, . . . , m,

where Ŝ− =
{

Ŝ−1 , . . . , Ŝ−j , . . . , Ŝ−m
}

is a collection of q-ROFNs that represent the q-ROFNsIS,

and R̃−j is a q-ROFN with the lowest score function value of alternatives with respect to the

criterion Aaj .
Step 10: Find the weighted Euclidean distance (Vi) and weighted Hamming distance (Hi)
of the alternatives from the q-ROFNIS given in Equations (6) and (7), respectively.

Hi

(
A`i , Ŝ−

)
=

1
2

n

∑
j=1

kj

(∣∣∣∣L q
R̃ij
−L

q
R̃−j

∣∣∣∣+ ∣∣∣∣M q
R̃ij
−M

q
Ŝ−j

∣∣∣∣) (6)

Vi

(
A`i , Ŝ−

)
=

√√√√1
2

n

∑
j=1

kj

[(
L

q
R̃ij
−L

q
R̃−j

)2
+

(
M

q
R̃ij
−M

q
Ŝ−j

)2
]

. (7)
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Step 11: Construct the relative assessment matrix P = [Pit]n×n :

Pit = Ei

(
A`i , Ŝ−

)
− Et

(
A`t , Ŝ−

)
+ Φit

(
Ei

(
A`i , Ŝ−

)
− Et

(
A`t , Ŝ−

))
·
[

Hi

(
A`i , Ŝ−

)
− Ht

(
A`t , Ŝ−

)]
,

with i, t = 1, . . . , n, where Φ is a threshold function to recognize the equality of the Eu-
clidean distance measures of the two alternatives. It is defined as follows

Φit

(
Ei

(
A`i , Ŝ−

)
− Et

(
A`t , Ŝ−

))
=


1 φ ≤ |Ei

(
A`i , Ŝ−

)
− Et

(
A`t , Ŝ−

)
|

0 φ > |Ei

(
A`i , Ŝ−

)
− Et

(
A`t , Ŝ−

)
|
, (8)

where φ is the threshold parameter.
Step 12: Calculate the evaluation scores and rank the alternatives:

Gj =
n

∑
t=1
Pjt, j = 1, 2, . . . , n, (9)

where Gj represents the evaluation scores of the alternative A`j . The alternatives are ranked
consistent with the reducing values of their assessment score. The best score is the most
ideal opportunity.

Algorithm 1: Q-RUNG CODAS

// This matrix is used to find the weight of each decision maker m
Input: Enter number of decision makers
Input: Enter qualifications, experience, and specialized experience of the m

decision makers.
// This will result in the following matrix of order m× k

1

DM =


dm11 dm12 · · · dm1k
dm21 dm22 · · · dm2k
· · · · · · · · · · · ·

dmm1 dmm2 · · · dmmk


2 dmij = (Lij,Mij)

Input: Enter decision matrix of order ms× n denoted by DecM
// s represents number of alternatives
// n represents number of criteria
Input: Enter criteria matrix of order m× n

3 m=Number of decision makers
4 n=Number of criteria
5 s=Number of alternatives
// first, we evaluate the importance of each decision maker

6 for j = 1 to m do
7 Sum=0
8 for i = 1 to k do
9 Sum=Sum +dmij

10 end
11 Rj =

Sum
k

12 end
13 Rav = (Lav,Mav)
14 S = 0
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Algorithm 1: Cont.

15 for i = 1 to m do
16 S = S + 1 + L4

av(i)−M4
av(i)

17 end
18 for i = 1 to m do

19 DMscorei =
1+L4

av(i)−M4
av(i)

S
20 end

// The importance of each criterion is calculated
Input: Enter decision matrix of order m× n

21

V =


V11 V12 · · · V1n
V21 V22 · · · V2n
· · · · · · · · · · · ·
Vm1 Vm2 · · · Vmn


22 Vij = (L̄ij, M̄ij)

23 V1 = L̄ij,
24 V2 = M̄ij

25 for j = 1 to m do
26 Prod = 1
27 for i = 1 to n do
28 Prod = Prod× (V1(i, j)4)DMscore(j)

29 end
30 Lagg = Prod
31 end
32 for j = 1 to n do
33 Prod = 1
34 for i = 1 to m do

35 Prod = Prod× 1− 4
√

1− (V2(i, j)4)DMscore(j)

36 end
37 Magg = Prod
38 end

// Evaluate criteria weight
39 S = 0
40 for i = 1 to n do
41 S = S + Lagg(i)
42 end
43 for i = 1 to n do

44 DMcrii =
1+L4

agg(i)−M4
agg(i)

S
45 end

// Evaluate aggregated decision matrix
46

DIM =



W111 dm112 · · · W11n
W121 W122 · · · W12n
· · · · · · · · · · · ·

W1s1 W1s2 · · · W1sn
· · · · · · · · · · · ·
· · · · · · · · · · · ·

Wm11 Wm12 · · · Wm1n
Wm21 Wm22 · · · W12n
· · · · · · · · · · · ·

Wms1 Wms2 · · · Wmsn
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Algorithm 1: Cont.

