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Abstract: Software testing and debugging is a crucial part of the software development process
since defective software not only incurs customer dissatisfaction but also might incur legal issues.
However, the managers of a software development company cannot arbitrarily prolong their software
debugging period due to their software testing budget and opportunity in the market. Accordingly,
in order to propose an advantageous testing project, the managers should be aware of the influence
of the testing project on cost, quality, and time to make the best decision. In this study, a new software
reliability growth model (SRGM) with consideration of the testing staff’s learning effect is proposed
to achieve better prediction. The methods of estimating the model’s parameters and the symmetric
confidence intervals are also proposed in the study. Moreover, in the past, most of the SRGMs focused
on a single software system. However, in practice, some software systems were developed using
modular-based system engineering approaches. Therefore, traditional software testing work can be
changed to multiple modular testing work in this scenario. Therefore, the manager can use this to
dispatch multiple staff groups to perform the individual testing work simultaneously. The study
proposes two mathematical programming models to handle the scheduling of modular testing work.
Additionally, the design of a computerized decision support system is also proposed in the study for
the application in practice.

Keywords: modular software system; software reliability; non-homogeneous poisson process; soft-
ware testing; mathematical programming

1. Introduction

Nowadays, software reliability has always been one of the most critical indicators for
evaluating the quality of software, and this information can be used to make an appropriate
plan for software testing for ensuring the software quality remains high. There is no doubt
that the modern software industry focuses on the functionality of software, but also ensures
that the quality and stability of software must be above an acceptable level as well. In other
words, no matter how superior the performance and functionality of the software are, if the
quality and stability of the software cannot satisfy their customers or clients’ requirements,
this still leads to sales losses. Nevertheless, due to the constraints of the testing project’s
budget, manpower, and testing time, it would be unrealistic to expect software developers
to strive for perfect and faultless software in order to successfully complete the project. As
a result, rather than spending a large budget pursuing a flawless software system, most of
the software developers would make a compromised testing plan. There have been many
software reliability growth models (SRGMs) proposed over the past few decades, and most
of them were based on a Non-Homogeneous Poisson Process (NHPP) in order to describe
software testing and debugging phenomena [1–20].

In the past decades, classic SRGMs have been classified into two types (concave and
S-type), and the S-type SGRMs can identify the phenomenon of testing the learning process
of the staff. This means that as the testing staff becomes more familiar with the software and
test tools, their debugging ability and test efficiency will increase incrementally. The study
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by Xia et al. [21] is an early attempt to investigate the influence of learning on software
reliability growth, and their hypothesis is that the learning effect can simply be attributed
to the experience of the testing staff. Furthermore, according to Chatterjee et al. [22],
testing efforts and learning factors can be combined in a model that can effectively reflect
the growing process of software reliability. Similarly, Kapur et al. [23] have proposed
a related model based on a similar idea, where testing effort as a logistic function is
explained as the effect of testing effort. In contrast to exponential and S-shaped models,
Chiu et al. [24] developed an NHPP-based SRGM that shows a better fitness with software
faults data than the previous models. Kapur et al. [25] adopted a control theoretical
method in order to determine the dynamic allocation of optimal testing effort under
various scenarios. They considered that the experience of the learning effect will make
an inference on the testing effort. Duffey and Fiondella [26] investigated whether learning
trends exist in software testing or not. They concluded that it may not be evident in
all the testing data. In contrast, if there exists a learning effect in testing projects, their
model can estimate the learning performance from the experience and skill of the testing
staff. Fang and Yeh [27] proposed confidence interval estimation of a learning effect model
under NHPP-based assumptions. Zhu and Pham [28] have concluded that in order to
increase the reliability of software development, the testing environment is the most
important factor to consider. They considered that an individual’s domain knowledge
and education can have a significant impact on the effectiveness of a software testing
project. There have been several experiments done by Lemos et al. [29] to see what the
effect of testing experience and knowledge have on software reliability. Chiu et al. [30]
proposed a learning-based SRGM with linear or exponential growth with testing time. As
a result, their extended model can also be used to describe the phenomenon of unstable
debugging efficiency during the early stages of software development. Lee et al. [31]
proposed enhancing software reliability by utilizing a sequential probability ratio test.
It would be more efficient than most classic models based on NHPP. Tian et al. [32,33]
proposed two software reliability growth models, and their models not only measured
human learning factors but also considered human negligence factors. Furthermore, their
model can be applied in dealing with software reliability prediction under insufficient
historical testing data. Chang et al. [34] utilized a classic software reliability model with
a learning effect to develop a more reliable estimation of statistical confidence intervals.
Huang et al. [35] further assumed that the learning effect is time-dependent and may have
error fluctuation over time to construct an NHPP-based SRGM for fitting with S-shaped
and exponential software testing data. According to the above discussion, it is important to
note that, although the learning effect has been taken into consideration in the previous
studies, their works did not give a clear learning parameter for measuring the effect. In
this study, we have solved the issue by designing two parameters (learning factor and
autonomous errors-detected factor) to measure the testing staff’s learning effect.

In a modular software system environment, the whole system can be decomposed
into several modules, and therefore the testing work can also be dispatched to different
testing teams. This will speed up the testing process. Some studies began to focus on
how to schedule the testing work. They developed mathematical programming models
and heuristic algorithms for dealing with software test scheduling. Coit and Smith [36]
developed a genetic algorithm to solve the reliability issue of series-parallel systems. They
designed a dynamic penalty function, and claimed that their solution approach could solve
a dual of nonlinear optimization problem. Dai et al. [37] also proposed a genetic algorithm
for allocating testing-resources for modular software systems. Their model has considered
how to achieve the objectives of minimizing testing cost and maximizing system reliability.
Levitin [38] proposed a heuristic algorithm to evaluate the expected execution time and the
corresponding reliability for modular hardware or software systems. However, Levitin’s
proposed reliability model does not belong to the SRGM because the reliability of the model
cannot be grown with testing time. Such a model can only apply in some specific areas,
and it is not easy to extend to some software testing projects. Kang et al. [39] proposed
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an approach for implementing modular adaptation of scientific software. As a result,
they take adaptability into account separately in software development and enable one to
design scientific programs in a separate manner. Wang and Ma [40] developed a hybrid
particle swarm optimization to solve industrial complex reliability problems with implicit
performance functions and correlated non-normal variables. Their proposed model was ap-
plied to a hydropower station’s reliability issue with consideration of practical engineering
experience and the particular geological and mechanical parameters present at the site, al-
lowing them to deal with the reliability effectively. Serban and Shaikh [41] proposed a new
approach to predict software reliability by using package-level modularization metrics.
The study focused on the empirical experimentation of relevant fault severity information
with package level metrics in an effort-aware classification and ranking scenario based
on fault severity. Chunyan et al. [42] proposed a Bayesian support vector machine for
solving the design of modular systems with consideration of software reliability. The study
seeks to mitigate the computational effort involved in this process as effectively as possible.
Additionally, some studies examined how to assign and schedule software testing tasks
in order to achieve the highest level of reliability in modular software environments with
complex relationships, such as software modules running in parallel and serial.

