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Abstract: Regular rotating electrically charged compact objects are described by nonlinear electrody-
namics minimally coupled to gravity in a self-consistent way and without additional assumptions on
the relation between the electromagnetic field and gravity. The electromagnetic fields obey the system
of four source-free nonlinear equations for the electromagnetic tensor Fµν, with only two independent
components due to spacetime symmetry determined by the algebraic structure of electromagnetic
stress–energy tensors (pr = −ρ). In this paper, we present, for an arbitrary gauge-invariant La-
grangian, the general regular solution and generic behavior of electromagnetic fields, including the
generic features of the Lagrange dynamics, for regular rotating electrically charged black holes and
electromagnetic spinning solitons.

Keywords: regular electrically charged rotating black hole; electromagnetic spinning soliton;
electromagnetic fields

1. Introduction

Nonlinear electrodynamics minimally coupled to gravity (NED-GR) describes, in a
self-consistent way and without additional assumptions concerning NED-GR coupling,
generic properties of regular electrically charged black holes and electromagnetic solitons
replacing naked singularities as non-dissipated compact objects related by electromagnetic
and gravitational interaction.

The physical mechanisms responsible for the existence of astrophysical electrically
charged black holes have been considered in the literature during almost half a century.
In 1974, it has been shown that a black hole with the angular momentum J in an external
magnetic field B captures charged particles up to acquiring the charge q = 2BJ [1]. Mecha-
nisms of black hole charging in the process of its interaction with the ionized cosmic plasma
in the magnetic field has been presented and analyzed in [2]. The self-consistent analysis
of accretion of a collisionless charged fluid on a neutral black hole, carried out in [3], has
resulted in the estimate of an acquired charge 0 < q/m < 0.99. The method of testing an
astrophysical black hole for the existence of a charge by using the process of reflection of
electromagnetic waves has been proposed in [4].

The idea of an electromagnetic spinning soliton goes back to the early classical models
of the electron, visualized as an extended spherical electrically charged particle with
the finite energy. The necessary condition for its existence, formulated by Abraham [5]
and Lorentz [6,7], required introducing an ad hoc additional cohesive force of the non-
electromagnetic origin to prevent an extended charged electron from scattering apart
under the Coulomb repulsion. Analyzing models of this type, Dirac did not find physical
reasons for the proposed assumptions concerning the character and origin of an additional
non-electromagnetic force [8].
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At the same time, development of point-like models of spinning particles gradually
involved and developed instruments needed for description of an extended particle, and
led to the Dirac nonlinear electrodynamics [9] (for a brief description of this story, see [10]).

In the 1962 Dirac model, the electron was visualized as an electrically charged surface,
with zero electromagnetic field inside, the external field, determined by the surface Maxwell
equations, and a needed non-electromagnetic force provided by a surface tension [11]. In
General Relativity, the extended models have been presented by Boyer for rotating fluid
masses [12,13]. It was shown that a perfect-fluid interior can be matched to any given
exterior field, and the boundary conditions were formulated for all possible isolated, axially
symmetric, uniformly rotating perfect-fluid mass configurations in a steady state [12,13].

In 1982, Righi and Venturi found that the Dirac nonlinear electrodynamics admits
the spherically symmetric static solutions of an extended type, which can be applied
for modeling a charged particle [14]. In 1993, a generalization of the Dirac nonlinear
electrodynamics was proposed [15], which admits a soliton-like solution, equipped with the
Coulomb field and the field of a magnetic dipole, appropriate for description of a charged
particle. The soliton mass is finite; the angular momentum, stored in its electromagnetic
field, has been associated with the particle spin. A charged spinning soliton is visualized
as a sphere of the radius re introduced for dimensional reason; the magnetic momentum
µe and the electric charge e come as constants of integration. The soliton-type behavior is
manifested by the complete accessibility of a particle interior to another particle, neutral
or charged with the same sign [15]. Contemporary models developed on the basis of spin
dynamics are presented in [16,17] (for a recent review, see [10]).

Another road has been opened in 1965 by the Kerr–Newman geometry which describes
the rotating electrically charged objects in the linear electrodynamics coupled to gravity,
by the electrovacuum solution to the Einstein–Maxwell equations with the metric [18]

ds2 = −dt2 +
Σ
∆

dr2 + Σdθ2 +
(2mr− q2)

Σ
(dt− a sin2 θdφ)2 + (r2 + a2) sin2 θdφ2; (1)

Σ = r2 + a2 cos2 θ; ∆ = r2 − 2mr + a2 + q2, (2)

where m is the mass, q is the electric charge, and a is the angular momentum. The electro-
magnetic potential is given by [18]

Ai = −(q/r)Σ[1; 0, 0,−a sin2 θ]. (3)

In 1968, Carter has reported that the parameter a coupled with the mass m gives the
angular momentum J = ma, and coupled with the charge q gives an asymptotic magnetic
momentum µq = qa, and the same gyromagnetic ratio as predicted by the Dirac equation
for a spinning particle [19]. This gave rise to search for models of internal sources of the
Kerr–Newman fields motivated by the construction of a model for the electron as a charged
spinning structure without horizons r± = m±

√
m2 − (a2 + q2), when a2 + q2 > m2. In this

case, however, gφφ < 0 for 2mr < q2 which leads to causality violation, i.e., the existence
of closed time-like curves, originated in the interior region r < q2/2m, and extended over
the whole manifold [19].

The models of a matter source for the Kerr–Newman fields, based on screening or
covering the causally dangerous region, include disk-like [20–22], shell-like [12,23], bag-
like [13,24–29], and string-like models [30,31]. The problem of matching the Kerr–Newman
exterior to an internal material source does not have a unique solution, because of the
freedom in choosing the boundary between them [20].

The Kerr–Newman axially symmetric solution was obtained from the spherical Reissner–
Nordström solution with help of the Newman–Janis algorithm [32].

As was shown by Gürses and Gürsey [33], the Newman–Janis algorithm belongs to
the Trautman–Newman complex coordinate translations, and works for the algebraically
special metrics of the Kerr–Schild class [34]. The spherical Kerr–Schild metrics written in
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the units c = G = 1 and in the spacetime signature [-+++], typical for the papers presented
in the literature, have the form

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2dΩ2; g(r) = 1− 2M(r)

r
; M(r) = 4π

∫ r

0
ρ(x)x2dx (4)

and present the algebraically degenerated solutions to the Einstein equations [33,34]. Stress–
energy tensors for the spherical metrics (4) have the algebraic structure such that

Tt
t = Tr

r (5)

where Tt
t = ρc2 is the density, and Tt

t = −pr; Tθ
θ = Tφ

φ = −p⊥ are the principal pres-
sures. In the axially symmetric case, the condition (5) is not satisfied, while the relation
pr = −ρ remains valid and characterizes the algebraic structure of stress–energy tensors
for electromagnetic fields.