// We obtain an aggregated DIMagg of order s× n, which is
alternatives × criteria

47 for k = 1 to m do
48 while j ≤ m do
49 Prod1 = 1
50 Prod2 = 1 for i = 1 to n do
51 Prod1 = Prod× (W1(i, j)4)DMscore(k)

52 Prod2 = Prod2 × 1− 4
√

1− (W2(i, j)4)DMscore(k

53 end
54 j = j + m
55 end
56 W1agg = Prod1

57 W2agg = Prod2

58 end
59 for k = 1 to n do
60 Scorei = Wi

1agg −Wi
2agg

61 for k = 1 to m do
62 min = Scorei
63 if Scorei ≤ Scorei+1 then
64 min = Scorei+1
65 end
66 end
67 minAk = min
68 end

// We obtain the aggregated Hamming and Euclidean distance
69 for i = 1 to n do
70 temp1 = 0
71 temp2 = 0
72 for k = 1 to m do
73 temp1 = temp1 + 1

2 (abs(A1
ij −minA2

i )) + (abs(A2
ij −minA2

i ))

74 temp2 = temp2 + 1
2 (abs(A1

ij −minA2
i )) + (abs(A2

ij −minA2
i ))

75 end
76 H(j) = temp1
77 E(j) = temp2
78 end
79 φ = Input: Enter threshold value
80 for i = 1 to m do
81 for j = 1 to m do
82 if E(j)− E(i)) ≥ φ then
83 φ(E(j)− E(i)) = 1
84 end
85 else
86 φ(E(j)− E(i)) = 0
87 end
88 end
89 S = S + E(j)− E(i) + φ(E(j)− E(i))× H(j)− H(i)
90 VRank(j) = S
91 end
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4. Case Study

Decision making regarding cancer—especially regarding cancer treatments—might
appear to be an easy matter: select the choice that extends life the longest. If treat-
ments are equivalent in prolonging life, then select the one that maximizes the quality
of life (e.g., has fewer side effects). However, analysis has shown that cancer treatment
choices are not straightforward. This analysis illuminates how people determine the high-
stakes choices and a way to help people to create choices that improve their physical and
psychological state.

A cancer risk assessment helps a person to discover their risk factors for hereditary
cancer. These conditions are usually passed down in families. Cancer risk assessments
take some of the uncertainty out of a person’s current health standing and help one to
make decisions about the future. The substantial decline in the cancer-related mortality
rate over the past two decades is attributable, in part, to advances in screening that have
led to earlier and more curable cancer discovery. In order to maintain this trend, it is
imperative to conduct a comprehensive study of cancer risk within the framework of
medical care and to implement targeted screening techniques. Typically, the assessment of
cancer risk is divided into two primary categories: the examination of familial or genetic
risk and the study of environmental factors causally linked to cancer. When performing
research into familial risk, it is essential to consider both maternal and paternal lineages
and to focus on malignancies that frequently occur in tandem in well-known hereditary
cancer syndromes. It is essential, while conducting an analysis of environmental factors, to
evaluate well-known modifiable factors such as smoking, obesity, diet, and the degree of
physical activity.

4.1. Risk Factors for Cancer

Among all ailments, a tumor can result in despair, with people assuming they will
live only a short time. A North American study found that that patients worried about the
beginning, progression, and expansion of cancer inside the body.

Risk evaluation is a way to understand the risks that have the opportunity to be
avoided, reduced, or managed. A risk evaluation is largely about the ability to change;
hence, the idea of chance is particularly difficult to understand. Numerous research has
attempted to produce analysis strategies for tumor risks. The final purpose is to provide
information to people about the chance of cancer, to monitor the situation, and provide
a survivability prediction. Notwithstanding the large amount of research, few studies
have been carried out in situations of the middle stages in between a past diagnosis and a
current diagnosis. Existing research has not addressed the chance of recurrence. Yet, this
research query is of tremendous importance, as it enables the patient to think and plan
ahead, not only about healthcare but also about the state of their affairs and duties [3].
For risk analysis, it is important to determine which of the major sources of cancer can be
labeled risk factors.

Figure 1 shows that 90–95% of the risk factors for cancer are environmental factors,
whereas 90–95% is due to genes. Here, we focus on the environmental risk factors.

An increase in a tumor risk increases a person’s likelihood of malignancy. However,
most risk factors do not cause malignancy in a straightforward manner. Some tumors from
risk factors never become malignant, and others with no known risk factors do.