Our study provides the following contributions based on the above discussion and
which are different from what is already available in the literature in the field: (1) The other
SRGMs’ parameters are less meaningful and intuitive, so domain engineers or experts
are not easily able to evaluate them. However, our proposed SRGM’s parameters are
originated from human factors with the learning effect, and they would be easily estimated
and explained. Accordingly, it would be easy to apply in different scenarios. (2) Most of
the related studies regarding software release decisions only focused on a single software
system and did not consider the constraints of testing time, resources, and reliability.
Therefore, there was significantly less discussion on how to arrange the testing schedule
under a modular software system development. In this study, the proposed programming
models can arrange the testing resources among all software subsystems and corresponding
modules under predefined constraints. It can effectively shorten a software testing period
under a reasonable cost. (3) The study provides the managerial insights and suggestions for
software developers to make a better software release decision. In addition, the reasonable
estimation of statistical confidence intervals for individual parameters and the mean value
function is also proposed in this study. Our study would be helpful to the software
developers to manage any possible situations in a testing period because most related
studies overly focused on prediction accuracy instead of possible ranges of estimation.

As for the rest of this paper, it is organized in the following manner: Section 2 discusses
the development of the basic model with the learning effect, parameter estimation, and
the verification of the fitting ability of the model. Section 3 provides the decision models
for a single software system and modular software system. The design of a computerized
decision support system is also introduced in this section. Section 4 presents the application
and numerical analysis. Finally, Section 5 gives the conclusion and future works.

2. Mathematical Development of Software Reliability Growth Model
2.1. Basic Model Development

Software Reliability Growth Models (SRGMs) can be used to estimate and forecast the
expected number of failures under different testing/debugging periods, and they also give
an indicator for measuring the software quality and reliability when it is released. Over
the course of the past few decades, more than a dozen different software reliability models
have been presented. The many stages of the software development life cycle served as the
foundation for these models. Generally, classic SRGMs can be categorized into two types
(Concave, S-shaped). However, the fact that most of the previously created models can
only be used to fit Concave or S-type testing data, neither of which can be interpreted in
a meaningful way, is one of the problems with those models. As a result of testing staff
members’ learning processes, the S-shaped SRGM can be explained. It means that testing
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staff will get better at finding bugs and testing faster as they learn more about the software
and test tools. Based on the above-mentioned information, a new SRGM is developed to
fit Concave or S-shaped testing data with consideration of testing staff members’ learning
processes in this study.

It is assumed that the occurrence of software defects (errors) follows an NHPP and
that any recognized defects will be eliminated instantly. Therefore, the correcting time
for a software defect can therefore be negligible. Moreover, the notion of learning effect
is examined in order to construct an effective model for forecasting software reliability.
In this study, there are two critical factors are considered. One is the autonomous error
detection factor (αp), which can represent a testing staff’s basic ability from past training
and knowledge. Another is the learning factor (βp), which can represent a testing staff’s
learning from reviewing various error patterns during a software testing phase. In the
scenario of modular software development, the number of potential errors was hidden
in the jth subsystem (aj), which can be evaluated by an error-seeding method. Suppose
the average number of detected errors can be estimated by the mean value function
M
(
Tj, aj, αp, βp

)
. Therefore, after a software testing period Tj, the number of undetected

software errors will be decreased to aj −M
(
Tj, aj, αp, βp

)
. However, the equation form of

M
(
Tj, aj, αp, βp

)
would be required to infer this. Due to the fact that αp is a major factor

in influencing the velocity of errors detection, the manager should pay more attention to
this to assign appropriate testing work to individual staff groups. Furthermore, βp also
influences software errors detection, but its influence degree is subject to the number of
errors detected previously. Generally, the number of errors detected under a testing time
can be defined as the mean value function, and therefore the velocity of software error
detection will be βp M

(
Tj, aj, αp, βp

)
/aj. This indicates that it will be beneficial to identify

new software errors in the future if more errors have been found in the past. Based on the
above mentioned, the definition of the detection rate can be used to model the relationships
among the two critical factors and the mean value function as follows:

D
(
Tj
)
=

dM
(
Tj, aj, αp, βp

)
/dTj)

aj −M
(
Tj, aj, αp, βp

) = αp + βp

(
M
(
Tj, aj, αp, βp

)
aj

)
(1)

The error detection rate function D
(
Tj
)

can be used to investigate the variation in the
proportion of errors detected at time Tj. In order to obtain the mathematical form of the
mean value function M

(
Tj, aj, αp, βp

)
, Equation (1) can be arranged as follows:

=⇒
dM
(
Tj, aj, αp, βp

)
dTj

=
(
aj −M

(
Tj, aj, αp, βp

))(
αp +

(
βp

aj

)
M
(
Tj, aj, αp, βp

))
(2)

In Equation (2), it can be seen that the number of errors detected per time can be
transformed into a quadratic form. In order to apply a differential equation in Equation (2),
we need to preprocess it as follows:

=⇒
dM
(
Tj, aj, αp, βp

)
/dTj(

aj −M
(
Tj, aj, αp, βp

))(
αp +

(
βp
aj

)
M
(
Tj, aj, αp, βp

)) = 1. (3)

To take the integral of both sides, the following result can be obtained as follows:

=⇒
∫ dM

(
Tj, aj, αp, βp

)
/dTj(

aj −M
(
Tj, aj, αp, βp

))(
αp +

(
βp
aj

)
M
(
Tj, aj, αp, βp

))dTj =
∫

1dTj. (4)

To the left of Equation (4), the integral variable Tj can be changed into M
(
Tj, aj, αp, βp

)
as follows:
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=⇒
∫ −

( aj
βp

)
(

M
(
Tj, aj, αp, βp

)
− aj

)(
M
(
Tj, aj, αp, βp

)
+ aj

(
αp
βp

))dM
(
Tj, aj, αp, βp

)
= Tj + constant. (5)

In order to get the integration of the left side smoothly, the fraction needs to be divided
into the two parts as follows:

=⇒
(
−1

αp + βp

) ∫  dM
(
Tj, aj, αp, βp

)
M
(
Tj, aj, αp, βp

)
+ aj

(
αp
βp

) − dM
(
Tj, aj, αp, βp

)
M
(
Tj, aj, αp, βp

)
− aj

 = Tj + constant.

(6)
After integrating the left side of Equation (6), we can obtain the mathematical form

regarding log functions as follows:

=⇒
(
−1

αp + βp

)(
ln
[

M
(
Tj, aj, αp, βp

)
+

ajαp

βp

]
− ln

[
M(Tj, aj

∣∣ αp, βp)− aj
])

= Tj + constant (7)

By combining the two log functions, we can alter it concisely.