Most of the regular solutions presented in the literature for electrically charged rotating
objects [35–45] belong to the Kerr–Schild class (for a review, see [46]).

An essential step in approaching electrically charged compact objects was presented
by the nonlinear electrodynamics, developed by Born and Infeld and motivated by the
aim to describe particles and the electromagnetic field in the frame of one physical entity
which is the electromagnetic field [47]. The additional aim to avoid divergences of physical
quantities remained inaccessible: the electromagnetic energy was made finite by imposing
an upper cut-off on the electric field, although geometry remained singular (for the present
status of the nonlinear electrodynamics [48–50]).

The Born–Infeld program can be realized in nonlinear electrodynamics minimally
coupled to gravity, which describes regular electrically charged objects, related by electro-
magnetic and gravitational interactions, by the regular axially symmetric solutions, asymp-
totically Kerr–Newman for a distant observer, obtained from regular spherical solutions
of the Kerr–Schild class specified by (5) [41,51,52]. Regular solutions of this class describe
the regular rotating electrically charged black holes and electromagnetic spinning solitons,
defined, following the Coleman definition for physical solitons [53], as non-singular non-
dissipative particle-like structures without horizons, keeping themselves together by their
own self-interaction.

Their basic features and typical behavior follow from general NED-GR equations
which govern their behavior and, in the case of minimal coupling, do not involve any
additional conditions concerning relations between electromagnetic and gravitational
fields. The NED-GR dynamical equations describe these objects in the self-consistent way
by the source-free equations for nonlinear electromagnetic fields, while their gravitational
fields are determined by the Einstein equations with the source terms presented by the
electromagnetic stress–energy tensors for their own electromagnetic fields.

The key point is the algebraic structure of the electromagnetic stress–energy tensors
(pr = −ρ). For regular solutions satisfying the weak energy condition (WEC), which
requires non-negative energy density on any time-like curve, WEC inevitably leads to
monotonic decreasing of density and to the existence of the de Sitter vacuum interiors,
p = −ρ. This is the basic feature of all regular objects described by the metrics of the
Kerr–Schild class, independently on a physical origin of a source term in the Einstein
equations [54].

For spherical NED-GR objects, they are presented by the de Sitter center r = 0 [41].
For spinning objects, described by the axially symmetric geometry, the axial symmetry
transforms the center r = 0 into the de Sitter equatorial disk r = 0, which is the obligatory
constituent of all regular rotating objects [46,51,52]. In this paper, we show that WEC is
always satisfied for regular rotating electrically charged NED-GR objects.

The mass of the objects with the de Sitter interiors is generically related to breaking of
spacetime symmetry from the de Sitter group [55]. Intrinsic relation of the electromagnetic
mass m = 4π

∫ ∞
0 ρemr2dr for NED-GR spinning solitons [56] with breaking of spacetime
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symmetry [41], suggests the generic relation between spacetime symmetry and the Higgs
mechanism, which supplies fermions with masses via spontaneous symmetry breaking
of an incorporated scalar field from a false vacuum state p = −ρ [57–59] (for a review,
see [60,61]), due to intrinsic involvement of the de Sitter vacuum as its false vacuum state
which leads to the direct relation of spontaneous symmetry breaking of the Higgs field
with breaking of spacetime symmetry [54].

Regular rotating objects can, in principle, have two kinds of interiors, regulated by en-
ergy conditions [52,62]. The first type interior is represented by the de Sitter disk, the second
type contains an additional closed de Sitter surface with the disk as a bridge. For NED-GR
objects, the electromagnetic dynamics excludes the second type as incompatible with its
standard requirement of non-negativity of the dielectric permeability [46,52].

The basic properties of electrically charged NED-GR spinning solitons have been
verified by the observational case of appearance of a minimal length scale in the annihi-
lation reaction e+e− → γγ(γ). Experimental data, collected during fourteen years and
worked out by the standard QED methods with the O(α3) accuracy, revealed, with the 5σ
significance, the existence of a characteristic minimal length scale le = 1.57× 10−17 cm at
E = 1.253 TeV [63,64]. The annihilation reaction e+e− → γγ(γ) is purely electromagnetic
and can be interpreted in the frame of the nonlinear electrodynamics minimally coupled
to gravity. The NED-GR equations predict the existence of spinning electrically charged
electromagnetic solitons, with the gyromagnetic ratio g = 2 for a distant observer. Basic
model-independent features of electromagnetic spinning solitons visualizing annihilating
particles provide a physical mechanism which can be responsible for appearance of a
minimal length scale in annihilation, due to the balance between electromagnetic attraction
of the oppositely charged annihilating particles and gravitational repulsion of their de Sitter
vacuum interiors [64]. This case confirms the image of the electron as an extended spinning
particle with the de Sitter vacuum interior, as suggested by the intrinsic involvement of the
de Sitter vacuum in its electromagnetic mass.

Non-zero field components of the electromagnetic field tensor Fαβ, compatible with
the axial symmetry, are F01, F02, F13, F23. Due to spacetime symmetry provided by the alge-
braic structure of electromagnetic stress–energy tensor, only two of them are independent
and obey the system of four field equations. The necessary and sufficient condition for
compatibility of this system has been obtained in our paper [52] and analyzed in [65]. In
this paper, we study generic features of the Lagrange dynamics, obtain the general solution
for the electromagnetic fields, show that all regular rotating electrically charged NED-GR
objects satisfy the weak energy condition, and outline their basic generic properties.

In Section 2, we present the basic equations which govern the regular rotating elec-
trically charged NED-GR objects. Section 3 is devoted to the analysis of the Lagrange
dynamics. In Section 4, we present general solution to dynamical equations for electro-
magnetic fields, and outline the generic properties of electrically charged NED-GR objects
as determined by the dynamical equations and by the compatibility condition. Section 5
contains conclusions.

2. Basic Equations

In this section, we introduce the basic equations describing geometry and electromagnetic fields
of regular rotating electrically charged NED-GR objects, as determined by the spacetime symmetry
and by the algebraic structure of the electromagnetic stress–energy tensor and analyze the weak
energy condition.