4.2. Using Tobacco

During the 1950s, the evidence began to accrue for the carcinogenicity of tobacco
smoking. By the end of the 1950s, convincing evidence linking smoking with respiratory
organ cancers and other cancers was shown from case-control studies and cohort research;
cancer-causing agents were recognized in tobacco smoke, and cigarette smoke in the
atmosphere was shown to cause tumors in mice. The sharp increase in the number of
deaths as a result of tobacco smoking reflects the smoking styles in previous years. Smoking
tobacco causes nearly half of cancer deaths, and if smoking persists in developing nations,
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these cancers are predicted to increase. Additionally, smoking causes death from vascular,
metastasis, and other diseases; so in general, tobacco smoking is estimated to account
for about four–five million deaths each year worldwide [44]. This is projected to rise to
10 million each year by 2030. As a consequence, if current smoking patterns continue,
there will be over a billion deaths resulting from tobacco smoking in the 21st century in
comparison with 100 million deaths in the 20th century. Figure 1 shows that smoking is
one of the main causes of cancer.

20.9%

19.34%

16.26%

11.83%
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(a) 2013
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Pollution
Additives

(c) 2015
Figure 1. Main risk factors for cancer growth.

4.3. Obesity

Recent research has emphasized the significance of the trio of obesity/corpulence,
insulin resistance, and adipocytokines in cancer. Although the role of obesity in the
etiopathogenesis of tumors is not fully understood, the key pathways connecting obesity
and adiposopathy to tumors comprise adipocytokines and insulin resistance [45].

1: Hyperinsulinemia/IR and abnormalities of the insulin-like development determinant-
I (IGF-I) system and indicators;

2: Sex hormones’ biogenesis and pathway;
3: Subclinical chronic inferior swelling and oxidative stress;
4: Changes in the pathophysiology of adipocytokine synthesis;
5: Determinants of fat deposition;
6: Microenvironment and natural perturbations;
7: Determinants of obesity and malignancy such as digestive minerals;
8: Altered intestinal microbiome; and
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9: Mechanistic determinants of obesity.

Figure 2 depicts the mechanisms associating obesity with cancer.

Figure 2. Risk of cancer with obesity.

4.4. Genetic

Researchers have long known that some cancers are hereditary; familial genetics are
vital for some tumors and less so for others. Researchers have shed light on the hereditary
components of twelve types of cancer—showing a familial link particularly to abdomenal
cancer and providing some clarity on the types of mutations in well-known carcinoma-
susceptible genes.

4.5. Older Age

Age is a substantial risk factor for the disease. People over the age of 74 make up 28%
of those with new tumors. Researchers are not sure why this is. It maybe that the passing
decades give the cells longer to mutate or grow into malignancy. It may be that a younger
age means a person has been exposed for a shorter time to cigarettes, chemical compounds,
and alternative cancer-precipitating agents. Figure 3 shows that the risk of cancer increases
with age; so, age is an important factor in the analysis of an individual’s cancer risk [46].

4.6. Exposure to Radiation

Energy travels and disseminates. Radiation takes place in atoms through nuclei decay
and unharnessed particles. Ionized dissemination takes place before the fragment loses its
associated lepton. Unstable atoms can have greater strength or mass. The diffusion of the
surplus strength or mass determines the radiation. Radiation doses are calculated in mrem.
Radiation can cause burns and cancers. Forms of fallout include the initial force, coarse
particles, and their dispersion. There can be dissemination from many areas, which can be
referred to as background radiation. The amount of radiation a person absorbs depends
on the distance from and the height of the fallout [47]. The development of cancer due to
radiation is shown in Figure 4.
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Figure 4. The development of cancer due to radiation.

4.7. Decision-Making Process

To save human lives, people need to know their risk of cancer. Timely action against
cancer is very important. For that purpose, six candidates (A`1 ,A`2 ,A`3 ,A`4 ,A`5 , and A`6 )
were evaluated further. In order to assess who was at the highest risk of cancer, a committee
of three DMs, ζ01 , ζ02 , and ζ03 , was constituted. Five criteria (factors) were taken into
account, as shown in Table 2.

Table 2. Criterion for the assessment.

Criteria

Aa1 Age
Aa2 Genetics
Aa3 Using tobacco
Aa4 Obesity
Aa5 Radiation
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Step 1: Three DMs participated in the provided case study. The q-ROF linguistic scale was
applied to the various DMs shown in Table 3. The table contained q-ROFNs that denoted
the experts’ credentials and expertise. Then, we utilized Equation (1) and the associated
q-ROFNs.

Table 3. Information about the DMs.

DMs Qualifications Experience (Years) Experience (Working in Cancer Hospital)

ζ01 Ph.D. in cancer research 11 10
ζ02 Cancer specialist 9 3
ζ03 General physician 7 1.5

The fuzzy average distinction of each expert using the q-rung fuzzy sets for an expert
is shown in Table 4.