=⇒ ln

M
(
Tj, aj, αp, βp

)
+ aj

(
αp
βp

)
M
(
Tj, aj, αp, βp

)
− aj

 = −
(
αp + βp

)(
Tj + constant

)
. (8)

Taking the exponential of both sides, the logarithm on the left side can be eliminated
as follows:

=⇒
M
(
Tj, aj, αp, βp

)
+ aj

(
αp
βp

)
M
(
Tj, aj, αp, βp

)
− aj

= e−(αp+βp)(Tj+constant) (9)

Solving Equation (9) for M
(
Tj, aj, αp, βp

)
, the mathematical form of M

(
Tj, aj, αp, βp

)
with the unknown constant is as follows:

M
(
Tj, aj, αp, βp

)
=

aj

(
αp + e(αp+βp)(Tj+constant)

)
e(αp+βp)(Tj+constant) − βp

. (10)

The initial condition M
(
Tj = 0, aj, αp, βp

)
= 0 is given (no software error or fault

detected at testing time Tj = 0), and therefore we can utilize it for obtaining the unknown
constant value as follows:

M
(
Tj = 0, aj, αp, βp

)
=

aj

(
αp + e(αp+βp)(constant)

)
e(αp+βp)(constant) − βp

= 0. (11)

Solving Equation (11) for the unknown constant, the value of the constant will be
as follows:

constant =
ln
[
−αp

]
αp + βp

. (12)

Substituting the constant into Equation (10), the complete form of the mean value
function M

(
Tj, aj, αp, βp

)
can be obtained as follows:

M
(
Tj, aj, αp, βp

)
=

ajαp

(
e(αp+βp)Tj − 1

)
αpe(αp+βp)Tj + βp

. (13)

Furthermore, the intensity function λ
(
Tj, aj, αp, βp

)
(the number of the errors detected

at time t) can be obtained as follows:
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λ
(
Tj, aj, αp, βp

)
=

dM
(
Tj, aj, αp, βp

)
dTj

= aje
(αp+βp)Tj

(
αp + βp

αpe(αp+βp)Tj + βp

)2

. (14)

If the software manager wants to evaluate the efficiency of testing and debugging, the
error detection rate is helpful as the indicator. Equation (1) has given a simple form for it;
however, we can use Equation (13) to obtain the complete form of D

(
Tj
)

as follows:

D
(
Tj
)
=

dM
(
Tj, aj, αp, βp

)
/dTj)

aj −M
(
Tj, aj, αp, βp

) =
αp
(
αp + βp

)
e(αp+βp)Tj

βp + αpe(αp+βp)Tj
. (15)

According to the above mentioned, a Counting function can be used to describe the
process of software reliability growth.

{
N
(
Tj
)
, t ≥ 0

}
, where N

(
Tj
)

follows an NHPP with
the mean value function M

(
Tj, aj, αp, βp

)
, and the probability can be formulated as follows:

Pr
(

N
(
Tj
)
= k

)
=

[
M
(
Tj, aj, αp, βp

)]ke−M(Tj ,aj ,αp ,βp)

k!
, k = 0, 1, 2, . . . (16)

However, the total number of undetected errors will affect the software reliability,
which will increase the software risk. Accordingly, the software reliability needs to be
evaluated, and it can be calculated as follows:

R
(
x
∣∣Tj, aj, αp, βp

)
= e−(M(Tj+x,aj , αp ,βp)−M(Tj ,aj , αp ,βp)). (17)

Decision makers can give an adequate value of operating time x for managerial
requirements in order to maintain stability in practice. There is no doubt that increasing
the operating time will have a negative impact on the reliability of the system. It is also
worth mentioning that as the testing time approaches infinity, the software reliability will
finally approach one ( lim

t→∞
R
(
x
∣∣Tj, aj, αp, βp

)
→ 1).

2.2. Estimation of Parameters and Confidence Intervals

The model parameters in this study can be estimated by using any of the two esti-
mating techniques. Gathered data on software failures are used to illustrate how well the
suggested model fits with other ones that are already in use.

(1) Least-squares estimation (LSE) is one of the most commonly used methods in
statistics for estimating the parameters of models by minimizing the sum of the squares
of the residuals. There is a set of pairs of observed data that are taken into account in this
analysis, i.e.,

{(
T(0)

j , M(0)
)

,
(

T(1)
j , M(1)

)
,
(

T(2)
j , M(2)

)
, . . . ,

(
T(n)

j , M(n)
)}

, to estimate all

parameters of the proposed model. Here, M(i) is the actual number of errors detected
within the period [0, T(n)

j ], and this calculation can be presented by the following:

Min ER
(
aj, αp, βp

)
=

n

∑
i=1

(
M(i) −M

(
T(i)

j , aj, αp, βp

))2
(18)

It is necessary to take the first-order derivative of Equation (18) with respect to the
parameters aj, αp, βp of the model for minimizing the sum of the squares of the residuals.
Furthermore, letting them be equal to zero, the simultaneous equations can be given
as follows:

∂ER
(
aj, αp, βp

)
∂aj

=
∂ER

(
aj, αp, βp

)
∂αp

=
∂ER

(
aj, αp, βp

)
∂βp

= 0. (19)

In order to obtain the estimated parameter values for the simultaneous equations,
numerical methods are employed as they are unable to provide a closed-form expression
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of the solution. Software testing managers, however, can simplify the estimation of the re-

maining parameters by solving the simultaneous equations
∂ER(aj ,αp ,βp)

∂αp
=

∂ER(aj ,αp ,βp)
∂βp

= 0
if they estimate the parameter aj by using an error seeding method based on the system
scale for the parameters’ estimation.

(2) Maximum Likelihood Estimation method (MLE) is another way to estimate the
probability distribution’s parameters. Since the operation follows a Non-Homogeneous
Poisson Process, the corresponding likelihood function should be presented as follows:

L
[
aj, αp, βp

]
= Pr

{
N
(

T(1)
j

)
= M(1), N

(
T(2)

j

)
= M(2), . . . , N

(
T(n)

j

)
= M(n)

}
=

n
∏
i=1

(
M
(

T(i)
j aj , αp ,βp

)
−M

(
T(i−1)

j ,aj , αp ,βp

))(M(i)−M(i−1))
(

e
−(M(T(i)j ,aj ,αp ,βp)−M(T(i−1)

j ,aj ,αp ,βp))
)

(M(i)−M(i−1))!