2.1. Geometry

Spherically symmetric metrics of the Kerr–Schild class (4) have been transformed in
the general model-independent way to the axially symmetric metrics in the frame of the
Gürses–Gürsey formalism [33] (which includes the Newman–Janis algorithm [32]). In the
Boyer–Lindquist coordinates r, θ, φ, related with the Cartesian coordinates by
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x2 + y2 = (r2 + a2) sin2 θ; z = r cos θ, the axially symmetric Gürses–Gürsey metric,
written in the geometrical units c = G = 1, has the form [33]

ds2 =
2 f − Σ

Σ
dt2 +

Σ
∆

dr2 +Σdθ2− 4a f sin2 θ

Σ
dtdφ+

(
r2 + a2 +

2 f a2 sin2 θ

Σ

)
sin2 θdφ2 (6)

where the Lorentz signature is [−+++], and

Σ = r2 + a2 cos2 θ; ∆ = r2 + a2 − 2 f (r); f (r) = rM(r). (7)

The master function f (r) asymptotically goes to f (r)→ (mr− q2/2) as r → ∞, which
represents the Kerr–Newman metric (1) for the exterior field of a rotating charged object
as seen by a distant observer. The parameter m is the electromagnetic mass of an object,
m = 4π

∫ ∞
0 ρ(r)r2dr, which originates from a related spherical solution. The parameter

q is a constant of integration identified as an electric charge by the asymptotic Coulomb
behavior in the weak field linear regime. In the Kerr–Newman geometry, the master
function f (r) = mr− q2/2 can change the sign which leads to causality violation [19]. In the
regular geometry (6), the functionM(r) monotonically grows fromM(r) = 4πρ(0)r3/3→
0 as r → 0, toM(r) = m− q2/2r → m as r → ∞ [41]. This guarantees the causal safety on
the whole spacetime manifold due to f (r) ≥ 0 [51].

In the axially symmetric geometry, the surfaces r = constant are the confocal ellipsoids

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 (8)

which for r = 0 degenerate to the equatorial disk

x2 + y2 ≤ a2, z = 0 (9)

centered on the symmetry axis and confined by the ring [66]

x2 + y2 = a2, z = 0. (10)

Spacetime horizons are defined by ∆(r) = r2 + a2 − 2rM(r) = 0 which gives

r+,− =M(r)±
√
M2 − a2; r± =M(r±) (11)

where r+ is the event horizon, r− < r+ is the internal Cauchy horizon, and r± is the double
horizon for the extreme black hole with a = adh =M(r±) = r± [52,62].

Ergospheres as surfaces of the static limit gtt = 0 confine ergoregions, where gtt < 0 en-
sures extraction of rotational and electromagnetic energy ([45,46,52] and references therein).

The NED-GR black holes have one ergosphere for any density profile. For a spinning
electromagnetic soliton, the existence of ergospheres depends on the density profile. They
can have two ergospheres and ergoregions between them, or one ergosphere and the
ergoregion involving the whole interior [52,62].

The anisotropic stress–energy tensor responsible for geometry (6) can be written as [33]

Tµν = (ρ + p⊥)(uµuν − lµlν) + p⊥gµν; (12)

uµ =
1√
±∆Σ

[(r2 + a2)δ
µ
0 + aδ

µ
3 ], lµ =

√
±∆
Σ

δ
µ
1 , nµ =

1√
Σ

δ
µ
2 , mµ =

−1√
Σ sin θ

[a sin2 θδ
µ
0 + δ

µ
3 ] (13)

where the sign plus refers to the regions outside the event horizon and in the regular
geometry inside the Cauchy horizon, where the vector uµ is time-like. The vectors mµ and
nµ are space-like in all regions. The eigenvalues of the stress–energy tensor (12) in the
co-rotating reference frame, rotating with the angular velocity ω(r) = uφ/ut = a/(r2 + a2),
are defined by

Tµνuµuν = ρ(r, θ); Tµνlµlν = pr = −ρ; Tµνnµnν = Tµνmµmν = p⊥(r, θ). (14)
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In the regions outside the event horizon and inside the Cauchy horizon, where density
is the eigenvalue of the time-like eigenvector uµ, they are related to the function f (r) as [27]

ρ(r, θ) =
r4

Σ2 ρ̃(r) =
2( f ′r− f )

Σ2 ; p⊥(r, θ) =

(
r4

Σ2 −
2r2

Σ

)
ρ̃(r)− r3

2Σ
ρ̃′(r) =

2( f ′r− f )− f ′′Σ
Σ2 (15)

where ρ̃(r) is the density profile and p̃⊥ is the transversal pressure for an original spherical
solution. The prime denotes the derivative with respect to r.

In the equatorial plane, θ = π/2, (p⊥ + ρ) = −rρ̃′(r)/2 [51]. For the spherical
solutions satisfying WEC, regularity requires rρ̃′(r)→ 0 as r → 0 [41]. As a result, on the
disk (9) p⊥ + ρ = 0→ p⊥ = pr = p = −ρ, while the function f (r) in (6) approaches the de
Sitter asymptotic 2 f (r)→ 8πGρ̃(0)r4/3 [41], and the geometry and the equation of state
on the disk

p = −ρ; f (r) =
r4

2r2
0

; r2
0 =

3
8πGρ̃(0)

(16)

represent the rotating de Sitter vacuum in the co-rotating frame [51].
The interior de Sitter vacuum disk of the radius a is the basic generic feature of all

regular rotating compact objects [51,52]. The mass parameter m appearing in the Kerr–
Newman limit, m =M(r → ∞), is the finite positive electromagnetic mass, generically
related to the interior de Sitter vacuum and breaking of spacetime symmetry from the
de Sitter group in its origin to the Poincaré group at infinity in the asymptotically flat
spacetime [55,56]. For electromagnetic solitons, this leads to the inherent relation between
gravity, spacetime symmetry, and the Higgs mechanism for mass generation [54,67]. The
Higgs mechanism endows a particle with a mass via spontaneous symmetry breaking of
an intrinsically incorporated scalar field from its false vacuum state p = −ρ [57–59]. In
this way, the Higgs mechanism generically incorporates the de Sitter vacuum p = −ρ
as its basic ingredient, in consequence, spontaneous symmetry breaking of a scalar field
intrinsically involves breaking of spacetime symmetry from the de Sitter group [54].

2.2. Electromagnetic Fields

Non-zero field components, compatible with the axial symmetry, are F01, F02, F13, F23.
In the spacetime geometry with the metric (6), they are related by

F31 = a sin2 θF10; aF23 = (r2 + a2)F02. (17)

The NED-GR dynamical equations are usually obtained with the action

I =
1

16πG

∫
d4x
√
−g[R−L(F)]; F = FµνFµν (18)

where R is the scalar curvature, and Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic tensor.
The gauge-invariant electromagnetic Lagrangian L(F) should have the Maxwell limit in
the weak field linear regime where its derivative LF = dL(F)/dF = 1.