Table 4. Information about the DMs in terms of the q-ROF.

DMs Qualifications Experience (Years) Experience (Working in Cancer Hospital) Average

ζ01 (0.450, 0.910) (0.250, 0.700) ( 0.250, 0.700) (0.350, 0.805)
ζ02 (0.550, 0.970) (0.500, 0.500) (0.250, 0.700) (0.350, 0.980)
ζ03 (0.900, 0.150 ) (0.700, 0.250) (0.700, 0.250) (0.775, 0.540)

Furthermore, the aggregated q-ROFNs for the DMs are shown in Table 5.

Table 5. Aggregated FFNs for the criterion.

DMs Importance

Average q-ROFNs Positive Score Normalized

ζ01 (0.350, 0.805) 0.6585 0.2861
ζ01 (0.350, 0.980) 0.5360 0.2329
ζ01 (0.775, 0.540) 1.1070 0.4810

Step 2: The q-ROF average reputations of the DMs were normalized using Equation (2).
Because a DM cannot have a negative reputation value, the positive score algorithm was
employed to obtain a crisp average result. The obtained reputation vector of the DMs was

D` = (0.2861, 0.2329, 0.4810)

Step 3: The DMs examined the predefined factors that estimate the risk of cancer. Table 6
contains the DMs’ evaluations of each criterion in terms of the corresponding q-ROFNs.

Table 6. DMs’ evaluations of each criterion in terms of the corresponding q-ROFNs.

Criterion DMs

ζ01 ζ02 ζ03

Aa1 (0.9881, 0.1012) (0.8500, 0.3100) (0.6501, 0.5012)
Aa2 (0.2031, 0.7401) (0.7101, 0.5501) (0.8501, 0.3010)
Aa3 (0.4001, 0.7501) (0.5501, 0.5081) (0.6501, 0.2104)
Aa4 (0.8501, 0.3001) (0.7501, 0.4001) (0.5501, 0.5101)
Aa5 (0.3501, 0.5003) (0.7004, 0.3501) (0.6501, 0.8003)

Step 4: Equation (3) aggregated the q-ROF significance ratings of the parameters by taking
into account the DMs’ reputation vector. Table 7 contains the calculated value.
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Table 7. Aggregated FFNs for the criterion.

Criterion Importance

Aggregated q-ROFNs Positive Score Normalized

Aa1 (0.7800, 0.4262) 1.3373 0.2500
Aa2 (0.5412, 0.5892) 0.9653 0.1805
Aa3 (0.5442, 0.5865) 0.9694 0.1812
Aa4 (0.6697, 0.4506) 1.1599 0.2169
Aa5 (0.6304, 0.7006) 0.9170 0.1714

Step 5: Now, the q-ROF aggregated significance of the criterion was normalized. Due to
the fact that a criterion cannot have negative significance, the positive score function was
used to evaluate crisp aggregated values. The normalized values are given in Table 7.
Step 6: The three decision matrices shown in Table 8 were aggregated using the q-ROFWG
operator specified in Equation (4), taking the DMs’ reputational vectors into consideration.
Table 9 contains the derived q-rung aggregated assessments of the alternatives in relation
to the criteria specified by the three DMs.

Table 8. DM evaluations of the alternative terms of the corresponding q-ROFNs.

Experts Alternatives Criterion

Aa1 Aa2 Aa3 Aa4 Aa5
ζ01 A`1 (0.3220, 0.9600) (0.3210, 0.9200) (0.4130, 0.9600) (0.5120, 0.6300) (0.8100, 0.2540)

A`2 (0.1120, 0.9700) (0.1320, 0.9700) (0.4320, 0.9400) (0.5120, 0.6900) (0.2320, 0.9800)

A`3 (0.2120, 0.9200) (0.2110, 0.9300 ) (0.1120, 0.6300) (0.6120, 0.9500 ) (0.8120, 0.8600)

A`4 (0.9120 , 0.7400) (0.9820, 0.4000) (0.9600, 0.6000) (0.8820, 0.6000 ) (0.8720, 0.3000 )

A`5 (0.3000, 0.8000 ) (0.4000, 0.6500) (0.8000, 0.3000) (0.9000, 0.2000) (0.5500, 0.5000)

A`6 (0.6500, 0.4000) (0.1000, 0.9750) (0.8000, 0.3000) (0.4000, 0.6500 ) (0.5500, 0.5000 )

ζ01 A`1 (0.9920, 0.3400) (0.3310, 0.2410) (0.7720, 0.3680) (0.9820, 0.4400) (0.3400, 0.9120)

A`2 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`3 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`4 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`5 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`6 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