(20)

By taking the natural logarithm of Equation (20), we can obtain the logarithm likeli-
hood function as follows:

ln
[
L
[
aj, αp, βp

]]
=

n

∑
i=1

(Mi −Mi−1)ln[M(ti)−M(ti−1)]−
n

∑
i=1

(M(ti)−M(ti−1))−
n

∑
i=1

ln[(Mi −Mi−1)!] (21)

Likewise, we can obtain the simultaneous equations for Equation (21) by taking the
first-order derivative of Equation (21) with respect to individual parameter (aj, αp, βp),
letting them be equal to zero, in the following manner:

∂ln
[
L
[
aj, αp, βp

]]
∂aj

=
∂ln
[
L
[
aj, αp, βp

]]
∂αp

=
∂ln
[
L
[
aj, αp, βp

]]
∂βp

= 0. (22)

By solving the log-likelihood function with numerical methods, it is possible to find
the estimated values for these parameters. However, it should be noted that, if an error
seeding method can be applied to estimate the initial number of all potential errors in
advance, the estimation of the remaining parameters can be simplified by simply solving

the simultaneous equations as
∂ln[L[aj ,αp ,βp]]

∂αp
=

∂ln[L[aj ,αp ,βp]]
∂βp

= 0.
In addition, the variance–covariance matrix ∑ can also be used for calculating the

confidence interval of the parameters aj, αp, and βp. The variance–covariance matrix ∑ can
be obtained by utilizing the Fisher information matrix F as follows:

F =


E
[
−∂2ln[L[aj ,αp ,βp]]

∂aj
2

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂aj∂αp

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂aj∂βp

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂αp∂aj

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂αp2

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂aj∂βp

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂βp∂aj

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂βp∂αp

]
E
[
−∂2ln[L[aj ,αp ,βp]]

∂βp2

]

 (23)

The inverse Fisher information matrix can help us to calculate the variance–covariance
matrix, and its form is presented as follows:

∑ = F−1 =

 Var
[
aj
]

Cov
[
aj, αp

]
Cov

[
aj, βp

]
Cov

[
αp, aj

]
Var

[
αp
]

Cov
[
αp, βp

]
Cov

[
βp, aj

]
Cov

[
βp, αp

]
Var

[
βp
]
 (24)

The variance–covariance matrix is a useful tool for measuring the statistical confidence
intervals of the estimated parameters. The approximate two-sided value for the critical re-
gion (CR%) based upon the estimated parameters can be obtained by the following formula:

aj ± tCR/2,n−3

√
Var

[
aj
]
, αp ± tCR/2,n−3

√
Var

[
αp
]

and βp ± tCR/2,n−3

√
Var

[
βp
]
, (25)
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where tCR/2,n−3 is the critical value of a given region CR/2 of Student-t distribution with
n− 3 degrees of freedom.

√
Var[·] can be regarded as the asymptotic standard error of

a parameter.
Despite this, since the mean value function represents the expected value of the

accumulated errors detected, it is difficult for the managers to recognize the possible bias
in the estimation process. Therefore, in order to provide the necessary information to the
managers to make a compromise or conservative decision, it would be necessary to estimate
the possible range of software errors at a certain level of confidence (usually 90% or 95%).
Yamada and Osaki (1985) proposed a method for calculating the confidence intervals of the
mean value function as follows:

M
(
Tj, aj, αp, βp

)
± ZCR/2

√
M
(
Tj, aj, αp, βp

)
(26)

where ZCR/2 is the standard normal distribution with the critical region CR. There is

a positive correlation between the standard deviation (
√

M
(
Tj, aj, αp, βp

)
) and the testing

time, so the confidence interval corresponding to the standard deviation will be increased
as the testing time increases.

2.3. Validity of Model’s Fitting Performace

This section evaluates the proposed model’s ability to adapt to a variety of datasets in
real-world applications. The datasets may be accessed and have been used by the associated
studies that have been conducted in the scientific area. The information pertaining to the
datasets can be found in Table 1. Figure 1 demonstrates the goodness-of-fit, estimated values
of the model’s parameters, and 95% confidence intervals. In order to fairly investigate the
effectiveness of the model, the three criteria are chosen. The following is a list of these
assessment criteria:

1. The mean square error (MSE) is calculated by evaluating the difference between the es-
timated value and the actual value for every data point, i.e.,

MSE =
∑n

i=1

(
M(i)−M

(
T(i)

j ,aj , αp ,βp

))2

n−k , where n is the number of observations; and k
is the number of parameters.

2. The R-squared value is used to explain the validity of a model, and a higher value can
indicate the model has a better statistical fitness. It can be given by

Rsq = 1−
∑n

i=1

(
M(i)−M

(
T(i)

j ,aj , αp ,βp

))2

∑n
i=1(M(i)− 1

n ∑n
h=1 M(i))

2 .

3. The Akaike information criterion (AIC) is defined as the log-likelihood term penalized
by the number of model parameters, which can be given by

AIC = n ∗ ln
[

∑n
i=1

(
M(i) −M

(
T(i)

j , aj, αp, βp

))2
]
+ 2k.

Table 1. The Information for the Datasets.

Dataset Reference Source

(1) Zhang and Pham [13] Failure data of Telecommunication system

(2) Yang et al. [14] Mozilla Firefox 3.5 testing data

(3) Wang et al. [15] Medium scale software project

(4) Hsu et al. [16] Open source project management software

(5) Peng et al. [17] Testing data for the Room Air Development Center

(6) Zhang and Pham [18] Failure data of Misra system

(7) Jeske and Zhang [19] Failure data of wireless data service system

(8) Singpurwalla and Willson [20] Failure data of NTDS system
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In general, decision makers will investigate whether the suggested model is capable
of fitting the datasets using a variety of patterns. Figure 1 depicts the relevant results of



Symmetry 2023, 15, 195 10 of 23

discrepancies between the predicted data and the actual data of cumulative errors. These
differences are calculated using the LSE approach, which is applied to all eight datasets to
determine the parameters of the proposed model. In Figure 1, the estimated value and the
asymptotic standard error of the model parameters have been provided in the subplots. We
can see that the subplots for datasets (1) and (8) present an S-shaped pattern; this should
be the phenomenon of the learning effect in debugging work. In the two datasets, we can
find the learning factor βp (0.5941, 0.0350) is larger than the autonomous errors-detected
factor αp (0.0215, 0.0024). This indicates that the efficiency of debugging work arises in the
middle to later stage of the software test due to the staff’s learning effect. However, the
estimation error of the parameters always exists and cannot be avoided. Therefore, the
decision makers need to reasonably infer the confidence intervals of the model parameters
if they want to use a conservative strategy. The asymptotic standard error can help us
to infer the confidence intervals of the model parameters by using Equation (25). The
confidence intervals (95%) of the mean value function suggested by Yamada and Osaki
are drawn as blue dashed lines. According to Equation (26), it can be seen that the space
between blue dashed lines is increased with testing time since the standard deviation of
the mean value function is positively correlated with testing time. Moreover, after the
analysis of Goodness-of-Fit, it can be seen that the proposed model mostly outperforms
in the criteria of MSE, R-squared, and AIC. All the fitting results are fairly good for the
proposed model, and the values of R-squared are greater than 0.95 except for the subplot of
dataset (2). Accordingly, the proposed model can be applied in further works due to its
superior prediction ability.