Variation with respect to Aµ in (18) and the contracted Bianchi identities Gµ
ν;µ = 0,

give two sets of the source-free dynamic field equations, respectively [39,51]

∇µ(LFFµν) = 0; (19)

∇µ
∗Fµν = 0; ?Fµν =

1
2

ηµναβFαβ; η0123 = − 1√−g
(20)

where g is the determinant of the metric tensor gµν.
Introducing the field vectors

E = {Fβ0}; D = {LFF0β}; B = {∗Fβ0}; H = {LF
∗F0β},
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we can write the field Equations (19) and (20) in the conventional form of the
Maxwell equations

∇ ·D = 0; ∇×H = ∂D/∂t; ∇ · B = 0; ∇× E = −∂B/∂t. (21)

The electric and magnetic induction D and B are related with the field strength E
and H by Dα = εα

βEβ; Bα = µα
β Hβ, where ε

β
α and µ

β
α are the dielectric and magnetic

permeability.
Symmetry of spacetime (8) gives two independent eigenvalues [51]

εr
r =

(r2 + a2)

∆
LF; εθ

θ = LF; µr
r =

(r2 + a2)

∆LF
; µθ

θ =
1
LF

. (22)

For rotating regular objects, there exists a possibility of violation of the weak energy
condition [43,44,52,65], which requires ρ > 0 and p⊥ + ρ ≥ 0. The condition for testing
WEC follows from (15) and has the form [52]

(p⊥ + ρ) =
2r2

Σ2

(
Σr
4
|ρ̃′| − ρ̃a2 cos2 θ

)
(23)

which implies a possibility of generic violation of the weak energy condition.
In NED-GR, the regular rotating objects are presented by the electromagnetic stress–

energy tensor, calculated in the standard way [68], which has the form [51]

Tµ
ν = 2LFFναFµα − 1

2
δ

µ
νL (24)

and gives the source of the gravitational field in the Einstein equations Gµ
ν = −8πGTµ

ν .
Let us note that in the axially symmetric spacetime, the condition (5) is not

satisfied, because

T0
0 = −2LF

Σ
[(r2 + a2)F2

10 + F2
20]−

L
2

; T1
1 = −2LFF2

10 −
L
2

. (25)

In the spherical geometry a = 0, Σ = r2 and F20 = 0, as a result the relations (25) give
the relation (5) which specifies the spherical solutions of the Kerr–Schild class.

However, the equation of state pr = −ρ remains valid in the axially symmetric
geometry. The electromagnetic density and pressures are defined by (14) as

ρ =
1
2
L+ 2LFF2

10; pr = T1
1 = −ρ; p⊥ = −1

2
L+ 2LF

F2
20

a2 sin2 θ
. (26)

For NED-GR objects, the basic equation for testing WEC follows directly from (26)
as [51]

(p⊥ + ρ) = 2LF

(
F2

10 +
F2

20

a2 sin2 θ

)
. (27)

Violation of the weak energy condition would require the negative values of the
dielectric and magnetic permeability, according to (22). For NED-GR objects, the basic
requirement of electrodynamics of continuous media (positivity of the dielectric perme-
ability [68]) excludes WEC violation. It follows that for NED-GR objects, the weak energy
condition is always satisfied. In the equatorial plane, p⊥ + ρ = −rρ′/2 and WEC leads to a
monotonic increase of electromagnetic density to its maximal value on the disk [51,52].

Spacetime of regular rotating electrically charged compact objects contains at most two horizons
and one ergosphere for black holes, and one or two ergospheres for electromagnetic spinning solitons.
Electromagnetic mass of an NED-GR object is generically related to breaking of spacetime symmetry
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from the de Sitter group. The weak energy condition is satisfied for all regular electrically charged
NED-GR compact objects.

3. Lagrange Dynamics

In this section, we analyze the general behavior of the field invariant F and the Lagrange
derivatives LF and LFF, which determine the basic features of the Lagrange dynamics.

The general definition of a stress–energy tensor for the electromagnetic field (26)
defines a general form of the Lagrangian as

L = 2ρ− 4LFF2
10. (28)

On the disk, regularity requires p⊥ + ρ = 0, according to (16), and Equation (27)
yields F2

10 = F2
20/a2 = 0 since LF cannot be zero. Electromagnetic field components

F10 = 0, F20 = 0, and consequently F13 = 0, F23 = 0, present the trivial solution to the
dynamical Equations (19) and (20). On the disk where F10 = 0, the basic relation (28) gives

F2
10 =

2ρ−L
4LF

= 0. (29)

For regular solutions with an arbitrary Lagrangian L, it is possible if and only if
LF → ∞. The behavior of LF in the strong field regime on the disk represents the natural
realization of the underlying hypothesis of nonlinearity replacing a singularity ([65] and
references therein).

The field invariant is determined by two independent field components as

F = 2

(
F2

20

a2 sin2 θ
− F2

10

)
. (30)

Generic features of the Lagrange dynamics are defined by general relations (27), (28)
and (30). Expressing F2

20/a2 sin2 θ from (30) and F2
10 from (28), we obtain

p⊥ + ρ = FLF + 2ρ−L; ∇(p⊥ + ρ) = F∇LF + 2∇ρ. (31)

As follows from (27), on the disk F2
10 = F2

20 = 0, and thus, F = 0 and ∇F = 0. In the
weak field limit at r → ∞, where (p⊥ + ρ)→ 0 because ρ→ 0 for compact objects, the field
invariant F takes zero value at infinity.

Near the disk ∇(p⊥ + ρ) > 0 since (p⊥ + ρ) grows from (p⊥ + ρ) = 0, ∇LF < 0
since LF decreases from LF → ∞, and ∇ρ < 0 because ρ decreases from its maximal value,
hence the field invariant must be negative to guarantee the proper behavior of (p⊥ + ρ).

The field invariant F evolves from F = −0 in the strong nonlinear regime on the disk
to F = −0 at infinity. Lagrangian L(F), as a function of the non-monotonic function F with
equal limiting values, should suffer branching on a surface where the invariant F achieves
its minimum [39,41].