ζ01 A`1 (0.9920, 0.3400) (0.3310, 0.2410) (0.7720, 0.3680) (0.9820, 0.4400) (0.3400, 0.9120)

A`2 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`3 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`4 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`5 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

A`6 (0.5340, 0.9720) (0.8720, 0.5140) (0.5340, 0.9320) (0.1340, 0.9920) (0.7820, 0.4130)

Step 7: Table contains the normalized decision matrix. Equation (5) was used to determine
it based on the aggregated decision matrix. The complement operation is used solely for
the cost type attributes. Here, we had no such attributes; therefore, the values in Table 9
were used for further evaluations.
Step 8: To begin, the values of the q-ROF normalized assessments’ score functions were
determined using the formulation of the q-ROFNs’ score function. Then, the q-ROFNIS
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was calculated and provided as {(0.3145, 0.9714) (0.3538, 0.7410) (0.5026, 0.9344) (0.1966,
0.9797) (0.0.4359, 0.8685)}.
Step 9: We evaluated the weighted Euclidean distances and weighted Hamming distances
using Equations (6) and (7).

The weighted Euclidean distances and weighted Hamming distances are listed in
Table 10.

Table 9. Normalized assessment matrix.

Criterion Alternatives

A`1 A`2 A`3 A`4 A`5 A`6
Aa1 (0.7189, 0.8068) (0.3415, 0.9714) (0.1883, 0.9170) (0.8785, 0.7637) (0.3186 0.9572) (0.6903,0.3573)
Aa2 (0.3281, 0.7428) (0.5081, 0.8362) (0.2605, 0.8343) (0.6447, 0.7076) (0.3538, 0.7410) (0.2986, 0.9158)
Aa3 (0.6455, 0.8078) (0.5026, 0.9344) (0.4772, 0.4860 ) (0.6784, 0.6371) (0.7615, 0.4660) (0.7903, 0.7763)
Aa4 (0.8150, 0.5206) (0.1966, 0.9797) (0.7524, 0.7995) (0.6364, 0.6000) (0.9096, 0.3714) (0.4703, 0.6278)
Aa5 (0.4359, 0.8685) (0.5523, 0.8527) (0.7092, 0.6846) (0.7056, 0.4757) (0.4886, 0.7266) (0.6903, 0.5958)

Table 10. Weighted Euclidean distances and weighted Hamming distances.

Distance Measure Alternatives

A`1 A`2 A`3 A`4 A`5 A`6
Weighted Euclidean 0.3818 0.0618 0.3263 0.4639 0.4466 0.4871
Weighted Hamming 0.2712 0.0304 0.2453 0.3943 0.2945 0.4036

Step 10 and Step 11: We constructed the relative assessment matrix, which is given in
Table 11. In the base case scenario, the threshold parameter φ > 0 was set to 0.40.

Table 11. Relative assessment matrix.

Alternatives A`1 A`2 A`3 A`4 A`5 A`5
A`1 0 −0.3200 −0.0555 0.0821 0.0648 0.1053
A`2 0.3200 0 0.2645 0.4020 0.3848 0.4253
A`3 0.0554 −0.2645 0 0.1375 0.1203 0.1607
A`4 −0.0821 −0.4020 −0.1375 0 −0.0172 0.0232
A`5 −0.0648 −0.3848 −0.1203 0.0172 0 0.0405
A`6 −0.1053 −0.4253 −0.1607 −0.0232 −0.0405 0

Step 12: We calculated the assessment scores and ranked the alternatives using Equation (9).

Table 12 gives the assessment scores and the final ranking.

Table 12. Assessment scores and final ranking.

Alternatives Assessment Score Rank

A`1 0.1232 4
A`2 −1.7966 6
A`3 −0.2095 5
A`4 0.6156 2
A`5 0.5123 3
A`6 0.7550 1

The ranking of alternatives was A`6 � A`4 � A`5 � A`1 � A`3 � A`2 .
The ranking shown in Table 12 for the cancer risk of the alternatives is displayed in Figure 5
graphically.
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Figure 5. Ranking of cancer risk alternatives.

4.8. Comparison Analysis

A comparison analysis is presented in Table 13 with our proposed method. The
symmetry of the optimal decision can be seen in the sense that all the techniques evaluated
A`6 as an optimal choice. Obtaining the same optimal solution demonstrates the robustness,
strength, and consistency of our proposed model.

Table 13. Comparison analysis.