3. Optimal Software Release Decision
3.1. Optimal Software Release Decision for a System without Considering Modular Software Testing

Software development managers, in practice, should know when the software testing
work should be stopped in order to minimize the associated testing costs and to satisfy
the requirements of software quality. This is the well-known optimal decision-making
problem in the release process. However, extending the testing timeframe will lead to a rise
in testing expenses and it may also result in the loss of potential commercial prospects
if testing timeframes are extended. Due to the fact that optimum release is essential
and practical, there are strategies that can be used to accomplish this. As an example,
Chiu et al. [24] proposed a software release policy based upon a software reliability growth
model with NHPP assumptions, which minimizes the total cost subject to the achievement
of a certain level of reliability. The optimal software release problem was also discussed by
Pham and Zhang [3] with a consideration of the fact that during the operational/warranty
period, the developer would be responsible for paying the cost of fixing any errors produced
from the software development. Fang and Yeh [27] also proposed an effective software
release strategy and offered a technique for determining the total cost of software testing.
Both of these topics were covered in their research. They were successful in their mission
of software testing because they divided the process into two distinct phases: the testing
phase and the operational phase. The cost of debugging a mistake during the operational
period is often much greater when compared to the cost of debugging a mistake during
the testing phase. Moreover, software faults are always dangerous for companies after the
software has been released since faultless software does not exist under time pressures in
real-world. Accordingly, such considerations should be taken into consideration by adding
the risk cost due to imperfect software. Based the above mentioned, the total testing cost
can be presented as follows:

Min TC(T) = SCp + GCpT + DCp M
(
T, a, αp, βp

)
+ RC

(
1− R

(
x
∣∣T, a, αp, βp

))
+ OC(T)

Subject to : R
(
x
∣∣T, a, αp, βp

)
≥ R0.

(27)

The objective Function (27) is for minimizing the total cost by deciding the optimal test-
ing time T under the minimal requirement of system reliability R0. The parameters αp and
βp denote the estimated values of the model for testing staff group p. SCp is the set-up cost
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for testing staff group p under the software testing project. GCp is the software testing cost
per unit time. DCp is the average cost to remove a detected error during the testing period.
RC is the risk cost, and it can be regarded a loss due to software failure or operation dam-
age. 1− R

(
x
∣∣T, a, αp, βp

)
is the probability of a failure occurring after the software release.

Therefore, the expected risk cost can be evaluated as RC
(
1− R

(
x
∣∣T, a, αp, βp

))
. Moreover,

to delay the software release may cause tangible and intangible losses. Therefore, the
opportunity cost or loss due to the delay in the software release need to be considered, and
it can be defined as OC(T). The mathematical form of OC(T) can be designed as a strictly
increasing function with testing time to reflect the loss of delaying the software released to
the market. However, this cost is optional if decision-makers have other considerations.

3.2. Optimal Software Release Decision for a System with Considering Modular Software Testing

Suppose that a software system is developed based on common modular components.
The methodology of modular software development emphasizes splitting software systems
into independent, interchangeable modules. The modules contain everything that is
essential to execute a single aspect of the functionality of the software. Accordingly,
a modular software system allows for being divided by splitting down a whole system
into smaller software modules in order to execute a variety of tasks. This enables software
staff to work simultaneously and minimizes the time taken for development. Based on
the above mentioned, the relation among subsystems and common software modules in
series and parallel can be seen in Figure 2. In order to apply the relation of the subsystems
in mathematics, a matrix would be needed to express this. Please see the bottom of
Figure 2, which presents the matrices (Φ, Ψ, and A) and illustrates the relationship among
subsystems and common modules.
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In this situation, the manager of software development has to begin the testing and
debugging work for different software modules at the same time in order to shorten the
amount of testing time for the whole project. As a result, the individual software module
can be assigned to one of the testing groups so that the time frame can be shortened.
Figure 3 illustrates the concept of such parallel testing work. Although the manager tries to
shorten the project’s testing time for releasing his developed software system as soon as
possible, he still has to maintain the software reliability above an acceptable level to avoid
user dissatisfaction. Based on the above reasons, the manager needs to consider how to
balance the testing time and the system reliability before he makes the best schedule for the
testing project. The bottom of Figure 3 illustrates the time frame of the testing project with
the individual software module’s reliability and mean value.
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Table 2 presents the terminologies and notations which will be used in the
proposed models:

In this section, the objective of this study is to present two mathematical models
which are proposed for different purposes. Model 1 is for minimizing the time frame of
the software testing project under the requirement of every subsystem reliability R0

i . The
mathematical programming model can be given as follows:

Model 1:
Min

{
Max

{
TS1, TS2, . . . , TSq

}}
(28)

Subject to:

Ri =


P
∏

p=1

J
∏
j=1

{
ΨijXjpR

(
x
∣∣Tj, aj, αp, βp

)
+
(
1−ΨijXjp

)}
×
{

1−
P
∏

p=1

J
∏
j=1

{
1−ΦijXjpR

(
x
∣∣Tj, aj, αp, βp

)}}
, i = 1 . . . n (29)

Ri ≥ R0
i , i = 1 . . . n (30)

q

∑
p=1

Xjp = 1, j = 1 . . . m (31)

m

∑
j=1

XjpTj = TSp, p = 1 . . . q (32)

The objective Function (28) is to minimize the time length of the project under multiple
testing staff groups. Constraint (29) is used to calculate the reliability of each subsystem
reliability. Constraint (30) is to ensure that the reliability of each subsystem must meet
the minimal requirement R0

i . Constraint (31) is to ensure that each module can only be
assigned to a specific testing group. Constraint (32) is used to calculate the time length for
each testing group.
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Table 2. The Terminologies and Notations.

-Sets

i: the indicator of subsystem (i = 1 . . . n)
j: the indicator of software module (j = 1 . . . m)
p: the indicator of testing staff group (p = 1 . . . q)

-Decision Variables

Xjp: Xjp ∈ {0 or 1}; Xjp = 1 represents that software module j is assigned to the testing group p
Tj: the testing time of software module j
TSp: the testing time of the testing group p
Ri : the software reliability of subsystem i

-Parameters & Functions

αp: the autonomous errors-detected factor of the testing group p
βp: the learning factor of the group of testing group p
aj: the expected number of all potential errors in software module j

M
(
Tj, aj, αp, βp

)
: the mean value function with the parameters aj, αp, βp and testing time Tj

D
(
Tj
)
: the function of the error detection rate

R
(

x
∣∣Tj, aj, αp, βp

)
: the software reliability with the parameters x, aj, αp, βp and testing time

R0
i : the minimal reliability requirement of subsystem i

λ
(
Tj
)
: the intensity function is used to represent the number of errors that are detected at a specific time (Tj)

Φij: Φij ∈ {0 or 1}; Φij = 1 represents that subsystem i connects software module j in parallel. The form of the parameters can be presented as
a matrix as follows:

Φ =

1001010000
0110001000
0010100100

 (the mapping structure can be seen in Figure 2)

Ψij: Ψij ∈ {0 or 1}; Ψij = 1 represents that subsystem i connects software module j in series. The form of the parameters can be presented as
a matrix as follows:

Ψ =

0000000011
0000000001
0000000001

 (the mapping structure can be seen in Figure 2)

Aij: Aij ∈ {0 or 1}; Aij = 1 represents that subsystem i connects software module j no matter what it is in series or parallel. The form of the
parameters can be presented as a matrix as follows:

A = Φ + Ψ =

1001010011
0110001001
0010100101

 (the mapping structure can be seen in Figure 2)

TS0: the requirement of time limit for the tesing project
SCp: the setup cost by testing group p
GCp: the routine cost by testing group p
DCp: the cost to removing a software bug by testing group p
RCi : the risk cost for the subsystem i
OC
(
TSp

)
: the function of the opportunity cost after software release, and it is optional for the total testing cost.