It follows that the Lagrange dynamics for regular electrically charged structures is
described by the non-uniform variational problem with the action [69]

I = Iint + Iext =
1

16π

[ ∫
Ωint

(R−Lint(F))
√
−gd4x+

∫
Ωext

(R−Lext(F))
√
−gd4x

]
. (32)

Each of the two parts of the manifold, Ωint and Ωext, is confined by the space-like
hypersurfaces t = tin and t = t f in. The internal boundary between Ωint and Ωext is
defined as a time-like hypersurface Σc, at which the field invariant F achieves its mini-
mum, and the external part Ωext is confined by the time-like 3-hypersurface at infinity,
where electromagnetic fields vanish [69]. Variation in the action (32) yields the dynamical
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equations (19) and (20) in both Ωint and Ωext, and the standard boundary conditions on
the surface Σc [69]

∫
Σc

(
LF(int)Fµν(int) −LF(ext)Fµν(ext)

)√
−gδAµdσν = 0; Lint − 2LF(int)Fint = Lext − 2LF(ext)Fext. (33)

The Lagrangian given by the general formula (28), L = 2ρ − 4LFF2
10, behaves as

L → 2ρ̃(0) at approaching the disk, because LFF2
10 → 0 by virtue of (27). In the weak field

limit when LF → 1 and F10 → 0 as r → ∞, the Lagrangian is L = 2ρ→ 0, since ρ→ 0 for
compact objects with finite mass. The Lagrange derivative LF decreasing from LF = ∞
on the disk to LF = 1 in the weak field limit as r → ∞, is finite in the branching surface,
as follows from (27).

The behavior of the Lagrange derivative LFF is determined by ∇LF = LFF∇F. At
the branching surface, defined by ∇F = 0, the derivative LFF breaks from LFF = ∞ on an
upper branch, where LF decreases from the infinite value on the disk and ∇LF < 0, while
the invariant F decreases to its minimum and ∇F < 0, to LFF = −∞ on a lower branch,
where LF still decreases and ∇LF < 0, while the invariant F increases from its minimum
and ∇F > 0. On the upper branch, at approaching the disk, LFF → ∞ due to ∇F → 0 and
∇LF > 0 for LF → ∞.

Hence, in the upper branch, LFF evolves between two infinite values and should have
a minimum somewhere in between. On the lower branch, LFF evolves from LFF = −∞ at
the branching surface to LFF = 0 in the Maxwell weak field limit at r → ∞.

The characteristic behavior in the Lagrange dynamics is shown in Figure 1 [69].

 

 

L

F
0

 

 

F

L
F

0
1  

 

F

L
FF

0

Figure 1. (Left) Typical behavior of the Lagrangian. (Middle) Behavior of the Lagrangian derivative
LF. (Right) Characteristic behavior of the Lagrangian derivative LFF.

Generic behavior of the Lagrangian and its derivatives determines the basic features of the
Lagrange dynamics. The field invariant evolves between two zero values, on the disk and at infinity,
which leads to branching of the Lagrangian on the surface where the invariant F achieves its
minimum. At the branching surface, the Lagrange derivative LFF breaks from LFF → ∞ on the
upper branch to LFF → −∞ on the lower branch.

4. General Solutions and Generic Properties of Regular Electrically Charged
NED-GR Objects

In this section, we obtain the general solution and analyze the behavior of electromagnetic
fields described by two independent components of the electromagnetic field tensor Fµν, which
should satisfy the system of four dynamical equations and the necessary and sufficient condition
for its compatibility. We also outline the basic properties of regular rotating electrically charged
NED-GR objects.

4.1. General Solutions

The field Equations (19) and (20), with taking into account (17), form the system of
four equations for two independent functions [52]

∂

∂r

[
(r2 + a2) sin θLFF10

]
+

∂

∂θ

[
sin θLFF20

]
= 0; (34)

∂

∂r

[
a sin θLFF10

]
+

∂

∂θ

[
1

a sin θ
LFF20

]
= 0; (35)
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∂

∂r
F20 −

∂

∂θ
F10 = 0; (36)

∂

∂θ

[
a2 sin2 θF10

]
− ∂

∂r

[
(r2 + a2)F20

]
= 0. (37)

In terms of the functions

U10 = LFF10, U20 = LFF20 (38)

Equations (34) and (35) read

∂

∂r

[
(r2 + a2)sin θ U10

]
+

∂

∂θ

[
sin θ U20

]
= 0; (39)

sin θ
∂

∂r
U10 = − 1

a2
∂

∂θ

[
1

a sin θ
U20

]
= 0 (40)

and can be transformed to the form

U10 =
1

2a2r sin θ

∂

∂θ

(
Σ

sin θ
U20

)
; (41)

∂

∂θ

{
1

sin θ

[
∂

∂r

(
Σ
r

U20

)
+ 2U20

]}
= 0. (42)

Indeed, putting (40) into (39), we obtain the equation

U10 =
(r2 + a2)

2a2r sin θ

∂

∂θ

(
1

sin θ
U20

)
− 1

2r sin θ

∂

∂θ

(
sin θU20

)
=

1
2a2r sin θ

∂

∂θ

(
Σ

sin θ
U20

)
which evidently gives Equation (41). Putting then the function U10, given by Equation (41),
into Equation (40), we obtain Equation (42), which gives the first integral

∂

∂r

(
Σ

r sin θ
U20

)
+

2U20

sin θ
= Φ(r) (43)

where the integration function Φ(r) is an arbitrary function of r. Introducing the function

V20 =
Σ

r sin θ
U20 , (44)

we transform Equation (43) to

∂

∂r
V20 +

2r
Σ

V20 = Φ(r) (45)

which has the form y′ + p(r)y = Φ(r) with p(r) = 2r/Σ. Its general solution is

y(r) = exp(−
∫

p(r)dr)
∫

f (r) exp(
∫

p(r)dr)dr + A exp(−
∫

p(r)dr)

which gives

V20(r, θ) = Σ−1
∫

Φ(r)Σdr + Ψ0(θ)Σ−1.

As a result, the general solution for the field function U20 is given by

U20(r, θ) =
r

Σ2

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
, (46)

where the integration function Ψ(θ) is an arbitrary function of θ.
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The general solution for U10 follows from the relation (41) as

U10(r, θ) =
1

2a2 sin3 θΣ2

[
ΣΨ′(θ) sin θ − [Σ− 2a2 sin2 θ]Ψ(θ) cos θ

]

+
cos θ

Σ2

[ ∫
Φ(r)r2dr− r2

∫
Φ(r)dr

]
. (47)

Formulae (46) and (47) present the general solution to the system (39) and (40), and
thus to the system (34) and (35). Now, we consider Equations (36) and (37) to obtain
conditions which should be satisfied by the integration functions Φ(r) and Ψ(θ), as the
conditions required for the solution (46) and (47) to present a general solution to the whole
dynamical system (34) and (37).