Reference Model Top Alternative

Bolturk [12] Pythagorean fuzzy CODAS A`6
Karagoz [48] intuitionistic fuzzy CODAS A`6
Yeni [49] Interval valued intuitionistic fuzzy CODAS A`6
Proposed method Q-rung CODAS A`6

5. Conclusions

Cancer is the second largest cause of death in the USA, after heart disease. The
evaluation of cancer risk can be divided into two primary categories: the evaluation of
inherited risk and the number of incidental variables that may have a causal relationship
with cancer. The discovery of a potentially inherited tumor condition can lead to further
evaluation and measures that can considerably minimize the probability of acquiring cancer.
Our team employed a q-rung orthopair fuzzy combinative distance-based evaluation
approach to identify whether a person is at risk for acquiring cancer and, if so, to what
extent this risk exists. In contrast to the vast majority of the existing systems for collective
decision making, which assume either a known reputation vector or assign equal weights
for each expert, the reputation of experts was established by their qualifications and
experience in the topic area. In the second part of the procedure, the q-rung fuzzy direct
rating method was used to calculate the relative weight that should be assigned to each
of the evaluation criteria based on the preferences of the expert panel. Thirdly, the q-rung
fuzzy CODAS approach was employed to generate alternative orderings based on the item
assessment scores. In addition, a number of important q-ROFS-related ideas were studied
throughout the course of this research. A comparison analysis was conducted to analyze
the symmetry and efficiency of the suggested method as compared to the existing models.



Symmetry 2023, 15, 205 19 of 20

Author Contributions: R.K.: Methodology, Formal analysis, Writing—review and editing. H.M.A.F.:
Methodology, Formal analysis, Writing—review and editing. M.R.: Investigation, Methodology,
Supervision. N.G.B.: Methodology, Investigation, Supervision. All authors made a significant
scientific contribution to the research in the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of the study are included within
the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Goff, B.A.; Mandel, L.S.; Drescher, C.W.; Urban, N.; Gough, S.; Schurman, K.M.; Andersen, M.R. Development of an ovarian

cancer symptom index: Possibilities for earlier detection. Cancer 2007, 109, 221–227. [CrossRef] [PubMed]
2. Condron, D.J.; Roscigno, V.J. Disparities within: Unequal Spending and Achievement in an Urban School District. Sociol. Educ.

2003, 76, 18–36. [CrossRef]
3. Yang, C.; Yang, J.; Liu, Y.; Geng, X. Cancer Risk Analysis Based on Improved Probabilistic Neural Network. Front. Comput.

Neurosci. 2020, 14, 58. [CrossRef] [PubMed]
4. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
5. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Ans Syst. 1986, 20, 87–96. [CrossRef]
6. Yager, R.R.; Abbasov, A.M.; Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28,

436–452. [CrossRef]
7. Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting

(IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 57–61.
8. Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222–1230. [CrossRef]
9. Ghorabaee, M.K.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new combinative distance-based assessment (CODAS)

method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 25–44.
10. Ghorabaee, M.K.; Amiri, M.; Zavadskas, E.K.; Hooshmand, R.; Antuchevièiene, J. Fuzzy extension of the CODAS method for

multi-criteria market segment evaluation. J. Bus. Econ. Manag. 2017, 18, 1–19. [CrossRef]
11. Badi, I.A.; Abdulshahed, A.M.; Shetwan, A.G. A case study of supplier selection for steelmaking company in Libya by using

Combinative Distance-based Assessment (CODAS) model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 1–11 [CrossRef]
12. Bolturk, E. Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm. J. Enterp. Inf. Manag.

2018, 31, 550–564. [CrossRef]
13. Bolturk, E.; Kahraman, C. Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location

selection problem. J. Intell. Fuzzy Syst. 2018, 35, 4865–4877. [CrossRef]
14. Mathew, M.; Sahu, S. Comparison of new multi-criteria decision-making methods for material handling equipment selection.

Manag. Sci. Lett. 2018, 8, 139–150. [CrossRef]
15. Pamucar, D.; Badi, I.; Sanja, K.; Obradovic, R. A Novel Approach for the Selection of Power-Generation Technology Using a

Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies 2018, 11, 2489. [CrossRef]
16. Peng, X.; Garg, H. Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS

with new information measure. Comput. Ind. Eng. 2018, 119, 439–452. [CrossRef] [PubMed]
17. Roy, J.; Das, S.; Kar, S.; Pamucar, D. An Extension of the CODAS Approach Using Interval-Valued Intuitionistic Fuzzy Set for

Sustainable Material Selection in Construction Projects with Incomplete Weight Information. Symmetry 2019, 11, 393. [CrossRef]
18. Seker, S. A novel interval-valued intuitionistic trapezoidal fuzzy combinative distance-based assessment (CODAS) method. Soft

Comput 2020, 24, 2287–2300. [CrossRef]
19. Liu, P.; Liu, J. Some q-rung orthopair fuzzy bonferroni mean operators and their application to multi-attribute group decision

making. Int. J. Intell. Syst. 2018, 33, 315–347. [CrossRef]
20. Liu, Z.; Wang, S.; Liu, P. Multiple attribute group decision making based on q-rung orthopair fuzzy Heronianmean operators. Int.