Model 2 is for minimizing the total testing cost under the minimal requirement of
the system reliability R0

i and the time limit of the testing project TS0. The mathematical
programming model can be given as follows:

Model 2:

Min TC =
m

∑
j=1

q

∑
p=1

Xjp
(
SCp + GCpTj + DCp M

(
Tj, aj, αp, βp

))
+

n

∑
i=1

RCi(1− Ri) + OC
(
TSp

)
(33)

Subject to:

Ri =


P
∏

p=1

J
∏
j=1

{
ΨijXjpR

(
x
∣∣Tj, aj, αp, βp

)
+
(
1−ΨijXjp

)}
×
{

1−
P
∏

p=1

J
∏
j=1

{
1−ΦijXjpR

(
x
∣∣Tj, aj, αp, βp

)}}
, i = 1 . . . n (34)

Ri ≥ R0
i , i = 1 . . . n (35)

q

∑
p=1

Xjp = 1, j = 1 . . . m (36)
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m

∑
j=1

XjpTj = TSp, p = 1 . . . q (37)

TSp ≤ TS0, p = 1 . . . q (38)

The objective Function (33) is for minimizing the total testing cost under a modular
software system. Constraint (34) is the same as Constraint (29) to calculate the reliability
of each subsystem reliability. Constraint (35) is also the same as Constraint (30) to ensure
that the reliability of each subsystem meets the minimal requirement. Constraint (36) is the
same as Constraint (31) to ensure each module only can be assigned to a specific testing
group. Constraint (37) is the same as Constraint (32) is for calculating the total testing time
for every group of testing staff. Constraint (38) is to ensure that the testing time length
cannot exceed the time limit of the project.

3.3. Computerized Decision Support System Design

In dealing with these mathematical programming problems, a computerized applica-
tion system is necessary to implement the problem-solving process to obtain the optimal
decision for software release. To improve the efficiency of the system, some components
should be included in the designed system. In this study, these components are a designed
database, a model base, a data formalizing program module, a specific application pro-
gramming interface, and a designed computation engine.

The database is designed to store the parameters regarding the related costs and
various systems’ historical testing data. Similarly, the model base is designed to store
the various mathematical decision models of the software release policies. The data for-
malizing mechanism would be necessary for us to transform the inconsistent data into
a more usable state when storing or accessing the database and model base, and a data
formalizing program module would assist us with storing or accessing the data more
effectively and efficiently.

Moreover, solving the proposed models requires mathematical programming algo-
rithms and numerical integration; a powerful computation engine is needed to construct the
system. The computation engine can be developed by internal programmers or obtained
from external software providers (e.g., from Python and R packages). For the purpose
of utilizing a computation engine more efficiently and conveniently, the mechanism of
an application programming interface is a best way of exchanging information between
the designed system and a computation engine, and in the following section we introduce
the system design, and detail implementation.

There are two subsystems within the whole system which have been organized in
order to enhance its manageability. In order to maintain the database and model base,
the model management system was designed to be used by software engineers, domain
experts, and testing staff. This decision support system is designed to provide decision
makers useful information for related testing schedules and work.

In operating the model management system, the engineers first gather historical data
from former software testing projects, and also choose possible SRGMs and inspect the cost
structure. The engineers can then store the related data in the database through the model
management system. Moreover, due to the fact that the efficiency of software testing work
to the testing staff is extremely important to the estimated software test cost, the domain
experts would determine which SRGM would fit to estimate the case of each software
testing project. It is important to note that due to commercial confidentiality, the engineers,
domain experts, and technical managers should only have access to their own subsystems
as a matter of precaution. In regards to the mathematical programming models (excluding
the parameters), these are usually established by the system programmers right after the
system has been developed and are part of the model base.

The decision support system is designed to assist managers in making decisions in
the upper management, and it provides complete and integrated information that can be
used to make informed decisions. It provides decision makers with the opportunity to
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analyze all the constructive information contained in the database as well as the model
base, and to use this information to determine accurately and confidently the best decision
to take. Since some decision support systems have been successfully applied in the field of
Industry 4.0, the experience and the conceptual design of decision support systems with
Industry 4.0 can be a reference for the system development [43–48]. In order to achieve
an optimal decision, however, it may be necessary to use a computation engine that can
handle the complexity inherent in obtaining such a decision. With the use of an application
programming interface (API), we are able to access different computation program objects
that have been developed by external or internal developers quite easily. In Figure 4, it can
be seen that a schematic representation of our system’s implementation architecture.
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4. Application and Numerical Analysis

Suppose that a technology company was developing an Engineering Data Analysis
System (EDA). After fourteen months of software development, it is ready for the final
software testing and debugging phase. Most clients and users want the software to be at
least 95% reliable during the operation time, which means that there should be no more
than 5% chance of software errors during the one-hour operation time. Accordingly, the
managers of the technology company must propose a software testing project to improve
the reliability and quality of the EDA system.

Furthermore, based on the historical testing datasets of the company’s testing teams,
it can be understood that different testing teams or different scales of manpower will
affect the efficiency of software debugging. Accordingly, the managers of the technology
company propose a testing project in considering their manpower to achieve the objectives
of lower cost and higher reliability. After investigation and evaluation by the company’s
senior engineers and domain experts, the information and estimated parameters for the
software testing project can be seen in Table 3.
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Table 3. Related parameters setting for the testing project of the EDA system.

Parameter Value

a (the number of potential errors in the sytem) 4130
αp (the autonomous errors-detected factor) 0.25
βp (the learning factor) 0.13
SCp (the setup cost) $18,750
GCp (the routine cost with testing time) $2500/per day
DCp (the cost of removing software bugs) $56
RC (the risk cost) $720,000 ($7200 reputation loss vs. 1% reliability)
x (the defined operation time without any error) 1 h
R0 (the minimal requirement of the sytem reliability) 0.95

Following the completion of the calculation utilizing the proposed model, the curve of
the expected testing cost of the project presents convexity with testing time, as can be seen
in Figure 5 and Table 4. In order to meet the minimal requirement of software reliability
(R0 ≥ 0.95), the testing time should be set to 58 days or later (R

(
x
∣∣T, a, αp, βp

)
= 0.9531).

However, the time point (T = 58) is not the optimal solution for the company since the
expected testing cost (USD 427,362) of the time point is still higher than that of the next
day (USD 427,010). Therefore, the managers should set the testing time to 60 days after the
testing project begins, and the expected testing cost will decline to USD 426,902 with the
software reliability 0.9610. The benefit of extending the testing time for increasing reliability
can cover the loss of other growing costs. Additionally, it can be seen that the detection
rate D(T) is relatively stable with testing time because the value of the learning factor is
very low and most testing staff cannot effectively increase debugging efficiency from their
experience in the past.
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Figure 5. Computation results of the total expected cost and the corresponding software reliability.