Equation (37) can be transformed as

F10 =
1

a2 sin 2θ

∂

∂r

[
(r2 + a2)F20

]
− sin2 θ

sin 2θ

∂

∂θ
F10 =

1
a2 sin 2θ

∂

∂r

[
(r2 + a2 − a2 sin2 θ)F20

]
+

sin2 θ

sin 2θ

∂F20

∂r
− sin2 θ

sin 2θ

∂F10

∂θ
=

1
a2 sin 2θ

∂

∂r

(
ΣF20

)
− sin2 θ

sin 2θ

[
∂F20

∂r
− ∂F10

∂θ

]
and gives, along with the Equation (36), the system

∂F10

∂θ
− ∂F20

∂r
= 0; F10 =

1
a2 sin 2θ

∂

∂r

(
ΣF20

)
. (48)

To the first equation of system (48), we put F10 from the second equation, which
transforms the first equation to the form

∂

∂θ

[
1

a2 sin 2θ

∂

∂r

(
ΣF20

)]
− ∂F20

∂r
= 0.

As a result, the system of Equations (36) and (37) takes the form

F10 =
1

a2 sin 2θ

∂

∂r

(
ΣF20

)
; (49)

∂

∂r

{
∂

∂θ

(
Σ

sin 2θ
F20

)
− a2F20

}
= 0. (50)

In terms of the function U10, Equation (49) reads

U10 =
LF

a2 sin 2θ

∂

∂r

(
Σ
LF

U20

)
. (51)

On the other hand, the function U10 should satisfy Equation (41). Equality of both
these expressions gives the first constraint which should be satisfied by the function U20 as
the general solution to the system (41) and (42)

r
∂

∂r

(
ΣU20

)
− cos θ

∂

∂θ

(
Σ

sin θ
U20

)
= B(LF); (52)

B(LF) =
r
LF

∂LF
∂r

ΣU20. (53)
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Now, let us consider Equation (50). Writing it for U20, and taking into account that the
function U20 should satisfy Equation (42), we obtain the second constraint for U20

∂

∂r

{
∂

∂θ

(
Σ

sin 2θ
U20

)
− a2U20

}
= A(LF); (54)

A(LF) =
1
LF

∂LF
∂r

∂

∂θ

(
Σ

sin 2θ
U20

)
+

1
LF

∂LF
∂θ

∂

∂r

(
Σ

sin 2θ
U20

)

+LF
∂

∂r

(
1
LF

2
∂LF
∂θ

)
Σ

sin 2θ
U20 −

a2

LF

∂LF
∂r

U20. (55)

We have two equations, (52) and (54), which should be satisfied by the function U20,
while the function U10 can be found from relation (41) either (51). It follows that the two
constraints (52) and (54) should be satisfied by the integration functions Φ(r), Ψ(θ) and
serve for their specification in general solutions for U20 and U10 and, thus, for the field
functions F20 and F10.

Putting relation (46) into (52) and taking into account (53), we present the first con-
straint (52) as the integro-differential equation for the integration functions Φ(r) and Ψ(θ)

Ψ′(θ) + (tan θ − cot θ)Ψ(θ)− sin θ tan θrΣΦ(r)

+ sin θ tan θ
∫

Φ(r)r2dr− a2 sin2 θ cos θ
∫

Φ(r)dr

= −Σ sin θ

r cos θ
B(LF) = −

r tan θ

LF

∂LF
∂r

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
. (56)

Now, we transform the second constraint (54) by replacing the derivative with respect
to θ from the first constraint (52), which yields, after simple algebra,

∂

∂r

[
r

∂

∂r

(
ΣU20

)
+ (r2 − a2 cos2 θ)U20

]
= 2 cos2 θA(LF) +

∂

∂r
B(LF). (57)

Taking into account Equation (43) gives

r
∂

∂r

(
ΣU20

)
= r2Φ(r) sin θ + (a2 cos2 θ − r2)U20

and reduces the second constraint on the integration functions to the form

sin θ
∂

∂r

(
r2Φ(r)

)
= 2A(LF) cos2 θ +

∂

∂r
B(LF). (58)

Applying the expressions (53) and (55) in the right-hand side of Equation (58), we
obtain the second constraint dependent on the general solution U20

sin θ
∂

∂r

(
r2Φ(r)

)
=

cot θ

LF

∂LF
∂r

∂

∂θ

(
ΣU20

)
+

[
r
LF

∂LF
∂r

+
cot θ

LF

∂LF
∂θ

]
∂

∂r

(
ΣU20

)

+
1
LFΣ

∂LF
∂r

(r2 − a2 cos2 θ)ΣU20 +
1
LF

∂LF
∂r

(1− cot2 θ)ΣU20

+

[
cot θ

LF

(
∂

∂r
∂LF
∂θ
− 2
LF

∂LF
∂r

∂LF
∂θ

)
+

r
LF

(
∂

∂r
∂LF
∂r
− 1
LF

(
∂LF
∂r

)2
)]

ΣU20. (59)

Then, we express the derivatives of ΣU20 via the integration functions in (46), which gives

∂

∂θ

(
ΣU20

)
=

r
Σ2

[
ΣΨ′(θ) + a2 sin 2θΨ(θ)− a2Σ sin θ sin 2θ

∫
Φ(r)dr

]
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+
r cos θ

Σ2

(
2a2 sin2 θ + Σ

) ∫
Φ(r)Σ(r, θ)dr; (60)

∂

∂r

(
ΣU20

)
= r sin θΦ(r) +

(a2 cos2 θ − r2)

Σ2

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
. (61)

Finally, putting these expressions and the general solution (46) into Equation (58), we
obtain, after collecting similar terms, the second constraint on the integration functions

sin θ
d
dr

(
r2Φ(r)

)
= D1Φ(r) + D2

[
Ψ′(θ)− a2 sin θ sin 2θ

∫
Φ(r)dr

]
+ D3Ψ(θ) + D4

∫
Φ(r)Σ(r, θ)dr (62)

D1 =
r sin θ(a2 cos2 θ − r2)

LFΣ2

[
r

∂LF
∂r

+ cot θ
∂LF
∂θ

]
; D2 =

r cot θ

LFΣ
∂LF
∂r

; (63)

D3 =
1
LF

∂LF
∂r

r
Σ2 sin2 θ

(
2a2 cos2 θ sin2 θ − Σ cos 2θ

)
+

cot θ

LF

∂LF
∂θ

(a2 cos2 θ − r2)

Σ2

+
r
LFΣ

[
cot θ

(
∂

∂r
∂LF
∂θ
− 2
LF

∂LF
∂r

∂LF
∂θ

)
+ r

(
∂

∂r
∂LF
∂r
− 1
LF

(
∂LF
∂r

)2
)]

; (64)

D4 =
r
LFΣ2

∂LF
∂r

(Σ + 2a2 cos2 θ) sin θ +
cot θ

LF

∂LF
∂θ

(a2 cos2 θ − r2) sin θ

Σ2

+
r sin θ

LFΣ

[
cot θ

(
∂

∂r
∂LF
∂θ
− 2
LF

∂LF
∂r

∂LF
∂θ

)
+ r

(
∂

∂r
∂LF
∂r
− r
LF

(
∂LF
∂r

)2
)]