J. Intell. Syst. 2018, 33, 2341–2364. [CrossRef]
21. Joshi, B.P.; Gegov, A. Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems.

Int. J. Intell. Syst. 2020, 35, 125–149. [CrossRef]
22. Garg, H. CN-ROFS: Connection number-based q-rung orthopair fuzzy set and their application to decision-making process . Int.

J. Intell. Syst. 2021, 36, 3106–3143. [CrossRef]
23. Liu, P.; Wang, P. Some q-rung orthopair fuzzy aggregation operator and their application to multi-attribute decision making. Int.

J. Intell. Syst. 2018, 33, 259–280. [CrossRef]

http://doi.org/10.1002/cncr.22371
http://www.ncbi.nlm.nih.gov/pubmed/17154394
http://dx.doi.org/10.2307/3090259
http://dx.doi.org/10.3389/fncom.2020.00058
http://www.ncbi.nlm.nih.gov/pubmed/32792930
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1002/int.21584
http://dx.doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/10.3846/16111699.2016.1278559
http://dx.doi.org/10.31181/dmame180101b
http://dx.doi.org/10.1108/JEIM-01-2018-0020
http://dx.doi.org/10.3233/JIFS-18979
http://dx.doi.org/10.5267/j.msl.2018.1.004
http://dx.doi.org/10.3390/en11092489
http://dx.doi.org/10.1016/j.cie.2018.04.001
http://www.ncbi.nlm.nih.gov/pubmed/32288046
http://dx.doi.org/10.3390/sym11030393
http://dx.doi.org/10.1007/s00500-019-04059-3
http://dx.doi.org/10.1002/int.21933
http://dx.doi.org/10.1002/int.22032
http://dx.doi.org/10.1002/int.22203
http://dx.doi.org/10.1002/int.22406
http://dx.doi.org/10.1002/int.21927


Symmetry 2023, 15, 205 20 of 20

24. Peng, X.; Dai, J.; Garg, H. Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-
making method with a new score function. Int. J. Intell. Syst. 2018, 33, 2255–2282. [CrossRef]

25. Jana, C.; Muhiuddin, G.; Pal, M. Some Dombi aggregation of q-rung orthopair fuzzy numbers in multiple-attribute decision
making. Int. J. Intell. Syst. 2019, 34, 3220–3240. [CrossRef]

26. Wei, G.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J.
Intell. Syst. 2018, 33, 1426–1458. [CrossRef]

27. Lin, M.; Li, X.; Chen, L. Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation
operators. Int. J. Intell. Syst. 2020, 35, 217–249. [CrossRef]

28. Khan, M.J.; Ali, M.I.; Kumam, P. A new ranking technique for q-rung orthopair fuzzy values. Int. J. Intell. Syst. 2021, 36, 558–592.
[CrossRef]

29. Zeng, S.Z.; Hu, Y.J.; Xie, X.Y. q-Rung orthopair fuzzy weighted induced logarithmic distance measures and their application in
multiple attribute decision making. Eng. Appl. Artif. Intell. 2021, 100, 104167. [CrossRef]

30. Sitara, M.; Akram, M.; Riaz, M. Decision-making analysis based on q-rung picture fuzzy graph structures. J. Appl. Math. Comput.
2021, 67, 541–577. [CrossRef]

31. Farid, H.M.A.; Riaz, M. Some generalized q-rung orthopair fuzzy Einstein interactive geometric aggregation operators with
improved operational laws. Int. J. Intell. Syst. 2021, 36, 7239–7273. [CrossRef]

32. Saha, A.; Dutta, D.; Kar, S. Some new hybrid hesitant fuzzy weighted aggregation operators based on Archimedean and Dombi
operations for multi-attribute decision making. Neural Comput. Appl. 2021, 33, 8753–8776. [CrossRef]

33. Feng, F.; Zheng, Y.; Sun, B.; Akram, M. Novel score functions of generalized orthopair fuzzy membership grades with application
to multiple attribute decision making. Granul. Comput. 2022, 7, 95–111. [CrossRef]

34. Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the
concept of spherical fuzzy sets. Neural Comput. Appl. 2019, 31, 7041–7053. [CrossRef]

35. Ashraf, S.; Abdullah, S. Emergency decision support modeling for COVID-19 based on spherical fuzzy information. Int. J. Intell.
Syst. 2020, 35, 1601–1645. [CrossRef]

36. Attaullah, S.; Rehman, N.; Khan, A.; Park, C. A decision making algorithm for wind power plant based on q-rung orthopair
hesitant fuzzy rough aggregation information and TOPSIS. AIMS Math. 2022, 7, 5241–5274. [CrossRef]