There were a few crucial parameters that were taken into consideration, and a sensitivity
analysis was carried out in order to explore the influence of these parameters on the total
cost under the optimal software release time. Figure 6 presents the sensitive analysis results
for the related parameters αp, βp, GCp, DCp, and RC. As can be seen in Figure 6, in the
comparison of the parameters of the mean value function, αp is more sensitive to βp because
the value of parameter βp is relatively low and cannot get a multiplicative effect with αp.
Therefore, if the condition βp > αp can be satisfied, the learning effect is significant enough
to accelerate the efficiency of debugging work. Moreover, misestimating αp and βp will
disturb the testing project’s budget plan. In order words, if the manager overestimates αp
and βp, it will cause an underestimation of the testing cost. Furthermore, the misestimating
of αp and βp would also impact on the release decision. For an example, if the manager
overestimates αp and βp, he/she will shorten the planned testing time and rush to release
the software system. Such an outcome may cause clients’ dissatisfaction and damage the
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company’s reputation due to the unreliable system released. How can the manager increase
the testing efficiency? The manager can provide more job training to the testing staff in
advance, but it also increases the expenditure in job education. Even if the investment in
job education can effectively increase αp and βp, the manager still considers the trade-off
between the investment in the staff’s skills and the benefit from reliability improvement
and cost reduction. Additionally, the time-dependent routine cost GCp and the debugging
cost DCp will also influence the testing cost. In this case, reducing 30% of the routine cost
can save about 10.5% of the testing cost. However, saving the debugging cost can have
a better effect on reducing the testing cost since a 30% deduction of the debugging cost
can save 16% of the testing cost. Accordingly, the manager must take all the factors into
consideration to make an appropriate decision for the testing work.

Table 4. Computation results of the total testing cost, the mean value, and the error detection rate.

T TC(T) R
(
x|T,a,αp,βp

)
D(T) T TC(T) R

(
x|T,a,αp,βp

)
D(T)

41 $497,590 0.7887 0.094006 61 $427,020 0.9645 0.09485
42 $488,614 0.8055 0.094095 62 $427,345 0.9677 0.094864
43 $480,415 0.8212 0.094176 63 $427,860 0.9705 0.094876
44 $472,960 0.8357 0.09425 64 $428,548 0.9732 0.094887
45 $466,218 0.8492 0.094318 65 $429,395 0.9756 0.094897
46 $460,152 0.8617 0.094379 66 $430,387 0.9777 0.094907
47 $454,728 0.8733 0.094435 67 $431,513 0.9797 0.094915
48 $449,908 0.8840 0.094486 68 $432,760 0.9816 0.094923
49 $445,655 0.8938 0.094532 69 $434,118 0.9832 0.09493
50 $441,934 0.9029 0.094575 70 $435,578 0.9847 0.094936
51 $438,709 0.9112 0.094613 71 $437,130 0.9861 0.094942
52 $435,947 0.9189 0.094648 72 $438,767 0.9873 0.094947
53 $433,615 0.9259 0.09468 73 $440,481 0.9885 0.094952
54 $431,681 0.9323 0.094709 74 $442,265 0.9895 0.094956
55 $430,115 0.9382 0.094735 75 $444,113 0.9905 0.09496
56 $428,891 0.9436 0.094759 76 $446,019 0.9913 0.094964
57 $427,982 0.9486 0.094781 77 $447,979 0.9921 0.094967
58 $427,362 0.9531 0.094801 78 $449,988 0.9928 0.09497
59 $427,010 0.9573 0.094819 79 $452,040 0.9935 0.094973
60 $426,902 0.9610 0.094835 80 $454,133 0.9941 0.094975

Furthermore, suppose the technology company decided to develop software systems
using modular programming instead of traditional system development. Therefore, the
whole EDA system can be divided into the four subsystems and the fifteen related software
modules. Figure 7 illustrates that each subsystem can utilize some software modules in
series-parallel relations. The correspondence between the subsystem and the software
modules can be tabulated as a matrix. The bottom half of Figure 7 gives the matrices
of Φ, Ψ, and A for illustrating the structures of subsystems and modules. The initial
potential software errors of each subsystem have been estimated by senior engineers and
are presented at the bottom of matrix A. Moreover, in this figure, it can be seen that the
common and shared modules M5, M7, M9, and M14 can be used in different subsystems.
Therefore, such a common and shared module’s reliability will influence more than one
subsystem’s reliability. Similar to the previous issue, the software testing phase will begin
after fourteen months of software development. Instead, the manager adopts the modular
testing strategy for the EDA system in parallel. At present, according to the company’s
human resources, three software testing and debugging groups can be assigned to the
testing and debugging work for 8 h per day. The model parameters (αp and βp) of each
testing and debugging group can be estimated according to the historical testing data.
Furthermore, due to the different testing and debugging efficiency for each group, the
related costs must be different. The above information can be seen in Table 5. Moreover,
each subsystem has its minimal reliability requirement, and the manager must fulfill the
basic requirement of clients. The risk costs of each subsystem are estimated to be USD
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140,000, USD 180,000, USD 190,000, and USD 210,000, individually. It should be noted that
the reliability calculation is based on no error occurring within a defined operation time.
Finally, the manager is required to shorten the length of the testing project, and therefore
the upper limit of the testing time frame is set to 45 days. The detailed information can be
seen in Table 6.
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Table 5. The parameter values regarding each testing staff groups’ efficiency and costs.

Parameters Testing Staff 1 Testing Staff 2 Testing Staff 3

αp 0.28 0.31 0.35
βp 0.18 0.20 0.23

SCp 950 1200 1600
GCp 580 620 640
DCp 42 45 48

Table 6. The information of the minimal requirement of reliability, the risk cost, and the upper limit
of testing time frame.