. (65)

Let us summarize the obtained result:
The general solution for the field components is given by

F20(r, θ) =
r
LFΣ2

[
Ψ(θ) + sin θ

∫
Φ(r)Σ(r, θ)dr

]
; (66)

F10(r, θ) =
1

2a2 sin3 θ LFΣ2

[
sin θ ΣΨ′(θ)− cos θ [Σ− 2a2 sin2 θ]Ψ(θ)

]

+
cos θ

LFΣ2

[ ∫
Φ(r)r2dr− r2

∫
Φ(r)dr

]
. (67)

The integration functions Φ(r) and Ψ(θ) are specified by the basic conditions (56) and (62).
In addition, the Lagrange derivative LF should satisfy the necessary and sufficient condi-
tion of compatibility of the system of four Equations (34)–(37), and hence (19) and (20), for
the two independent functions F10 and F20, which read [52]

∂

∂r

(
1
LF

∂LF
∂θ

)
∂

∂θ

(
1
LF

∂LF
∂r

)
+

4a2 sin2 θ

Σ2
1
L2

F

[
r

∂LF
∂r

+ cot θ
∂LF
∂θ

]2

= 0. (68)

This condition is evidently satisfied for LF = const, which can be normalized to
LF = 1 corresponding to the Maxwell weak field limit, and in the case of trivial zero field
solutions F10 = F20 = 0 [52]. In the weak field limit LF = 1, integration of Equation (58)
gives the integration function Φ(r) as

Φ(r) =
C1

r2 .

Putting it into Equation (56), we obtain the equation for a second integration function

Ψ′ + (tan θ − cot θ)Ψ = 0
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whose solution is given by
Ψ(θ) = C2 sin 2θ

where C1 and C2 are the arbitrary integration constants, and solutions for F10 and F20 in
the Maxwell weak field linear limit LF = 1 are given by

F10 = C1
2r cos θ

Σ2 + C2
(a2 cos2 θ − r2)

a2Σ2 ; F20 = C1
sin θ(r2 − a2 cos2 θ)

Σ2 + C2
r sin 2θ

Σ2 . (69)

Choosing the integration constants C1 = 0, C2 = −qa2, we reduce the integration
functions to

Φ(r) = 0; Ψ(θ) = −qa2 sin 2θ. (70)

Applying them in the relations (66) and (67), we obtain the solution

F01 = − q(r2 − a2 cos2 θ)

Σ2LF
; F02 =

qa2r sin 2θ

Σ2LF
; F31 = a sin2 θF10; aF23 = (r2 + a2)F02 (71)

which satisfies the dynamical Equations (34)–(37) and thus (19) and (20), gives the known
solution [19,25] in the Maxwell limit LF = 1, and satisfies the compatibility condition (68)
on the disk due to LFΣ2 → ∞ and LF → ∞ [52].

Indeed, introducing solutions (71) to (27), we obtain the basic relations

(p⊥ + ρ) =
2q2

LFΣ2 ; F = − (p⊥ + ρ)2Σ2

2q2 . (72)

It follows that at approaching the disk, (LFΣ2)−1 → (p⊥ + ρ) and F → −0, which
ensures regularity of the solution. At the same time, the behavior of (LFΣ2) → ∞ as
(p⊥ + ρ)−1, and LF → ∞ as (p⊥ + ρ)−1Σ−2, provides satisfaction of the compatibility
condition (68) on the disk, where (p⊥ + ρ) = 0 and Σ = 0.

4.2. Generic Behavior of Electrically Charged NED-GR Objects

The basic generic feature of all regular rotating electrically charged NED-GR objects
is the interior de Sitter vacuum disk, p = −ρ. All these objects satisfy the weak energy
condition; as a result, the electromagnetic density achieves its maximal value on the disk,
where electromagnetic field vanishes, so that the maximal density represents the density of
electromagnetic vacuum with the de Sitter equation of state p = −ρ [41].

Regularity requires LF → ∞ on the disk. In accordance with the general relation (22),
in the strongly nonlinear regime on the disk, the magnetic permeability µr

r = µθ
θ = µ =

1/LF vanishes, the dielectric permeability εr
r = εθ

θ = LF tends to infinity, and the disk (9)
represents the perfect conductor and ideal diamagnet [51].

Applying the solution (71) which satisfies the dynamical system (19) and (20) and the
compatibility condition (68) on the disk, we calculate the surface current, 4π jk = [eα

(k)Fαβnβ],
where eα

(k) are the base vectors related to the coordinates on the disk t, φ, 0 ≤ ξ ≤ π/2; the

vector nα = δ1
α(1 + q2/a2)−1/2 cos ξ is the unit normal to the disk, and [..] denotes a jump

across the disk in the direction orthogonal to it [20]. This gives [70]

jφ = − qc
2πa

√
1 + q2/a2 sin2 ξ

µ

cos3 ξ
. (73)

On the disk, the magnetic permeability vanishes, µ = 1/LF = 0; as a result, the surface
current jφ is zero over the disk—except the ring ξ = π/2, where both terms in the second
fraction zero out independently. As a result, the current can have any non-zero value,
and satisfies the general criterion for a superconducting current [68]. The superconducting
current flows without resistance within the perfect conductor, and represents thus a non-
dissipative source of the electromagnetic field, which provides practically unlimited lifetime
of an object [70].
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The circular current (73) produces a magnetic momentum µin which is intrinsic in prin-
ciple, because the dynamical Equations (19) and (20) are source-free [71]. At approaching
the disk (9), r → 0 and the function f (r) in (6) tends to zero, the disk is intrinsically flat [51]
and the magnetic momentum is defined as µin = c−1 jφS, where S is the disk area. Express-
ing the current (73) in the form jφ = −(qc/2πa)

√
1 + q2/a2U, where U is an uncertain

coefficient, we rewrite the magnetic momentum as µin = −(qS/2πa
√

1 + q2/a2U. When
the intrinsic magnetic moment of an object is known, the uncertain coefficient U can be
restored from µin. For an electromagnetic soliton with the parameters of the electron, this
gives jφ = 79.277 A as the current which powers the electron for a practically unlimited
lifetime [71].