37. Riaz, M.; Farid, H.M.A.; Shakeel, H.M.; Almalki, Y. Modernizing Energy Efficiency Improvement With q-Rung Orthopair Fuzzy
MULTIMOORA Approach. IEEE Access 2022, 10, 74931–74947. [CrossRef]

38. Farid, H.M.A.; Kausar, R.; Riaz, M.; Marinkovic, D.; Stankovic, M. Linear Diophantine Fuzzy Fairly Averaging Operator for
Suitable Biomedical Material Selection. Axioms 2022, 11, 735. [CrossRef]

39. Farid, H.M.A.; Riaz, M. Single-valued neutrosophic Einstein interactive aggregation operators with applications for material
selection in engineering design: Case study of cryogenic storage tank. Complex Intell. Syst. 2022, 8, 2131–2149. [CrossRef]

40. Zararsız, Z.; Riaz, M. Bipolar fuzzy metric spaces with application. Comp. Appl. Math. 2022, 41, 49. [CrossRef]
41. Alcantud, J.C.R. The relationship between fuzzy soft and soft topologies. J. Intell. Fuzzy Syst. 2022, 24, 1653–1668. [CrossRef]
42. Karaaslan, F.; Ozlu, S. Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis. Int. J.

Intell. Syst. 2020, 35, 1200–1229. [CrossRef]
43. Senapati, T.; Mesiar, R.; Simic, V.; Iampan, A.; Chinram, R.; Ali, R. Analysis of Interval-Valued Intuitionistic Fuzzy Aczel–Alsina

Geometric Aggregation Operators and Their Application to Multiple Attribute Decision-Making. Axioms 2022, 11, 258. [CrossRef]
44. Schrek, R.; Baker, L.A.; Ballard, G.P.; Dolgoff, S. Tobacco smoking as an etiologic factor in disease. I. Cancer. Cancer Res. 1950, 10,

49–58. [PubMed]
45. Calle, E.E.; Thun, M.J. Obesity and cancer. Oncogene 2004, 23, 6365–6378. [CrossRef] [PubMed]
46. DePinho, R.A. The age of cancer. Nature 2000, 408, 248–254. [CrossRef]
47. Littlefield, L.G.; Colyer, S.P.; Sayer, A.M. Radiation Emergency Assistance Center/Training Site. In Sister Chromatid Exchanges: 25

Years of Experimental Research Part B Genetic Toxicology and Human Studies; Springer, Cleveland, OH, USA, 2013.
48. Karagoz, S.; Deveci, M.; Simic, V.; Aydin, N.; Bolukbas, U. A novel intuitionistic fuzzy MCDM-based CODAS approach for

locating an authorized dismantling center: A case study of Istanbul. Waste Manag. Res. 2020, 38, 660–672. [CrossRef]
49. Yeni, F.B.; Özçelik, G. Interval-valued Atanassov intuitionistic Fuzzy CODAS method for multi criteria group decision making

problems. Group Decis. Negot. 2019, 28, 433–452. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/int.22028
http://dx.doi.org/10.1002/int.22191
http://dx.doi.org/10.1002/int.21985
http://dx.doi.org/10.1002/int.22136
http://dx.doi.org/10.1002/int.22311
http://dx.doi.org/10.1016/j.engappai.2021.104167
http://dx.doi.org/10.1007/s12190-020-01471-z
http://dx.doi.org/10.1002/int.22587
http://dx.doi.org/10.1007/s00521-020-05623-x
http://dx.doi.org/10.1007/s41066-021-00253-7
http://dx.doi.org/10.1007/s00521-018-3521-2
http://dx.doi.org/10.1002/int.22262
http://dx.doi.org/10.3934/math.2022292
http://dx.doi.org/10.1109/ACCESS.2022.3191356
http://dx.doi.org/10.3390/axioms11120735
http://dx.doi.org/10.1007/s40747-021-00626-0
http://dx.doi.org/10.1007/s40314-021-01754-6
http://dx.doi.org/10.1007/s40815-021-01225-4
http://dx.doi.org/10.1002/int.22239
http://dx.doi.org/10.3390/axioms11060258
http://www.ncbi.nlm.nih.gov/pubmed/15398042
http://dx.doi.org/10.1038/sj.onc.1207751
http://www.ncbi.nlm.nih.gov/pubmed/15322511
http://dx.doi.org/10.1038/35041694
http://dx.doi.org/10.1177/0734242X19899729
http://dx.doi.org/10.1007/s10726-018-9603-9

	Introduction
	Motivation and Objectives
	Organization of Paper

	Preliminaries 
	 q-Rung Fuzzy CODAS Approach 
	Case Study
	Risk Factors for Cancer
	Using Tobacco
	Obesity
	Genetic
	Older Age
	Exposure to Radiation
	Decision-Making Process
	Comparison Analysis

	Conclusions
	References