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Minimal requirement of subsystem reliability i: R0
i 0.95 0.90 0.90 0.90

The risk cost of subsystem i: RCi $140,000 $180,000 $190,000 $210,000

upper limit of testing time frame TS0 = 45 days;
Operation time with no error x = 1 h

Suppose the manager of the company would like to know how to schedule the testing
work in order to get the shortest time frame for the EDA system testing. Therefore, the
manager can apply Model 1 of Section 3.2 in dealing with the problem. After the calculation
using Model 1, we can get the optimal solution of the software test scheduling. Figure 8
and Table 7 present the Gantt chart and the detailed computation results of the software test
scheduling by applying Model 1. In this figure, we can see that the manager should assign
modules M2, M5, M12, and M14 to staff group 1, modules M6, M8, M9, M10, and M13 to
staff group 2, and modules M1, M3, M4, M7, M11, and M15 to staff group 3. The testing
time can be shortened to 35.83 days. However, the averaged reliability of the whole system
will be down to 0.9125 (Reliability of subsystem: Rs

1 = 0.95, Rs
2 = 0.90, Rs

3 = 0.90, Rs
4 = 0.90),

and the total cost will be estimated at USD 328,935. Although Model 1 can effectively
shorten the testing time of the project, the averaged system reliability is relatively low, and
the testing cost needs to reach the optimum. Accordingly, Model 1 is only appropriate for
a software development project that needs to be released as soon as possible.
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Suppose the manager changes his/her mind to adopt the strategy of minimizing the
testing cost. Therefore, Model 2 of Section 3.2 can be applied to optimize the testing work.
After the calculation of Model 2, the optimal solution regarding the staff schedule, total cost,
the time frame for each testing staff group, and each subsystem’s reliability can be seen
in Figure 9 and Table 8. In Figure 7, the manager should assign modules M10, M12, M13,
and M14 to staff group 1, modules M2, M5, M6, M8, M9, and M11 to staff group 2, and
modules M1, M3, M4, M7, and M15 to staff group 3. The testing time of the project will be
extended to 42.5 days. Even though the testing time will be longer, the averaged reliability
of the whole system will be improved to 0.9830 (Reliability of subsystem: Rs

1 = 0.9912,
Rs

2 = 0.9770, Rs
3 = 0.9752, Rs

4 = 0.9886), and the total cost will be decreased to USD 284.418.
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From the perspective of cost and software quality, the strategy of Model 2 seems beneficial
to the company; however, the manager needs to delay the release of the EDA system by
about 18.62%. However, if the deadline issue is really important and the manager must
fulfill the contract to avoid the loss of the company’s goodwill, the manager may take
a tradeoff strategy between Model 1 and Model 2′s objectives. Accordingly, the manager
should adjust his/her original decision to adapt to different situations in practice. Based
on the above mentioned, the proposed models can effectively improve the quality and
schedule of the software testing work to enhance the software system’s competitiveness.

Table 7. The computation results of the software test scheduling by applying Model 1.

Module M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

Assign to Group p 3 1 3 3 1 2 3 2 2 2 3 1 2 1 3

Testing Time/Days 5.55 8.63 8.14 5.16 7.99 4.65 5.48 9.14 7.91 5.1 6.08 9.35 8.80 9.87 5.41

Reliability of Module j 0.8219 0.9329 0.9507 0.7779 0.9252 0.7578 0.7852 0.9588 0.9358 0.7508 0.8551 0.9415 0.9391 0.9566 0.7849

Average Reliability: 0.9125; Reliability of subsystem i: Rs
1 = 0.95, Rs

2 = 0.90, Rs
3 = 0.90, Rs

4 = 0.90
Total cost = $328,935
Time frame for staff groups p: TS1 = 35.83 days (for modules: 2, 5, 12, 14), TS2 = 35.82 days (for modules: 6, 8, 9, 10, 13), TS3 = 35.83 days (for modules: 1, 3, 4, 7, 11, 15)
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Table 8. The computation results of the software test scheduling by applying Model 2.

Module M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
Assign to Group p 3 2 3 3 2 2 3 2 2 1 2 1 1 1 3
Testing Time/Days 7.41 4.63 11.38 7.00 4.21 4.12 7.23 12.25 12.34 4.23 4.93 12.67 12.84 12.76 7.67

Reliability of Module j 0.9334 0.7054 0.9922 0.9137 0.7016 0.7047 0.9137 0.9913 0.9929 0.6034 0.7023 0.9868 0.9862 0.9882 0.9340

Average Reliability: 0.9830; Reliability of subsystem i: Rs
1 = 0.9912, Rs

2 = 0.9770, Rs
3 = 0.9752, Rs

4 = 0.9886
Total cost = $284.418
Time frame for staff groups p: TS1 = 42.5 days (for modules: 10, 12, 13, 14), TS2 = 42.5 days (for modules: 2, 5, 6, 8, 9, 11), TS3 = 40.7 days (for modules: 1, 3, 4, 7, 15)

5. Conclusions

Software reliability and quality are critical for evaluating the success of software
development. Software testing work is a meaningful way to improve stability for ensuring
the quality of software. However, due to the pressure of the software release schedule and
the constraint of the testing project budget, the manager must develop effective strategies
to make appropriate trade-offs between software quality and testing cost. In the past, the
majority of research on software system testing was centered on determining the best testing
schedule for a single software system. Consequently, there was significantly less discussion
on how to arrange the testing schedule under modular software system development. In
this scenario, the manager must understand how to allocate and arrange the necessary
testing resources among all software subsystems and modules. As a result, in this work, two
programming models with consideration of learning effect have been proposed to deal with
the scheduling issue of modular software system testing in order to achieve the shortest
testing time with limited testing resources and meet specified reliability requirements.

According to the analysis results of the study, the managerial implications and sug-
gestions can be summarized as follows: (1) In order to increase the value of the model’s
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parameters αp and βp, it will be necessary to hire more senior testing staff or provide on-
the-job training to those already working on the project. This, in turn, needs an increased
budget for the project to cover these costs. As a result, the software developer has to take
into consideration the trade-offs in order to come up with a balanced decision. (2) Software
release timing is not only a matter of cost, as the software provider must also meet the
minimum level of software reliability in accordance with the contract or most customers’
requirements. (3) In general, the detection rate is relatively stable with testing time. If the
manager wants to raise the detection rate in the later phase, the learning factor βp needs to
be higher than the autonomous errors-detected factor αp since it will not get a multiplicative
effect with αp as long as βp is relatively low. (4) Model 1 can effectively shorten the testing
period but it may sacrifice the software reliability and quality because the model only fulfills
the minimal requirement of software reliability. Accordingly, Model 1 is only appropriate
for a project that needs to be released as soon as possible. Otherwise, the manager needs
to relax the constraint of each subsystem’s reliability requirement. (5) Model 2 focuses
on minimizing the total testing cost. However, if the deadline is really important and the
manager needs to fulfill the contract to maintain the company’s reputation, the manager
may choose a strategy that compromises between Model 1 and Model 2’s objectives. With
the above considerations, the proposed models can be utilized effectively to enhance the
company’s competitiveness by improving the quality of software testing work.

Finally, some directions can be considered for future studies: (1) It is possible to
integrate an NHPP with covariates into a software reliability growth model. With the help
of the NHPP with covariates, the extra failure data (testing effort, testing resources, etc.)
can be used to adjust the original prediction, and thus the accuracy of the prediction will be
increased by the model. (2) Due to the fact that the execution time of the two mathematical
programming models would be increasing exponentially with the problem size, developing
efficient solutions would be necessary. Genetic algorithms, particle swan optimization,
other heuristic algorithms, etc., may be a direction for improving the efficiency of the
model’s calculation. (3) In the development of a software reliability growth model, the
issue of a debugging time delay can be considered. The majority of studies conducted
in the past assumed the error correction time would not have any impact on the testing
process in the future. However, such an assumption is unrealistic. In the future, we will
revise the unrealistic assumptions in order to develop a new model that is more realistic.
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