For a distant observer, r � λe = h̄/mec, the electric and magnetic field of the electro-
magnetic soliton with the parameters of the electron is given by [70]

Er = −
e
r2

(
1− h̄2

m2
e c2

3 cos2 θ

4r2

)
; Eθ =

eh̄2

m2
e c2

sin 2θ

4r3 . (74)

Br = − eh̄
mec

cos θ

r3 = 2µe
cos θ

r3 ; Bθ = −µe
sin θ

r4 . (75)

where λe = h̄/mec is the Compton wavelength of the electron. These expressions follow
from the regular solutions [52,70] in the Kerr–Newman limit r � λe = h̄/mec, and concord
with Carter’s discovery of the ability of the Kerr–Newman metric to represent the electron
as seen by a distant observer [19]. The leading term in Er presents the Coulomb law as the
classical limit h̄ = 0, while the higher terms give the quantum corrections.

An NED-GR image of the electron as an extended spinning particle has been con-
fronted with the observational case presented by the purely electromagnetic annihilation
reaction e+e− → γγ(γ), which can shed some light on the electron internal structure. Anal-
ysis of the the most extensive available data set on the annihilation reaction e+e− → γγ(γ),
collected between 1989 and 2003 at energies from

√
s=55 GeV to 207 GeV, where

√
s is the

center-of-mass energy, revealed, with the 5σ significance, the existence of the limit on the
maximal resolution, shown in Figure 2, at the energy E = 1.253 TeV and the limiting length
scale le ' 1.57× 10−17 cm [63,64].

4Λ1/

-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2 0.3 0.4 0.5

-9
10×
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Figure 2. The minimum in the χ2 fit with P = 1/Λ4 where Λ is the QED cutoff parameter.

In Quantum Electrodynamics (QED), an electron is postulated as a point and the
question of its internal structure is not addressed. Such an assumption works perfectly
well, due to the technique invented by Richard Feynman, in the analysis of processes in
which experimental distances are much bigger than a characteristic size of a particle.

Analysis of data on the reaction e+e− → γγ(γ)in the QED-α3 with assuming a scattering
center as a point and calculating the radiative corrections up to O(α3), predicted the increase of
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the total cross-section. Contrary to the QED prediction, the χ2 fit, shown in Figure 2, displayed
the minimum with the negative fit parameter P = (1/Λ4)best = −(4.05± 0.73)× 10−13GeV−4,
where Λ is the QED cutoff parameter [63,64]. The contradiction between the experimental
results and the QED prediction testifies for a non-point-like behavior of particles in the
physical situation when characteristic sizes of particles exceed the test distances. In the case
of the electron, both its classical radius re = e2/(mec2) = 2.8× 10−13 cm and the Compton
size λe = h̄/(mec) = 3.9× 10−11 cm are much larger than the characteristic test length
le ' 1.57× 10−17 cm.

The definite feature of the annihilation process is that at its final stage, a region of
interaction is neutral and spinless. For any regular structure with the de Sitter interior,
there exists the characteristic surface of zero gravity r∗ ' (r2

0rg)1/3, at which the strong
energy condition (ρ + ∑ pk ≥ 0 [72]) is violated, the gravitational acceleration changes
the sign and becomes repulsive [55,73]. The gravitational radius rg, related to the energy
E = 1.253 TeV, and de Sitter radius r0, related to the Higgs vacuum expectation value
responsible for the electron mass at the scale EEW = 246 GeV, give r∗ ' 0.86× 10−16 cm.
The test scale le = 1.57× 10−17 cm appears inside a region with the repulsive gravity and
can be understood as a distance of the closest approach of annihilating particles, at which
their electromagnetic attraction is balanced by the gravitational repulsion of their interior
de Sitter vacuum [10,64].

Remarkably, the appearance of the minimal length scale in the annihilation reaction
e+e− → γγ(γ) can be explained by the intrinsically negative pressure of the de Sitter
vacuum, which is responsible, at other energy scales, for the accelerated expansion of our
universe in the first inflation and today [74–81].

The general solution for two independent field components governed by the system of four
dynamical equations should satisfy the condition of its compatibility and two conditions on two
integration functions, which determine the basic properties and generic behavior of regular rotating
electrically charged NED-GR objects, including the physical origin of their electromagnetic fields
and of intrinsic magnetic momenta, and the minimal length scale in the annihilation reaction
e+e− → γγ(γ).

5. Conclusions

Generic behavior of electromagnetic fields for regular rotating electrically charged
NED-GR objects is determined in a self-consistent and model-independent way, by space-
time symmetry related to the algebraic structure of electromagnetic stress–energy tensors
(pr = −ρ). Electromagnetic fields are described by source-free nonlinear equations, while
the stress–energy tensor of these electromagnetic fields generates a gravitational field as
a source term in the Einstein equations. Dynamical equations for electromagnetic fields
form the system of four equations for two independent components of the electromagnetic
tensor Fµν, due to spacetime symmetry. The Lagrange derivative LF is constrained by the
compatibility condition for this system, while general solutions for field components are
constrained by two conditions imposed on their originally arbitrary integration functions.

The fundamental generic feature of all regular rotating electrically charged NED-GR
objects, uniquely determined by spacetime symmetry provided by the algebraic structure
of the electromagnetic stress–energy tensor, is the existence of the interior disk of the de
Sitter vacuum, which prevents a formation of a singularity by its intrinsic negative pressure
(for a review, see [82]).

Electromagnetic mass of a regular electrically charged NED-GR object,
m = 4π

∫ ∞
0 ρemr2dr, is generically related with gravity and breaking of the spacetime

symmetry from the de Sitter group, which is the basic generic property of all regular objects
involving an interior de Sitter vacuum [55].

All regular rotating electrically charged NED-GR objects satisfy the weak energy condition.
On the interior de Sitter vacuum disk, the magnetic permeability vanishes while the

dielectric permeability goes to infinity; as a result, the de Sitter disk displays the properties
of a perfect conductor and an ideal diamagnetic.
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The ring confining the de Sitter vacuum disk comprises the superconducting current
which powers the nonlinear electromagnetic field of an electrically charged NED-GR
compact object and provides, as the non-dissipative source, its in principle unlimited
lifetime, as well as the physical origin for its intrinsic magnetic momentum. For the
electron visualized as the electromagnetic spinning soliton, this superconducting current is
evaluated as jφ = 79.277 A [71].

NED-GR predicts, without any additional assumptions and constraints, the existence
of electromagnetic spinning solitons (compact objects made of nonlinear electromagnetic
field and bound by their electromagnetic and gravitational self-interaction), in agreement
with the prominent proposal of Born and Infeld [47] to describe particles and the electro-
magnetic field in the frame of one physical entity (electromagnetic field).

The image of the electron as an extended particle, verified by application of an elec-
tromagnetic spinning soliton with the parameters of the electron for interpretation of
experimental data on the purely electromagnetic annihilation reaction e+e− → γγ(γ),
allows to provide a certain physical explanation for appearance of the minimal length scale
in the annihilation reaction e+e− → γγ(γ).
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